
1 

 

Resting-state network topology and planning ability in healthy adults 

Authors 

Chris Vriend, PhD1,2, Margot J. Wagenmakers, Msc1, Odile A. van den Heuvel, MD PhD1,2, Ysbrand D. 

van der Werf, PhD1 

Affiliations 

1 Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy & Neurosciences, 
Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, Netherlands; 

2 Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Amsterdam 
Neuroscience, De Boelelaan 1117, Amsterdam, Netherlands.  

# Corresponding author: 

C. Vriend, PhD, Amsterdam UMC | location VUmc, Department of Anatomy and Neuroscience, p/a 
sec. ANW O|2, PO Box 7007, 1007MB BT, Amsterdam, the Netherlands. E-mail: 
c.vriend@amsterdamumc.nl, telephone: +31 20 4449635, fax: +31 20 4448054 

 

 

Running title: Resting-state network topology and planning  

Word count 

Character count title: 69 

Word count manuscript, excluding references and tables/figures: 3676 

Word count abstract:  250 

# References = 67; # Tables = 2; # Figures = 4 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 11, 2019. ; https://doi.org/10.1101/696856doi: bioRxiv preprint 

mailto:c.vriend@amsterdamumc.nl
https://doi.org/10.1101/696856
http://creativecommons.org/licenses/by-nc-nd/4.0/


 Vriend et al. | 2 
 

Abstract 

Functional magnetic resonance imaging (fMRI) studies have been used extensively to investigate the 

brain areas that are recruited during the Tower of London (ToL) task. Nevertheless, little research has 

been devoted to study the neural correlates of the ToL task using a network approach. Here we 

investigated the association between functional connectivity and network topology during resting-

state fMRI and ToL task performance, that was performed outside the scanner. Sixty-two (62) healthy 

subjects (21-74 years) underwent eyes-closed rsfMRI and performed the task on a laptop. We studied 

global (whole-brain) and within subnetwork resting-state topology as well as functional connectivity 

between subnetworks, with a focus on the default-mode, fronto-parietal and dorsal and ventral 

attention networks. Efficiency and clustering coefficient were calculated to measure network 

integration and segregation, respectively, at both the global and subnetwork level. Our main finding 

was that higher global efficiency was associated with slower performance (β = .22, Pbca = .04) and this 

association seemed mainly driven by inter-individual differences in default-mode network 

connectivity. The reported results were independent from age, sex, education-level and motion. 

Although this finding is contrary to earlier findings on general cognition, we tentatively hypothesize 

that the reported association may indicate that individuals with a more integrated brain during the 

resting-state are less able to further increase network efficiency when transitioning from a rest to task 

state, leading to slower responses. This study also adds to a growing body of literature supporting a 

central role for the default-mode network in individual differences in cognitive performance.  

 

Keywords: functional connectivity, resting-state, network analysis, planning, cognition, default-mode 

network.  
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Introduction 

Executive functions are a set of mental processes that enable us to plan, focus attention, remember 

instructions and handle several tasks at once (Diamond, 2013). Functional magnetic resonance 

imaging (fMRI) studies have shown that these functions are associated with functional connectivity 

(FC) of certain resting-state networks (RSN) (Funahashi & Andreau, 2013; Nowrangi, Lyketsos, Rao, & 

Munro, 2014; Rabinovici, Stephens, & Possin, 2015). Various RSN have been shown to be involved in 

executive functions, including the default mode network (DMN) which is active during rest and 

deactivates during task performance (Anticevic et al., 2012; Buckner, Andrews-Hanna, & Schacter, 

2008; Mak et al., 2017). Other relevant RSN for cognition are the frontoparietal network (FPN) (M. W. 

Cole, Repovs, & Anticevic, 2014; M. W. Cole, Yarkoni, Repovs, Anticevic, & Braver, 2012) and the 

dorsal and ventral attention networks (DAN and VAN, respectively) (Fortenbaugh, Rothlein, 

McGlinchey, DeGutis, & Esterman, 2018). Although the utility of RSN in cognitive neuroscience and 

understanding of the neural correlates of cognition has been debated (Campbell & Schacter, 2017; 

Davis, Stanley, Moscovitch, & Cabeza, 2017; Iordan & Reuter-Lorenz, 2017), resting-state FC patterns 

show good correspondence with task-based FC patterns (Krienen, Yeo, & Buckner, 2014), are 

fundamentally stable (Gratton et al., 2018) and may act as an intrinsic network architecture that 

shapes FC when evoked by a cognitive task (M. W. Cole, Bassett, Power, Braver, & Petersen, 2014; Ito 

et al., 2017).  

The architecture or topology of the brain can be studied using graph analysis, where the brain is 

simplified to a graph of nodes (i.e., different brain regions) and edges (i.e., connections between brain 

regions) (Bullmore & Sporns, 2009; Wang, Zuo, & He, 2010). Different properties of the brain network 

can be calculated using this graph. For example, efficiency and clustering describe the ability of a 

network to integrate and segregate information, respectively (Cohen & D'Esposito, 2016; Lord, 

Stevner, Deco, & Kringelbach, 2017). The brain balances its ability to integrate and easily transmit 

information throughout the network, and to segregate information processing in clusters of highly 

interconnected (specialized) neighboring nodes (Bullmore & Sporns, 2009). This ability of the brain for 
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integration and segregation is vital for cognitive processes (Cohen & D'Esposito, 2016) and higher 

intelligence has been associated with a more efficient network topology (Langer et al., 2012; M. P. van 

den Heuvel, Stam, Kahn, & Hulshoff Pol, 2009). Conversely, dementia and cognitive impairments in 

the light of brain disorders generally show dysfunction in the brain’s ability to functionally integrate 

and segregate information (Dai et al., 2019; Lopes et al., 2017; Rocca et al., 2016). Nevertheless, 

studies on the associations between network topology and inter-individual differences in cognitive 

functions in healthy subjects are relatively scarce, e.g. (Cohen & D'Esposito, 2016; Sheffield et al., 

2017), and to the best of our knowledge, no study has yet focused on the association between 

network topology and planning capacity. Planning is the ability to think ahead in order to achieve a 

goal via a series of intermediate steps (Owen, 1997) and is a vital function in daily life that we here 

operationalize in the form of the Tower of London (ToL) task. In this study, we investigated the 

association between RSN topology and planning performance, using a graph-based approach. Based 

on prior research (Langer et al., 2012; Sheffield et al., 2017; M. P. van den Heuvel et al., 2009), we 

hypothesized a positive relationship between network topology measured during resting-state and 

cognitive planning ability, measured using the ToL task performed outside of the scanner. 
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Methods  

Subjects and measurements  

Data of healthy adult controls from two previous case-control studies (de Wit et al., 2012; Gerrits et 

al., 2015) were pooled for the current study. Exclusion criteria for all healthy subjects were the use of 

psychoactive medication, current or past psychiatric diagnosis, a history of a major physical or 

neurological illness, MRI contraindications or a history of alcohol abuse. Further exclusion criteria for 

the current study were: no available data on the ToL task, extreme behavioral scores (≥ 2 SD from the 

mean), a time-interval of more than 21 days between resting-state fMRI (rs-fMRI) and performing the 

ToL task, or pathological incidental findings on the structural MRI scan. Written informed consent was 

provided by all participants according to the Declaration of Helsinki and the studies were approved by 

the Medical Ethical Committee of the VU University Medical Centre (Amsterdam, The Netherlands).  

The participants performed a computerized version of the ToL task as a measure of planning (Phillips, 

Wynn, McPherson, & Gilhooly, 2001; Shallice, 1982). Details of the ToL task are provided in the study 

by (O. A. van den Heuvel et al., 2003) . In short, the participants saw two configurations (“begin” and 

“goal” position) of three colored beads on vertical posts of different heights. The purpose of the task 

is to determine the minimum number of moves (1, 2, 3, 4, or 5) needed to match the configuration of 

the goal position. Participants responded via the matching keyboard-button. The first post can hold all 

three beads, the second two, and the third post one. Only one bead can be moved at a time and only 

if there is no other bead on top of it. Prior to the experiment, participants were provided verbal and 

written explanation and performed a practice run. Performance on the ToL task was indicated by the 

mean accuracy and mean reaction time across all five difficulty levels (Kaller et al., 2016). Intelligence 

scores were approximated by the Dutch Adult Reading test (NLV; (Schmand, Bakker, Saan, & Louman, 

1991). We scored education level according to the Dutch Verhage scale (Verhage, 1964) that ranges 

from 1 - primary school not finished, to 7 – university or higher. Handedness was assessed using the 

Edinburgh Handedness Inventory (Oldfield, 1971).  
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MR Image acquisition  

MR images were acquired at Amsterdam UMC, location VUmc (Amsterdam, The Netherlands) on a GE 

Signa HDxt 3 Tesla MRI scanner (General Electric, Milwaukee, WI) with an eight channel head coil. The 

participant’s head was immobilized using foam pads to reduce motion artifacts. Participants were told 

to lie still, keep their eyes closed and not fall asleep during the acquisition of the rs-fMRI scan 

(duration: 5.9 min). T2*-weighted echo-planar (EPI) images were acquired with TR = 1.8 sec, TE = 30 

ms, 64x64 matrix, field of view = 24 cm and flip angle = 80° and 40 ascending slices per volume (3.75 x 

3.75 mm in plane resolution; slice thickness = 2.8 mm; interslice gap = 0.2 mm). Structural scanning 

encompassed a sagittal three-dimensional gradient-echo T1-weighted sequence (256 x 256 matrix; 

voxel size = 1 x 0.977 x 0.977 mm; 172 slices).  

 

Image (pre)processing 

RS-fMRI and T1-weighted images were preprocessed with FMRIB’s Software Library version 5.0.10  

(FSL; (Smith et al., 2004)). The first four volumes were discarded to reach steady-state magnetization. 

Non-brain tissue was removed using BET and the structural image was segmented into gray (GM), 

white matter (WM) and cerebrospinal fluid (CSF) using FAST. Functional images were re-aligned using 

McFLIRT and the resulting six rigid-body parameters were used to calculate the motion parameters. 

Functional images were spatially smoothed with a 5 mm full width at half maximum (FWHM) kernel. 

Subjects with significant motion during scanning, defined as a mean relative root mean squared 

displacement (RMS) > 0.2 mm, or > 20 volumes with frame-wise relative RMS displacement > 0.25 

mm, were excluded (Ciric et al., 2017). Because rs-fMRI is exceptionally sensitive to motion artefacts 

(Power, Schlaggar, & Petersen, 2015), we additionally performed ICA-AROMA (Pruim et al. 2015). ICA-

AROMA is a single-subject denoising strategy based on independent component analysis (ICA) that 

automatically identifies motion-related components in the functional data based on their high-

frequency content, correlation with the motion parameters and edge and CSF fraction and removes 
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their variance from the data (Pruim et al., 2015). ICA-AROMA has been shown to provide a good 

trade-off between reducing noise and preserving BOLD signal (Ciric et al., 2017; Parkes, Fulcher, Yucel, 

& Fornito, 2018; Pruim et al., 2015). After ICA-AROMA, additional nuisance regression was performed 

by removing signal from the WM and CSF and functional images were high-pass filtered (100 seconds 

cut-off). 

The functional scan was non-linearly registered to the anatomical T1-scans. The anatomical image was 

parcellated into 225 nodes; 210 cortical nodes were defined based on the Brainnetome Atlas (Fan et 

al., 2016), 14 subcortical nodes were individually segmented using FSL FIRST (Patenaude, Smith, 

Kennedy, & Jenkinson, 2011) and one cerebellar node was defined based on the FSL’s cerebellar atlas 

(Diedrichsen, Balsters, Flavell, Cussans, & Ramnani, 2009). EPI distortions during fMRI can lead to 

signal drop-out. To account for signal dropout near air/tissue boundaries during scanning, we applied 

a mask to the functional scan to exclude voxels with signal intensities in the lowest quartile of the 

robust range (Meijer et al., 2017). Nodes were discarded if they comprised less than four signal-

containing voxels. This rendered a total of 194 common brain regions across all subjects. Time-series 

were extracted from each node. The cortical nodes were subdivided into four RSN: the DMN, FPN, 

DAN and VAN based on the functional subdivision by Yeo et al. (2011).  

 

Functional connectivity matrices 

To measure FC and construct connectivity matrices we applied wavelet coherence on the time-series 

of each possible pair of the 194 brain regions within the frequency range 0.06 and 0.12 Hz (Chang & 

Glover, 2010). Wavelet coherence has several advantages over Pearson’s correlations, including 

denoising properties and robustness to outliers (Achard, Salvador, Whitcher, Suckling, & Bullmore, 

2006; Fadili & Bullmore, 2004; Gu et al., 2017). The 0.06-0.12Hz frequency range was chosen because 

it has been suggested to be a reliable and robust range that is associated with cognitive performance 

(Bassett et al., 2013; Zhang, Telesford, Giusti, Lim, & Bassett, 2016). We applied wavelet coherence to 
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the entire rs-fMRI scan to calculate the network measures (see below). An overview of the 

(pre)processing pipeline is provided in Figure 1. 

 

Network measures  

At the global level we calculated global efficiency and global clustering coefficient (Gcc). Global 

efficiency is the inverse of the average path length (i.e. the maximum connectivity between each pair 

of nodes), with high efficiency meaning that information can rapidly travel through the whole network 

(Latora & Marchiori, 2001). Gcc is equivalent to the proportion of the actual number of edges 

between the nearest neighbors of a node to all possible edges and signifies the tendency of the whole 

network to segregate into locally interconnected triplets that function as a specialized subunit 

(Rubinov & Sporns, 2010). At the subnetwork level, we calculated efficiency and clustering coefficient 

for each of the four RSNs (DMN, FPN, DAN and VAN). In addition, we determined the mean FC 

between each of the four RSNs (resulting in six between-network mean FC values). 

 

Data analysis 

Statistical analyses were performed using SPSS version 25 (IBM Corp, Armonk, NY, USA). We describe 

demographical characteristics and performance on the ToL task using means and standard deviations, 

unless indicated otherwise. Pearson’s (r) or Spearman’s rho (rs) correlations were performed between 

demographic and performance measures, depending on the distribution. We performed bootstrapped 

hierarchal multiple regression analysis to investigate the association between network measures 

(predictors) and accuracy and reaction time on the ToL task (outcome measures). Because age was 

correlated with performance, age was entered in the first block of all models. The network measure of 

interest and mean RMS displacement, as a measure for motion, were entered in the second and third 

block, respectively. As a sensitivity analysis, we entered sex or education level to the fourth block of 
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the model. The regression models were bootstrapped using 2000 iterations and bias corrected and we 

report accelerated (BCa) confidence intervals and P-values (Pbca) for a more robust estimate of the 

association that is less reliant on the distribution of the variable. All assumptions of multiple 

regression analyses, including homoscedasticity of residuals, were assessed and met. We performed 

separate analyses for the network measures on the global level and on the subnetwork level. On the 

subnetwork level, type I errors due to multiple comparisons were minimized using the False Discovery 

Rate (FDR, q<.05 (Benjamini & Hochberg, 1995)). Statistical significance was set to p < 0.05 for all 

analyses.  

 

Results 

Sample characteristics and behavioral results  

Of the 69 participants with an available ToL task and rs-fMRI data, seven had to be excluded (see 

figure 2), which resulted in a total sample size of 62 participants, aged between 21 and 74 years old 

(Mage = 48.1 ± 13.9, 33 males). The time between performing the ToL task and the rs-fMRI was on 

average 6.2 ± 4.6 [range: 0-21] days. See Table 1 for the sample characteristics. Age showed a positive 

correlation with reaction time (r = .498, p < .001) but only a trend-level negative correlation with 

accuracy (r = -.243, p = .057) indicating that older participants tended to respond slower and slightly 

less accurately. The average motion during rs-fMRI (expressed as mean relative RMS framewise 

displacement) was 0.068 ± 0.029 [range: 0.027-0.17] and was positively correlated with age (rs = .34, p 

= .007) but not performance on the ToL (reaction time: rs = .06, p = .66; accuracy: rs = -.18, p = .12). 

 

Global topology  

Global efficiency (β = .22, Pbca = .04) but not Gcc (β = -.09, Pbca = .57) was positively associated with 

reaction time above and beyond the effects of age (see Table 2). There were no significant 
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associations with accuracy. Adding sex or education level as a nuisance covariate to the model had no 

effect on these results.  

Subnetwork topology 

Both efficiency and clustering of the DMN (efficiency: β = .25, Pbca = .018; clustering: β = .23, Pbca = 

.039) but not the other subnetworks (see supplemental Table 1) were positively related to reaction 

time. These associations did not, however, survive the multiple comparison correction (DMN 

efficiency Pfdr = 0.072; DMN clustering: Pfdr = 0.077). Adding sex or education level as additional 

nuisance covariate to the model had no effect on the results. Consistent with the results on the global 

level, there were no significant associations with accuracy of task performance (Supplemental Table 

2).  

Between-subnetwork connectivity 

FC between the DMN and FPN (β = .23, Pbca = .04), the DAN (β = .21 Pbca = .04) and the VAN (β = .20, 

Pbca = .04) were all positively associated with reaction time. These associations did not survive the FDR 

correction for multiple comparisons (all Pfdr = .09; supplemental Table 3 and 4).   

 

Post-hoc analyses 

Because of possible floor/ceiling effects during the less demanding 1, 2 and 3 step trials of the ToL 

task, we re-ran the regression models using only the mean accuracy rates and reaction times during 

ToL steps 4 and 5. These post-hoc analyses showed that at the global level reaction time – but not 

accuracy – was still associated with global efficiency (β = .27, Pbca = .04), not Gcc (β = -.09, Pbca = .59). 

At the subnetwork level, efficiency of the DMN (β = .41, Pfdr = .001) and FPN (β = .32, Pfdr = .045), 

clustering of the DMN (β = .33, Pfdr = .05) and FC between the DMN and FPN (β = .38, Pfdr = .02) were 

all positively associated with reaction time, after FDR correction for multiple comparisons.  
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Discussion 

In this study in 62 healthy adults with a wide age range we investigated the association between 

network topology during a rs-fMRI session and cognitive planning ability during a ToL task that was 

performed outside the scanner. We observed that global (whole-brain) efficiency was associated with 

reduced planning speed and that this effect was mainly driven by the FC of the DMN. The results were 

independent from inter-individual differences in age, gender, education level and motion during rs-

fMRI. Post-hoc analyses showed that our results were strongest when focusing on the higher task load 

trials of the ToL task (four and five step trials).  

Global efficiency provides a measure of how well-integrated a network is and how easily information 

can travel from one node to another on the other side of the network, while the clustering coefficient 

is a measure of how well-connected nodes are locally into segregated triangles of neighboring nodes. 

Both measures are often used to describe the characteristics of a network and abnormalities in these 

network measures are commonly observed in the structural and functional networks of patients with 

a brain disorder (Bullmore & Sporns, 2012; Griffa, Baumann, Thiran, & Hagmann, 2013; Lord et al., 

2017; Worbe, 2015). Here we observed that subjects with a higher global efficiency show slower 

planning performance on the ToL task. This finding is at odds with our hypothesis and previous studies 

that observed that higher global efficiency is associated with higher global intelligence (Sheffield et al., 

2017; M. P. van den Heuvel et al., 2009) and performance on working memory tasks (Cohen & 

D'Esposito, 2016; Sheffield et al., 2015). One other study has also previously found that a higher global 

efficiency was associated with worse performance on a working memory task, but only in older adults 

and only when focusing on task-based FC (Stanley et al., 2015). This is the first study, however, to 

investigate planning ability. One possible, albeit less plausible, explanation might therefore be that 

planning requires a different whole-brain network organization than working memory tasks or general 

intelligence. Alternatively, the higher global efficiency in individuals with slower performance on the 

ToL task may also point towards a more random network (Ajilore, Lamar, & Kumar, 2014). As there 
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was no association between ToL task speed and lower global clustering (a characteristic feature of 

random networks), this explanation is also less viable.  

Studies have shown that, although the resting-state provides a core and intrinsic network architecture 

that highly overlaps with the network topology of task-states (D. M. Cole, Smith, & Beckmann, 2010; 

Krienen et al., 2014), significant reorganization does take place during the execution of tasks, and the 

magnitude and spatial redistribution depends on the task and its load (Cohen & D'Esposito, 2016; 

Davison et al., 2015). Furthermore, the ease with which a network can reconfigure from rest to task-

states correlates with task performance and general cognition (Bassett et al., 2011; Braun et al., 2015; 

Hearne, Cocchi, Zalesky, & Mattingley, 2017; Telesford et al., 2016). Transitions of rest to (demanding) 

task-states have generally been associated with an increase in global efficiency, signifying a better 

integrated network (Cohen & D'Esposito, 2016; Hearne et al., 2017; Shine et al., 2016; see Shine & 

Poldrack, 2018 for a review). This increase in network integration is, however, not unconstrained, as a 

fully integrated functional network would lead to epileptic seizures and violates the principles of cost-

efficiency (Bullmore & Sporns, 2012; Shine & Poldrack, 2018). Assuming that in our subjects network 

integration would similarly increase from the resting-state to task-state, i.e. execution of the ToL task, 

it is conceivable that global efficiency could not increase sufficiently in those subjects with an already 

highly integrated network during the resting-state to meet task demands, leading to a slower 

behavioral response. This concept is schematically depicted in Figure 4. Although this hypothesis 

receives indirect support from multiple previous studies on dynamic network reconfigurations (Shine 

& Poldrack, 2018), we unfortunately did not acquire fMRI scans during execution of the ToL task and 

therefore this explanation currently remains speculative. Because the slower responses were not 

associated with lower accuracy (rs = -.19 , P = .13) and we did not observe an association between 

network topology and accuracy, our results may not be specific for planning performance but may 

also be related to an overall slower information processing speed. Why we did not find an association 

with task accuracy is currently unclear.  
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At the subnetwork level, we showed that our global results were mainly driven by inter-individual 

differences in FC of the DMN; both the topology of the DMN and FC between the DMN and the other 

RSNs (mainly the FPN) were associated with slower task performance. Because closer inspection 

showed that efficiency and clustering of the DMN were highly correlated (r = 0.84), the observed 

positive associations should instead be interpreted as an association between slower performance 

and increased within DMN FC. Indeed, when looking at total FC within the DMN, we observed a 

positive association (β = .25, Pbca = .02) with ToL reaction time.  It is generally accepted that activity 

within the DMN is high when a subject is not engaged in any specific task and its activity is suppressed 

when external stimuli demand cognitive engagement (Anticevic et al., 2012). Heightened DMN activity 

and higher FC between the DMN and other RSNs are also commonly associated with reduced 

cognitive performance in brain disorder-related deficits (Anticevic et al., 2012; Esposito et al., 2018; 

Putcha, Ross, Cronin-Golomb, Janes, & Stern, 2016). Our associations between slower ToL 

performance and increased within DMN FC and increased connectivity between the DMN and the 

other RSNs is therefore in line with these findings and adds to the growing body of literature that 

shows that inter-individual differences in FC of the DMN is associated with cognitive performance, 

even in normally functioning healthy subjects. It must be noted that these associations did not survive 

the multiple comparison correction, although the reported associations between performance speed 

at higher task load and within DMN FC and FC between DMN and FPN in our post-hoc analysis did 

pass the FDR correction. 

A limitation of this study is that we exclusively looked at resting-state FC to predict performance on 

the ToL and not –at task-based FC, i.e. during execution of the ToL itself. This would have allowed us 

to look directly at the network characteristics associated with performance and to test our hypothesis 

of reduced ability to network integration when transitioning from rest to task.  A strength of this study 

is that we retrospectively recruited a relatively large number of healthy subjects and used stringent 

control for (micro)motion by excluding subjects with >0.2 mm mean RMS displacement, denoising rs-
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fMRI for motion-related artifacts with ICA-AROMA, employing wavelet coherence to construct the 

connectivity matrices and adding RMS displacement to the regression model. 

In conclusion, we showed that higher global efficiency during rest and higher FC of the DMN with 

other RSNs and within itself is associated with slower planning performance. We tentatively postulate 

that due to ceiling effects individuals with a higher integrative network state during rest are less able 

to reconfigure to a more integrated state during task execution, leading to slower exchange across the 

brain network and slower behavioral responses. 
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Figure legends 

Figure 1. Outline of the processing pipeline. (A) Resting-state fMRI data were collected and (B) pre-

processed. The brain was (C) parcellated into separate brain regions (nodes). There were 194 nodes 

common to all subjects with enough signal to (D) construct connectivity matrices (see text) using 

wavelet coherence. (E) network measures were calculated from each connectivity matrix on the 

global and subnetwork level. (F) multiple regression analyses were applied to relate performance on 

the Tower of London (ToL) task to network measures.  

 

Figure 2. Flowchart of participant exclusion.  

 

Figure 3. Partial correlation plot of association between reaction time on the Tower of London task 

and Global (whole-brain) efficiency. Abbreviations: ToL = Tower of London. RMS disp. = mean root-

mean-squared framewise displacement. 

 

Figure 4. Schematic representation of rest-to-task reconfiguration hypothesis. The figure shows three 

fictional subjects that transition from a resting-state to task state and show a concomitant increase in 

(global) efficiency. The top two subjects, already have such a high efficiency during resting-state that 

when the brain network needs to reconfigure to a more integrated state to meet task demands, 

efficiency cannot surpass the ceiling (horizontal dotted lines) and leads to slower responses. 
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TABLES 

Table 1 – Sample characteristics 

N subjects (% female) 62 (46.8) 

Age (years) 48.1 ± 13.9 

Education level (in %)#  

3 1.6 

4 48 

5 29.0 

6 43.5 

7 17.7 

Handedness (R/L)* 54/7 

ToL accuracy (%) 87.7 ± 7.5 

ToL reaction time (s) 10.1 ± 2.1 

Mean relative RMS 0.07 ± 0.03 

# missing for two subjects, * missing for one subject 

Table 2 – associations between TOL performance and global network measures 

TOL Model B (SE) 95% CI (BCa) Beta  PbCa 

 

R2 

RT Age 0.09 (0.015) 0.06, 0.12 .595 <.001  

 GE 9.79 (4.72) 0.84, 19.8 .219 .039 .293 

 Motion -16.46 (6.53) -30.6, -5.7 -.230 .008  

       

 Age 0.08 (0.017) 0.04, 0.11 .531 <.001  

 Gcc -32.88 (53.72) -133.9, 68.8 -.089 .567 .252 

 Motion -12.03 (7.69) -26.6, 2.3 -.168 .113  

       

ACC Age -0.131 (.073) -0.28, -0.009 -.241 .079  

 GE -31.1 (21.57) -76.3, 9.6 -.194 .156 .06 

 Motion -21.62 (29.23) -69.0, 43.1 -.084 .450  

       

 Age -0.09 (.075) -0.24, 0.05 -.164 .249  

 Gcc 206.28 (155.46) -79.3, 515.3 .154 .187 .05 

 Motion -41.39 (27.02) -89.5, 13.3 -.161 .117  

For each analysis, age was entered in model 1, the network measure in model 2 and motion parameters in model 3. Only the 
results of model 3 are shown here. P-values are bootstrapped using 2000 permutations. Abbreviations: TOL = Tower of London 
task, RT = reaction time, ACC = accuracy, SE = Standard Error, CI = confidence interval, BCa= Bias corrected and accelerated, 
GE = Global Efficiency, Gcc = Global Clustering Coefficient. Motion was defined as the mean root-mean-squared framewise 
displacement during the entire resting-state MRI scan. 
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