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Abstract13

Rhythmic activity in the brain fluctuates with behaviour and cognitive state, through a14

combination of coexisting and interacting frequencies. At large spatial scales such as those15

studied in human M/EEG, measured oscillatory dynamics are believed to arise primarily16

from a combination of cortical (intracolumnar) and corticothalamic rhythmogenic mecha-17

nisms. Whilst considerable progress has been made in characterizing these two types of18

neural circuit separately, relatively little work has been done that attempts to unify them19

into a single consistent picture. This is the aim of the present paper. We present and examine20

a whole-brain, connectome-based neural mass model with detailed long-range cortico-cortical21

connectivity and strong, recurrent corticothalamic circuitry. This system reproduces a vari-22

ety of known features of human M/EEG recordings, including a 1/f spectral profile, spectral23

peaks at canonical frequencies, and functional connectivity structure that is shaped by the24

underlying anatomical connectivity. Importantly, our model is able to capture state- (e.g.25

idling/active) dependent fluctuations in oscillatory activity and the coexistence of multiple26

oscillatory phenomena, as well as frequency-specific modulation of functional connectivity.27

We find that increasing the level of sensory or neuromodulatory drive to the thalamus triggers28

a suppression of the dominant low frequency rhythms generated by corticothalamic loops,29

and subsequent disinhibition of higher frequency endogenous rhythmic behaviour of intra-30

columnar microcircuits. These combine to yield simultaneous decreases in lower frequency31

and increases in higher frequency components of the M/EEG power spectrum during states32

of high sensory or cognitive drive. Building on this, we also explored the effect of pulsatile33

brain stimulation on ongoing oscillatory activity, and evaluated the impact of coexistent fre-34

quencies and state-dependent fluctuations on the response of cortical networks. Our results35

provide new insight into the role played by cortical and corticothalamic circuits in shaping36

intrinsic brain rhythms, and suggest new directions for brain stimulation therapies aimed at37
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state-and frequency-specific control of oscillatory brain activity.38

Author Summary39

One of the most distinctive features of brain activity is that it is highly rhythmic. Devel-40

oping a better understanding of how these rhythms are generated, and how they can be41

controlled in clinical applications, is a central goal of modern neuroscience. Here we have42

developed a computational model that succinctly captures several key aspects of the rhyth-43

mic brain activity most easily measurable in human subjects. In particular, it provides both44

a conceptual and a concrete mathematical framework for understanding the well-established45

experimental observation of antagonism between high- and low-frequency oscillations in hu-46

man brain recordings. This dynamic has important implications for how we understand the47

modulation of rhythmic activity in diverse cognitive states relating to arousal, attention, and48

cognitive processing. As we demonstrate, our model also provides a tool for investigating49

and improving the use of rhythmic brain stimulation in clinical applications.50

Introduction51

A key characteristic of the fluctuations in extracranial electrical and magnetic fields measured52

by electroencephalography (EEG) and magnetoencephalography (MEG), resulting from the53

collective activity of large numbers of (primarily) cortical neurons, is that they are highly54

rhythmic. While the physiological origins and cognitive function of these rhythms remains55

unclear, their features are clearly highly labile: spatial location, frequency, and oscillatory56

power can vary considerably as a function of behavior, cognitive processes, and disease.57

This suggests that not only the oscillations themselves, but also their fluctuations over time,58

space, and cognitive state play a key role in brain function. Moreover, multiple frequencies59
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can coexist and interact, fluctuating in a highly correlated manner[1, 2]. Understanding the60

mechanisms mediating the coexistence of these rhythms, as well as state-dependent changes61

in their properties, would yield important insight about how collective neural activity and62

synchronization phenomena, shaped by both sensory and recurrent inputs, mediate neural63

communication[3]. ‘State’ here simply refers loosely to gross cognitive/perceptual/neural64

activity regimes, as for example seen in the difference between low-frequency, high-amplitude65

oscillations observed at rest, and the relatively higher-frequency activity elicited by focused66

cognitive tasks. In the present paper we opt for the more neutral terms ‘idling’ and ‘active’67

(as opposed to ‘rest’ and ‘task’) to indicate these two dynamical regimes. To date only68

a few models in the literature have sought to explicitly capture transitions between these69

oscillatory states, and the dependence of certain neural processes on the current state (e.g.70

[4, 2] ).71

The majority of neural population models that have been developed to account for the72

origins of large-scale brain rhythms can be grouped into two broad categories: i) cortical-73

only and ii) corticothalamic. Cortical-only models typically propose that the oscillatory74

activity visible in MEG/EEG has its mechanistic origin in interactions between excitatory75

and inhibitory neurons within a cortical column (e.g. [61, 71, 58]). Corticothalamic models76

(e.g. [39, 69, 55, 56]) are generally highly similar in overall structure, but differ critically77

in placing the key excitatory-inhibitory interaction in the thalamus rather than the cortex.78

These models thus attribute prominent spectral features such as low-frequency oscillations79

to delayed inhibition in long-range recurrent corticothalamic loops. Given the substantial80

bodies of empirical data from human and nonhuman physiological recordings supporting81

each of these two mechanisms, it is highly likely that both play a role in the genesis of large-82

scale rhythmic activity observed in local field potentials and extracranial electromagnetic83

fields. Disambiguating the contribution of each to the different features of M/EEG signals,84

and how they might interact, is a challenging problem, however. Addressing this disconnect85
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is one of the principal aims of the present study.86

One of the major points of dispute between cortical-only and corticothalamic model87

types is the alpha rhythm. Alpha frequency (8-12Hz) oscillations are a hallmark pattern of88

encephalographic activity[5]. They have been linked to a wide variety of cognitive processes89

such as perception and attention, and their dynamic features (such as power and frequency)90

are also closely tied to changes in behaviour[6, 7]. Abnormal alpha activity is also involved91

in many neurological disorders such as depression, Parkinson’s disease, and Alzheimer’s92

disease[8, 9, 10]. A broad range of experimental data point to the corticothalamic system as93

the most likely locus of the dominant alpha-frequency rhythmic activity seen in EEG and94

MEG[11], as well as the phase relationship between alpha and other faster frequencies. In95

contrast, gamma frequency oscillations have been robustly tied to intracolumnar excitatory-96

inhibitory circuit mechanisms and active cortical information processing[12, 13]. It remains97

an open question, however, how these two types of oscillatory activity (plus associated circuit98

mechanisms) shape large-scale neural dynamics, functional connectivity, and information99

integration in a state-dependent fashion.100

A key experimental direction for investigating the dynamic properties and functional role101

of neural oscillations is to study the relationship between endogenous activity and responses102

to electromagnetic stimulation. This is not only critical for understanding the functional103

role of brain oscillations in general, but also for improving the efficacy of clinical applica-104

tions of noninvasive brain stimulation, such as in the treatment of depression[14]. Inter-105

estingly, a confluence of experiments with both intra-cranial and non-invasive stimulation106

have revealed frequency-specific responses, with low-frequency stimulation decreasing the107

excitability of stimulated tissue[15], and conversely higher frequency stimulation having the108

opposite effect[16]. Experiments in primates[17] and rodents[18] have indeed demonstrated109

that thalamic stimulation can be used to either activate or inactivate cortical networks in110

a frequency-dependent manner, opening new perspectives on the functional manipulation of111
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cortical dynamics by exogenous signals.112

To better understand state-dependent changes in oscillatory dynamics, their involvement113

in inter-area communication, and how they might be controlled by non-invasive stimula-114

tion, we present in this paper a novel connectome-based neural mass model that combines115

cortical and corticothalamic circuit mechanisms in a minimal and parsimonious fashion.116

In the following sections, we first demonstrate that this model accurately reproduces sev-117

eral key characteristics of measured power spectra and functional connectivity from resting118

state MEG recordings. We then use the model to study the impact of sensory / neuro-119

modulatory drive on brain rhythms, and how this serves to switch between low-frequency120

corticothalamically-driven vs. high-frequency cortically-driven oscillatory regimes. Finally,121

we show how the model predicts a number of empirical observations in humans and rodents122

on the relationship between brain state, periodic brain stimulation, rhythmic entrainment of123

neural activity.124

Results125

As detailed in the Methods, our full model consists of a network of 68 interconnected nodes,126

representing brain regions derived from a commonly used parcellation covering most major127

cortical structures in the human brain. The dynamics of each node is described by a novel128

extension of the classic Wilson-Cowan (WC) equations[86], which we refer to as the ‘Cortico-129

Thalamic Wilson-Cowan’ (CTWC) model. Our primary goal was to investigate how state-130

dependent inputs mediate changes in brain oscillations within multiple frequency bands, and131

how these spectral fluctuations shape functional connectivity. To do this, we first considered132

the behaviour of a single isolated network node corresponding to a individual corticothalamic133

motif. We then moved on to examining collective dynamics and interactions within the134

whole-brain network.135
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Alpha rhythms emerge from delayed recurrent cortico-thalamocortical136

loops137

In examining the dynamics of our corticothalamic model, we first considered the idling state,138

which we defined as being a state of minimal thalamic drive (see Methods) and thus reflecting139

dynamics in the steady state. Consistent with previous work[4], this system produces a140

robust alpha rhythm with a spectral peak at approximately 10Hz. In this idling regime,141

the higher frequency peaks in the power spectrum at beta and gamma frequencies reflect142

harmonics of the fundamental frequency (alpha), and the background trend in the power143

spectrum follows a roughly 1/f trend, in line with previous reports[39]. As shown in Figure144

1, this model gives a good fit to empirically measured, regionally-averaged MEG power145

spectra, with all subjects tested showing R2>=0.6 or higher, and only minor variations in146

fitted parameter values. Interestingly, we see in empirical MEG data that there are larger147

differences in power spectra between subjects than between regions within a given subject148

(data not shown). This observation supports the modelling strategy of choosing a single set149

of parameters for each subject, and using those for all regions in the network; as opposed150

to using regionally varying parameter values. We return to the question of spatially varying151

spectral power below.152
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Figure 1: Resting state power spectrum fit to MEG data. Upper panel:: Sensor-
averaged power spectrum from eight example HCP subjects’ resting state MEG data (orange
line), and corresponding simulated power spectrum from the CTWCmodel (dotted blue line).
The simulated activity shows excellent fit to the empirical power spectrum (R2 between 0.6
and 0.8 in these examples), and accurately captures the alpha rhythm peak frequency in
each subject. Lower panel: Mean +/-1 standard deviation of the empirical and fitted power
spectra for all 10 HCP subjects.
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Phase transition from low-frequency idling to high-frequency active153

state154

Having characterized the dynamics within the idling state and the prevalence of alpha ac-155

tivity, we next asked how increasing the drive to the thalamic populations (either in one or156

multiple nodes) would impact the spectral properties of cortical activity. To emulate a task157

or ’active’ state, we thus increased the drive to the thalamic populations (see Methods) and158

observed the resulting behaviour.159

We first studied this systematically for a single isolated node. Figure 2 shows trajectories160

in the 3-dimensional phase space defined by the state variables ue, ui, and us (represent-161

ing activity of excitatory cortical, inhibitory cortical, and thalamic specific relay nuclei,162

respectively), along with time series and power spectra for ue, which we take as a proxy163

for M/EEG source activity[39, 58]. The top left panel of Figure 2 shows, the system in the164

idling alpha-dominated regime, which (consistent with Figure 1) is characterized by a clean165

and highly stereotyped 10Hz limit cycle. The bottom and top right panels of Figure 2 then166

show how the system’s dynamics and phase space are modified upon raising the static sen-167

sory/neuromodulatory input or drive parameter Io. We first observe (Figure 2, bottom row)168

within increasing Io a gradual destabilization of the resting alpha rhythm, and a transfer of169

oscillatory power from alpha to higher frequencies. This destabilization is characterized in170

the 3-dimensional phase space by an increase in the number and regularity of short, rapid171

excursions (‘twists’) within the alpha limit cycle, which in the time series plots appear as172

nested higher-frequency ‘ripples’ within the 10Hz base oscillation. Eventually, after a bi-173

furcation point around Io=1.3 is crossed, the system shifts completely to a noisier, low(er)174

amplitude gamma-frequency limit cycle, with a clear peak in the power spectrum observed175

at 30Hz. In line with a confluence of empirical studies[40], this high-frequency component176

of the power spectrum reflects the fast-paced interplay between excitatory and inhibitory177

9

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 9, 2019. ; https://doi.org/10.1101/697045doi: bioRxiv preprint 

https://doi.org/10.1101/697045
http://creativecommons.org/licenses/by/4.0/


neural populations, and is generated locally within the cortical compartments of each net-178

work node. Due to the nature of the corticothalamic circuit motif we considered here, this179

increased thalamic drive also represents an increased engagement of cortical excitatory and180

inhibitory populations, that are now recruited for active processing of afferent inputs.181
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Figure 2: CTWC model phase space trajectories. A) Exemplary phase space trajec-
tories for a single corticothalamic unit in the idling (left; teal) and active (right; orange)
regimes. Central 3D plot in each panel shows trajectories in the 3-dimensional phase space
defined by the cortical excitatory (e), cortical inhibitory (i), and thalamic specific relay (s)
population state variables. Orthogonal 2-dimensional views for each pair of state variables
are shown on the left hand side. Panels above the trajectory figures show corresponding
time series and power spectra for the e variable. The idling state regime (Io=0) is char-
acterized by slow, nonlinear alpha-frequency (8-12Hz) oscillations. Increasing the static
sensory/neuromodulatory thalamic drive (here by setting Io=1.5) induces a phase transition
into the active regime, where neural population activity is dominated by gamma-frequency
(approximately 30Hz) limit cycle dynamics. B) Progression from idling to active regime.
Sub panels show 3D phase plane trajectories, time series, and power spectra for incremental
values of Io between the idling and active states shown in panel A. As the system approaches
the bifurcation point (Io ≈1.4), the gamma attractor begins to manifest as a ‘twist’ in the
alpha limit cycle, which appears in the time series plot as embedded high-frequency rip-
ples on the peak/trough of the oscillation. As Io continues to be increase, eventually the
low-frequency rhythm loses stability and the dynamics switches to a pure gamma oscillation.
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Influence of regionally focal sensory / neuromodulatory drive182

We now extend the observations and insights obtained from the single-node case considered183

in the previous section to the case of whole-brain network behaviour. Figure 3 shows time184

series, power spectra, and brain-wide plots of the change (∆) in alpha and gamma power for185

simulations where Io is modulated focally for a single node (left V1) in the 68-node network.186

The suppression of alpha power and enhancement of gamma power with increasing drive is187

clearly evident in the surface plots and lower power spectrum figure in panel A.188
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Figure 3: Influence of focal sensory/neuromodulatory drive in a whole brain net-
work. A) Power spectra for baseline values of the tonic thalamic relay nucleus driving term
(Io=0), and for focal increase (Io=1.5) in left visual cortex (lV1). Red lines show power
spectra for the lV1 node; black lines for the other 67 nodes. Note the prominent increase in
relative gamma power and decrease in relative alpha power in lV1 when that node’s Io value
is increased. B) Surface renderings of the regional change (∆) in alpha and gamma power
from baseline to active state for all brain regions. Increased sensory/neuromodulatory drive
in visual cortex results in suppression of alpha and enhancement of gamma band activity,
reminiscent of the patterns routinely observed in M/EEG studies of visual-evoked gamma
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Functional Connectivity189

Given the salient differences in oscillatory dynamics observed in the idling and active states,190

we investigated how these different oscillatory regimes shaped inter-area interactions in a191

whole-brain network context. To do this, we compared functional connectivity, as measured192

by amplitude-envelope correlations (AECs) of band-limited power time series, in model-193

generated time series and empirically measured MEG data.194

Heuristically, moving from an isolated node to a network of coupled nodes results in two195

important changes in the ‘environment’ experienced by each node. First, the overall or time-196

averaged activity level of a given brain region will be higher when there are inputs from other197

regions than when there are no inputs. Second, depending on the behaviour of the incom-198

ing signals from other regions, that node may experience periodic or otherwise temporally199

structured driving inputs. This, in turn, may lead to the emergence of synchronization and200

collective behaviour throughout the system due to processes of entrainment or resonance,201

possibly also accompanied by bifurcations. As shown in Figure 4, we found idling and active202

states in the model to be characterized by quite different functional connectivity profiles.203

The idling state exhibits relatively weaker and spatially non-specific AEC patterns at both204

alpha and gamma frequencies. In contrast, as the increased static drive Io pushes the system205

into the gamma-dominated active state, both alpha- and gamma-frequency AEC matrices206

increasingly come to display the kind of spatial structure characteristic of empirically mea-207

sured AEC (as well as by various other M/EEG, fMRI functional connectivity, and indeed208

anatomical connectivity metrics). Specifically, the active state shows a stronger tendency209

for spatially nearby regions to show high correlations (as indexed in the AEC matrices by a210

the ’halo’ of high connectivity values around the leading diagonal), and the classic two-block211

hemispheric structure with stronger intra- than inter-hemispheric correlations. Interestingly,212

although the two characteristic frequency regimes within the model are in the alpha- and213

gamma- ranges, it also captures some properties of AEC outside of these ranges. Figure 5214
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shows empirical vs. simulated AEC for the full range of classic M/EEG frequencies: delta215

(0.5-4Hz), theta (4-8Hz), alpha (8-12 Hz), beta (13-30 Hz), and gamma (30-60Hz). As can216

be seen, moving from low to high frequencies within the active regime is also accompanied217

by sparser and more spatially structured correlation patterns. It is important to note here218

that although our model does well at reproducing both resting-state power spectra (Figure219

1) and MEG functional connectivity (Figures 4 and 5), the domains in which this success is220

seen does not entirely overlap. For the power spectrum alone, best fits are achieved at or221

near ’fully idling’ parameter regime with Io = 0. For AECs, however, best correspondence222

with MEG data is achieved in the active regime, with Io closer to 1.5. We return to this223

point in the Discussion.224

Our findings described thus far have shown that active and idling states are characterized225

by different spectral signatures, and that functional connectivity is differentially expressed226

in a frequency-specific way in these two states. Next, we examined the effects of periodic227

stimulation on ongoing cortical activity. That is, we asked: can the temporal structure228

neural activity be tuned by exogenous signals in a frequency-specific way?229
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Figure 4: AEC FC vs. Io. Upper panel : Gamma-frequency AEC matrices for 4 values
of Io (Io=0./0.5/1.0/1.5), alongside the empirically-measured MEG gamma-frequency AEC
matrix. Lower panel : Corresponding power spectra of whole-brain simulated data for these
three simulation regimes, as well as for empirically measured MEG data (far right). Black
lines show spectra for individual brain regions, thick red line is mean over all brain regions.
The simulated power spectra transition from being alpha-dominated at Io=0 to a noisier and
higher-frequency regime at around Io=1.5.
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Figure 5: AEC FC vs. Frequency. Shown are AEC FC matrices at five different canoni-
cal frequency bands - δ(0.5-4Hz), θ(4-8Hz), α(8-12Hz), β(13-30Hz), and γ(30-45Hz) - from
empirical MEG data (top row), and from simulations (bottom row). In both simulated and
empirical data, lower frequencies (δ and θ) show less spatial specificity and more tendency
towards random connectivity patterns. Note that the more compressed AEC range in empir-
ical than simulated AEC data is due to the application of orthogonal leakage correction[89]
in analyses of MEG data.

Susceptibility to entrainment by exogenous stimulation is state-dependent230

Having characterized idling and active states, their dominant spectral features and how they231

impact functional connectivity, we investigated how exogenous periodic stimulation shapes232

the power spectrum of the system and engages ongoing oscillations. Numerous studies over233

the last few decades have used stimulation paradigms of various kinds to access circuit234

function and interfere with neural communication[42, 43, 44]. One of the most robust findings235

is that entrainment of ongoing brain oscillation is state-dependent, and that susceptibility236

to control is tuned by ongoing brain fluctuations - an effect that has also been reproduced237

with modelling[45, 46] and shown to involve stochastic resonance[47]. Given the ability of238

our model to switch between different states and express multiple frequencies, we subjected239

cortical populations to exogenous periodic stimulation and monitored the spectral response.240

Specifically, we again studied an isolated cortico-thalamo-cortical motif (i.e. a single network241
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node), and computed the peak power and frequency as a function of stimulation intensity and242

frequency. Through this process, we identified resonances and entrainment regimes (so-called243

Arnold Tongues) and thus measured the susceptibility of our model to entrainment. While244

oftentimes confused with one another, resonance refers to the enhancement of power when the245

stimulation frequency is in the vicinity of the system’s natural frequency, while entrainment,246

refers to the phase locking of the system’s response to the driving frequency[47]. As shown247

in Figure 6, idling and active states exhibited significant differences in their responses to248

stimulation and susceptibility to entrainment. Narrower Arnold Tongues were observed in249

the idling state compared to the active state, indicating that the suppression of alpha power250

in the active state facilitates phase locking of intrinsic dynamics with the stimulation signal.251

Specifically, only high intensity stimulation would provoke a shift in the peak frequency in the252

idling state. In the active state, the prominent gamma oscillations were easily suppressed and253

replaced by the frequency of the driving stimulus. This is in line with converging evidence254

indicating that intrinsic attractors limit the effect of perturbations, while irregular or high255

frequency content is more malleable[4].256

Discussion257

The aim of the present study was to investigate the mechanisms underlying state-dependent258

changes in oscillatory activity at the whole-brain scale, as well as the influence of fluctuations259

in spectral activity on functional connectivity. We have presented a novel connectome-based260

neural mass model that combines the two primary rhythmogenic mechanisms typically stud-261

ied in large-scale brain network modelling: intracolumnar microcircuits and corticothalamic262

loops. This is an extension of previous work, that studied the behaviour of the basic corti-263

cothalamic motif in isolation[48]. Here we have embedded this corticothalamic unit into a264

whole-brain network, with anatomical connectivity derived from diffusion MRI tractography.265
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Figure 6: Effects of periodic brain stimulation on corticothalamic loop dynamics
Top row: Maximum frequencies displayed by the cortical excitatory population of an isolated
cortico-thalamocortical loop (CTWC model, single node) in response to periodic (sine wave)
stimulation of varying amplitudes (y axes) and frequencies (x axes). In the idling regime,
an Arnold Tongue structure is clearly seen centred on the natural frequency (approximately
10 Hz): As the stimulation frequency moves away from the natural frequency, greater stim-
ulation amplitude is required to achieve entrainment at the stimulation frequency. In the
active regime, a broader and shallower Arnold Tongue structure is again seen, centred on the
natural frequency (this time approximately 30Hz). Compared to the idling state, entrain-
ment at the stimulation frequency is easier to achieve (requires lower amplitude stimulus) in
the active than the idling regime. Bottom row: Maximum amplitudes displayed by cortical
excitatory populations. Here again the amplitude response patterns match quite closely the
Arnold Tongues seen in the maximum frequency responses.
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Our model reproduces a variety of known features of human M/EEG recordings, including266

a 1/f spectral profile, spectral peaks at canonical frequencies, and functional connectivity267

structure that is shaped by the underlying anatomical connectivity. Using this model, we268

have studied how thalamic drive mediates a shift in oscillatory regime, provoking a tran-269

sition between alpha and gamma dominance in the power spectrum, and found that these270

oscillations have a differential impact on functional connectivity patterns. We found that271

spatially structured inter-area functional connectivity (as measured by band-limited power272

amplitude envelope correlations), particularly at higher frequencies (gamma, beta, and alpha273

to a lesser extent), are a hallmark of the active state. To better understand how these state-274

and frequency-specific dynamics are impacted by exogenous stimulation, we applied cortical275

periodic stimulation of various amplitudes and frequencies, eliciting endogenous resonances276

both across the corticothalamic loop and within cortex. Our analysis confirms that, as com-277

pared to the idling state, the active state is more susceptible to entrainment by exogenous278

signals, as it shows wider and shallower Arnold Tongues. In contrast, the idling state’s deep279

and narrow Arnold Tongues indicate that the system has a strong preference for its natu-280

ral frequency when in this regime, and will respond only to exogenous signals close to that281

frequency or its harmonics.282

Relation to previous work283

The work presented here builds on previous work of several authors in a number of ways.284

Most directly, the isolated CTWC neural mass model (without the whole-brain white matter285

connectivity introduced here) was recently introduced in [48]. Previous to that we have also286

studied resonance behaviour, response to stimulation, and state-dependence in corticothala-287

mic circuits and generic feedback oscillators[45, 65, 64]. We emphasize however that the core288

mathematical and conceptual component of the CTWC model presented in the present paper289

and in our earlier work - namely the generation of slow M/EEG rhythms through a delayed290
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inhibitory cortico-thalamo-cortical recurrent circuit, has been used extensively by multiple291

groups for several decades. One of the largest and most comprehensive bodies of work on this292

is due to P. Robinson and colleagues, beginning with the introduction in [79] of a PDE wave293

equation reformulation of the integro-differential cortical neural field model of [83], drawing294

on earlier work of [11], [66], and others. This model was then augmented with thalamic retic-295

ular and relay nuclei and their recurrent connections with the cortex[39], and the resultant296

corticothalamic neural field model has been studied extensively over the past two decades -297

both analytically and numerically, and in partial differential, ordinary differential, and lin-298

earized equation forms, as well as being extended into the domains of epilepsy, Parkinson’s,299

sleep and arousal, plasticity, and brain stimulation (e.g. [39, 69, 67, 70, 84, 85, 82, 81, 68]).300

Our approach in the present paper differs from this family of models in two key ways. First,301

rather than the second-order equations of motion for the time-evolution of membrane volt-302

age used by Robinson and many others[11, 61, 71], we began with the classic Wilson-Cowan303

equations[86] to describe local interactions between excitatory and inhibitory neural popu-304

lations in a cortical region. Second, rather than the using an integro- or partial-differential305

equation formulation of a continuum neural field to represent spatio-temporal propagation306

of activity across the cortex[79, 66, 51, 74, 72, 73], here we chose to follow the connectome-307

based neural mass modelling methodology[75, 76, 77, 26, 63, 20, 54] of defining a discrete308

network of point-process neural masses, interconnected via long-range white matter fibres309

whose density was estimated from non-invasive diffusion MRI tractography. This combina-310

tion of the cortico-thalamocortical circuit with the large-scale anatomical connectivity bears311

some similarity to the work of some other authors (e.g. [25, 56, 55, 80]), but the present study312

is the first to apply this directly to the key questions of state-dependence, alpha suppression,313

functional connectivity, stimulation, and their relation to empirical M/EEG data. Notably,314

this network-based approach allowed us to harmonize the analysis of functional connectivity315

in simulated and empirical MEG data. In this we followed the approach of [36] and [87]316
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in our use of the bandpass-filtered amplitude envelope correlations[78, 37], and that line of317

work is perhaps the closest of recent modelling studies to the present one. In [36], Abey-318

suriya and colleages studied the role of inhibitory synaptic plasticity in a connectome-based319

network of Wilson-Cowan equations. As in the present study, these authors evaluated their320

model in terms of its ability to accurately reproduce empirically measured MEG AEC ma-321

trices (although they restricted their focus to only to alpha-frequency AECs). The relatively322

simpler (as compared with our new CTWC) model used by these authors consisted of a323

cortical Wilson-Cowan ensemble, tuned to have a natural frequency in the alpha range. This324

stands somewhat in contrast to our new model, which features a gamma frequency-tuned325

Wilson-Cowan ensemble, combined with an alpha frequency-tuned cortico-thalamocortical326

motif. This additional two-component structure allows our model to exhibit more complex327

behaviours, such as alpha-mediated inhibition and state-switching, as well as a rich reper-328

toire of potential oscillation and frequency-specific synchronization patterns. The question329

of whether and to what extent human M/EEG alpha activity is generated by corticothalamic330

(as in e.g. the present study and much of the above-cited work by Robinson and colleagues),331

or within intracortical microcircuits (as in e.g. [36], [58], [71]) remains a live and important332

one however. Recent years has also seen growing interest in a third potential type of system-333

level (low-frequency) rhythmogenic mechanism which can be broadly described as network334

eigenmodes [51, 79, 72, 63, 62]. The proper evaluation and assessment of these hypotheses335

around cortical rhythmogenesis shall most likely require a close interaction between novel336

empirical work and hypothesis-generating computational models to properly settle. It is also337

important to bear in mind here that there is no a priori reason (apart from explanatory338

parsimony) to suppose a single mechanism for generation of rhythms[51]. Indeed, it may be339

functionally advantageous for the brain to generate the same frequency through a variety340

of mechanisms. If this were determined to be the case, then interaction across different341

frequency-generating mechanisms would be a key question for future work.342
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The alpha rhythm as a suppression mechanism343

The transition from idling to active state in our model is initiated by the gradual increase of344

a tonic sensory/neuromodulatory drive term, Io, that effectively hyperpolarizes the thalamic345

relay nucleus, and thereby destroys the slow 10Hz alpha rhythm generated by the cortico-346

thalamocortical loop. Once the alpha oscillation is removed in this way, the gamma rhythm347

generated by intracortical excitatory-inhibitory interactions comes to the fore. One inter-348

pretation of this phenomenon is that alpha resonance, mediated by corticothalamic loops,349

plays an inhibitory role - through which slow oscillatory corticothalamic activity suppresses350

and dominates higher frequency cortical activity. This alpha-as-suppression-mechanism the-351

ory speaks to a major question in the field of M/EEG cognitive neuroscience: what is the352

functional role of alpha? Specifically, the enhancement of alpha activity during disengage-353

ment of the cortical network (such as during quiescence, sleep, anaesthesia, and withdrawal354

of sensory stimulation) suggests that alpha oscillations implement a functionally inhibitory355

signal, and represent a top-down shift towards internal encoding through suppressing the356

activity of task-irrelevant areas[49]. In contrast, faster frequencies, such as those found in357

the beta and gamma range, are found in states of arousal and sensory recruitment, sug-358

gesting a positive, excitatory role of faster neural oscillatory states. In our model,the less359

spatially-resolved structure of functional connectivity in the alpha vs. the gamma range -360

at all Io values, but particularly for Io>=1.4 - does support this perspective. From this361

point of view, a key feature of our model is its characterization of the relationship be-362

tween corticothalamically-generated and cortically-generated rhythms. In particular, the363

corticothalamic alpha dominates in the idling state, and can be understood as suppressing364

the intrinsic rhythmic activity in the cortical ensemble, which can be ‘released’ with suffi-365

cient sensory or neuromodulatory drive. This simple circuit mechanism therefore captures a366

widely used theoretical concept in M/EEG cognitive neuroscience concerning the functional367

role of alpha activity. On this account, alpha acts as a mechanism for selectively gating and368
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attentionally biasing sensory inputs. This phenomenon is also observed in EEG studies on369

the effects of anesthesia, where low frequency activity becomes increasingly dominant with370

higher doses of propofol[50]. This effect is observed concurrently with apparent attenuation371

of sensory inputs, for example in reduced amplitude and increased latency of somatosensory372

evoked potentials (SEPs). Recent work in mouse models has also shown that driving thala-373

mic circuits with alpha-frequency activity causes widespread depression of cortical activity;374

whereas stimulating at higher frequencies (e.g. gamma) causes widespread increase in both375

baseline activity and the spatial spread of the stimulation influence[18].376

Interestingly, in our analyses we observed that the active-state model AEC patterns ac-377

tually showed closer resemblance to empirical resting-state MEG AEC patterns than the378

idling-state AEC patterns. This is somewhat unexpected because resting-state MEG power379

spectrum was unequivocally better fit by a CTWC model in the idling, alpha-dominated380

regime. This result suggests that in the brain, during the rest or idling state, alpha power381

is strong and AEC functional connectivity is largely random. In contrast, in the active382

state, alpha power is relatively weaker, and AECs are more local and segregated. Func-383

tional connectivity is thus facilitated in the high-drive state, when the alpha-generating loop384

is inhibited, and dynamics are driven by cortico-cortical E-I interactions. In the state of385

low-drive, the alpha rhythm is highly prominent and functional connectivity is largely asyn-386

chronous. In the state of high drive, the alpha rhythm has been suppressed, and functional387

connectivity is high. Together, these observations suggest that the alpha rhythm plays a388

suppressing role in large-scale brain dynamics. We hypothesize that this may be a general389

feature of alpha activity - this indicates that regional communication is facilitated by being390

in the active state, and that there perhaps a constant interplay and balance between the391

idling state and the active state.392
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Conclusions and future directions393

To conclude: we have developed a novel whole-brain connectome-based neural mass model394

that incorporates corticothalamic and intracortical rhythmogenic mechanisms. This model395

reproduces qualitatively multiple features of MEG-measured neural activity. Importantly,396

our model also lends some insight into the way that cortico-thalamically-generated alpha397

rhythms could play a functional role in the organization of brain dynamics, by suppress-398

ing high-frequency cortical activity associated with cognitive engagement and information399

processing. Future work shall investigate further questions of subcortical parcellation and in-400

tegration, model fitting, and compare alternative rhythmogenic mechanisms directly against401

each other. Importantly, future work should also investigate the significance of intersub-402

ject variability in anatomical connectivity on network dynamics. Although we demonstrated403

here our model’s ability to fit individual subjects’ power spectra through small variations404

in thalamic kinetic parameters, it was beyond the scope of the present study to incorpo-405

rate individualized anatomical connectivities. One of the exciting and promising aspects406

of connectome-based neural mass modelling is the possibility of constructing individual-407

ized computational models using a subjects’ own diffusion MRI tractography. However at408

this point in time the extent to which this does actually deliver improvement in computa-409

tional model accuracy remains an open question for the field (for recent work relevant to410

this, see [36, 60]). Finally, we emphasize that neither our specific CTWC model, nor the411

broader alpha-as-suppression-mechanism concept, constitute a universal account of all alpha-412

frequency rhythms seen in the M/EEG or other recording modalities. Indeed we consider413

the most likely scenario to be that multiple, dissociable mechanisms contribute indepen-414

dently a proportion of the information and measured signal in that part of the frequency415

spectrum[51]. Here we have, building on previous work, made we believe some progress in416

characterizing the dynamic properties of one of these candidate mechanisms.417
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Methods418

Our modelling approach follows the now-standard whole-brain connectome-based neural419

mass modelling paradigm[75, 77, 19, 20], where dynamic units are placed at node locations420

as defined by a grey matter parcellation, and coupled with an adjacency matrix (anatomi-421

cal connectome) defining the presence and associated strengths of long-range white matter422

fibres interconnecting region pairs. The anatomical connectome used in the present study,423

derived from group-average tractography streamline counts, was constructed from analy-424

ses of the human connectome project (HCP) WU-Minn consortium diffusion-weighted MRI425

(DWI) corpus[21, 22]. For details of this, see the below section DWI data analyses .426

In the model, activity at each node is driven by background noise and/or exogeneous427

stimulation. Complete mathematical formulation and implementation details are given in428

the section Corticothalamic model. Simulated nodal time series from the model can be429

understood as approximations of regionally averaged source-space MEG signals. To assess430

the performance of the model in reproducing key features of empirically measured human431

brain dynamics, we additionally conducted new analyses of the HCP WU-Minn resting-state432

MEG corpus[23]. These are described in the MEG data analyses section.433
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Corticothalamic model434

Figure 7: Corticothalamic model. Schematic of the corticothalamic model structure.
Cortical (ue, ui) and thalamic (us, ur) populations interact through a delayed feedback loop.
Entrainment of the network activity through electromagnetic stimulation P applied to ue
depends on the amplitude and frequency of the stimulation pulse, as well as the network
state, controlled by Io.

Following other authors [39, 24, 25], we employ a model for neuronal dynamics at each node435

that incorporates both cortical and thalamic neural populations. The model describes a436

four-component cortico-thalamo-cortical motif, consisting of excitatory (ue) and inhibitory437

(ui) cortical neuronal populations, coupled to thalamic reticular (ur) and specific relay (us)438

nuclei (Fig. 7). Both relay and reticular nuclei receive inputs from the cortical excitatory439

population, following a corticothalamic conduction delay τct. However only the relay nucleus440

sends excitatory input back to the cortex; again received following a delay τct=τtc. The441

27

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 9, 2019. ; https://doi.org/10.1101/697045doi: bioRxiv preprint 

https://doi.org/10.1101/697045
http://creativecommons.org/licenses/by/4.0/


reticular nucleus, which is widely known to have an inhibitory influence of other thalamic442

regions[59], plays a similar role to the cortical inhibitory population, inhibiting the relay443

nucleus and thereby generating oscillatory dynamics.444

As defined, our node-level model consists of a Wilson-Cowan oscillatory neural popu-445

lation, embedded in a delayed inhibitory feedback loop mediated by corticothalamic and446

thalamocortical connections. The full network-level model thus consists of a set of N such447

local units of this kind, coupled using the connectivity matrix W (anatomical connectome).448

The system of stochastic delay-differential equations governing the time-evolution of neural449

activity within the network can be summarized as follows:450

Dpu
j
p = G[ujp]︸ ︷︷ ︸

neural
interactions

+ SpP
j + SiI

j
o︸ ︷︷ ︸

static and time-
varying stimulation

+
√

2Dξjp︸ ︷︷ ︸
background

noise

(1)

where the temporal differential operator Dp = (1 + α−1
p

d
dt

) incorporates population time451

constants αp, and ujp refers to the mean somatic membrane activity of the neural population452

p ∈ {e, i, r, s} within one cortico-thalamic module j across the brain-scale network of N=68453

nodes. Irregular and independent fluctuations are also present in the network, modelled by454

the zero-mean Gaussian white noise processes ξjp with standard deviation D. The neural455

interaction term G[ujp] in Eq. 1 can be further broken down into456

G[ujp(t)] = AF
[
ujp(t)

]
+ BF

[
ujp(t− τct)

]
+ CF

[
ujp(t− τtt)

]
+ KQ (2)

where the matrices457

A =



gee gei 0 0

gei gie 0 0

0 0 0 0

0 0 0 0


,B =



0 0 0 ges

0 0 0 gis

gre 0 0 0

gse 0 0 0


,C =



0 0 0 0

0 0 0 0

0 0 0 grs

0 0 gsr 0


(3)
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respectively specify the gains (connection strengths) of intracortical, corticothalamic and458

intrathalamic interactions within a node. Intrathalamic and corticothalamic/thalamocortical459

connections are retarded by conduction delays τct=20ms and τtt=5ms, respectively. The460

matrix461

K =



gcc 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


(4)

specifies the global gain applied to all afferent activity Q arriving from other cortical462

neural populations. In the present model we assume for simplicity that afferent activity only463

impacts on the cortical excitatory population ue; and so only the upper left entry in K is464

nonzero. The afferent activity in Q is a time-delayed summation of ue at all other nodes in465

the network466

Qj =
N∑
k=1

WjkF [uke(t−Tjk)] (5)

where W and T are cortical white matter connectivity and conduction delay matrices,467

both of which are derived from empirical diffusion-MRI tractography reconstructions (see468

below). For the latter, the cortico-cortical conduction delay matrix T = L/cv is calculated469

from a matrix of measured (average) fibre tract lengths L, assuming a fixed conduction470

velocity cv=4m/s. The sigmoidal response function F in Eqs. 2 and 5 specifies the nonlinear471

response of a neural population to incoming inputs as follows472

F [u] = (1 + exp(−β(u− σ)))−1 (6)
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The matrices473

Sp =



1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


;Si =



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1


(7)

in Eq. 1 parametrize the impact on the four subpopulations e, i, r, s within a node of474

the time-varying exogenous input P (representing periodic brain stimulation such as rTMS475

or TACS) and static input Io (representing here state-dependent sensory/neuromodulatory476

drive). Again, in the present study we only consider exogeneous inputs to impact the cortical477

excitatory populations, and so only the upper left entry in Sp is nonzero. Similarly, Io is478

for present purposes only considered to impact the thalamic relay nucleus, and so only the479

lower right entry of Si is nonzero. The exogeneous periodic signal P here is given by the480

simple sinusoidal function481

P j = M j sin(2πωt) (8)

with frequency ω and intensity M . The constant state-dependent drive Ijo to thalamic482

relay populations serves as a control parameter indexing idling vs active states (see below).483

This static input current can be thought of as a tonic level of sensory (e.g. visual) drive,484

although it could also reflect a static influence of ascending (e.g. noradrenergic) neuromodu-485

latory drive, reflecting the level of engagement in a perceptual or cognitive task. Irrespective486

of its cause, the idling or rest-like state is defined as the dynamics resulting from setting487

Ijo=0; i.e. in the absence of this constant thalamic input. The active state, in contrast, is488

defined by a greater engagement of thalamic nodes, and hence Ijo>0 for active nodes. In489

both of these cases, nodes within the network may be differentially recruited by a given task,490

thus being activated while others remain inactivated. This represents an intermediate point491
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between the extreme cases where all nodes are either active or inactive.492

With the described structure, and right choice of parameters, our system generates alpha493

(8-12Hz) oscillations due to the presence of delayed inhibition, as well as gamma (30-120Hz)494

oscillations resulting from the cortical activity and interactions, and also in a limited domain495

of parameter space shows coexistence of both of these features. As has been demonstrated496

previously [48], increasing the thalamic drive parameter past a critical point triggers sup-497

pression of resting state alpha oscillations, and results in a greater susceptibility of cortical498

neural populations to entrainment by exogenous inputs or noninvasive stimulation. In addi-499

tion, this transition to the active state is accompanied by an increase in high-frequency (i.e.500

gamma) activity. As such, the thalamic drive can be seen as a control parameter, controlling501

the power of alpha and gamma oscillations, as well as tuning the response to exogenous502

inputs.503

Nominal parameter values and definitions from the above-specified system of equations504

are summarized in Table 1. The system was numerically integrated using a stochastic Euler-505

Maruyama scheme, implemented in Python. Simulations were carried out on an 8-core506

Ubuntu 14.04 machine. Run time scaled approximately linearly: each 2-second simulation507

ran in approximately 2 seconds real time. All code and processed data used in this study is508

freely available at https://github.com/GriffithsLab/ctwc-model, along with additional notes509

and comments. A version of the model has also been developed for direct use within The510

Virtual Brain modelling and neuroinformatics platform (TVB; www.thevirtualbrain.org)[26,511

27]). Our model produces regional time series for each network node, as specified by the512

anatomical parcellation. These represent the collective activity of neural populations within513

that region, and as such correspond to signals estimated from MEG source reconstruction.514

Subsequent power spectrum and functional connectivity analyses of simulated activity time515

series therefore proceeded identically to that for MEG data, and are described in the MEG516

data analyses section below.517
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Name Unit Nominal Value Description
ae ms 0.3 Cortical excitatory population time constant
ai ms 0.5 Cortical inhibitory population time constant
as ms 0.2 Thalamic relay nucleus time constant
ar ms 0.2 Thalamic reticular nucleus time constant
ie mV -0.35 Cortical excitatory population constant input
ii mV -0.3 Cortical inhibitory population constant input
is mV 0.5 Thalamic relay nucleus constant input
ir mV -0.8 Thalamic reticular nucleus constant input
τ(ct/tc) ms 20 Corticothalamic / Thalamocortical conduction delay
τtt ms 5 Thalamo-thalamic conduction delay
Io mV 0. Static sensory/neuromodulatory drive
dt ms 0.1 Integration step size
wee 0.5 Excitatory-excitatory gain
wei 1 Excitatory-inhibitory gain
wie -2. Inhibitory-excitatory gain
wii -0.5 Inhibitory-inhibitory gain
wer 0.6 Excitatory-reticular gain
wes 0.6 Excitatory-relay gain
wsi 0.2 Relay-inhibitory gain
wse 1.65 Relay-excitatory gain
wrs -2. Reticular-relay gain
wsr 2. Relay-reticular gain
D(e,i,r,s) 0.0001 Noise standard deviation for all populations
g 0.9 Global connectivity scaling factor
β 20. Activation function gain parameter
σ 0. Activation function threshold parameter

Table 1: Model parameters
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DWI data analyses518

The anatomical connectivity matrices used in this paper were constructed using diffusion-519

and T1-weighted MRI data from the HCP WU-Minn consortium[28, 21, 22]. For detailed520

descriptions of the MR acquisition parameters and processing pipeline, see [21, 22]. The HCP521

WU-Minn corpus consists of multimodal imaging and behavioural data from 1200 healthy,522

young (ages 20-40) subjects. The tractography analysis described below was applied to a523

700-subject subset of the full sample; and the connectivity matrix used for simulations in524

the present paper was calculated from an average over these 700 subjects.525

The HCP WU-Minn minimal diffusion pipeline[21] consists of gradient nonlinearity cor-526

rection, eddy current correction, boundary-based registration and reorientation of diffusion527

data to the T1 image, and gradient vector rotation. The outputs of this preprocessing528

pipeline were the starting point for our diffusion data analyses. Using the minimally prepro-529

cessed diffusion data, we performed whole brain deterministic tractography reconstructions530

using the Dipy software library[29], following a methodology modelled closely on that of [30]531

and [31]. ODFs were computed at each white matter voxel using a DSI tissue model. Stream-532

lines were initiated from 60 regularly-spaced grid points within each voxel on the grey-white533

matter interface (as determined from coregistered freesurfer surfaces), and propagated using534

the EuDX algorithm[32]. Streamlines not terminating at the grey-white matter interface, or535

having lengths greater than 250mm or less than 10mm, were discarded. Subjects’ streamline536

sets were segmented using the Lausanne scale-1 parcellation[30, 33], computed individually537

for every subject from their freesurfer reconstructions using algorithms from the connectome538

mapping toolkit[33]. All surface-based parcellations were then converted to image volumes539

and resliced to diffusion space for streamline segmentations. For each parcellation, the in-540

terconnecting streamlines for every ROI combination were determined using a logical AND541

operation. Each segmented streamline set was counted and its average length computed, re-542

sulting in streamline count and length matrices for each subject. The simulations described543
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in the present paper were computed using group-average tract length matrices (divided by544

conduction velocity to convert to conduction delay), and group-average streamline count545

matrices, with the latter first being log-transformed to adjust for the DWI tractography546

over-estimation bias[36].547

MEG data analyses548

MEG analyses were performed using 10 randomly selected subjects from the HCP WU-549

Minn corpus[23], using the MNE software library[35, 34]. The specific analyses done were550

based on a modified version of the analysis pipeline developed by Engemann and colleagues551

(https://github.com/mne-tools/mne-hcp), which implements a full source space analyses,552

beginning with the HCP preprocessed sensor-space data. Key outcome variables from this553

pipeline for the present study were whole-brain functional connectivity matrices and spectral554

power maps, derived from regional source time series estimates. We opted to implement a555

complete analysis here rather than use the high-level pipeline outputs provided with the556

HCP WU-Minn corpus, as we needed complete control over the process. In particular, we557

needed to a) use the same parcellation in the MEG as in the tractography analyses, and b)558

ensure identical analyses were done on empirical and simulated MEG regional time series.559

Regarding the first of these: as in the tractography analyses, the parcellation used for MEG560

analyses was the Lausanne2008 scale 1 - but with 10 subcortical nodes (brainstem, basal561

ganglia, thalamus) excluded. Note this is in fact identical to the freesurfer aparc parcellation562

(but reordered and renamed).563

Source time series were extracted for all vertices within a parcel using an L2 minimum-564

norm inverse solution and averaged, yielding one representative time series per parcel. To565

maximize robustness of these signals, this was operation was repeated five times, with 30-566

second windows each[23]. Subsequent analysis of these regional time series proceeded iden-567

tically for both the empirical and simulated MEG data. We first computed power spectra568
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for each region using Welch’s method. We then studied functional connectivity within the569

system using the band-limited power Pearson correlation (BLPC) method[37, 38]. For this,570

regional time series from each of the 5 windows were bandpass-filtered into six canonical fre-571

quency bands: delta (0.5-4Hz), theta (4-8Hz), alpha (8-12Hz), beta (12-30 Hz), low gamma572

(30-50 Hz) and high gamma (60-80 Hz)[37]. Pearson correlations between the bandpass-573

filtered time series were computed, and averaged over the 5 windows. Finally, these BLPC574

matrices at each frequency band were averaged over subjects. Because our simulations used575

a normative (rather than subject-specific) anatomical connectivity, these analyses were con-576

ducted only once on the simulated MEG data, and this was compared to the group-averaged577

MEG data to evaluate the performance of the model.578
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