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Abstract

Complex molecular biological processes such as transcription and translation, signal
transduction, post-translational modification cascades, and metabolic pathways can be
described in principle by biochemical reactions that explicitly take into account the
sophisticated network of chemical interactions regulating cell life. The ability to deduce
the possible qualitative behaviors of such networks from a set of reactions is a central
objective and an ongoing challenge in the field of systems biology. Unfortunately, the
construction of complete mathematical models is often hindered by a pervasive problem:
despite the wealth of qualitative graphical knowledge about network interactions, the
form of the governing nonlinearities and/or the values of kinetic constants are hard to
uncover experimentally. The kinetics can also change with environmental variations.

This work addresses the following question: given a set of reactions and without
assuming a particular form for the kinetics, what can we say about the asymptotic
behavior of the network? Specifically, it introduces a class of networks that are
“structurally (mono) attractive” meaning that they are incapable of exhibiting multiple
steady states, oscillation, or chaos by virtue of their reaction graphs. These networks
are characterized by the existence of a universal energy-like function called a Robust
Lyapunov function (RLF). To find such functions, a finite set of rank-one linear systems
is introduced, which form the extremals of a linear convex cone. The problem is then
reduced to that of finding a common Lyapunov function for this set of extremals. Based
on this characterization, a computational package, Lyapunov-Enabled Analysis of
Reaction Networks (LEARN), is provided that constructs such functions or rules out their
existence.

An extensive study of biochemical networks demonstrates that LEARN offers a new
unified framework. Basic motifs, three-body binding, and genetic networks are studied
first. The work then focuses on cellular signalling networks including various
post-translational modification cascades, phosphotransfer and phosphorelay networks,
T-cell kinetic proofreading, and ERK signalling. The Ribosome Flow Model is also
studied.
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Author summary

A theoretical and computational framework is developed for the identification of 1

biochemical networks that are “structurally attractive”. This means that they only 2

allow global point attractors and they cannot exhibit any other asymptotic behavior 3

such as multi-stability, oscillations, or chaos for any choice of the kinetics. They are 4

characterized by the existence of energy-like functions. A computational package is 5

made available for usage by a wider community. Many relevant networks in molecular 6

biology satisfy the assumptions, and some are analyzed for the first time. 7

Introduction 8

Many biological systems are known for the ability to operate precisely and consistently 9

subject to potentially large disruptions and uncertainties [1–5]. Examples are 10

homeostasis, understood as the maintenance of a desired steady state (perhaps 11

associated to an observable phenotype) against the variability of in-vivo concentrations 12

of biochemical species, or a consistent dynamical behavior in the face of environmental 13

variations which change the speed of reactions. 14

The vaguely defined term “robustness” is often used to refer to this consistency of 15

behavior under perturbations. The present work deals with such notions of “biological 16

robustness”, as well with a “robustness of analysis” notion in which conclusions can be 17

drawn despite inaccurate mathematical models. 18

Models of core processes in cells are typically biochemical reaction networks. This 19

includes binding and unbinding, production and decay of proteins, regulation of 20

transcription and translation, metabolic pathways, and signal transduction [6]. However, 21

in contrast to engineered chemical systems, biology poses particular challenges. On the 22

one hand, the reactants and the products in such interactions are frequently known, and 23

hence the species-reaction graph is available. On the other hand, the exact form and 24

parameters (i.e, kinetics) that determine the speed of transformation of reactants into 25

products are often unknown. This lack of information is a barrier to the construction of 26

complete mathematical models of biochemical dynamics. Even if the kinetics are exactly 27

known at a specific point in time, they are influenced by environmental factors and 28

hence they can change. Hence, the ability to draw conclusions regarding the qualitative 29

behavior of such networks without knowledge of their kinetics is highly relevant, and 30

has been advocated under the banner of “complex biology without parameters” [4]. But 31

is such a goal realistic? It is known that the long-term qualitative behavior of a 32

nonlinear system can be critically dependent on parameters, a phenomenon known as 33

bifurcation. This fundamental difficulty led to statements such as Glass and Kauffman’s 34

1973 assertion that “it has proved impossible to develop general techniques which may 35

be applied to find the asymptotic behavior of complex chemical systems” [7]. 36

Notwithstanding such difficulties, many classes of reaction networks are observed to 37

have a “well-behaved” qualitative long-term dynamical behavior for wide ranges of 38

parameters and various types of nonlinearities. This means specifically in our context 39

that such networks do not have the potential for exhibiting complex steady-state 40

phenotypes such as multiple-steady states (e.g, toggle switches), oscillations (e.g, 41

repressilator), or chaos. Their typical behavior is that the concentrations eventually 42

settle into a unique steady steady (called an attractor) for any initial condition (with 43

fixed total substrate, gene and enzyme concentrations). Hence, we call them structurally 44

attractive. The relevant biological phenotype for such networks is the unique attractor, 45

which is mathematically represented by the concentrations of the biochemical species at 46

steady state. Discerning such networks is not generally trivial. For instance, within the 47

class of post-translational modification (PTM) cycles, some cascades are “structurally 48

January 15, 2020 2/40

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 23, 2020. ; https://doi.org/10.1101/696716doi: bioRxiv preprint 

https://doi.org/10.1101/696716
http://creativecommons.org/licenses/by-nc-nd/4.0/


attractive” but others can exhibit oscillations and multistability [8]. Figure 1 illustrates 49

the typical behavior of an attractive network vs a multistable network for two PTM 50

cycles that have been proposed as models for double phosphorylation. We will study 51

PTM cycles in detail later in the paper. 52

In the terminology of dynamical and control system theories, the defining feature of 53

an attractive network is that it can only exhibit global point attractors (i.e., unique 54

globally asymptotically stable steady states). The classical way to certify stability is by 55

exhibiting an appropriate energy-like function, commonly referred to as a Lyapunov 56

function [9, 10]. Existence of such a function provides many guarantees on qualitative 57

behavior, including notably the fact that its sub-level sets act as trapping sets for 58

trajectories [11]. Furthermore, they allow the development of a systematic study of 59

model uncertainties and response to disturbances [9, 10]. However, it is notoriously 60

difficult to find such functions for nonlinear systems due to the lack of general 61

constructive techniques. 62

The search of Lyapunov functions for nonlinear reaction networks can be traced back 63

to Boltzmann’s H-Theorem [12], which applies only to the restrictive subclass of 64

detailed-balanced networks. Wei [13] in 1962 postulated that all chemical systems 65

should satisfy an “axiom of convergence” and there shall exist a suitable Lyapunov 66

function. Perhaps the most striking success in this line of thought was the development 67

of the Horn-Jackson-Feinberg (HJF) theory of complex-balanced networks [14–17] in the 68

early 1970s, which relies on using the sum of all the chemical pseudo-energies stored in 69

species as a Lyapunov function. When specific graphical conditions are satisfied, 70

complex-balancing is guaranteed for all kinetic constants. Global stability can be proven 71

in certain cases [18,19]. Despite the elegance and theoretical appeal of the method, the 72

assumptions needed for its applicability are restrictive, and are not widely satisfied in 73

biological models. For example, many basic motifs (e.g, transcription/translation and 74

enzymatic reactions) are not complex balanced. Furthermore, HJF theory assumes, 75

although with some exceptions, that the reaction kinetics are Mass-Action. It has been 76

argued that this assumption “is not based on fundamental laws” and is merely “good 77

phenomenology” [20]. These laws are usually justified by the intuitive image of colliding 78

molecules. However, this is often not the right level of analysis for biological modeling, 79

where alternative kinetics such as Michaelis-Menten and Hill kinetics are used in 80

situations involving multiple time scales [21]. 81

Beside complex-balanced networks, a few additional classes of attractive networks 82

have been identified. These include mono-molecular networks, which can be handled 83

within the framework of compartmental systems using a Lyapunov function [22,23]. 84

More recently, global convergence has been shown for another class of networks via the 85

concept of monotonicity without supplying a Lyapunov function [24] where sufficient 86

graphical conditions have been given. 87

In previous work [25–27], two of the authors proposed a direct approach to the 88

problem, introducing the class of piecewise linear-in-rates functions, which act as 89

Lyapunov functions regardless of the specific form of the reaction nonlinearities or 90

kinetic constants. They guarantee the uniqueness of steady states and global stability 91

under mild additional conditions. 92

In this work, the results from [25–27] are generalized in several directions, 93

theoretically, computationally, and in terms of biological applications. First, we propose 94

a general characterization of “structurally attractive” networks. We require the 95

existence of a universal rate-dependent function, which we call a Robust Lyapunov 96

Function (RLF), that is a Lyapunov function for any choice of the kinetics. We proceed 97

to propose a computational framework for finding such functions. To this end, the 98

dynamics of the network are embedded in a linear convex cone. The extremals of this 99

cone are a set of rank-one matrices that derive from the stoichiometry of the network. If 100
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Fig 1. Distinct qualitative behaviors for two models of a double PTM. This is
illustrated by the time series plots for the double phosphorylated substrate with
randomized initial conditions for fixed total substrate and enzyme concentrations. (a)
the processive mechanism exhibits a unique global attractor, (b) a distributive
mechanism exhibits multistability for some parameters. See Figure 8 and the
accompanying discussion. The parameters are given in S1 Text-§6.

a common Lyapunov function exists for the extremals, then it can be used to construct 101

an RLF and the network is certified to be attractive. In the special case that kinetics 102

are mono- or bimolecular, the RLF is piecewise linear or piecewise quadratic on species, 103

respectively. 104

Computationally, we complement previous reaction network toolboxes [28,29] and 105

we provide a Lyapunov-Enabled Analysis of Reaction Networks (LEARN) toolbox to 106

implement the results on any given network by searching for an RLF and checking the 107

appropriate conditions via four main methods: a graphical algorithm, a linear program, 108

an iterative procedure, and a semi-definite program. Additionally, LEARN checks for 109

conditions that rule out the existence of an RLF. 110

We then proceed to carry out an extensive discussion of biochemical networks to 111

show the applicability of our results. Foundational studies in systems biology [6] have 112

revealed that biochemical networks have many common “motifs”. We show that our 113

results form a basis for the understanding of the behavior of a large class of networks of 114

various degrees of complexity. They may be applied to study basic motifs such as 115

binding/unbinding, three-body binding, transcription and translation networks, and 116

enzymatic reactions. Most cellular signalling involves PTMs as building blocks, and 117

their malfunction is frequent in diseases such as cancer and Alzheimer [30,31] . Hence, 118

we study in details PTMs cascades, ERK signalling, and phosphotransfer and 119

phosphorelay networks. In addition, we study important biological networks such as 120

T-cell kinetic proofreading, and the Ribosome Flow Model. We show that our Lyapunov 121

functions can be used to construct safety sets and perform dynamic flux analysis. Many 122

of the networks studied are not amenable to the previously-mentioned analysis 123

techniques, HJF theory in particular. A comparison with other methods in included in 124

the Discussion (see Table 1). In particular, our results include the class of 125

monomolecular networks treated in [22,23], and it applies all the biochemical networks 126

studied in [32], [24], [33]. A preliminary version of a subset of these results were 127

presented in conferences [34], [35]. 128

Theoretically, our results connect with a corpus of previous literature. We show that 129

the RLFs can be formulated in different coordinates, and how this relates to the ones 130

proposed in [34], [36]. Also, the approach makes contact with the notions of structural 131

injectivity [37–40], structural persistence [41], and uncertain linear systems [42–44]. 132
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Compartmental
[22, 23]

HJF
[14], [16]

Injectivity
[37], [38]

Monotone
[24]

LEARN

Admissible

Kinetics
General

Mass-
Action

General General General

Lyapunov

Function
yes yes no no yes

Global

Attractor
checkable
(manually)

some cases∗ no checkable
(manually)

checkable
(software)

Uniqueness w.

i/o perturbations
yes no [45] yes unknown yes

Software

Package
no yes [28] yes [29] no yes

PTM cycle no (not

monomolecular)
no yes yes yes

(+cascades)
Kinetic

Proofreading
no (not

monomolecular)
yes yes no yes

Table 1. Comparison with other methods in the literature. The row that corresponds
to “admissible kinetics” asks about the functional form of the reaction rates for which
the method is applicable. “Global attractor” asks whether the method is able to provide
guarantees for the global convergence to an attractor. “Uniqueness with i/o
perturbations” asks whether the method can guarantee uniqueness of steady states with
respect to arbitrary addition of inflows and outflows to the network (i.e., “homogeneous
CFSTR” in the terminology of [45]). Rows that correspond to “PTM cycle” and
“Kinetic proofreading” ask whether the method can tackle the networks in Figure 2 and
Figure 10, respectively. We have picked these two networks as non-trivial examples that
are pertinent to systems biology. The question of a global attractor for HJF-type
networks is marked by an asterisk (*) since a proof has been proposed in a preprint [46]
but is not formally published yet. (See [47] also)

Overview and Comparison 133

The paper has been written for a diverse readership, and has been structured 134

accordingly. Readers who are interested in the general concepts, the biological 135

applications, and the software package only need to consult the Introduction, the 136

Results, and LEARN’s accompanying manual (SI §7). Users can apply the results by 137

supplying the list of reactions encoded as a stoichiometry matrix as an input to LEARN’s 138

main subroutine for a report of results. Readers who are also interested in the technical 139

mathematical details can consult the Methods section. 140

Since LEARN guarantees that a certain mechanism cannot admit multistability, 141

oscillation, or chaos, it can be used to distinguish competing biochemical reaction 142

networks at the modeling step. We give an example of this when discussing processive 143

vs distributive post-translational cycles. 144

LEARN can be compared to other results in the literature as shown in Table 1. 145

Terminology and Motivational Example 146

A list of reactions can be abstracted mathematically into the framework of Chemical 147

Reaction Networks (CRNs). A CRN consists of a set of species S = {X1, .., Xn} and a 148

set of reactions R = {R1, ...,Rν}. (see Methods for an elaborate discussion) Figure 2-a) 149

gives an example of a reaction network for a core signaling motif which is the standard 150

post-translational modification (PTM) cycle [48,49]. The relative gain or loss of 151
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molecules of each species in a reaction is encoded in a matrix Γ ∈ Rn×ν called the 152

stoichiometry matrix. It is given in Figure 2-b for the PTM cycle. CRNs admit 153

graphical representations naturally. A CRN can be modeled as a graph with two sets of 154

nodes: reactions and species. Mathematically, it is a bipartite weighted directed graph, 155

called the species-reaction graph (or a Petri-net [50]). The graph corresponding to the 156

PTM cycle is given in Figure 2-c). The stoichiometry matrix Γ becomes the incidence 157

matrix of the graph [51]. 158

As we are interested in studying the long-term dynamical behavior, a concentration 159

xi ≥ 0, i = 1, .., n is assigned to each species. Hence, the concentration vector at time t 160

is x(t) = [x1(t), ..., xn(t)]T . A reaction rate (or flux) Rj(x), j = 1, .., ν is assigned to 161

each reaction. The reaction rate vector is R(x) = [R1(x), ..., Rν(x)]T . The 162

time-evolution of the concentration vector is given by the standard ordinary differential 163

equation (ODE) given as [52]: 164

ẋ = ΓR(x), x(0) = x◦. (1)

Biochemical networks usually contain conserved quantities (i.e., moieties) such as the 165

total amount of enzymes, substrates, ribosomes, RNA polymerase, etc. For each 166

conserved quantity, there there exists a nonnegative vector d such that dTΓ = 0, and d 167

is called a conservation law. If every species is supported in at least one conservation 168

law the network is said to be conservative. For example, the PTM cycle in Figure 2 is 169

conservative with three conservation laws c1 + c2 + x+ y = [X]total, e+ c1 = [E]total, 170

and f + c2 = [F ]total, which are the total amounts of the substrate and the two 171

enzymes, respectively, and they stay constant throughout the reaction. Hence, claims of 172

global stability and uniqueness of steady states are relative to the conserved quantities. 173

A set of concentrations that shares the same conserved quantities is called a 174

stoichiometric class. 175

For the PTM cycle, the ODE is given in Figure 2-b). We do not assume that the 176

reaction rates have a specific functional form such as Mass-Action. We only assume that 177

the rates are monotone, meaning that as the concentration of reactants increases, the 178

rate of the reaction increases (see Methods). This can be interpreted as enforcing a 179

specific sign pattern on the partial derivatives of R. This means that all the entries of 180

the Jacobian matrix of R (i.e, ∂R/∂x), are either zero or non-negative. For the PTM 181

cycle, Figure 2-d) illustrates our assumptions on the reaction rates encoded in terms of 182

the Jacobian matrix. Such reactions include all common reaction rates such as 183

Mass-Action, Michaelis-Menten, Hill, etc. 184

Despite its application relevance, establishing the long-term behavior of the PTM
cycle in Figure 2 was an open problem till the 2000s. HJF’s theory cannot be used for
deciding stability since the PTM cycle is a non-zero deficiency network. In 2008, this
problem was tackled via monotonicity techniques [24, 32], but no Lyapunov function has
been provided. As a motivation, we study the same cycle using our proposed method.
An intuitive way to approach its analysis is to consider the central loop in Figure 2 ,
and then study the sum of absolute rate differences along it. This can be loosely
motivated by considering the reactions rates as potentials and the concentration of
species as charges, and noting that the difference of “potentials” causes the
concentration of species to change via the flow of a “current”. Hence, we define the ith
current as the rate of change of the concentration of the ith species. Thus, we consider
the weighted sum of currents

∑
i wi|ẋi| as a candidate Lyapunov function. It can also

be written as follows:

V (x) = |R1(x)−R2(x)|+ |R2(x)−R3(x)|+ |R3(x)−R4(x)|+ |R4(x)−R1(x)|, (2)

which is a piecewise linear-in-rates function. In order to verify whether this is indeed a 185

Lyapunov function, we can analyze it region-wise to check that it decreases along 186
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Fig 2. Illustration of a post-translational modification reaction network. (a) The list of
reactions with six species. A kinase E interacts with a substrate S to form a complex
C1 which transforms into a phosphorylated substrate Y . Similarly, a phosphatase F
dephosphorylates Y back to S via an intermediate complex C2. (b) The ODE equation
description of the time-evolution of the concentration of the species. (c) The graphical
representation of the network as a Petri-net. A circle represents a species and a
rectangle represents a reaction, (d) The Jacobian matrix of the reaction rate vector.
This is the only information we assume to be known about R(x).
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trajectories. Consider for instance the region W = {R1(x) ≥ R2(x) ≥ R3(x) ≥ R4(x)}. 187

The candidate V simplifies to the difference of “potentials” across the substrate S: 188

1
2V (x) = R1(x)−R4(x) (3)

To evaluate V̇ , we need the signs of the “currents” ṡ, ė, ċ2. In our example, we can use
the inequalities defining W so that the signs can be read from the graph as follows:
ṡ, ė < 0 and ċ2 > 0. By noting that these signs are matched to the coefficients of R(x)
in (3), and since ∂R/∂x is nonnegative, we can write the following inequality in W:

1
2 V̇ (x)=

∂R1

∂e

−
ė +

∂R1

∂s

−
ṡ −∂R4

∂c2

+
ċ2 ≤ 0,

where the sign of the rate of change of each concentration is indicated above it. 189

Therefore, sgn V̇ can be determined conclusively without knowing the kinetics. In 190

fact, this can be repeated for all regions to conclude that V is non-increasing along all 191

possible trajectories of (1). (See the Results section for further analysis) 192

The lesson that can be drawn from this example is that a robust analysis of reaction 193

networks can be carried out by considering candidate Lyapunov functions of the form 194

Ṽ (R(x)) that vanish exactly on the steady state set, i.e. the set {x|ΓR(x) = 0}. This 195

approach does not require the computation of the actual steady state. 196

Robust Lyapunov Functions 197

The motivating example has shown that we can have a Lyapunov function Ṽ (R(x)) that 198

decreases along trajectories for any monotone kinetics R. Hence for a given network 199

(S ,R) we will be looking for a function Ṽ : Rν → R≥0 that vanishes only on the set of 200

steady states, i.e 201

Ṽ (r) = 0 if and only if rΓ = 0.

Furthermore, V (x) = Ṽ (R(x)) needs to be nonincreasing along the trajectories of (1), 202

i.e it must satisfy: 203

˙̃V (R(x)) := (∂Ṽ /∂R)(∂R/∂x)ΓR(x) ≤ 0, for all x and for all R admissible. (4)

If such a function exists then we call it a Robust Lyapunov Function (RLF), and the 204

network is called structurally attractive. Mathematically, the RLF needs only to be 205

locally Lipschitz and the derivative is defined in the sense of Dini’s (see Methods). 206

Example (cont’d): For the PTM cycle (Figure 2) the function Ṽ is 207

Ṽ (r) = |r1 − r2|+ |r2 − r3|+ |r3 − r4|+ |r4 − r1|. 208

Results 209

Characterization of RLFs 210

The above definition of an RLF does not offer a constructive way for finding one or for 211

checking a candidate. Our first result is to give a characterization of RLF in terms of a 212

set of rank-one linear systems, each of which corresponds to a reaction-reactant pair. 213

The set of all such pairs is P := {(j, i)|Xi participates in the reaction Rj}. Let s be 214

total number of such pairs. Then, Q` := ej`γ
T
i`
∈ Rν×ν , (j`, i`) ∈ P, ` = 1, .., s where 215

{γ1, .., γn} are the rows of Γ and {e1, .., eν} are columns of the ν × ν identity matrix. 216

The matrices Q1, .., Qs will serve as system matrices for s linear systems and also as 217

extremals of a linear convex cone. We show (see Methods) that (∂R/∂x)Γ ∈ 218
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cone(Q1, .., Qs) = {
∑
` ρ`Q`|ρ` ≥ 0}. We will be looking for a function Ṽ that acts as 219

a common Lyapunov function for these linear systems and satisfies 220

{r|Ṽ (r) = 0} =
⋂s
`=1 kerQ` (see Methods). 221

Example (cont’d): For the PTM cycle (Figure 2), the extremals are 222{[
−1 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

]
,

[
−1 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

]
,

[
0 0 0 0
1 −1 0 0
0 0 0 0
0 0 0 0

]
,

[
0 0 0 0
0 0 0 0
0 1 −1 0
0 0 0 0

]
,

[
0 0 0 0
0 0 0 0
0 0 −1 1
0 0 0 0

]
,[

0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 −1

]} . 223

We are ready to state the main result of this section. (See Methods) 224

Theorem 1. Given (S ,R). Let (1) be the associated ODE. A function Ṽ : R̄ν+ → R̄+ 225

is a common Lyapunov function for the set of linear systems {ṙ = Q1r, ..., ṙ = Qsr} if 226

and only if Ṽ is an RLF for the reaction network (S ,R). 227

The Search for RLFs 228

The characterization provided in Theorem 1 can be used for devising computational 229

algorithms that search for an RLF. In Methods, we present several algorithms for 230

constructing piecewise linear (PWL) or piecewise quadratic RLFs. In order to simplify 231

the presentation, we will be only looking for convex piecewise linear RLFs in our study 232

of biochemical networks. This means looking for vectors c1, ..., cm ∈ Rν (for some 233

positive integer m) such that Ṽ is an RLF where: 234

V (x) = Ṽ (R(x)) = max
k=0,..,m

cTkR(x). (5)

and c0 := [0, .., 0]T . If the network has a positive steady state flux (i.e., there exists 235

positive r such that Γr = 0) then it can be shown that Ṽ can be written as 236

V (x) = ‖CR(x)‖∞, where ‖[x1, .., xn]T ‖∞ := maxi |xi| is the ∞-norm and 237

C = [cT1 , .., c
T
m]T . Two special cases are of interest to us: 238

Sum-of-Currents (SoC) RLFs. These are functions of the form: 239

Ṽ (R(x)) =
n∑
i=1

ξi|ẋi| = ‖diag(ξ)ΓR(x)‖1, (6)

where ξ = [ξ1, .., ξn] ∈ Rn≥0 is a positive vector and ‖[z1, .., zn]T ‖1 :=
∑
i |zi| is the 240

1-norm. The function considered in [22] is a special case with ξ = 1. The vector ξ can 241

be found by linear programming using a special case of Theorem 2 (see Methods). Note 242

that the function (2) discussed in the motivating example has the form (6) above. 243

Max-Min RLFs. These are functions of the form: 244

Ṽ (R(x)) = maxR(x)−minR(x), (7)

where R consists of reaction rates or the difference between forward and backward rates 245

of a reaction. Unlike SoC RLFs which keep track of the reaction rate differences across 246

each species, the Max-Min RLF keeps track of the maximal reaction rate difference 247

across the whole network at each time. We provide a full graphical characterization of 248

the class of networks that admit Max-Min RLFs (which we call M -networks). (see 249

Methods, Theorem 4) 250
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Alternative Forms In Methods, we give conditions on a function V̂ such that 251

V̂ (x− xe) (where xe is a steady state) is a Lyapunov function for any admissible R. We 252

call V̂ a concentration-dependent RLF. We show that Ṽ (r) = ‖BΓr‖∞ is an RLF iff 253

V̂ (z) = ‖Bz‖∞ is a concentration-dependent RLF (see Methods, Theorem 11). These 254

PWL functions relate to the ones proposed in [34, 36]. Note, however, that V̂ (x− xe) is 255

a Lyapunov function only in the stoichiometric class that contains xe. 256

Properties of RLFs In [27], some properties of networks admitting PWL RLFs have 257

been established and they can serve as necessary condition tests. In Methods, we 258

provide two additional properties, namely testing robust non-degeneracy and the 259

absence of critical siphons. These conditions are implemented in LEARN. 260

The Class of Structurally Attractive Biochemical Networks 261

The existence of an RLF implies that the qualitative long-term behavior of a network is 262

highly constrained. Hence, an important issue is whether this theory is sufficiently 263

relevant to biomolecular applications. We will show in the remainder of the Results 264

section that this class of networks constitutes a rich and relevant class. It includes basic 265

motifs, modules, and larger networks and cascades in molecular biology. For most of 266

these networks, the HJF Lyapunov function [14] does not apply. And if it applies, it is 267

only valid with Mass-Action kinetics (or a generalization [18]) and it does not confer the 268

same powerful conclusions offered by our theory. Many of the networks discussed in the 269

remainder of this paper are qualitatively analyzed for the first time and most of them 270

had no Lyapunov functions known for them. For all the subsequent networks the 271

following statement holds: if a positive steady state exists, then it is unique and globally 272

asymptotically stable relative to its stoichiometric class. 273

Binding/Unbinding Reactions 274

In this subsection, several biochemical networks are presented. They are fairly simple 275

and all of them can be analyzed using HJF theory in the case of Mass-Action kinetics. 276

However, they are presented here to show that the properties that our theory requires 277

are obeyed by the basic biochemical motifs, which establishes its applicability and 278

generality. Furthermore, we offer an intuitive window to the meaning of RLFs and how 279

our graphical conditions apply. 280

Simple Binding Reaction 281

Figure 3-a represents a simple reversible binding reaction: 282

X + E
R1−−−⇀↽−−−
R−1

XE,

which can represent an enzyme binding to a substrate. The corresponding RLF can be 283

found easily using Theorem 4 and is given by: 284

V (x) = |R1(x)−R−1(x)|.

Both the Max-Min and the SoC RLFs coincide in this case. 285

Simple Binding With Enzyme Inflow-Outflow 286

Figure 3-b represents the following binding reaction with enzyme inflow-outflow: 287

X + E
R1−−−⇀↽−−−
R−1

XE, 0
R2−−−⇀↽−−−
R−2

E,
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E

X

XE

(a)

E

X

XE

(b)

E En

X

XEn
n

(c)

E1

X

E2

XE1

XE2

(d)

Fig 3. Basic Biochemical Examples. (a) Simple binding. (b) Simple binding with
enzyme inflow-outflow. (c) Cooperative binding. (d) Competitive binding.

By considering the irreversible subnetwork 0→ E, 0→ X, X + E → XE, XE → 0, a 288

Max-Min RLF can be found using Theorem 4 and is given by (7) where 289

R = {R1 −R−1, R2 −R−2, 0}. (8)

Cooperative Binding Reaction 290

The following reactions (depicted in Figure 3-c) represent the situation where n enzyme 291

molecules E need to bind to each other to react to X : 292

nE
R1−−−⇀↽−−−
R−1

En, En +X
R2−−−⇀↽−−−
R−2

XEn

The case n = 2 is called dimerization. The corresponding RLF can be found using 293

Theorem 4 and R is given by (8). The irreversible subnetwork for which Theorem 4 was 294

applied is 0→ E, 0→ X, nE → En, En +X → XEn, XEn → 0. 295

Competitive Binding Reaction 296

The following reactions (depicted in Figure 3-d) describe the situation when two 297

molecules E1, E2 compete to bind with X: 298

E1 +X
R1−−−⇀↽−−−
R−1

XE1, X + E2

R2−−−⇀↽−−−
R−2

XE2

The corresponding RLF can be found using Theorem 4 and R is given by (8). The 299

irreversible subnetwork for which Theorem 4 was applied is 300

0→ E1, E1 +X → XE1 → XE1 → 0, 0→ XE2 → X + E2, E2 → 0. 301

Three-Body Binding 302

We have applied our techniques to the dynamics of simple binding which can be 303

analyzed easily using various known ways. However, it is often the case that two 304

compounds X,Y cannot bind unless a bridging molecule E allows them to bind, 305

forming a ternary complex. This is known as three-body binding [53] and it is ubiquitous 306

in biology. Examples include T-cell receptors interaction with bacterial toxins [54], 307

coagulation [55], and multi-enzyme supramolecular assembly [56]. The same reaction 308

network also models the binding of two different transcription factors into a promoter 309

with a double binding site. Despite its simplicity, the steady-state analysis of the 310

equilibria has been subject of great interest [53]. Stability cannot be decided via HJF 311

theory, and it has not been studied before to our knowledge. 312
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Fig 4. Three-Body Binding. Gray-colored species are intermediates.

RNA
Polymerase

DNA

mRNA

(a)

mRNA

Ribosome

Protein

(b)

Fig 5. Transcription and Translation. Gray-colored species are intermediates. (a)
Transcription. (b) Translation with a leak.

The network can be depicted in Figure 4, and is given by eight reactions as follows:

X + E
R1−−−⇀↽−−−
R−1

XE, Y + E
R2−−−⇀↽−−−
R−2

EY

EY +X
R3−−−⇀↽−−−
R−3

XEY, Y +XE
R4−−−⇀↽−−−
R−4

XEY,

The network is an M -network and the corresponding irreversible subnetwork has the 313

reactions {R1,R−2,R−3,R4}. Hence we apply Theorem 4 to have an RLF of the form 314

(7) where R = {R1 −R−1, R−2 −R2, R−3 −R3, R4 −R−4}. It can be concluded that 315

there exists a unique steady state in each stoichiometric class and it is globally 316

asymptotically stable. 317

Transcription and Translation Networks 318

Transcription and translation are the first two essential steps in the central dogma of 319

molecular biology, and hence they are of utmost importance in the analysis of gene 320

regulatory networks. 321

Transcription Network 322

Figure 5-a) shows the transcription network which describes the production of mRNA
from DNA using the RNA polymerase [57]:

RNAP + DNA
R1−−−⇀↽−−−
R−1

RD
R2−→RNAP + DNA + mRNA, mRNA

R3−→ 0.

This model explicitly accounts for the concentration of RNA polymerase and hence it 323

extends to situations in which RNA polymerase is not abundant. 324

Applying Theorem 4, the RLF (7) can be used with R = {R1 −R−1, R2, R3}. 325

Alternatively, Theorem 2 can be used, and the Lyapunov function found can be written 326
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as: V (x) = ‖diag([1, 1, 1, 3]T )ẋ‖1, where the species are ordered as RNAP, DNA, RD, 327

mRNA. 328

Note this network has deficiency one, hence no information regarding stability can 329

be inferred from HJF theory. Furthermore, the procedure proposed in [36] has been 330

reported not to work for the network above. 331

Translation Network With A Leak 332

Figure 5-b) shows the translation network which describes the production of a protein
from mRNA via ribosomes [57]. The leaking of the Ribosome-mRNA complex into the
pool of ribosomes is also modeled. In order to make the model more general, we also
explicitly account for the concentrations of ribosomes. This is relevant to situations in
which ribosomes are not highly abundant which can occur naturally [58,59] or in
synthetic circuits [60]. The network can be written as

Rib + mRNA
R1−−−⇀↽−−−
R−1

mRNA : Ribo
R2−→mRNA + P + Ribo

mRNA : Ribo
R4−→Rib, P

R4−→ 0.

Note that the flux corresponding to reaction R4 vanishes at steady state which implies 333

that the species mRNA:Ribo vanishes at any steady state. Note also that the dynamics 334

of other species are independent of the dynamics of P . Hence, the network can be 335

considered as a cascade of 336

Rib + mRNA −⇀↽− mRNA : Ribo−→mRNA + Ribo, mRNA : Ribo−→Rib

and 0−→P −→ 0. Applying Theorem 3 to the first network we get the following
Lyapunov function:

Ṽ (R(x)) = max{R4(x), R1(x)−R2(x)−R3(x)−R4(x)−R1(x) +R2(x) +R3(x)}.

Note that Ṽ is neither SoC nor Max-Min. The second network can be analyzed using 337

this Lyapunov function: V2(x) = |R3(x)−R4(x)|. Overall stability is established for the 338

cascade using standard techniques [61]. 339

Basic Enzymatic Networks 340

Basic Activation Motif 341

Figure 6-a) represents the basic enzymatic reaction where an enzyme E binds to a 342

substrate S to produce S+ as follows [48]: 343

S + E
R1−−−⇀↽−−−
R−1

ES
R2−→E + S+.

Theorem 3 can be used. The resulting Lyapunov function is: 344

V (x) = max{|R1 −R−1|, R2}. Although this network has deficiency zero, it is not 345

weakly reversible. This implies that the steady states belong to the boundary, and HJF 346

theory does not offer any information regarding stability. 347

Enzymatic Activation Cycle 348

In order to close the cycle of the activation motif, Figure 6-c) depicts the activation of a 349

protein P by an enzyme E, and then the activated protein decays back to its inactive 350

state. The list of reactions is given as [62]: 351

S + E
R1−−−⇀↽−−−
R−1

SE
R2−→E + S+, S+ R3−→S.
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S

Enzyme

S+

(a)

S

Enzyme

S+

(b)

R2R1

R3R4 S+S

Kinase

Phosphatase

(c)

Fig 6. Basic Enzymatic Reactions. Gray colored species are intermediates. (a) Basic
enzymatic motif. (b) Enzymatic cycle. (c) Full PTM cycle.

Theorem 2 gives the following SoC RLF: 352

V (x) = |R1 −R−1(x)−R2(x)|+ |R2(x)−R3(x)|+ |R1(x)−R−1(x)−R3(x)|,

and both Theorems 3 and 4 give RLFs also. 353

This network has deficiency one; the deficiency one algorithm [17] excludes the 354

existence of multiple steady states with Mass-Action kinetics. No information regarding 355

stability can be inferred in that context from HJF theory. Furthermore, the decay 356

reaction R3 usually models fast dephosphorylation which has a Michaelis-Menten 357

kinetics, which is not allowed in [17]. 358

The Full PTM Cycle 359

A simplified version of the enzymatic futile cycle has already been used as a motivating
example in Figure 2. It differs from the preceding network by explicitly modeling the
dephosphorylation step. The following describes the complete model [48,49]:

S + E
R1−−−⇀↽−−−
R−1

SE
R2−→S+ + E, S+ + F

R3−−−⇀↽−−−
R−3

S+F
R4−→S + F.

For instance, S represents the base substrate, E is called a kinase which adds a 360

phosphate group to S to produce S+. This process is called phosphorylation. The 361

dephosphorylation reaction is achieved by a phosphatase F that removes the phosphate 362

group from S+ to produce S. 363

Theorem 4 can be used to find the RLF (7) where R = {R1 −R−1, R3 −R−3, 364

R2, R4}. 365

Alternatively, Theorems 3 yields the SoC RLF:

V (x) = |R1(x)−R−1(x)−R2(x)|+ |R2(x)−R4(x)| (9)

+ |R3(x)−R−3(x)−R4(x)|+ |R1(x)−R−1(x)−R4|.

Both SoC and Max-Min RLFs have an intuitive meaning in terms of the reaction 366

graphs of the networks. The first is the difference between the fastest and the slowest 367

reactions, and the second is the sum of currents (rates of change of concentrations). 368

Since the deficiency of the network is one, stability cannot be inferred from HJF theory. 369
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(a) (b)

Fig 7. Energy-constrained PTM cycles. (a) Phosphorylation is modeled only. The
black-colored component is the basic motif proposed in [63] (b) A full
phosphorylation-dephosphorylation cycle with energy expenditures modeled. The gray
species are intermediates.

Energy-constrained PTM Cycle 370

Basic Motif Madhani [63] presents this biochemical example of adding a phosphate
group to a protein using a kinase. ATP is not assumed to be abundant and its dynamics
are explicitly modeled. The reaction network is depicted in black in Figure 7-a), which
can be written as:

K + ATP
R1−−−⇀↽−−−
R−1

AK, P +AK
R2−−−⇀↽−−−
R−2

PAK

A−K
R5−−−⇀↽−−−
R−5

K + ADP, PAK
R3−→P+A−K

R4−→P+ +A−K,

where K is the kinase, ATP is the adenosine triphosphate, ADP is the Adenosine 371

diphosphate, and P+ is the phosphorylated protein. Reactions R3, R4 are not 372

supported in the kernel of the stoichiometry matrix, which implies that the species 373

PAK,P+A−K vanish at any steady state point. 374

Applying Theorem 3, one can get the following RLF function: 375

V (x) = max{|R1(x)−R−1(x)|, |R2(x)−R−2(x)|, R3(x), R4(x), |R5(x)−R−5(x)|}.

Energy Constrained PTM Cycle In order to have a full cycle, the model can 376

include the following two reactions: A−
R6−→A, P+ R7−→P , where ADP is converted to 377

ATP by other cellular processes and is modeled as a single step, and P+ decays to its 378

original state P spontaneously or chemically [64]. The reaction network is depicted in 379

Figure 7-a). 380

The full network is an M network, and it has the RLF (7) with 381

R = {R1 −R−1, R2 −R−2, R3, R4, R5 −R−5, R6, R7}. 382

The network is not complex-balanced and HJF theory is not applicable. The 383

dynamics of this network have not been analyzed before per our knowledge. 384

Full Energy-Constrained PTM Cycle The dephosphorylation step can be 385

modeled fully and is depicted in Figure 7-b). This is the energy-constrained analog of 386

Figure 6-c). The network is also an M -network and it admits an RLF of the form (7). 387

The list of reactions have not been included for the sake of brevity. 388
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(a)

(b)

(c)

(d)

Fig 8. Cascades of PTM cycles. (a) A multisite PTM with distinct enzymes. (b) A
multiple PTM with a processive mechanism. (c) The “all-encompassing” processive
PTM mechanism. (d) Double PTM Cycle with a distributive mechanism.
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Post-Translational Modification Cycle Cascades 389

The post-translation modification (PTM) cycle (e.g, phosphorylation-dephosphorylation 390

cycle [48,49]) has been analyzed in the previous section. This kind of cycle appears 391

frequently in biochemical networks, and can be interconnected in several ways; we 392

discuss some here. For recent reviews see [65,66]. 393

A multisite PTM with Distinct Enzymes 394

It is known that a single protein can have up to different 100 different PTM sites [65] 395

and it can undergo different PTM cycles such as phosphorylation, acetylation and 396

methylation [67,68]. Each of these cycles has its own enzymes. 397

Hence, we consider a cascade of n PTM cycles as shown in Figure 8-a) where n is
any integer greater than zero. For instance, the associated reaction network for the case
n = 2 is given as:

X0 + E0

k1
�
k−1

E0X0
k2−→X1 + E0, X1 + F0

k3
�
k−3

F0X1
k4−→X0 + F0,

X1 + E1

k5
�
k−5

E1X1
k6−→X2 + E1, X2 + F1

k7
�
k−7

F1X2
k8−→X1 + F1.

The network is not an M -network and hence Theorem 4 is not applicable. However, 398

using Theorem 2 it can be shown that a SoC RLF for the n cascade exists and can be 399

represented as V (x) = ‖diag(ξ)ẋ‖1 with ξ = [2, 2, ...., 2, 1, 1, ..., 1]T with the ordering 400

given as X0, ..., Xn, E0, E1, ..., Fn−1Xn. 401

HJF theory will not apply since this network has deficiency n. Also, 402

monotonicity-based results [24] do not apply, since the network is not cooperative in 403

reaction coordinates. In fact, the long-term behavior of this cascade has not been 404

studied before to our knowledge. It follows that for any n the network has a unique 405

globally asymptotic stable steady state in any stoichiometric class (i.e, with respect to 406

fixed total amounts for the enzymes and the substrate). 407

Multiple PTM cycles with a processive mechanism 408

Proteins can undergo different PTMs, but they also can undergo a multisite PTM. For
instance, a phosphate group can be added to multiple sites on the protein [69].
Multisite phosphorylation can be processive [70] or distributive [71]. Figure 8-b) depicts
a multiple-site futile cycle with a processive mechanism. The reaction network can be
written as [33]

X0 + E −⇀↽− EX1 −⇀↽− EX2 −⇀↽− . . . −⇀↽− EXn−→Xn + E,

Xn + F −⇀↽− FXn −⇀↽− . . . −⇀↽− FX2 −⇀↽− FX1−→X0 + F,

It can be noticed that for every n, the network satisfies the graphical conditions of 409

Theorem 4. Therefore, an RLF is (7) where R = {Rk −R−k, k = 1, .., ν}, and 410

R−k(x) :≡ 0 if Rk is irreversible. 411

Energy-Constrained Processive Cycle The ATP and ADP expenditure can be 412

accounted for in the processive cycle similar to the model presented in Figure 7-b). The 413

new network will remain an M -network and Theorem 4 can be applied. Details are 414

omitted for brevity. 415
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A generalized processive cycle An “all-encompassing” processive cycle has been
studied in [8] which allows multiple enzymes and is depicted in Figure 8-c. It takes the
following form:

X1 + E1 −⇀↽− (X1E1)1 −⇀↽− (X1E1)2 −⇀↽− . . . −⇀↽− (X1E1)m1
−→X2 + E1,

X2 + E2 −⇀↽− (X2E2)1 −⇀↽− (X2E2)2 −⇀↽− . . . −⇀↽− (X2E2)m2
−→X3 + E2,

...

Xn + En −⇀↽− (XnEn)1 −⇀↽− (XnEn)2 −⇀↽− . . . −⇀↽− (XnEn)mn−→X1 + En,

This network is also an M network and it satisfies the results of Theorem 4. Hence, 416

the Lyapunov function (7) can be used. 417

Both networks above have been studied in [8, 33] by establishing monotonicity in 418

reaction coordinates. Such techniques require checking persistence a priori and do not 419

provide Lyapunov functions. Furthermore, our results have the advantage of providing 420

an “all-encompassing” general framework that includes many of these individually 421

studied networks in addition to new ones. 422

Distinguishing between Processive and Distributive Mechanisms 423

Figure 8-d) depicts a double futile cycle with a distributive mechanism [71,72], which is
described by the following set of reactions:

X0 + E
k1
�
k−1

EX0
k2−→X1 + E, X1 + F

k3
�
k−3

FX1
k4−→X0 + F,

X1 + E
k5
�
k−5

EX1
k6−→X2 + E, X2 + F

k7
�
k−7

FX2
k8−→X1 + F,

It can be verified that the network violates the P0 necessary condition (for the minor 424

corresponding to X0, X1, X2, E, FX1, EX1). Hence, a PWL RLF does not exist [27]. 425

Indeed, the above network is known to admit multi-stability for some parameter choices 426

as shown in Figure 1. 427

Hence, our results can be used to compare between distributive and processive 428

mechanisms as viable models for the first stage in the MAPK cascade. Since the latter 429

has been observed experimentally to accommodate multiple non-degenerate steady 430

states, the processive mechanism cannot be a model. (Similar observations have been 431

made in [72–74].) Figure 1 depicts sample trajectories for the processive and 432

distributive cycle with Mass-Action kinetics. 433

Phosphotransfer and Phosphorelay Networks 434

Phosphotransfer is a covalent modification in which a histidine kinase gives the 435

phosphate group to a response regulator and it is the core motif in a two-component 436

signaling systems [75]. Phosphotransfer cascades are called phosphorelays [76,77]. 437

Phosphotransfer motif 438

An example is the envZ/ompR signaling system for regulating osmolarity in bacteria
such as E. Coli [78] . The core motif can be described by the following set of
reactions [79]:

Z+ +X
R1−−−⇀↽−−−
R−1

C
R2−−−⇀↽−−−
R−2

X+ + Z,
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(c)

Fig 9. Phosphotransfer and Phosphorelay Networks. (a) Phosphotransfer network. (b)
Phosphotransfer with phosphorylation/dephosphorylation. (c) A phosphorelay network.

January 15, 2020 19/40

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 23, 2020. ; https://doi.org/10.1101/696716doi: bioRxiv preprint 

https://doi.org/10.1101/696716
http://creativecommons.org/licenses/by-nc-nd/4.0/


where the “+” superscript refers to a phosphorylated substrate. For instance, Z+ is the 439

phosphorylated EnvZ protein, while X is the ompR protein. 440

The proteins Z, X+ can also be phosphorylated and dephosphorylated by other
reactions. Figure 9-a) presents a network where those other reactions are modeled as a
single step:

Z
R3−→Z+, X+ R4−→X, (10)

where R3 (which phosphorylates Z) can be monotonically dependent on external signals 441

such as osmolarity in the envZ/OmpR network. 442

It can be noticed that Theorem 4 is applicable and (7) is an RLF with 443

R1 = {R1 −R−1, R2(x)−R−2, R3, R4}. 444

Phosphotransfer with Enzymes 445

A more elaborate model can take into account the phosphorylation/dephosphorylation
of proteins Z,X+ in terms of other enzymes. Hence, reactions (10) can be replaced by
the following:

Z + F
R3−−−⇀↽−−−
R−3

FZ
R4−→Z+ + F, X+ + E

R5−−−⇀↽−−−
R−5

EX+ R6−→X + E, (11)

as depicted in Figure 9-b. Similarly, (7) is an RLF with 446

R = {R1 −R−1, R2 −R−2, R3 −R−3, R4, R5 −R−5, R6}. 447

A Phosphorelay 448

A phosphorelay is a cascade of several phosphotransfers. It appears ubiquitously in 449

many organisms. For example, the KinA-Spo0F-Spo0B-Spo0A cascade in Bacillus 450

subtilis [80] and the Sln1p-Ypd1p-Ssk1p cascade in yeast [81]. 451

Figure 9-c depicts the cascade which is given by:

X1−→X+
1 , X

+
n −→Xn,

X+
1 +X2 −⇀↽− C1 −⇀↽− X+

2 +X1

...

X+
n−1 +Xn −⇀↽− Cn −⇀↽− X+

n +Xn−1,

where the first kinase is phosphorylated by some constant external signal, and X+
n is 452

the response regulator. 453

The network is still an M -network and conditions of Theorem 4 apply by mere 454

inspection of the graph. Hence a function of the form (7) is a Lyapunov function. 455

Enzymatic activation/deactivation of X1, X
+
n , respectively, can also be added 456

(analogously to Figure 9-b) and the result will continue to hold. Note that the same 457

applies to the more general model presented in [82] also. We omitted the details for 458

brevity. 459

Note that none of the phosphotransfer networks is complex-balanced and hence HJF 460

theory is not applicable. 461

T-Cell Kinetic Proofreading Network 462

In 1974, Hopfield [83] proposed the kinetic proofreading model in protein synthesis and
DNA replication. Subsequently, McKeithan [84] proposed a network containing a ligand,
which is a peptide-major histocompatibility complex M , binding to a T -cell receptor;
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(a) (b)

Fig 10. Other signalling networks. (a) McKeithan’s T-Cell kinetic proofreading
network. (b)ERK signaling Pathway With RKIP Regulation

the receptor-ligand complex undergoes several reactions to reach the final complex CN .
The chain of reactions enhances the recognition and hence it is called a kinetic
proofreading process. Figure 10-a) depicts the reaction network, which is given by the
following set of reactions:

M + L
 C0−→C1−→ ...−→CN

C1−→M + L,C2−→M + L, ..., CN −→M + L

Applying Theorem 2, it can be shown that for any N ≥ 1, the network admits a SoC 463

RLF of the form VN (x) = ‖diag([1, 1, 2, 2, .., 2]T )ẋ‖1, where the species are ordered as 464

T, L,C0, C1, ..., CN . Note that this network does not meet the graphical requirements of 465

Theorem 4 since it is not an M network. The monotone-systems approach proposed 466

in [24] is not applicable here since the system is not cooperative in reaction coordinates. 467

Nevertheless, this is one of the few networks, considered so far, which is 468

complex-balanced. The work [18] showed that this network is weakly reversible and that 469

it has zero-deficiency; therefore any positive steady state is unique relative to the 470

interior and is locally asymptotically stable. In order to infer global stability, it was 471

necessary to compute the steady states explicitly to preclude a boundary steady state 472

stoichiometrically compatible with a positive steady state. In comparison, our approach 473

is more powerful, since the former approach is limited to generalized Mass-Action 474

kinetics, and cannot infer global stability directly. 475

ERK signaling Pathway with RKIP Regulation 476

Figure 10-b depicts the network describing the effect of the so called Raf Kinase
Inhibitor Protein (RKIP) on the Extracellular Regulated Kinase (ERK) signaling
pathway as per the model given in [85]. It can be described using the network:

K+ +M
R1−−−⇀↽−−−
R−1

K+M
R2−→K +M

E + P
R3−−−⇀↽−−−
R−3

EP
R4−→E+ +M

K +R
R5−−−⇀↽−−−
R−5

KR

KR+ E+ R6−−−⇀↽−−−
R−6

KRE+ R7−→R+ E +K+,

where K is the RKIP, E is the ERK Kinase, P is the RKIP phosphatase, and M is the 477

phosphorylated MAPK/ERK Kinase, and the plus superscript means that the molecule 478

is phosphorylated. 479
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The network is an M -network and the requirements of Theorem 4 are satisfied. 480

Hence, (7) is an RLF with R = {Rk −R−k, k = 1, .., ν}, and R−k(x) :≡ 0 if Rk is 481

irreversible. Note that this network is of deficiency one, hence stability cannot be 482

inferred by HJF theory. Nevertheless, monotonicity-based analysis can be applied [24] 483

which utilizes cooperativity in reaction coordinates. Refer to the Discussion for a 484

detailed comparison to monotonicity techniques. 485

The Ribosome Flow Model 486

Finally, we show that our techniques’ applications in molecular biology are not limited 487

to classical biochemical networks. A translation elongation process involves ribosomes 488

travelling down an mRNA, readings codons and translating amino-acid chains via 489

recruited tRNAs. A conventional stochastic model is the Totally Asymmetric Simple 490

Exclusion Process [86]. A coarse-grained mean-field approximation that resulted in a 491

deterministic continuous-time flow model was introduced by [87], and its dynamics have 492

been studied further [87,88]. 493

Figure 11 illustrates the model. An mRNA consists of codons that are grouped into
n sites, each site i has an associated occupancy level xi(t) ∈ [0, 1] which can be
interpreted as the probability that the site is occupied at time t. The ribosomes’ inflow
to the first site is λ0, which is known as the initiation rate, λi is the elongation rate
from site i to site i+ 1, and λn is the production rate. All rates are assumed to be
positive. The ODE is written as follows:

ẋ1 = λ0(1− x1)− λ1x1(1− x2)

ẋ2 = λ1x1(1− x2)− λ2x2(1− x3)

...

ẋn = λn−1xn−1(1− xn)− λnxn.

The dynamics of the system above have been analyzed and shown to be monotone
in [88]. In what follows, we provide an alternative approach that provides a Lyapunov
function and establishes more powerful properties. Let yi := 1− xi, i = 1, .., n. Then,
we can define a reaction network with species Xi, Yi, i = 1, .., n as follows:

Y1
R1−→X1, Xn

Rn+1−→ Yn,

X1 + Y2
R2−→Y1 +X2, . . . , Xn1

+ Yn
Rn−→Yn−1 +Xn.

The network has 2n species, n+ 1 reactions, and n conservation laws. It is depicted in 494

Figure 11-(b). The ODE system above describes the time-evolution of the reaction 495

network with Mass-Action kinetics. 496

The graphical conditions of Theorem 4 are satisfied. Hence, (7) is an RLF for any n 497

with R = {R1, R2, ..., Rn+1}. Since the network is conservative it follows that there 498

exists a unique globally asymptotically stable steady state. Note that this results holds 499

with general monotone kinetics. 500

Quantitative analysis via RLFs 501

In this subsection we show that our RLFs can provide valuable quantitative information 502

regarding the behavior of the network beyond mere qualitative long-term behavior 503

information. 504
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(a) (b)

Fig 11. The Ribosome flow model. (a) Schematic representation. λ0 is the initiation
rate, λi is the elongation rate from site i to site i+ 1, and λn is the production rate.
The state variable xi ∈ [0, 1] is the occupancy level of the site i. (b) Reaction network
representation. Xi corresponds to the occupancy level, while Yi corresponds to the
vacancy level.

Safety sets 505

Since our techniques are based on the construction of RLFs, we can compute safety sets 506

which are the level sets of a Lyapunov function. If a system starts in a safety set it 507

cannot leave it at any future time. Substituting Mass-Action kinetics, the safety set for 508

a Lyapunov function Ṽ (R(x)) consists of piecewise polynomial surfaces and it is not 509

necessarily convex. The safety set provided by an RLF surrounds all the steady states, 510

i.e is not restricted to stoichiometric classes. In comparison, a concentration-dependent 511

RLF provides a convex polyhedral safety set in a specific stoichiometric class. In order 512

to illustrate this, consider the full PTM cycle with Mass-Action kinetics and let all the 513

kinetic constants be 1. There are three conserved quantities, which we assume are set to 514

[E]T = [F ]T = [S]T = 10 AU. Hence, the dynamics of the ODE evolve in a subset of 515

three dimensional cube [0, 10]3. A level set of the RLF in (9) can be calculated 516

restricted to the stoichiometric compatibility class and is depicted in the Figure 12-a. 517

The concentration-dependent RLF can be constructed via Theorem 11. Plotting the 518

level set requires computing the steady state which can be calculated by solving the 519

algebraic equations to be: (xe, ee, fe) ≈ (1.216990, 6.216990, 6.216990). The level set is 520

plotted in Figure 12-b. Both safety sets corresponding to the two Lyapunov functions 521

are chosen so that s = 2.5 lies on the boundary of the set. In other words, the substrate 522

concentration is guaranteed not to exceed 2.5 if the system is initialized in the set. It 523

can be clearly seen that the two sets are distinct, and they give different guarantees. 524

Their intersection gives a tighter safety set. 525

Another example is a double processive PTM (Figure 8-b) which has four 526

dimensional stoichiometric classes. Hence, the 4D safety sets cannot be plotted, but 527

their sublevel sets can still be visualized. Figure 12-c,d shows sublevel sets for different 528

concentrations for the double phosphorylated species X2 with total kinase, phosphatase 529

and substrate concentrations fixed to 10AU each. Figure 12-c) shows the safety set with 530

the concentration of the free kinase E not exceeding 2.5 and with [X2] = 0. However, 531

the sublevel set changes drastically if the concentration of X2 is 0.5AU as shown in 532

Figure 12-d. 533

Flux analysis for the McKeithan Network 534

Since the RLF are written in terms of rates (also called fluxes), our functions can be
used in the context of flux analysis. Such techniques usually operate at steady state and
do not take dynamics into consideration [89]. We provide an illustrative example to
show how our RLF can be used. Let N = 2 for the network above. Usually, the network
is initialized with zero concentration of the intermediate complexes. Hence, the initial
concentrations of M,L are [M ]T , [L]T . Therefore, the Lyapunov function provides the
following safety set Ṽ (r) ≤ Ṽ (r1, 0, .., 0), where r1 is the flux which is a function of
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Fig 12. Safety sets computed via RLFs. (a),(b), Safety sets for the PTM cycle
(Figure 6-c). (a) The safety set corresponding to the rate-dependent RLF for the PTM
cycle. It is the α-level set of V where α has been chosen such that the concentration of
S does not exceed 2.5. (b) The safety set corresponding to the concentration-dependent
RLF. The safety set has been chosen similarly to satisfy the same condition.
(c),(d), Sub-levels sets for the safety sets corresponding to the rate-dependent RLF (7)
for the double processive PTM cycle (Figure 8-b). (c) The sublevel set (with [X2] = 0)
of the α-level set of V where α has been chosen such that the concentration of E does
not exceed 2.5 on the sublevel set. (d) Another sublevel set of the same set in (c) with
[X2] = 0.5AU.
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Fig 13. Flux analysis for McKeithan’s T-Cell kinetic proofreading network. The plot
depicts an upper bound on the input flux versus the maximum allowed concentration of
the end product with Michaelis-Menten kinetics R6(c2) = c2/(0.1c2 + 1) and
Mass-Action kinetics R6(c2) = c2.

[M ]T , [L]T . For each [M ]T , [L]T , we want to find an upper bound that c2 cannot exceed
for all time. Let R6 be the last reaction (i.e, C2 →M + L), and let R1 be the first
reaction, i.e M + L→ C0. Hence, we look for solving the following convex optimization
problem for a given r∗1 ≥ 0:

Maximize r6

subject to r ≥ 0

‖Cr‖∞ ≤ V (r∗1 , 0, .., 0),

r1 ≤ r∗1 .

The last inequality is included since the network is conservative and R6(m, `) ≤ 535

R6([M ]T , [L]T ) holds due to the monotonicity of R. 536

The optimization problem above does not require knowledge of the kinetics as it is 537

defined for fluxes. For the T -cell network, the solution of the problem is r∗6 = 3r∗1 . This 538

means that the flux r6 is guaranteed to be less than 3r∗1 for all time. Converting these 539

bounds to concentrations requires usage of the kinetics. Let R1(m, `) = k1m`, and let 540

R6(c2) = ac2
1+bc2

(Michaelis-Menten kinetics). Solving for c2, we can plot an upper bound 541

on total amount of k1[M ]T [L]T versus the maximum allowed concentration c2. If R6 is 542

Mass-Action then the relationship will be linear. Both curves are plotted in Figure 13. 543

Discussion 544

We have presented a comprehensive theoretical framework and provided computational 545

tools for the identification of a class of “structurally attractive” networks. It has been 546

demonstrated that this class is ubiquitous in systems biology. Networks in this class 547

have universal energy-like functions called Robust Lyapunov Functions and, under 548

additional mild conditions, can only admit unique globally stable steady states. Their 549

Jacobians are well behaved and they cannot exhibit chaos, oscillations or multistability. 550

The latter cannot be admitted even under inflow/outflow perturbations. Hence, LEARN 551

can be used to rule out these networks as viable models for mechanisms that display 552

such behaviors experimentally. Thus, our work supplements other mathematical 553

methods used to invalidate models, as for example those in [90] and [91]. 554
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Our class of networks is distinct from the one identified by the HJF theory [14,17] 555

and it has wider applications to biology as we have shown. Furthermore, our results 556

include all networks that have been studied via compartmental system 557

techniques [22, 23] and via monotonicity techniques [8, 24, 33]. In fact, showing that the 558

latter class of network always admits an RLF is a subject of a forthcoming paper. Refer 559

to Table 1 for a comparison with techniques in the literature. In addition to wider 560

applicability, our analysis has the advantage of showing persistence automatically, 561

rather than needing to check it a priori as in [24]. Also, it has the advantage of having 562

an explicit expression for the Lyapunov function which can be used for a deeper study 563

of the dynamics such as the construction of safety sets and flux analysis as discussed 564

before. In addition, Lyapunov functions have been extensively used to study the effect 565

of interconnections, uncertainties, disturbances, and delays [9, 10]. 566

Our study of biochemical networks is not meant to be exhaustive, since we only 567

focused on common motifs and cascades. We provide a computational package to help 568

the wider community apply our techniques to study new networks. 569

We have presented the RLFs with two representations: rate- and 570

concentration-dependent, and we have provided a toy example for dynamic flux analysis 571

via a rate-dependent RLF. We look forward to these results being developed further to 572

complement standard flux analysis techniques. 573

For a given network, we have presented sufficient conditions for the existence of an 574

RLF, and several necessary conditions. However, there are important networks that lie 575

in the gap between the necessary and sufficient conditions. A relevant example is a 576

ligand (L) binding a receptor (R), and initiating a PTM cycle for a substrate (S). The 577

reaction network is: 578

R+ L −⇀↽− RL, S +RL −⇀↽− C −→S+ +RL, S+ → S,

It satisfies all necessary conditions but its global stability is still open. 579

Future work includes the development of more general techniques to identify classes 580

of networks that can be multi-stable but cannot admit oscillations or chaos. 581

Furthermore, networks that admit RLFs have other strong properties in terms of 582

contraction and stabilization [92], which will be studied in forthcoming papers. 583

Methods 584

Reaction Networks 585

We follow the standard notation and terminology on reaction networks [17,18,52,93]. 586

A Chemical Reaction Network (CRN) consists of species and reactions. A species is 587

what participates or is produced in a chemical interaction. In the context of biochemical 588

networks a species can be a gene’s promoter configuration, a substrate, an intermediate 589

complex, an enzyme, etc. We denote the set of species by S = {X1, .., Xn}. A reaction 590

is the transformation of reactants into products. Examples include binding/unbinding, 591

decay, complex formation, etc. We denote the set of reactions by R = {R1, ...,Rν}. 592

Reactions have two distinct elements: the stoichiometry and the kinetics. 593

Stoichiometry The relative number of molecules of reactants and products between 594

the sides of each reaction is the stoichiometry. Hence, each reaction is customarily 595

written as follows: 596

Rj :
n∑
i=1

αijXi −→
n∑
i=1

βijXi, j = 1, .., ν, (12)
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where αij , βij are nonnegative integers called stoichiometry coefficients. The expression 597

on the left-hand side is called the reactant complex, while the one on the right-hand side 598

is called the product complex. If a transformation is allowed to occur also in the 599

opposite direction, the reaction is said to be reversible and its reverse is listed as a 600

separate reaction. For convenience, the reverse reaction of Rj is denoted as R−j . The 601

reactant or the product complex can be empty, though not simultaneously. An empty 602

complex is denoted by 0. This is used to model external inflows and outflows. 603

An autocatalytic reaction is one which has a species appearing on both sides of the 604

reaction simultaneously (e.g, D → D +M). A network is called non-autocatalytic if it 605

has no autocatalytic reactions. 606

The stoichiometry of a network can be summarized by arranging the coefficients in 607

an augmented matrix n× 2ν as: Γ̃ = [A|B],where [A]ij = αij , [B]ij = βij . The two 608

submatrices A,B can be subtracted to yield an n× ν matrix Γ = [γT1 ..γTn ]T called the 609

stoichiometry matrix, which is defined as Γ = B −A, or element-wise as: 610

[Γ]ij = βij − αij . 611

Kinetics The relations that determine the velocity of transformation of reactants into 612

products are known as kinetics. We assume an isothermal well-stirred reaction medium. 613

In order to study kinetics, a nonnegative number xi is associated to each species Xi to 614

denote its concentration. Assume that the chemical reaction Rj takes place 615

continuously in time. A reaction rate or velocity function Rj : R̄n+ → R̄+ is assigned to 616

each reaction. The widely-used Mass-Action kinetics have the following expression: 617

Rj(x) = kj
∏n
i=1 x

αij
i , where kj , j = 1, .., ν are positive numbers known as the kinetic 618

constants. Many other kinetic forms are used in biology such as Michaelis-Menten, Hill 619

kinetics, etc. 620

We do not assume particular kinetics. We only assume that the reaction rate 621

functions Rj(x), j = 1, ..ν satisfy the following minimal assumptions: 622

AK1. each reaction varies smoothly with respects to its reactants, i.e Rj(x) is 623

continuously differentiable; 624

AK2. each reaction needs all its reactants to occur, i.e., if αij > 0, then xi = 0 implies 625

Rj(x) = 0; 626

AK3. each reaction rate is monotone with respect to its reactants, i.e ∂Rj/∂xi(x) ≥ 0 if 627

αij > 0 and ∂Rj/∂xi(x) ≡ 0 if αij = 0; 628

AK4. The inequality in AK3 holds strictly for all positive concentrations, i.e when 629

x ∈ Rn+. 630

Reaction rate functions satisfying AK1-AK4 are called admissible. For given 631

stoichiometric matrices A,B, the set of admissible reactions is denoted by KA. 632

Dynamics The dynamics have been already given in (1). The set 633

Cx◦ := ({x◦}+ Im(Γ)) ∩ R̄n+ is forward invariant for any initial condition x◦, and it is 634

called the stoichiometric compatibility class associated with x◦. For a conservative 635

network all stoichiometric classes are compact convex polyhedral sets. 636

We sometimes will use the following assumption which is necessary for the existence 637

of positive steady states. 638

AS1 There exists v ∈ ker Γ such that v � 0. 639
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RLFs and the Decomposition of the Dynamics 640

We have provided an informal definition of the notion of RLF in the introduction. The 641

inequality in Eq. (4) must hold for all R ∈ KA. As observed before, AK1-AK4 imply a 642

zero-sign pattern on ∂R/∂x (see Figure 2-d for an illustration). This motivates defining 643

the class of matrices with the specific sign pattern as follows: 644

KA = {ρ ∈ Rν×n≥0 |ρji = 0 for all (j, i) 6∈ P},

where P is the set of reaction-reactant pairs defined before. 645

Definition 1. Given a network (S ,R). A locally Lipschitz function Ṽ : Rν → R≥0 is 646

said to be an RLF if it satisfies the following: 647

1. Ṽ (r) = 0 iff r ∈ ker Γ. 648

2. DṼ := (∂Ṽ /∂r)ρΓr ≤ 0 for all ρ ∈ KA and all r for which ∂Ṽ /∂r(r) exists. 649

At points of non-differentiability, the time-derivative of V (x) = Ṽ (R(x)) is defined 650

in the sense of Dini (see S1 Text §1.1 for a review of Lyapunov theory and generalized 651

derivatives). 652

We will show how the rank-one matrices Q1, .., Qs (defined in the Results section) 653

can be used to embed the dynamics of the nonlinear network in a cone of linear systems. 654

Although the Lyapunov function Ṽ (R(x)) is a function in the concentration x, it is 655

defined as a composition V = Ṽ ◦R. Therefore, we study the ODE in reaction 656

coordinates. Let x(t) be a trajectory that satisfies (1) and let r(t) := R(x(t)). Hence, 657

ṙ(t) =
∂R

∂x
(x(t))Γr(t) = ρ(t)Γr(t), (13)

where ρ(t) := ∂R
∂x (x(t)) ∈ KA. 658

The basic idea is to consider ρ(t) as an unknown time-varying matrix. Since its 659

zero-sign pattern is known, we can decompose ρ(t) in the following way: 660

ρ(t) =
∑

(j,i)∈P

ρji(t)Eji, (14)

where [ρ(t)]ji = ρji(t) > 0, and [Eji]j′i′ = 1 if (j′, i′) = (j, i) and zero otherwise. The 661

matrices {Eji|(i, j) such that αij = 0} form the canonical basis of the matrix space KA. 662

Substituting (14) in (13) we can embed the dynamics of the network (13) in the 663

conic combinations of a finite set of extremal linear systems as follows: 664

ṙ =
∑

i,j:αij>0

ρji(t)EjiΓr =

s∑
`

ρ`(t)Q`r. (15)

where Q`, ` = 1, .., s have been defined before Theorem 1. This also implies that the 665

Jacobian of (13) can be written at any interior point as: (∂R/∂x)Γ =
∑s
`=1 ρ`Q`. 666

Hence, the Jacobian belongs to cone generated by the extremals Q1, .., Qs. Note that 667

(15) can be interpreted as representing a linear parameter-varying system which has s 668

nonnegative time-varying parameters {ρ1(t), .., ρs(t)}. The linear systems are given by 669

rank-one extremals Q1, .., Qs. The proof of Theorem 1 is completed in S1 Text §1.2. 670

Computational Construction of RLFs 671

The results presented in [26,27] have been derived via a direct analysis of the associated 672

reaction networks. The framework introduced above enables interpreting these results in 673

a more general framework and allows generalizing them. Hence we revisit the 674

algorithms introduced for the existence and construction of PWL RLFs, and implement 675

them in the LEARN MATLAB package. Furthermore, we also introduce piecewise 676

quadratic RLFs based on the new framework introduced in this paper. 677
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Piecewise Linear RLFs 678

Consider a CRN (1) with a Γ ∈ Rn×r and a given partitioning matrix H ∈ Rp×r such 679

that kerH = ker Γ. A PWL RLF is piecewise linear-in-rates, i.e., it has the form: 680

V (x) = Ṽ (R(x)), where Ṽ : Rν → R is a continuous PWL function. Assuming AS1, the 681

piecewise linear function is given as 682

Ṽ (r) = |cTk r|, r ∈ ±Wk, k = 1, ..,m/2, (16)

where the regions Wk = {r ∈ Rν : ΣkHr ≥ 0}, k = 1, ..,m form a proper conic partition 683

of Rν , while {Σk}mk=1 are signature matrices (diagonal matrices with ±1 on the 684

diagonal) with the property Σk = −Σm+1−k, k = 1, ..,m/2. The coefficient vectors of 685

each linear component can be collected in a matrix C = [c1, .., cm2 ]T ∈ Rm
2 ×r. If the 686

function Ṽ is convex, then we have the following simplified representation of V : 687

V (x) = max
k=1,..,m/2

|cTkR(x)| = ‖CR(x)‖∞.

Verifying a candidate RLF Checking if a given PWL function is an RLF can be 688

posed as a linear program. It is discussed in S1 Text §2.1 and is coded into LEARN. 689

Construction via Linear Programming 690

Based on Theorem 1, we present a simpler linear program than the one presented 691

in [27]. The proof is presented in S1 Text §2.2. 692

Theorem 2. Given a network (S ,R) that satisfies AS1 and a partitioning matrix
H ∈ Rp×r. Let {vi} be a basis for ker Γ. Consider the linear program:

Find ck, ξk, ζk ∈ Rν ,Λ` = [λ`1
T
...λ`m/2

T
]T ∈ Rm×m

k = 1, .., m2 ; ` = 1, .., s, j = k + 1, ..,m

subject to cTk = ξTk ΣkH,

CQ` = −Λ`H,λ`kΣk ≥ 0,

(ck − cj)T vi = 0, i = 1, ..,dim(ker Γ)

ξk ≥ 0,1T ξk > 0,Λ` ≥ 0,

Then there exists a PWL RLF with partitioning matrix H if and only if there exists a 693

feasible solution to the above linear program that satisfies kerC = ker Γ. 694

Remark 1. The linear program above does not enforce convexity on Ṽ . Nevertheless, 695

LEARN allows the user to search amongst convex Ṽ ’s only. See S1 Text §2.3. 696

In LEARN there is a default choice for the matrix H, and it also allows for a manual 697

input by the user. The default choice is H = Γ which gives the following Lyapunov 698

function (where the SoC RLF introduced in (6) is a special case): 699

V (x) = ‖diag(ξk)ẋ‖1, R(x) ∈ Wk,

The user can add rows to H. Usually rows of the form {γi ± γj |i, j = 1, .., n}, where 700

γ1, .., γn are the rows of Γ, are good candidates. 701

Networks without positive steady states If AS1 is not satisfied, then a linear 702

program can be designed for constructing RLFs over a given partition. This is discussed 703

in S1 Text §2.4. 704
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An iteration for the construction of convex PWL RLFs 705

Assuming both AS1 and allowing non-autocatalytic networks only, a 706

computationally-light iterative algorithm for constructing a convex Lyapunov function 707

was presented in [26,27] . Here we generalize the algorithm by dropping these two 708

assumptions. The objective is to find a matrix C = [cT1 , ...., c
T
m]T such that 709

Ṽ (r) = maxk=0,..,m c
T
k r is a Lyapunov function, where c0 := 0. 710

We state the algorithm below. We use the notation supp(ck) = {Rj |ckj 6= 0}, which 711

is the set of all those reactions that appear in cTk r, and let I(Rj) = {Xi|αij > 0} which 712

is the set of reactants for reaction Rj . We have the following result, which is proved in 713

S1 Text §2.5. 714

Theorem 3. Given a network (S ,R). Let Γ = [γT1 , ..., γ
T
n ]T ∈ Rn×ν be its 715

stoichiometry matrix. If the following algorithm terminates successfully, then Ṽ is an 716

RLF.

Parameters: N as the upper maximum number of iterations.
Initialization: Set flag = 0, C = Γ, c0 := 0, k := 1, m := n.
while k < N and flag = 0 do

for Rj ∈ supp(ck) do
for Xi ∈ I(Rj) do

c∗ := ck + sgn(ckj)γi ;
if c∗ 6= c` for ` = 0, .., k then

set C := [CT , c∗T ]T ;
end

end

end
k := k + 1;
m := number of rows of C;
if m < k then

set flag:=1;
end

end
if flag = 1 then

Success. Ṽ (r) = maxk=0,..,m c
T
k r is the desired function

else
The algorithm did not converge within the prescribed upper maximum
number of iterations.

end

717

The algorithm above is computationally very light compared to the linear program 718

with a large H. Furthermore, if the network satisfies AS1 then the RLF can be written 719

as Ṽ (r) = ‖Cr‖∞. 720

Graphical criteria for the construction of Max-Min RLFs 721

Compared to computational conditions, it is highly desirable to have graphical 722

conditions and some have been provided in [26,27]. We reformulate those conditions to 723

be more friendly for computational implementation in LEARN. Those conditions enable 724

the identification of attractive networks by mere inspection of the reaction graph for a 725

particular class of networks. 726

We introduce some notations. Let (S ,R) be a given non-autocatalytic network that 727

satisfies AS1. Consider the decomposition R = Rr ∪Ri into the subsets of reactions 728
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that are reversible and irreversible, respectively. Furthermore, we can decompose 729

Rr = R+
r ∪R−r into the forward and backward reactions, respectively. Let 730

(S ,Ri ∪R+
r ) be the corresponding irreversible subnetwork and let Γ̃ be its 731

stoichiometry matrix. Since the designation of a forward and reverse reaction is 732

arbitrary, we need a decomposition such that Γ̃ has a one-dimensional nullspace. If such 733

a decomposition exists, then we call the original network (S ,R) an M -network. Our 734

graphical condition applies to this class of networks, and it can be stated as follows. 735

Theorem 4. Let (S ,R) be an M -network, and let (S ,R+
r ∪Ri) be the subnetwork 736

defined above, where the reactions are enumerated as R+
r = {R1, ...,Rν1}, 737

Ri = {Rν1+1, ...,Rν̃}. If the irreversible subnetwork satisfies the following properties: 738

1. each species participates in exactly one reaction, and 739

2. each reaction Rj ∈ R+
r satisfies the following statement: If a species Xi is a 740

product of Rj, then Xi is not a product of another reaction, 741

then 742

Ṽ (R(x)) = maxR(x)−minR(x), (17)

where R = { 1
w1

(R1 −R−1), ..., 1
wν1

(Rν1 −R−ν1)} ∪ { 1
wν1+1

Rν1+1, ...,
1
wν̃
Rν̃}, is a convex 743

PWL RLF, where w = [w1, ..., w|ν1|]
T belongs to the null space of Γ̃. 744

Piecewise Quadratic-in-Rates RLFs 745

The framework developed in this paper allows us to go beyond PWL RLFs, and consider 746

other classes of functions such piecewise quadratic-in-rate functions of the form: 747

Ṽ (r) = rTPkr + 2cTk r, r ∈ Wk, (18)

for some matrices Pk ∈ Rν×ν , ck ∈ Rν , k = 1, ..,m. 748

Instead of linear programming, construction of PWQR RLFs is a copositive 749

programming problem. Although copositive programs are convex, solving them 750

generally is shown to be NP-hard [94]. Therefore, we use a common relaxation scheme 751

based on the observation that the class of copositive matrices encompasses the classes of 752

positive semi-definite matrices, and nonnegative matrices. The following theorem states 753

the result and it is proven in S1 Text §3.1. 754

Theorem 5. Given a network (S ,R) that satisfies AS1 and a partitioning matrix
H ∈ Rp×r. Let {vi} be the basis for the kernel of Γ Consider the following semi-definite
program:

Find Pk ∈ Sr, ck ∈ Rν , A1
k, A

2
k, B

1
k`, B

2
k` ∈ Sp, ξk, ζk ∈ Rp,

λkj ∈ Rr, ηkj ∈ R, k = 1, .., m2 , ` = 1, .., s, j ∈ Nk
subject to

[
Pk cTk
ck 0

]
≥
[
(ΣkH)T (A1

k +A2
k)(ΣkH) ξTk ΣkH

(ξTk ΣkH)T 0

]
, (19) Q`

TPk + PkQ`+
(ΣkH)T (B1

k` +B2
k`)(ΣkH)

cTkQ` + ζkΣkH

(cTkQ` + ζkΣkH)T 0

 ≤ 0, (20)

Pk − Pj = λkjh
T
skj

+ hskjλ
T
kj , ck − cj = ηkjhskj , (21)

Pk[v1, .., vd] = 0, cTk [v1, .., vd] = 0, (22)

A1
k, B

1
k` � 0, A2

k, B
2
k` ≥ 0, ξk ≥ 0, ζkj ≥ 0,
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where d = dim(ker Γ) and Nk is the set of neighbor of region Wk (see S1 Text §3.2). If 755

the SDP is feasible , then Ṽ as defined in (18) is an RLF for (S ,R) if ker Ṽ = ker Γ. 756

This class of networks for which PWQ RLFs exist is potentially larger than that of 757

PWL RLFs even when we set ck = 0, k = 1, ..,m in (18) as the following proposition 758

establishes. The proof is given in S1 Text §X. 759

Proposition 6. Let a network (S ,R) that satisfies AS1 be given. If there exists an 760

RLF Ṽ (r) = c̃Tk r, r ∈ Wk with a partition matrix H, then the SDP problem in Theorem 761

5 with {ck}mk=1 constrained to be zeros is feasible. In particular, Pk = c̃k c̃
T
k , k = 1, ..,m 762

is a feasible solution. 763

Properties of Attractive Networks 764

Robust Non-degeneracy 765

It has been shown in [27] that the negative Jacobian of any network admitting a PWL 766

RLF is P0, which means that all principal minors are nonnegative. We show that the 767

reduced Jacobian (i.e, Jacobian with respect to a stoichiometric class) is non-degenerate 768

for all admissible kinetics if it is so at one interior point only. The proof is stated in S1 769

Text §4.1. 770

Theorem 7. Assume that there exists a PWL RLF. If for some kinetics R ∈ KA there 771

exists a point in the interior of a proper stoichiometric class such that the reduced 772

Jacobian is non-singular at it, then the reduced Jacobian is non-singular in the interior 773

of Rn+ for all admissible kinetics. 774

In LEARN, robust non-degeneracy is checked with ρ` = 1, ` = 1, ..., s. It amounts to 775

checking the non-singularity of one matrix. 776

Remark 2. Robust non-degeneracy, coupled with the existence of a PWL RLF, 777

automatically guarantees the uniqueness of positive steady states and their exponential 778

stability (see S1 Text §4.1.2,§4.1.3). Globally stability has been checked via a LaSalle 779

algorithm in [27], which is automatically satisfied for conservative M -networks. 780

Alternatively, global stability follows automatically for any positive steady state if the 781

network is robustly nondegenerate [95]. Hence, Theorem 7 can be used to verify global 782

stability when a PWL RLF exists. Note, however, that the test above is with respect to 783

the stoichiometric class only. In the case of degenerate reduced Jacobians, a 784

stoichiometric class can be partitioned further into kinetic compatibility classes [16]. 785

The graphical LaSalle’s algorithm applies to such cases also. 786

Absence of Critical Siphons 787

A siphon is any (minimal) set of species which has the following property: if those 788

species start at zero concentration, then they stay so during the course of the 789

reaction [41]. Siphons are of two types: trivial and critical. A trivial siphon is a siphon 790

that contains the support of a conservation law. A critical siphon is a siphon which is 791

not trivial. Critical siphons can be found easily from the network graph. The absence of 792

critical siphons in a network has been shown to imply that it is structurally persistent 793

(for conservative networks or systems with bounded flows) [41]. Informally, a system is 794

persistent if the following holds: if all species are initialized at nonzero concentrations, 795

none of them will become asymptotically extinct. We show that the existence of critical 796

siphons precludes the existence of RLF under mild conditions which serves as an 797

easy-to-check condition to preclude the existence of an RLF. Review of the concept of 798

siphons and the proof the result is included in S1 Text §4.2. 799
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Theorem 8. Given a network (S ,R) that satisfies AS1. Assume it has a critical 800

siphon P ⊂ S . Let Λ(P ) ⊂ R be the set of reactions for which the species in P are 801

reactants. Then there cannot exist a PWL RLF if any of the following holds: 802

1. λ(P ) = R, i.e P is a critical deadlock. 803

2. (S ,R) is a conservative M network. 804

3. (S ,R) is conservative and has a positive non-degenerate steady state for some 805

admissible kinetics. 806

Remark 3. The tests established in Theorem 8 have been implemented in LEARN. 807

RLFs in Other Coordinates 808

In this subsection we study an alternative RLF and we link the results with the ones 809

proposed in [34, 36]. We will show that any RLF has an alternative form if it satisfies a 810

mild condition. In particular, all PWL RLFs have alternative forms. Assume that (1) 811

has a steady state xe. Then, we ask whether there exists a Lyapunov function of the 812

form V (x) = V̂ (x− xe). However, note that this Lyapunov function decreases only in 813

the stoichiometric class containing xe and that computing its level sets requires knowing 814

xe. We call V̂ a concentration-dependent RLF. Similar to before, we will characterize 815

the existence of an RLF of the form V̂ (x− xe) for a network (S ,R) by the existence of 816

a common Lyapunov function for a set of extremals of an appropriate cone. In this 817

subsection, we assume that there exists a positive r ∈ Rν+ such that Γr = 0. 818

We will adopt an alternative representation of the system dynamics. Consider a 819

CRN as in (1), and let xe be a steady state. Then, there exists x′′(x) ∈ R̄n+ such that 820

(1) can written equivalently as: 821

ẋ = Γ
∂R

∂x
(x′′)(x− xe), x(0) ∈ Cxe (23)

The existence of x′′ := xe + εx(x− xe) for some εx ∈ [0, 1] follows by applying the 822

Mean-Value Theorem to R(x) along the segment joining xe and x. 823

Similar to the analysis for a rate-dependent RLFs, the Jacobian of (1) can be shown 824

to belong to the conic span of a set of rank-one matrices {Γi1eTj1 , ...,Γise
T
js
} where 825

{Γ1, ..,Γn} are the columns of Γ. The pairs (i`, j`), ` = 1, .., s are the same pairs used 826

before. 827

Let DT be a matrix with columns that are the basis vectors of ker ΓT . The following 828

theorem is proven in S1 Text §5.1. 829

Theorem 9. Given a network (S ,R). There exists a common Lyapunov function 830

V̂ : Rn → R̄+ for the set of linear systems {ż = (Γi1e
T
j1

)z, ..., ż = (Γise
T
js

)z}, on the 831

invariant subspace {z : DT z = 0} if and only if V̂ (x− xe) is a concentration-dependent 832

RLF for any xe. 833

Relationship between the RLFs in concentration and rates We show next 834

that if Ṽ is a rate-dependent RLF that satisfies a relatively mild additional assumption, 835

then then V̂ (x− xe) is a concentration-dependent RLF, where xe is a steady state point 836

for (1). The following theorem can be stated and is proved in S1 Text §5.2. 837

Theorem 10. Let Ṽ be an RLF for the network (S ,R). If there exists V̂ : Rn → R̄+ 838

such that for all r ∈ Rν : 839

Ṽ (r) = V̂ (Γr), (24)

then V̂ is a concentration-dependent RLF for the same network. 840
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PWL functions in concentrations All PWL RLFs constructed before have the 841

property that there exists V̂ such that Ṽ (r) = V̂ (Γr). Hence, there exists a 842

concentration-dependent PWL RLF for the same network. In particular, consider a 843

PWL RLF defined with a partitioning matrix H as in (16). By AS1 and the assumption 844

that kerH = ker Γ, there exists G ∈ Rp×n and B ∈ Rm
2 ×n such that H = GΓ and 845

C = BΓ. Similar to {W}mk=1, we can define the regions: 846

Vk = {z|ΣkGz ≥ 0}, k = 1, ..,m,

where it can be seen that Vk has nonempty interior iff Wk has nonempty interior. 847

Therefore, as the pair (C,H) specifies a PWL RLF, the pair (B,G) also specifies the 848

function: 849

V̂ (z) = bTk z, when ΣkGz ≥ 0,

where B = [b1, ..., bm2 ]T . If Ṽ is convex, then it can be written in the form: 850

V1(x) = ‖CR(x)‖∞. Similarly, the convexity of V̂ implies that V2(x) = ‖B(x− xe)‖∞, 851

where the latter is the Lyapunov function used in [36]. 852

Theorem 10 shows how to go from a rate-dependent to a concentration-dependent 853

RLF. The following theorem shows that one can start with either PWL RLF to get the 854

other. It is proved in S1 Text §5.3. 855

Theorem 11. Given (S ,R). Then, if 856

1. (BΓ, GΓ) specifies a rate-dependent PWL RLF, then (B,G) specifies a 857

concentration-dependent PWL RLF. 858

2. (B,G) specifies a concentration-dependent PWL RLF, then (BΓ, GΓ) specifies a 859

rate-dependent PWL RLF. 860

Remark 4. Since DT (x− xe) = 0 for x ∈ Cxe , then if ‖B(x− xe)‖∞ is an RLF, then 861

‖(B + Y DT )(x− xe)‖∞ is also an RLF for an arbitrary matrix Y . Furthermore, since 862

Theorem 11 has shown that the concentration-based and the rate-based representations 863

are equivalent, it is easier to check and construct RLFs in the rate-based formulation 864

and they hold the advantage of being decreasing for all trajectories over all stoichiometry 865

classes. 866

Computational Package 867

Calculations were performed using MATLAB 10 via our software package LEARN 868

available at https://github.com/malirdwi/LEARN. Available subroutines and example 869

runs are included in S1 Text §7. The package cvx [96] has been used for solving linear 870

and semi-definite programs, and the package PetriBaR for enumerating siphons [97]. 871
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1 Lyapunov’s Second Method

1.1 Preliminaries

First, let consider specific kinetics R ∈ KA. Hence, the ODE is given as

ẋ = f(x) := ΓR(x). (1)

We have the following definition:

Definition A-1. Given the ODE (1). Let V : Rn≥0 → R≥0 be locally Lipschitz. Then V is said to
be a Lyapunov function for (1) if V is

• Positive-Definite (with respect to the steady states set) if V (x) ≥ 0, and V (x) = 0 if and only
if R(x) ∈ ker Γ.

• Nonincreasing if V̇ (x) := D+
f V (x) ≤ 0 for all x, where D+

f is defined below.

Note that when ∂V/∂x exists at a point x, then V̇ (x) = ∂V/∂xΓR(x).

1.1.1 Generalized Derivatives

The function V is locally Lipschitz, and hence it is not necessarily differentiable everywhere. It has
been known since the early stability literature (see [1], [2]) that the standard Lyapunov theorems
can be generalized without difficulty with locally Lipschitz Lyapunov functions and Dini derivatives.

The upper Dini derivative for V in the direction of a function f(x) := ΓR(x) is defined as:

D+
f V (x) := lim sup

h→0+

V (x+ hΓR(x))− V (x)

h
. (2)

For a locally Lipschitz function, the above quantity is always finite.
An alternative definition of the derivative, which is more restrictive but has more convenient

calculus, is the Clarke derivative, which is defined as [3]:

DC
f V (x(t)) := lim sup

h→0+
y→x

V (y + hΓR(x))− V (y)

h
. (3)

Note that D+
f (x)V (x) ≤ DC

f V (x(t)). We will define V̇ in the sense of Dini.

1
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1.1.2 LaSalle’s Condition

Conventional stability theory [1] examines stability with respect to an isolated steady state. How-
ever, for reaction networks, there is usually a continuum of equilibria. This means that asymptotic
stability or Lyapunov stability are not achieved in the classical sense. Nevertheless, the state space
of reaction networks is divided into stoichiometric compatibility classes which are forward invariant.
Furthermore, a stoichiometric class can sometimes be divided into kinetic compatibility classes [4].
In general, any initial condition x◦ is associated with a compatibility class Cx0 . Hence we state the
following definition:

Definition A-2 (The LaSalle’s Condition). Given an ODE (1) with a Lyapunov function V . The
LaSalle’s Condition is satisfied if the following statement holds:
If a solution ϕ(t;x◦) of (1) satisfies ϕ(t;x◦) ∈ ker V̇ ∩Cx◦ for all t ≥ 0, then ϕ(t;x◦) ∈ Ex◦ for all
t ≥ 0, where Ex◦ ⊂ Cx◦ is the set of steady states for (1) contained in Cx◦.

1.1.3 Lyapunov Stability Theorem

We state the following theorem which is standard Lyapunov theory adapted to our settings [5].

Theorem A-1 (Lyapunov’s Second Method). Given (1) with initial condition x◦ ∈ Rn+. Let Cx◦
be its class. Assume there exists a Lyapunov function V and suppose that x(t) is bounded.

• Then the steady state set Ex◦ is Lyapunov stable relative to Cx◦.

• If, in addition, the LaSalle’s Condition is satisfied, then x(t)→ Ex◦ as t→∞ (i.e., the point
to set distance of x(t) to Ex◦ tends to 0). Furthermore, any isolated steady state relative to
Cx◦ is asymptotically stable.

• If the LaSalle’s condition is satisfied, and all the trajectories are bounded, then: if there exists
an x∗ ∈ Ex◦ which is isolated relative to Cx◦, then it is unique, i.e., Ex◦ = {x∗}. Furthermore,
it is globally asymptotically stable steady state relative to Cx◦.

1.2 Robust Lyapunov Functions and Proof of Theorem 1

In the main text, we have defined an RLF Ṽ : Rν → R≥0. For a given R ∈ KA, the Lyapunov
function is V (x) = Ṽ (R(x)).

Before proving Theorem 1, we need to state and prove the following Lemma:

Lemma A-1. Let ẋ := f(x), and let V : Rn≥0 → R≥0 be a locally Lipschitz function such that:

∂V (x)

∂x
f(x) ≤ 0 whenever

∂V (x)

∂x
exists,

Then V̇ (x) ≤ 0 for all x.

Proof. Since V is assumed to be locally Lipschitz, Rademacher’s Theorem implies that it is differ-
entiable (i.e., gradient exists) almost everywhere [3]. Recall that for a locally Lipschitz function
the Clarke gradient at x is defined as ∂CV (x) := co ∂V (x), where:

∂V (x) :=

{
p ∈ Rn : ∃xi → xwith ∂V (xi)/∂x exists, such that, p = lim

i→∞
∂V (xi)/∂x

}
.

2
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Let p ∈ ∂V (x) and let {xi}∞i=1 be any sequence as in the definition of the Clarke gradient. By
the assumption stated in the Lemma, (∂V (xi)/∂x)f(xi) ≤ 0, for all i. Hence, the definition of p
implies that pT f(x) ≤ 0. Since p was arbitrary, the inequality holds for all p ∈ ∂V (x).
Now, let p ∈ ∂̄V (x) where p =

∑
i λipi is a convex combination of any p1, ..., pn+1 ∈ ∂V (x). By the

inequality above, pT f(x) =
∑

i λi(p
T
i f(x)) ≤ 0. Hence, pT f(x) ≤ 0 for all p ∈ ∂̄V (x).

As in [3], the Clarke derivative of V at x in the direction of f(x) can be written as DC
f(x)V (x) =

max{pT f(x) : p ∈ ∂̄V (x)}. By the above inequality, we get DC
f(x)V (x) ≤ 0 for all x. Since the Dini

derivative is upper bounded by the Clarke derivative, we finally get:

V̇ (x) := lim sup
h→0+

V (x+ hf(x))− V (x)

h
≤ lim sup

h→0+
y→x

V (y + hf(x))− V (y)

h
=: DC

f(x)V (x) ≤ 0,

for all x.

Proof of Theorem 1 We show that the existence of the common Lyapunov function implies the
existence of the RLF. Nonnegativity of V follows from the nonnegativity of Ṽ . Let (i, j) = κ(`), and
recall that Q` = ejγ

T
i , hence ker Ṽ =

⋂s
`=1 kerQ` = ker Γ. Therefore, R(x) ∈ kerV iff ΓR(x) = 0,

which establishes the positive-definiteness of V .
We assumed that Ṽ has a negative semi-definite time-derivative for every linear system in the

considered set. Hence, whenever Ṽ is differentiable at a point r, we can write (∂Ṽ /∂r)Q`r ≤ 0,
` = 1, ..., s. Hence, for any ρ1, ..., ρs ∈ R̄+:

s∑
`=1

ρ`
∂Ṽ

∂r
Q`r ≤ 0,whenever (∂V (r)/∂r) exists. (4)

Therefore, whenever Ṽ is differentiable we have

V̇ (x) =
∂Ṽ

∂R

∂R

∂x
(x)ΓR(x) =

∂Ṽ

∂R

 ∑
i,j:αij>0

∂Rj
∂xi

(x)Eji

ΓR(x) (5)

where ∂Ṽ /∂R := (∂Ṽ /∂r)
∣∣∣
r=R(x)

.

Now, denote ρ` =
∂Rj
∂xi

(x), which is nonnegative by AK3. This allows us to write:

V̇ (x) =

s∑
`=1

ρ`
∂Ṽ

∂R
EjiΓR(x) (6)

=

s∑
`=1

ρ`
∂Ṽ

∂R
Q`R(x) ≤ 0, for almost allx. (7)

The last inequality follows from (4). Using Lemma A-1, V̇ (x) ≤ 0 for all x, and for all R ∈ KA.
In order to show the other direction, since most of the properties outlined in the RLF definition

are clearly satisfied, it remains to show nonincreasingness. Assume that there exists ` such that
Ṽ (r) is not nonincreasing along the trajectories of ṙ = Q`r. Consider the corresponding term in
(6). Since V (R(x)) is a Lyapunov function for any choice of admissible rate reaction function R,

choose ρ` =
∂Rj
∂xi

to be large enough such that V̇ (x) ≥ 0 for some x; this results in a contradiction.

3
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2 Piecewise Linear RLFs

2.1 Checking a candidate Lyapunov function

Suppose we are given a matrix H ∈ Rp×r such that kerH = ker Γ. Let Ṽ : Rν → R be a continuous
PWL function given as

Ṽ (r) = |cTk r|, r ∈ ±Wk, k = 1, ..,m/2,

where the regions Wk = {r ∈ Rν : ΣkHr ≥ 0}, k = 1, ..,m form a proper conic partition of Rν ,
while {Σk}mk=1 are signature matrices (diagonal matrices with ±1 on the diagonal) with the property
Σk = −Σm+1−k, k = 1, ..,m/2. (see [5] for a detailed exposition on the geometry of the partition
regions).

The coefficient vectors of each linear component can be collected in a matrix C = [c1, .., cm
2

]T ∈
R
m
2
×r. If the function Ṽ is convex, then we have the following simplified representation of V [6]:

V (x) = ‖CR(x)‖∞.

This representation is analogous of the `∞-norm Lyapunov functions that have been used for linear
systems in [7].

Theorem A-2. Let Γ and H be given as above. Let Ṽ be a candidate continuous nonnegative
PWL function with C = [c1 ... cm

2
]T ∈ R

m
2
×r. Then Ṽ is an RLF if and only if:

• kerC = ker Γ, and

• there exists matrices {Λ`}s`=1 ⊂ R
m
2
×m

2 such that

Λ`H = −CQ`, (8)

and λ`kΣk > 0, where Λ` = [λ`1
T
...λ`m/2

T
]T .

If Ṽ is convex, then the second condition can be replaced with

2) there exists Metzler matrices {Λ`}s`=1 ⊂ Rm×m such that

Λ`C̃ = C̃Q`, (9)

and Λ`1 = 0 for all ` = 1, .., s, where C̃ = [CT −CT ]T .

Proof. The proof can be carried out by performing algebraic manipulations on the results presented
in [5, Theorem 4]. The function has been assumed continuous and nonnegative. It remains to show
that the corresponding condition in [5] is equivalent to (9). Considering (9) row by row, it can be
written in the following form for k ∈ {1, .., m2 }:

λ`k
T
H = −ckjαijγTi ,

where (i, j) = κ(`). ckj can be replaced with sgn(ckj) and αij can be replaced with 1 if we are
considering only i ∈ Ik, j ∈ Jki. Therefore, equivalence with the corresponding condition in [5,
Theorem 4] is established.

For a convex PWL function, we can write the corresponding condition in [5, Theorem 5] as
follows after replacing sgn(ckj) by ckj , and inserting αij :

−ckjαijγTi =

 m∑
j=1,j 6=k

λ`kj

 cTk −
m∑

j=1,j 6=k
λ`kjc

T
j .

4
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Let λkk =
∑m

j=1,j 6=k λ
`
kj . Then

cTk ejγ
T
i =

m∑
j=1,j 6=k

λ`kjc
T
j − λ`kkcTk ,

which enforces Λ` to be Metzler and Λ`1 = 0 as above.

Remark A-1. The symmetries in equation (9) imply that it can be written equivalently as:

CQ` = Λ̃`C, (10)

where Λ̃` is an m
2 ×

m
2 matrix which is defined by subtracting the upper m

2 ×
m
2 blocks of Λ` from

each other. The matrix Λ̃` satisfies:

max
k

λ̃(`)kk +
∑
j 6=k
|λ̃(`)kj |

 ≤ 0. (11)

This is exactly the condition that `∞-norm Lyapunov functions need to satisfy for a linear system
[8, 9]. This shows that Theorem 1 provides the framework to utilize the existing linear stability
analysis techniques in the literature to construct robust Lyapunov functions for nonlinear systems
such as CRNs. For example, we can verify `1 Lyapunov functions of the form V (x) = ‖CR(x)‖1
directly by replacing condition (11) by

max
k

λ̃(`)kk +
∑
j 6=k
|λ̃(`)jk |

 ≤ 0, (12)

instead of converting them to the `∞-norm form.

2.2 Proof of Theorem 2

The linear program has the parametrization cTk = ξTk ΣkH, which follows from applying Farkas’s
Lemma to ensure that Ṽ (r) = cTk r ≥ 0 on the region Wk. (See [5] for full details.) The second
condition: CQ` = −Q`H follows from Theorem 2 and ensures that V (R(x)) is nonincreasing. To
ensure continuity we need to have cTk r = cT` r whenever r ∈ Wk∩W`. Since kerH = ker Γ, continuity
can be imposed by the constraint (ck − c`)T vi = 0 for i = 1, ..,dim(ker Γ). �

2.3 Enforcing convexity in a linear program

The linear program presented in the main text does not enforce convexity on the PWL RLF.
Following [5], we describe how to write a linear program to construct convex PWL RLFs in what
follows.
We need to introduce the concept of a neighbor to a region. Fix k ∈ {1, ..,m/2}. Consider the
matrix H: for any pair of linearly dependent rows hTi1 , h

T
i2

eliminate hTi2 . Denote the resulting matrix

by H̃ ∈ Rp̃×ν , and let Σ̃1, .., Σ̃m the corresponding signature matrices. Therefore, the region can be
represented as Wk = {r|Σ̃kH̃r ≥ 0}. The distance dr between two regions Wk,Wj is defined to be
the Hamming distance between Σ̃k and Σ̃j . Hence, the set of neighbors of a region Wk are defined
as:

Nk = {j ∈ {1, 2, . . . ,m} : dr(Wj ,Wk) = 1}.

5
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Equivalently, note that a neighboring region to Wk is one which differs only by the switching of
one inequality. Denote the index of the switched inequality by the map sk(.) : Nk → {1, .., p}. For
simplicity, we use the notation sk` := sk(`).

Theorem A-3. Given the system (1) and a partitioning matrix H ∈ Rp×r. Consider the linear
program:

Find ck, ξk, ζk ∈ Rν ,Λ` ∈ Rm×m, ηkj ∈ R,
k = 1, .., m2 ; j ∈ Nk, ` = 1, .., s,

subject to cTk = ξTk ΣkH,

CQ` = −Λ`H,λ`kΣk ≥ 0,

ck − cj = ηkjσkskjhskj ,

ξk ≥ 0,1T ξk > 0,Λ` ≥ 0,

where σkj is the jth entry on the diagonal of Σk. Then there exists a PWL RLF with partitioning
matrix H if and only if there exists a feasible solution to the above linear program that satisfies
kerC = ker Γ. Furthermore, the PWL RLF can be made convex by adding the constraints ηkj ≥ 0.

2.4 Networks without positive steady states

Let AS1 be the assumption that requires the existence of a positive vector in ker Γ, which is a
necessary condition for the existence of positive steady states. This assumption simplifies the
geometry of the partition regions and enforces symmetry on the coefficient matrix C. Nevertheless,
our techniques can be extended without difficulty for the construction of PWL RLFs for generic
CRNs that do not satisfy AS1. Consider a matrix H ∈ Rp×ν , with kerH = ker Γ. The regions are
defined as:

Wk = {r ∈ Rν : ΣkHr ≥ 0, r ≥ 0},

where k = 1, .., 2p. Note that the inequality r ≥ 0 needs to be explicitly included. As before, let
m be the number of non-empty interior regions. Then, the regions are ordered such that the first
m regions are the non-empty interior ones. Therefore, the following theorem can be stated for
networks that do not necessarily satisfy AS1.

Theorem A-4. Consider the system (1), with H = [ΓT ĤT ]T , {Σk}mk=1 given as before. Consider
the following linear program:

Find ck, ek, ξk, ζk ∈ Rν ,Λ` = [λ`1
T
...λ`m

T
]T ∈ Rm×m

k = 1, ..,m; ` = 1, .., s, j = k + 1, ..,m

subject to cTk = ξTk ΣkH + eTk ,

CQ` = −Λ`H,λ`kΣk ≥ 0,

(ck − cj)T vi = 0, i = 1, ..,dim(ker Γ)

ξk ≥ 0,1T ξk > 0, ek ≥ 0Λ` ≥ 0,

Then there exists a PWL RLF with partitioning matrix H if and only if there exists a feasible
solution to the above linear program with kerC = ker Γ satisfied.

6
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2.5 Proof of Theorem 3

The algorithm starts with C = Γ. Hence, it can be interpreted as an initial PWL function Ṽ (r) =
maxk=0,1,..,n c

T
k r where ck = γk, k = 1, .., n.

We aim at restricting the active region of each function cTkR(x(t)) to the region on which it
is nonincreasing, i.e cTk Ṙ(x(t)) ≤ 0. This is accomplished by adding extra linear components that
ensures this. Define the active region of a vector ck, k = 1, ..,m0, as:

W0(ck) := {r ∈ Rν : cTk r ≥ cTj r, j 6= k}.

We define the permissible region of a linear component ck to be the region for which it is nonin-
creasing:

P(ck) := {r ∈ Rν : sgn(ckj)γ
T
i r ≤ 0 for all (i, j) such that j ∈ supp(ck) and i ∈ I(Rj)}.

Note that in general, W0(ck) 6⊂ P(ck). Therefore, the iterative procedure defines a new PWL
function with matrix C1 so that W1(ck) ⊂ P(ck). To achieve this, new rows are added to C as
follows:

cm0+i := ck + sgn(ckj)γi (13)

for all (i, j) such that j ∈ supp(ck) and i ∈ I(Rj).
The procedure is repeated for every row of C. If the procedure terminates, i.e no new rows need

to be added, then Ṽ (r) = maxk=0,1,..,n c
T
k r is a PWL RLF. �

3 Construction of PWQ RLFs

3.1 Proof of Theorem 5

We show that Ṽ is a common Lyapunov function for {ṙ = Q1r, ..., ṙ = Qsr} as in Theorem 1.
In order to show nonnegativity, inequality (23) implies that:

rTPkr + 2cTk r ≥ (ΣkHr)
T (A1

k +A2
k)ΣkHr + 2cTk (ΣkH)r,

and since A1
k +A2

k is copositive this implies that Ṽ (r) ≥ 0 when r ∈ ±Wk, k = 1, .., m2 , which estab-
lishes nonnegativity. Positive-definiteness follows from (26) and the assumption in the statement
of the theorem.

For continuity, it is sufficient to establish it between neighboring regions. Therefore, assume
j ∈ Nk, and let hTskjr = 0 be the intersection hypersurface, then (25) implies that rTPkr + 2cTk r =

rTPjr + 2cTj r when r ∈ Wk ∩ Wj . The other direction holds also by writing Pk − Pj over the

decomposition Rν = span{hskj} ⊕ span{hskj}⊥. Continuity of Ṽ implies also that Ṽ is locally
Lipschitz.

In order to show that this derivative is negative semi-definite, consider the `th system, and let
r ∈ W◦k , then:

˙̃V`(r) = rT (Q`Pk + PkQ`)r + 2cTkQ`r.

Note that (24) implies that ˙̃V`(r) ≤ 0 when r ∈ Wk. As it is true for all k, then ˙̃V`(r) ≤ 0 for

all ` = 1, ..s, and all r such that ∂Ṽ (r)/∂r exists. By Lemma 1, this implies that ˙̃V`(r) ≤ 0 for
` = 1, .., s. �
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3.2 Proof of Proposition 6

Assume that C ∈ R
m
2
×r is given such that ṼL is a PWL RLF, where ṼL is defined as in (2.1). Let

ṼQ be defined by
ṼQ(r) = rTPkr = rT c̃k c̃

T
k r, r ∈ Wk, k = 1, ..,m.

The constraints (25),(26) are clearly satisfied. The inequality (23) is satisfied with A1
k = A2

k = 0,
k = 1, .., m2 . It remains to show that (24) is satisfied.

Fix ` ∈ {1, .., s}, k ∈ {1, .., m2 }. Then

− ˙̃V` = −rT (Q`Pk + PkQ`)r = −rT (Q`c̃
T
k c̃k + c̃k c̃

T
kQ`)r.

Since it is assumed that ṼL is PWL RLF, there exist λ`k, ξk ≥ 0 such that c̃Tk = ξTk ΣkH, c̃TkQ` =
λ`kΣkH. Therefore:

− ˙̃V` = (ΣkHr)
T (λ`kξk + ξkλ

`
k
T

)(ΣkHr).

Hence, (24) is satisfied with B1
k` = λ`kξk + ξkλ

`
k
T
, B2

k` = 0. �

4 Properties of Attractive Networks

4.1 Robust non-degeneracy

A point xe of (1) is non-degenerate if the Jacobian evaluated at xe relative to Cxe is nonsingular.
More precisely, let us change coordinates using a transformation matrix T = [T T1 D]T , where DT

has full row rank and DTΓ = 0, and T1 is any matrix such that T is nonsingular. Then, the
Jacobian in the new coordinates can be written as:

TΓ
∂R

∂x
T−1 =

[
J1 J2
0 0

]
. (14)

Therefore, xe is nondegenerate iff J1 evaluated at xe is nonsingular. The matrix J1 is called a
reduced Jacobian.

4.1.1 Proof of Theorem 7

Recall that for an attractive network with PWL RLF, the negative Jacobian is P0 for any choice of
R ∈ KA [5]. Using the Cauchy-Binet formula [10], let I ⊂ {1, .., n} be an arbitrary subset so that
|I| = k. The corresponding principal minor can be written as:

det
I

(
−Γ

∂R

∂x

)
=

∑
J⊂{1,..,ν},|J |=k

det(−ΓIJ) det

(
∂R

∂x JI

)
=
∑
ι

aι
∏

`∈Lι⊂{1,..,s}

ρ`,

where the last equality refers to the fact that the sum can be expressed as a linear combination of
products of ρ1, ..., ρs. We claim that the coefficients aι are all nonnegative. To show this, assume
for the sake of contradiction that there is some negative aι∗ . If we set all ρ’s to zero except the
ones appearing in the ιth∗ term, then this implies that the corresponding principal minor can be
negative; a contradiction.

Now, the theorem can be proven by noting that the reduced Jacobian is non-singular iff the
sum of all k × k principal minors of the negative Jacobian is positive, where k = rank(Γ). Since
it is assumed that there exists a point for which the reduced Jacobian is non-singular, this implies
that the sum of principal minors is positive for some choice of ρ1, .., ρs. Since all of the principal
minors are nonnegative, then at least one of them is positive. By AK4, that principal minor stays
positive for any choice of positive ρ1, .., ρs, i.e. it stays positive over the interior of Rn+. �
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4.1.2 Uniqueness of the steady states

The following directly from Theorem 7.

Proposition A-5. Consider a network (S ,R) that satisfies AS1 and admits a PWL RLF. If there
exists a non-degenerate positive steady state xe, relative to Cxe, then it is unique.

Proof. Theorem 7 has shown that the existence of an non-degenerate positive steady state xe
ensures that the reduced Jacobian is non-singular on the interior of the orthant. In order to
show uniqueness, assume for the sake of contradiction that there exists y 6= xe, y ∈ Cxe such that
ΓR(y) = 0. Then the fundamental theorem of calculus implies,

0 = ΓR(xe)− ΓR(y) = Γ

∫ 1

0

∂R

∂x
(txe + (1− t)y) (xe − y)dt= Γ

∂R

∂x
(x∗)(xe − y),

where x∗ = t∗xe+(1−t∗)y, and t∗ ∈ (0, 1). The existence of t∗ is implied by the integral mean-value
theorem. Since x∗ ∈ C ◦xe , then the reduced Jacobian at x∗ is non-singular relative to Im Γ. Since
xe − y ∈ Im Γ, then y = xe. This gives a contradiction.

4.1.3 Exponential stability

We have shown that the existence of a PWL RLF function implies that it is a common Lyapunov
function for all linear systems that belong to a linear differential inclusion.

In fact, one of the properties of systems that admits a piecewise linear Lyapunov function is that
a stable steady state cannot have purely imaginary eigenvalues [11]. Hence, the reduced Jacobian at
a non-degenerate steady state cannot admit pure imaginary eigenvalues which implies the following
Theorem:

Theorem A-6. Let (S ,R) be a network that admits a PWL RLF. If a positive steady state xe is
non-degenerate relative to Cxe, then it is exponentially asymptotically stable.

4.1.4 Global stability

Establishing global asymptotic stability of a positive steady state for a network that admits a PWL
RLF has been accomplished via a LaSalle graphical algorithm in [5]. Nevertheless, if a network is
known to be robustly non-degenerate with respect to the stoichiometric class (by the test given in
Theorem 7 for instance), then the following result holds:

Theorem A-7. ([12]) Suppose that the system (1) admits a PWL RLF. If the Jacobian is robustly
non-degenerate relative to a stoichiometric class C , then every positive steady state xe ∈ C is
globally asymptotically stable relative to C .

Hence, the graphical LaSalle algorithm is not needed for networks with Jacobians that are
robustly non-degenerate relative to stoichiometric classes.

4.2 Absence of critical siphons: Proof of Theorem 8

Assume P is a critical siphon for the Petri-net associated with Γ, and let np = |P |. Let Λ(P ) be
the set of output reactions of P , and let νp = |Λ(P )|.

Item 1 of Theorem 8 has been proved in [5]. We restate the proof in this paper’s terminology
for completeness. First, the following lemma is needed.

9
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Lemma A-2. Consider a network (S ,R). Let P be a set of species that does not contain the
support of a conservation law; let its indices be numbered as {1, ..., np}. Then, there exists a
nonempty-interior region {r|ΣkΓr ≥ 0} with a signature matrix Σk that satisfies σk1 = ... = σknp =
1.

Proof. Assume the contrary. This implies that ∩npi=1{R|γTi R > 0}
⋂
∩ni=np+1{R|σiγTi R > 0} = ∅

for all possible choices of signs σi = ±1. However, Rr can be partitioned into a union of all possible
half-spaces of the form ∩ni=np+1{R|σiγTi R ≥ 0}. Therefore, this implies that ∩npi=1{R|γTi R > 0} = ∅.
By Farkas Lemma, this implies that there exists λ ∈ Rnp satisfying λ > 0 such that [λT0]Γ = 0.
Therefore, P contains the support of the conservation law [λT 0]T ; a contradiction.

Therefore, we can state the proof of the first item:

Proof of Theorem 8-1). Without loss of generality, let {1, ..., np} be the indices of the species in
P . Using Lemma 2, there exists a nonempty-interior sign region Sk, 1 ≤ k ≤ ms with a signature
matrix Σk that satisfies σk1 = ... = σknp = 1. Since Λ(P ) = R, this implies that we must have
ck ≥ 0 to match the sign pattern of Σk. But since ∃v � 0 ∈ ker Γ, then this implies that ck = 0
which contradicts the positive definiteness condition on the RLF since kerC 6= ker Γ.

In order to proceed, we denote by ΨP the face that corresponds to a siphon P . It is given by:
ΨP = {x ∈ Rn+|Xi ∈ P ⇒ xi = 0}. We state the following lemma next:

Lemma A-3. Consider a network (S ,R). Let P be a critical siphon, and let ΨP be the associated
face. If the network is conservative, then for any proper stoichiometric compatibility C , there exists
a steady state xe of (1) such that xe ∈ ΨP ∩ C .

Proof. The set ΨP ∩ C is compact, forward invariant, and convex, since both sets ΨP ,C are such.
Hence, the statement of the lemma follows directly from the application of the Brouwer Fixed Point
Theorem on the associated flow.

We are ready now to prove the second item of Theorem 8.

Proof of Theorem 8-2). By Lemma 3, there exists a steady state in ΨP . Since it is assumed that
there exists a non-degenerate steady state in the interior, Proposition 5 implies that the network
cannot admit a PWL RLF.

Before concluding the proof, a simple lemma is stated and proved:

Lemma A- 4. Let xe be a steady state of (1). Let P̃ be a set of species that correspond to
{1, .., n}\ supp(xe). Then, P̃ is a siphon.

Proof. Assume that P̃ is not a siphon, then there exists some Xi ∈ P̃ and Rj ∈ R such that Xi is
a product of Rj and Rj 6= Λ(P̃ ). At the given steady state, all negative terms in the expression of
ẋi vanish since xei = 0. Since Xi is not a reactant in Rj this implies βij > 0, αij = 0. Therefore,
Rj(x) has a strictly positive coefficient, which implies ẋi > 0 resulting in a contradiction.

Hence, we are ready to conclude the proof of Theorem 8:

Proof of Theorem 8-3). By Lemma 3, there exists a steady state x∗ ∈ ΨP such that ΓR(x∗) = 0.
Since dim(ker Γ) = 1, this implies that R(x∗) = tv for some t ≥ 0. Consider the case t = 0. This
implies R(x∗) = 0. Then, P ⊂ P̃ := {1, .., n}\ supp(x∗). P̃ is a siphon by Lemma 4, and since
P ⊂ P̃ it is a critical deadlock. However, by Theorem 8-1), the network is does not admit a PWL
RLF, which is a contradiction. If t > 0, this implies that P = ∅; giving a contradiction.
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5 Concentration-dependent RLFs

5.1 Proof of Theorem 9

Let V (x) = V̂ (x− xe). Then at those points z where ∂V̂ /∂z exists, we can write:

V̇ =
∂V̂

∂z
ż =

∂V̂

∂z

s∑
`=1

ρ`(t)Γi`e
T
j`
z =

s∑
`=1

ρ`(t)

(
∂V̂

∂z
Γi`e

T
j`
z

)
.

Since we have assumed that V̂ is a common Lyapunov function for the set of linear systems {ż =
(Γi1e

T
j1

)z, ..., ż = (Γise
T
js

)z}, the proof can proceed in both directions in a similar way to the proof

of Theorem 1. Notice that the constraint DT z = 0 is needed since DT ẋ(t) ≡ 0 is implicit in the
structure of the original system (1). �

5.2 Proof of Theorem 10

Positive definiteness is clearly satisfied. It remains to show the second condition. Let z = x − xe.
Then, whenever V̂ is differentiable:

V̇2(x) =
∂V̂ (x− xe)

∂z
ẋ =

∂V̂ (x− xe)
∂z

ΓR(x).

Before proceeding, we prove two statements: First, from (28), we get (∂Ṽ (r)/∂r) = (∂V̂ (Γr)/∂z)Γ.
Second, note that x − xe ∈ Im(Γ), hence there exists r ∈ Rν such that Γr = x − xe, where r can
always be chosen nonnegative by assumption AS1. Hence, where V̂ is differentiable, we can use
(27) to write:

V̇2(x) =
∂V̂ (x− xe)

∂r
Γ
∂R(x′′)

∂x
(x− xe) =

∂Ṽ (r)

∂r

∂R(x′′)

∂x
Γr

=
s∑
`=1

ρ`
∂Ṽ (r)

∂r
Γ`r ≤ 0,

where the last inequality follows from (7). Lemma A1 implies that V̇2(x) ≤ 0 for all x. �

5.3 Proof of Theorem 11

The first statement follows from Theorem 10. In order to show the second statement, let V2(x) =
bTk (x−xe), for x−xe ∈ Vk. We will show that V1(x) = cTkR(x), for each R(x) ∈ Wk is nondecreasing
along the trajectories. Without loss of generality, the partition matrix can be written in the form:
G = [I ĜT ]T . This representation implies that the sign of x − xe is determined in every region
Vk = {z|ΣkGz ≥ 0}, k = 1, ..,m, where Σk = diag[σk1, ..., σkn] are signature matrices. Now,
assume that x− xe ∈ V◦k . Then:

V̇2(x) =bTk ΓR(x)=cTkR(x)≤0 = cTkR(xe), for allR ∈ KA.

Let Rj(x) ∈ supp ck, and let αij > 0. Since R is nondecreasing by AK3, if sgn(xi−xei) sgn(ckj) > 0,
there exists R ∈ KA such that V̇2(x) ≥ 0. Hence, this implies that the inequality sgn(ckj) sgn(xi −
xei) ≤ 0 holds. Fix j. If there exists i1, i2 such that αi1j , αi2j > 0 and sgn(xi1−xei1 ) sgn(xi2−xei2 ) <
0, then σkj := 0. Otherwise, σkj := sgn(xi − xei) for some i such that αij > 0.
Hence, in order to have V̇2(x) ≤ 0 for all R ∈ KA we need that σkj(xi − xei) ≥ 0 whenever
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x− xe ∈ Vk, for all k, j, i with αij > 0. By Farkas’ Lemma [13], this is equivalent to the existence
of λkji ∈ R̄p+, ζkji ∈ Rι, such that

σkje
T
i = λTkjiΣkG+ ζTkjiD, (15)

where DT ∈ Rι×n is a matrix whose columns are basis vectors for ker ΓT .
If we multiply both sides of (15) by Γ from the left, then we get condition C4 in [5, Theorem 4]
which is necessary and sufficient for V̇1(x) = d

dt(c
T
kR(x)) ≤ 0. �

6 Parameters for Figure 1

For the two mechanisms the total concentrations of the substrate and enzymes are [X0]T = 6, [E]T =
2.5, [F ]T = 6. The following ODE has been simulated for the distributive mechanism :

ẋ =



−1 1 0 0 0 1 0 0 0 0 0 0
−1 1 1 0 0 0 −1 1 1 0 0 0
1 −1 −1 0 0 0 0 0 0 0 0 0
0 0 1 −1 1 0 −1 1 0 0 0 1
0 0 0 −1 1 1 0 0 0 −1 1 1
0 0 0 1 −1 −1 0 0 0 0 0 0
0 0 0 0 0 0 1 −1 −1 0 0 0
0 0 0 0 0 0 0 0 1 −1 1 0
0 0 0 0 0 0 0 0 0 1 −1 −1





120x1x2
10x3
8x3

13x4x5
20x6
28x6

24x2x4
3x7
7
2x7

10x5x8
3
2x9
x9



,

where x1 = [X0], x2 = [E], x3 = [X0E], x4 = [X1], x5 = [F ], x6 = [X1F ], x7 = [X1E], x8 =
[X2], x9 = [X2F ].

The following ODE has been simulated for the processive mechanism :

ẋ =



−1 1 0 0 0 0 0 1
−1 1 0 0 0 0 1 0
1 −1 −1 0 0 0 0 0
0 0 0 −1 1 0 1 0
0 0 0 −1 1 0 0 1
0 0 0 1 −1 −1 0 0
0 0 1 0 0 0 −1 0
0 0 0 0 0 1 0 −1





120x1x2
2x3
8
5x3

13
5 x4x5
4x6
28
5 x6
24
5 x7
7
2x8


,

where x1 = [X], x2 = [E], x3 = [X1E], x4 = [X2], x5 = [F ], x6 = [X2F ], x7 = [X2E], x8 = [x], x9 =
[X1F ].
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7 The Software Package LEARN

We describe the prerequisites of LEARN, the basic subroutines offered and few example runs. LEARN
can be accessed at github.com/malirdwi/LEARN.

7.1 Prerequisites

LEARN runs on MATLAB with the optimization and symbolic math toolboxes. Also, it needs the
cvx package. The latest version of cvx is available on the link http://cvxr.com/cvx/download/.
After download, the user must run cvx setup. After cvx setup reporting that cvx is successfully
installed, LEARN should run without issues.

7.2 List of Subroutines

The following subroutines are available. Note that all the subroutines below take Γ as an input
which is the stoichiometry matrix of the network. If the network has an autocatalytic reaction then
both matrices A,B need to be entered. (see the Methods section in the main text)

7.2.1 Main subroutines

• LEARNmain(Gamma): Prints a basic report on the network. This subroutine should be sufficient
for most users. Examples will follow. Another parallel function, LEARNmainplus(Gamma), is
available which runs a more exhaustive RLF search.

7.2.2 Basic subroutines

• d=IsConservative(Gamma): Checks if the network is conservative. If it is, then the subrou-
tine returns a positive vector d ∈ Rn+ such that dTΓ = 0. If the network is not conservative
then d returns a scalar 0.

• v=IsAS1(Gamma): Checks if the stoichiometry matrix has a positive vector in its kernel. If it
does, then the subroutine returns a positive vector v ∈ Rn+ such that Γv = 0. If the network
is not conservative then d returns a scalar 0.

• [flag,deadlock]=checkSiphons(Gamma): Checks if there are critical siphons and deadlocks.
Each output can be either 0 or 1.

• flag=checkMnetwork(Gamma): Checks if the network is an M -network. The output is either
0 or 1.

7.2.3 Necessary Conditions

• checkSiphonCondition(Gamma): Checks if the network violates the critical siphon necessary
condition (Theorem 8). It prints a brief report.

• flag=SignPatternCheck(Gamma): Checks if the network violates the sign pattern necessary
condition [5, Theorem 9]. The output is either 0 or 1.

• flag=checkPmatreix(Gamma): Checks if the network violates the P matrix necessary condi-
tion [5, Theorem 8]. The output is either 0 or 1.
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• flag=RobustNondegeneracy(Gamma): Checks if the network has a robustly non-degenerate
Jacobian (Theorem 7). This only applies to networks that pass the P matrix test. The output
is either 0 or 1.

7.2.4 Construction of RLFs

• C=ConstructGraphical(Gamma): Checks if the network admits the Max-Min RLF as given
in Theorem 4. The output is C. If the method fails then C will be an empty matrix.

• C=ConstructIterate(Gamma): Checks if the network admits an RLF as given in Theorem 3.
The output is C. If the method fails then C will be an empty matrix.

• [C,cvx]=ConstructLP(Gamma,H2,w,c): Checks if a non-autocatalytic network admits an
RLF as given in Theorem 2. The last three inputs are optional. The output is C and the
flag cvx to indicate that the RLF has been certified to be convex. The second input is H2

which are optional rows to add to the partitioning matrix H = Γ. The default value for H2

is an empty matrix. The third input is w and it is a flag to constrain the search to Sum-of-
Currents RLFs. The default value is 1, but it is set to 0 in the LEARNmainplus subroutine.
The fourth input is a flag to constrain the RLF to be convex. The default value is 0 which is
the recommended value.

• [C,cvx]=ConstructLPauto(A,B,H2,w,c): Checks if an autocatalytic network admits an RLF
as given in Theorem 2. The remaining input structure is similar to the previous subroutine.

• [C]=ConstructCoP(Gamma,H2): Checks if a non-autocatalytic network admits an RLF as
given in Theorem 5. The last input is optional. The output is a tensor of PWQ RLF
matrices. The second input is H2 which are optional rows to add to the partitioning matrix
H = Γ. The default value for H2 is an empty matrix.

7.2.5 Checking a candidate RLF

• flag=CheckRLF(Gamma,C): Checks if Ṽ = maxk c
T
k r is an RLF for a non-autocatalytic net-

work with the stoichiometry matrix Γ.

7.3 Examples

All the examples are included in the folder examples.

7.3.1 The double processive PTM cycle

This is the form of the input to LEARN for the network depicted in Fig. 9-b.

Gamma=[

-1 1 0 0 0 0 0 1;

-1 1 0 0 0 0 1 0;

1 -1 -1 0 0 0 0 0;

0 0 0 -1 1 0 1 0;

0 0 0 -1 1 0 0 1;

0 0 0 1 -1 -1 0 0;

0 0 1 0 0 0 -1 0;

0 0 0 0 0 1 0 -1];

LEARNmain(Gamma)
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Note that the stoichiometry matrix Γ can be easily written from a list of reactions. The output of
LEARN is as follows:

--------------------------------

Welcome to LEARN v1.01, Jan 2020

Developed by M. Ali Al-Radhawi malirdwi@{northeastern.edu ,mit.edu ,

gmail.com}

LEARN tries to construct a Robust Lyapunov Function for a given

reaction network.

--------------------------------

The network has 8 species and 8 reactions.

The stoichiometric space is 5-dimensional.

The network has a positive vector in the kernel of the stoichiometry

matrix , i.e. it has the potential for positive steady states.

The network is conservative.

The network has no critical siphons. It is structurally persistent.

--------------------------------

LEARN will check some necessary conditions

Necessary Condition # 1 ....

The critical siphon necessary condition is satisfied.

Necessary Condition # 2 ....

The sign pattern necessary condition is satisfied.

Necessary Condition # 3 ....

The P matrix necessary condition is satisfied.

--------------------------------

LEARN will search for a PWL RLF

Method # 1: Graphical Method ..

This is an M-network. The graphical criteria will be checked

Success !! A PWL RLF has been found.

The following is always a Lyapunov function for any monotone

kinetics: V(x)=|| C*R(x) ||_infty ,

where C is given as follows:

0 0 1 0 0 -1 0 0

0 0 1 0 0 0 -1 0

0 0 1 0 0 0 0 -1

-1 1 1 0 0 0 0 0

0 0 1 -1 1 0 0 0

0 0 0 0 0 1 -1 0

0 0 0 0 0 1 0 -1

-1 1 0 0 0 1 0 0

0 0 0 -1 1 1 0 0

0 0 0 0 0 0 1 -1

-1 1 0 0 0 0 1 0

0 0 0 -1 1 0 1 0

-1 1 0 0 0 0 0 1

0 0 0 -1 1 0 0 1
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1 -1 0 -1 1 0 0 0

The robust non -degeneracy test is passed.

Since the network is conservative and with no critical siphons then

the following holds:

There exists a unique positive globally asymptotically stable steady

state in each stoichiometric class.

--------------------------------

Method # 2: Iterative Method ..

Success !! A PWL RLF has been found.

The following is always a Lyapunov function for any monotone

kinetics: V(x)=|| C*R(x) ||_infty ,

where C is given as follows:

-1 1 0 0 0 0 0 1

-1 1 0 0 0 0 1 0

1 -1 -1 0 0 0 0 0

0 0 0 -1 1 0 1 0

0 0 0 -1 1 0 0 1

0 0 0 1 -1 -1 0 0

0 0 1 0 0 0 -1 0

0 0 0 0 0 1 0 -1

0 0 0 0 0 0 -1 1

0 0 -1 0 0 0 0 1

-1 1 0 0 0 1 0 0

0 0 0 0 0 -1 1 0

0 0 1 -1 1 0 0 0

0 0 -1 0 0 1 0 0

-1 1 0 1 -1 0 0 0

The robust non -degeneracy test is passed.

Since the network is conservative and with no critical siphons then

the following holds:

There exists a unique positive globally asymptotically stable steady

state in each stoichiometric class.

--------------------------------

Method # 3: Linear Programming Method ..

The partition matrix H is set to the default choice H=the

stoichiometry matrix ..

This method for constructing a PWL RLF has failed.

THE END.

7.3.2 The double distributive PTM cycle

This is the output of LEARNmain for the network depicted in Fig. 9-d.

--------------------------------

Welcome to LEARN v1.01, Jan 2020
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?Developed by M. Ali Al-Radhawi malirdwi@{northeastern.edu ,mit.edu ,

gmail.com}

LEARN tries to construct a Robust Lyapunov Function for a given

reaction network.

--------------------------------

The network has 9 species and 12 reactions.

The stoichiometric space is 6-dimensional.

The network has a positive vector in the kernel of the stoichiometry

matrix , i.e. it has the potential for positive steady states.

The network is conservative.

The network has no critical siphons. It is structurally persistent.

--------------------------------

LEARN will check some necessary conditions

Necessary Condition # 1 ....

The critical siphon necessary condition is satisfied.

Necessary Condition # 2 ....

The sign pattern necessary condition is satisfied.

Necessary Condition # 3 ....

The P matrix necessary condition is violated. A PWL RLF does not

exist

--------------------------------

LEARN will search for a PWL RLF

Method # 1: Graphical Method ..

This is not an M-network. Method # 1 is not applicable.

--------------------------------

Method # 2: Iterative Method ..

This method for constructing a PWL RLF has failed.

--------------------------------

Method # 3: Linear Programming Method ..

The partition matrix H is set to the default choice H=the

stoichiometry matrix ..

This method for constructing a PWL RLF has failed.

THE END.

7.3.3 The McKeithan Network

This is the output of LEARNmain for the network depicted in Fig. 11-a with N = 2.

--------------------------------

Welcome to LEARN v1.01, Jan 2020

Developed by M. Ali Al-Radhawi malirdwi@{northeastern.edu ,mit.edu ,

gmail.com}

LEARN tries to construct a Robust Lyapunov Function for a given

reaction network.

--------------------------------
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The network has 5 species and 6 reactions.

The stoichiometric space is 3-dimensional.

The network has a positive vector in the kernel of the stoichiometry

matrix , i.e. it has the potential for positive steady states.

The network is conservative.

The network has no critical siphons. It is structurally persistent.

--------------------------------

LEARN will check some necessary conditions

Necessary Condition # 1 ....

The critical siphon necessary condition is satisfied.

Necessary Condition # 2 ....

The sign pattern necessary condition is satisfied.

Necessary Condition # 3 ....

The P matrix necessary condition is satisfied.

--------------------------------

LEARN will search for a PWL RLF

Method # 1: Graphical Method ..

This is not an M-network. Method # 1 is not applicable.

--------------------------------

Method # 2: Iterative Method ..

Success !! A PWL RLF has been found.

The following is always a Lyapunov function for any monotone

kinetics: V(x)=|| C*R(x) ||_infty ,

where C is given as follows:

-1 1 0 0 1 1

-1 1 0 0 1 1

1 -1 -1 0 0 0

0 0 1 -1 -1 0

0 0 0 1 0 -1

0 0 -1 0 1 1

-1 1 1 -1 0 1

-1 1 0 1 1 0

The robust non -degeneracy test is passed.

Since the network is conservative and with no critical siphons then

the following holds:

There exists a unique positive globally asymptotically stable steady

state in each stoichiometric class.

--------------------------------

Method # 3: Linear Programming Method ..

The partition matrix H is set to the default choice H=the

stoichiometry matrix ..

Success !! A PWL RLF has been found.

The following is always a Lyapunov function for any monotone

kinetics: V(x)=|| C*R(x) ||_infty ,

where C is given as follows:

0 0 0 1 0 -1
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0 0 1 -1 -1 0

0 0 1 -0 -1 -1

1 -1 -1 0 0 0

1 -1 -1 1 0 -1

1 -1 -0 -1 -1 0

1 -1 -0 -0 -1 -1

The robust non -degeneracy test is passed.

Since the network is conservative and with no critical siphons then

the following holds:

There exists a unique positive globally asymptotically stable steady

state in each stoichiometric class.

Please note that this function is a Sum -of -Currents RLF

which can alternatively be written

as V(x)= sum_i xi_i |dot x_i|, where xi=[xi_1 .... xi_n]=

1 1 2 2 2

THE END.

19

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 23, 2020. ; https://doi.org/10.1101/696716doi: bioRxiv preprint 

https://doi.org/10.1101/696716
http://creativecommons.org/licenses/by-nc-nd/4.0/


References

1. W. Hahn. Stability of Motion. Springer-Verlag, New York, 1967.

2. T. Yoshizawa. Stability theory by Liapunov’s Second Method. Mathematical Society of Japan,
Tokyo, 1966.

3. F. H. Clarke, Y. Ledyaev, R. Stern, and P. Wolenski. Nonsmooth Analysis and Control Theory.
Springer, New York, 1997.

4. M. Feinberg. Chemical reaction network structure and the stability of complex isothermal
reactors–I. The deficiency zero and deficiency one theorems. Chemical Engineering Science,
42(10):2229–2268, 1987.

5. M. Ali Al-Radhawi and David Angeli. New approach to the stability of chemical reaction
networks: Piecewise linear in rates lyapunov functions. IEEE Transactions on Automatic
Control, 61(1):76–89, 2016.

6. B. Bereanu. A property of convex piecewise linear functions with applications to mathematical
programming. Mathematical Methods of Operations Research, 9(2):112–119, 1965.

7. A. Polanski. On infinity norms as Lyapunov functions for linear systems. IEEE Transactions
on Automatic Control, 40(7):1270–1274, 1995.

8. A. P. Molchanov and E. S. Pyatnitskii. Lyapunov functions that specify necessary and sufficient
conditions of absolute stability of nonlinear nonstationary control systems. I,III. Automation
and Remote Control, 47:344–354, 620–630, 1986.

9. H. Kiendl, J. Adamy, and P. Stelzner. Vector norms as Lyapunov functions for linear systems.
IEEE Transactions on Automatic Control, 37(6):839–842, 1992.

10. M. Banaji, P. Donnell, and S. Baigent. P matrix properties, injectivity, and stability in chemical
reaction systems. SIAM Journal on Applied Mathematics, 67(6):1523–1547, 2007.

11. E. B Castelan and J.-C. Hennet. Eigenstructure assignment for state constrained linear con-
tinuous time systems. Automatica, 28(3):605–611, 1992.

12. F. Blanchini and G. Giordano. Polyhedral lyapunov functions structurally ensure global asymp-
totic stability of dynamical networks iff the jacobian is non-singular. Automatica, 86:183–191,
2017.

13. R. T. Rockafellar. Convex Analysis. Princeton University Press, New Jersey, 1970.

20

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 23, 2020. ; https://doi.org/10.1101/696716doi: bioRxiv preprint 

https://doi.org/10.1101/696716
http://creativecommons.org/licenses/by-nc-nd/4.0/

	PLOS_LEARN_V7
	PLOS_LEARN_SI_V2

