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Abstract 21 

Many of the sequenced bacterial and archaeal genomes encode regions of viral provenance. Yet, not all of 22 

these regions encode bona fide viruses. Gene transfer agents (GTAs) are thought to be former viruses that 23 

are now maintained in genomes of some bacteria and archaea and are hypothesized to enable exchange of 24 

DNA within bacterial populations. In Alphaproteobacteria, genes homologous to the ‘head-tail’ gene 25 

cluster that encodes structural components of the Rhodobacter capsulatus GTA (RcGTA) are found in 26 

many taxa, even if they are only distantly related to Rhodobacter capsulatus. Yet, in most genomes 27 

available in GenBank RcGTA-like genes have annotations of typical viral proteins, and therefore are not 28 

easily distinguished from their viral homologs without additional analyses. Here, we report a ‘support 29 

vector machine’ classifier that quickly and accurately distinguishes RcGTA-like genes from their viral 30 

homologs by capturing the differences in the amino acid composition of the encoded proteins. Our open-31 

source classifier is implemented in Python and can be used to scan homologs of the RcGTA genes in 32 

newly sequenced genomes. The classifier can also be trained to identify other types of GTAs, or even to 33 

detect other elements of viral ancestry. Using the classifier trained on a manually curated set of 34 

homologous viruses and GTAs, we detected RcGTA-like ‘head-tail’ gene clusters in 57.5% of the 1,423 35 

examined alphaproteobacterial genomes. We also demonstrated that more than half of the in silico 36 

prophage predictions are instead likely to be GTAs, suggesting that in many alphaproteobacterial 37 

genomes the RcGTA-like elements remain unrecognized. 38 
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Introduction 44 

Viruses that infect bacteria (phages) are extremely abundant in biosphere (Keen 2015). Some of 45 

the phages integrate their genomes into bacterial chromosomes as part of their infection cycle and 46 

survival strategy. Such integrated regions, known as prophages, are very commonly observed in 47 

sequenced bacterial genomes. For example, Touchon et al. (2016) report that 46% of the examined 48 

bacterial genomes contain at least one prophage. Yet, not all of the prophage-like regions represent bona 49 

fide viral genomes (Koonin and Krupovic 2018). One such exception is a Gene Transfer Agent, or GTA 50 

for short (reviewed most recently in Lang et al. (2017) and Grull et al. (2018)). Many of genes that encode 51 

GTAs have significant sequence similarity to phage genes, but the produced tailed phage-like particles 52 

generally package pieces of the host genome unrelated to the “GTA genome” (Hynes et al. 2012; Tomasch 53 

et al. 2018). Moreover, the particles are too small to package complete GTA genome (Lang et al. 2017). 54 

Hence, GTAs are different from lysogenic viruses, as they do not use the produced phage-like particles 55 

for the purpose of their propagation. 56 

Currently, five genetically unrelated GTAs are known to exist in Bacteria and Archaea (Lang et 57 

al. 2017). The best studied GTA is produced by the alphaproteobacterium Rhodobacter capsulatus and is 58 

referred hereafter as the RcGTA. Since RcGTA’s discovery 45 years ago (Marrs 1974), the genes for the 59 

related, or RcGTA-like, elements have been found in many of the alphaproteobacterial genomes (Shakya 60 

et al. 2017). For a number of Rhodobacterales isolates that carry RcGTA-like genes, there is an 61 

experimental evidence of GTA particle production (Fu et al. 2010; Nagao et al. 2015; Tomasch et al. 62 

2018). Seventeen of the genes of the RcGTA “genome” are found clustered in one locus and encode 63 

proteins that are involved in DNA packaging and head-tail morphogenesis (Figure 1 and Supplementary 64 

Table S1). This locus is referred to as a ‘head-tail cluster’. The remaining seven genes of the RcGTA 65 

genome are distributed across four loci and are involved in maturation, release and regulation of RcGTA 66 

production (Hynes et al. 2016). Since the head-tail cluster resembles a typical phage genome with genes 67 

organized in modules similar to those of a l phage genome (Lang et al. 2017), and since many of its 68 
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genes have homologs in bona fide viruses and conserved phage gene families (Shakya et al. 2017), the 69 

cluster is usually designated as a prophage by algorithms designed to detect prophage regions in a genome 70 

(Shakya et al. 2017). The RcGTA’s classification as a prophage raises a possibility that some of the ‘in 71 

silico’-predicted prophages may instead represent genomic regions encoding RcGTA-like elements. 72 

Currently, to distinguish RcGTA-like genes from the truly viral homologs one needs to examine 73 

evolutionary histories of the RcGTA-like and viral homologs and to compare gene content of a putative 74 

RcGTA-like element to the RcGTA “genome”. These analyses can be laborious and often require 75 

subjective decision making in interpretations of phylogenetic trees. An automated method that could 76 

quickly scan thousands of genomes is needed. Notably, the RcGTA-like genes and their viral homologs 77 

have different amino acid composition (Figure 1 and Supplementary Figure S1). Due to the purifying 78 

selection acting on the RcGTA-like genes at least in the Rhodobacterales order (Lang et al. 2012) and of 79 

their overall significantly lower substitution rates when compared to viruses (Shakya et al. 2017), we 80 

hypothesize that the distinct amino acid composition of the RcGTA-like genes is preserved across large 81 

evolutionary distances, and therefore the RcGTA-like genes can be distinguished from their bona fide 82 

viral homologs by their amino acid composition. 83 

Support vector machine (SVM) is a machine learning algorithm that can quickly and accurately 84 

separate data into two classes from the differences in specific features within each class (Cortes and 85 

Vapnik 1995). The SVM-based classifications have been successfully used to delineate protein families 86 

(e.g., DNA binding proteins (Bhardwaj et al. 2005) and G-protein coupled receptors (Karchin et al. 87 

2002)), to distinguish plastid and eukaryotic host genes (Kaundal et al. 2013), and to predict influenza 88 

host from DNA and amino acid oligomers found in the sequences of the flu virus (Xu et al. 2017). During 89 

the training step, the SVM constructs a hyperplane that best separates the two classes. During the 90 

classification step, data points that fall on one side of the hyperplane are assigned to one class, while those 91 

on the other side are assigned to the other class. In our case, the two classes of elements in need of 92 
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separation are phages and GTAs, while their distinguishing features are several metrics that capture the 93 

amino acid composition of the encoding genes. 94 

In this study, we developed, implemented, and cross-validated an SVM classifier that 95 

distinguishes RcGTA-like head-tail cluster genes from their phage homologs with high accuracy. We then 96 

applied the classifier to 1,423 alphaproteobacterial genomes to examine prevalence of putative RcGTA-97 

like elements in this diverse taxonomic group and to assess how many of the RcGTA-like elements are 98 

mistaken for prophages in the in silico predictions. 99 

 100 

Materials and Methods 101 

The Support Vector Machine (SVM) classifier and its implementation 102 

Let’s denote as 𝑢 a homolog of an RcGTA-like gene	𝑔 that needs to be assigned to a class 𝑦, 103 

“GTA” (𝑦 = −	1) or “virus” (𝑦 = 1). The assignment is carried out using a weighted soft-margin SVM 104 

classifier, which is trained on a dataset of 𝑚 sequences 𝑇, = {𝑇.
,, … , 𝑇1

,}	that are homologous to 𝑢 (see 105 

“SVM training data” section below). The basis of the classification is the n-dimensional vector of 106 

features 𝒙 associated with sequences 𝑢 and 𝑇4
, (see “Generation of sequence features” section below). 107 

Each sequence 𝑇4
,is known to belong to a class 𝑦4. 108 

Using the training dataset 𝑇,, we identify hyperplane that separates two classes as an optimal 109 

solution to the objective function: 110 

𝑚𝑖𝑛 7
1
2 |
|𝒘||; + 	𝑪>𝜉4

1

4@.

A	(eq. 1) 111 

subject to: 112 
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	∀4∶ 	𝑦4(𝒘𝒙𝒊 	+ 	𝑏) ≥ 	1 −	𝜉4, 𝑤ℎ𝑒𝑟𝑒		𝜉4 ≥ 	0, 𝑖	 = 	1, … ,𝑚	(eq. 2) 113 

where 𝒘 and 𝑏 define the hyperplane 𝑓(𝒙) = 𝒘𝒙𝒊 + 𝑏 that divides the two classes, 𝜉4 is the slack variable 114 

that allows some training data points not to meet the separation requirement, and 𝑪 is a regularization 115 

parameter, which is represented as an 𝑚	 × 	𝑚 diagonal matrix. The 𝑪 matrix determines how lenient the 116 

soft-margin SVM is in allowing for genes to be misclassified: larger values “harden” the margin, while 117 

smaller values “soften” the margin by allowing more classification errors. The product 𝑪x represents the 118 

cost of misclassification. The most suitable values for the 𝑪 matrix were determined empirically during 119 

cross-validation, as described in the “Model training, cross validation, and assessment” section below. 120 

To solve equation 1, we represented this minimization problem in the Lagrangian dual form 𝐿(𝛼):  121 

𝑚𝑎𝑥
𝛼𝑖

								𝐿(𝛼) =>𝛼4 −	
1
2
>>𝛼4𝛼U𝑦4𝑦U𝐾(𝒙4𝒙U)

1

4@U

1

4@.

1

4@.

	(𝑒𝑞. 3) 122 

subject to: 123 

∀4 :	>𝛼𝑖𝑦𝑖

𝑚

𝑖=1
= 0	𝑎𝑛𝑑	0 ≤	𝛼𝑖 ≤ 𝐶, 𝑖 = 1,… ,𝑚 124 

where 𝐾 represents a kernel function. The minimization problem was solved using the convex 125 

optimization (CVXOPT) quadratic programming solver (Andersen et al. 2012). The pseudocode of the 126 

algorithm for the weighted soft-margin SVM classifier training and prediction is shown in Figure 2. 127 

SVM training data 128 

To train the classifier, sets of “true viruses” (class 𝑦 = 	1) and “true GTAs” (class 𝑦 = 	−1) were 129 

constructed separately for each RcGTA-like gene g. To identify the representatives of “true viruses”, 130 

amino acid sequences of 17 genes from the RcGTA head-tail cluster were used as queries in BLASTP (E-131 
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 7 

value < 0.001; query and subject overlap by at least 60% of their length) and PSI-BLASTP searches (E-132 

value < 0.001; query and subject overlap by at least 40% of their length; maximum of six iterations) of 133 

the viral RefSeq database release 90 (last accessed in November 2018; accession numbers of the viral 134 

entries are provided in Supplementary Table S2). BLASTP and PSI-BLAST executables were from the 135 

BLAST v. 2.6.0+ package (Altschul et al. 1997) . The obtained homologs are listed in Supplementary 136 

Table S3. Due to few or no viral homologs for some of the queries, the final training sets Tg were limited 137 

to 11 out of 17 RcGTA-like head-tail cluster genes (g2, g3, g4, g5, g6, g8, g9, g12, g13, g14, g15; see 138 

Supplementary Table S1 for functional annotations of these genes). 139 

To identify the representatives of “true GTAs”, amino acid sequences of 17 genes from the 140 

RcGTA head-tail cluster (Lang et al., 2017) were used as queries in BLASTP (E-value < 0.001; query and 141 

subject overlap by at least 60% of their length) and PSI-BLAST searches (E-value < 0.001; query and 142 

subject overlap by at least 40% of their length; maximum of six iterations) of the 235 complete 143 

alphaprotebacterial genomes that were available in the RefSeq database by January 2014 144 

(Supplementary Table S4). For each genome, the retrieved homologs were designated as an RcGTA-like 145 

head-tail cluster if at least 9 of the homologs had no more than 5,000 base pairs between any two adjacent 146 

genes. The maximum distance cutoff was based on the observed distances between the neighboring 147 

RcGTA head-tail cluster genes. This assignment was determined by clustering of the obtained homologs 148 

with the DBSCAN algorithm (Ester et al. 1996) using an in-house Python script (available in a GitHub 149 

repository; see “Software Implementation” section below). The resulting set of 88 “true GTAs” is 150 

provided in Supplementary Table S5. 151 

Since GTA functionality has been extensively studied only in Rhodobacter capsulatus SB1003 152 

(Lang et al. 2017) and horizontal gene transfer likely occurred multiple times between the putative GTAs 153 

and bacterial viruses (Hynes et al. 2016; Zhan et al. 2016), the bacterial homologs that were too divergent 154 

from other bacterial RcGTA-like homologs were eliminated from the training sets to reduce possible 155 

noise in classification. To do so, for each of the 11 trainings sets 𝑇,, all detected viral and bacterial 156 
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 8 

homologs were aligned using MUSCLE v3.8.31 (Edgar 2004) and then pairwise phylogenetic distances 157 

were estimated under PROTGAMMAJTT substitution model using RAxML version 8.2.11 (Stamatakis 158 

2014). For each bacterial homolog in a set 𝑇,, the pairwise phylogenetic distances between it and all 159 

other bacterial homologs were averaged. This average distance was defined as an outlier distance (𝑜) if it 160 

satisfied the inequality: 161 

𝑜 > 	𝑄` + 1.5 ∗ (𝑄` − 𝑄.)	(𝑒𝑞. 4) 162 

where 𝑄. and 𝑄` are the first and third quartiles, respectively, of the distribution of the average distances 163 

for all bacterial homologs in the training set 𝑇,. If an outlier distance was greater than the shortest 164 

distance from it to a viral homolog in the set 𝑇,, the bacterial homolog was removed from the dataset. 165 

The alignments, list of removed sequences and the associated calculations are available in the FigShare 166 

repository. 167 

Additionally, for each gene g, the sequences that had the same RefSeq ID (and therefore 100% 168 

amino acid identity) were removed from the training data sets. The final number of sequences in each 169 

training dataset are listed in Table 1. 170 

Assignment of weights to the training set sequences 171 

Highly similar training sequences can have an increased influence on the position of the 172 

hyperplane, as misclassification of two or more similar sequences can be considered less optimal than 173 

misclassification of only one sequence. To reduce such bias, a weighting scheme was introduced into the 174 

soft-margin of the SVM classifier during training. First, sequences in each training set 𝑇, = {𝑇., … , 𝑇1} 175 

were aligned in MUSCLE v3.8.31 (Edgar 2004) (The alignments are available in the FigShare 176 

repository). For each pair of sequences in a training set 𝑇,, phylogenetic distances were calculated in 177 

RAxML version 8.2.11 (Stamatakis 2014) under the best substitution model (PROTGAMMAAUTO; the 178 

selected substitution matrices are listed in the Supplementary Table S6). The farthest-neighbor 179 
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 9 

hierarchical clustering method was used to group sequences with distances below a specified threshold t. 180 

Weight 𝑑4 of each sequence in a group was defined as a reciprocal of the number of genes in the group. 181 

These weights are used to adjust the cost of misclassification by multiplying 𝐶44 for each sequence 𝑇4 by 182 

𝑑4. The most suitable value of 𝑡 was determined empirically during cross-validation, as described in the 183 

“Model training, cross validation, and assessment” section below. 184 

Generation of sequence features 185 

To use amino acid sequences in the SVM classifier, each sequence was transformed to an n-186 

dimensional vector of compositional features. Three metrics that capture different aspects of sequence 187 

composition were implemented: frequencies of “words” of size k (k-mers), pseudo amino-acid 188 

composition (PseAAC), and physicochemical properties of amino acids. 189 

In the first feature type, amino acid sequence of a gene is broken into a set of overlapping 190 

subsequences of size k, and frequencies of these n unique k-mers form a feature vector 𝒙. Values of k 191 

equal to 2, 3, 4, 5 and 6 were evaluated for prediction accuracy (see the “Model training, cross 192 

validation, and assessment” section below). 193 

The second feature type, pseAAC, has n=(20+l) dimensions and takes into account frequencies 194 

of 20 amino acids, as well as correlations of hydrophobicity, hydrophilicity and side-chain mass of amino 195 

acids that are l positions apart in the sequence of the gene (after (Chou 2001)), More precisely, PseAAC 196 

feature set 𝒙 of a sequence of length 𝐿 consisting of amino acids R1R2…RL is defined as follows: 197 

𝑥4 = 	

⎩
⎨

⎧
𝑟4

∑ 𝑟4 + 𝜔∑ 𝑠kl
k@. 	;m

4@.
,												𝑖𝑓	1 ≤ 𝑖 ≤ 20,

𝜔𝑠Un;m
∑ 𝑟4 + 𝜔	∑ 𝑠kl

k@.
;m
4@.

,						𝑖𝑓	21 ≤ 𝑗 ≤ 20 + 	𝜆
									(𝑒𝑞. 5) 198 
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where 𝑟4 is the frequency of the i-th amino acid (out of 20 possible), 𝜔 is a weight constant for the 199 

order effect that was set to 0.05, and 𝑠k (k = 1, …, l) are sequence order-correlation factors. These factors 200 

are defined as 201 

𝑠k = 	
1

𝐿 − 𝑘	
> 𝐽4,4sk

tnk

4@.

		(𝑒𝑞. 6) 202 

where 203 

𝐽4,U =
1
3
	vw𝐻1(𝑅𝑗) − 	𝐻1(𝑅𝑖)z2

	
+	w𝐻2(𝑅𝑗) − 	𝐻2(𝑅𝑖)z2

	
+	w𝑀(𝑅𝑗) − 	𝑀(𝑅𝑖)z2|					(𝑒𝑞. 7) 204 

and 𝐻.(𝑅4), 𝐻;(𝑅4), and 𝑀(𝑅4) denote the hydrophobicity, hydrophilicity, and side-chain mass of amino 205 

acid 𝑅4, respectively. The 𝐻.(𝑅4), 𝐻;(𝑅4), and 𝑀(𝑅4) scores were subjected to a conversion as described 206 

in the following equation: 207 

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧
𝐻.(𝑖) = 	

𝐻.m(𝑖) − ∑
𝐻.m(𝑖)
20

;m
4@.

�∑ �𝐻.m(𝑖) − ∑
𝐻.m(𝑖)
20

;m
4@. �

;
;m
4@.

20

																					

𝐻;(𝑖) = 	
𝐻;m(𝑖) − ∑

𝐻;m(𝑖)
20

;m
4@.

�∑ �𝐻;m(𝑖) − ∑
𝐻;m(𝑖)
20

;m
4@. �

;
;m
4@.

20

							(𝑒𝑞. 8)

𝑀(𝑖) =
𝑀m(𝑖) − ∑ 𝑀m(𝑖)

20
;m
4@.

�∑ �𝑀m(𝑖) − ∑ 𝑀m(𝑖)
20

;m
4@. �

;	
;m
4@.

20

																						

, 208 
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where 𝐻.m(𝑖) is the original hydrophobicity value of the 𝑖 − 𝑡ℎ amino acid, 𝐻;m(𝑖) is hydrophilicity value, 209 

and 𝑀m(𝑖) is the mass of its side chain. Values of l equal to 3 and 6 were evaluated for prediction 210 

accuracy (see the “Model training, cross validation, and assessment” section below). 211 

The third feature type relies on classification of amino acids into 19 overlapping classes of 212 

physicochemical properties (Supplementary Table S7; after (Kaundal et al. 2013)). For a given 213 

sequence, each of its encoded amino acids was counted towards one of the 19 classes, and the overall 214 

scores for each class were normalized by the length of the sequence to form n = 19-dimensional feature 215 

vector x. 216 

Model training, cross validation, and assessment 217 

For each GTA gene, parameter, and feature type, the accuracy of the classifier was evaluated 218 

using a five-fold cross-validation scheme, in which a dataset was randomly divided into five different 219 

sub-samples. Four parts were combined to form the training set, while the fifth part was used as the 220 

validation set and its SVM-assigned classifications compared to the known classes. This step was 221 

repeated five times, so that every set was tested as a known class at least once. Results were evaluated by 222 

their accuracy scores, defined as the number of correctly classified genes divided by the total number of 223 

genes that were tested. The cross-validation procedure was repeated ten times to reduce the partitioning 224 

bias, and the generated results were averaged to get the final assessment. Accuracy scores were weighted, 225 

to ensure that “GTA” and “Virus” classes had equal impact, regardless of the size of each class. The most 226 

suitable “softness” of the SVM margin was determined by trying all possible combinations of several raw 227 

diagonal values of the matrix 𝑪 (0.01, 0.1, 1, 100, 10000) and the threshold t (0, 0.01, 0.02, 0.03, 0.04, 228 

0.05, 0.1). The set of parameters and features that resulted in the highest weighted accuracy was defined 229 

as the optimal set for a gene g. If multiple parameter and feature sets resulted in the highest weighted 230 

accuracy, we applied the following parameter selection criteria, in the priority order listed, until only one 231 

parameter set was left: first, we selected parameter set(s) with k-mer size that on average performed better 232 
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than other k-mer sizes; second, we avoided parameter set(s) that included PseAAC and physicochemical 233 

composition features; third, we selected parameter set(s) with the value of 𝑪 that gives the highest average 234 

accuracy across the remaining parameter sets; and finally, we opted for the parameter set with the value of 235 

t that also gives the highest average accuracy across the remaining parameter sets. 236 

Selection of alphaproteobacterial genomes for testing the presence of RcGTA-like genes 237 

From the alphaproteobacterial genomes deposited to the RefSeq database between January 2014 238 

and January 2019, we selected 636 complete and 789 high-quality draft genomes, with the latter defined 239 

as genome assemblies with N50 length >400 kbp. The taxonomy of each genome was assigned using the 240 

GTDB-Tk toolkit (Parks et al. 2018). The GTDB assignment is based on the combination of Average 241 

Nucleotide Identity (Jain et al. 2018) and phylogenetic placement on the reference tree (as implemented in 242 

the pplacer program (Matsen et al. 2010)). Three of the 1,425 genomes could not be reliably placed into a 243 

known alphaproteobacterial order, and hence were left unclassified. Two of the 1,425 genomes were 244 

removed from further analyses due to their classification outside of the Alphaproteobacteria class, 245 

resulting in 635 complete and 788 high-quality genomes in our dataset (Supplementary Table S8). 246 

Detection of RcGTA-like genes and head-tail clusters in Alphaproteobacteria 247 

The compiled training datasets of the RcGTA-like genes (see the “SVM training data” section) 248 

were used as queries in BLASTP (E-value < 0.001; query and subject overlap by at least 60% of their 249 

length) searches of amino acid sequences of all annotated genes from the 1,423 alphaproteobacterial 250 

genomes. Acquired homologs of unknown affiliation (sequences u) were then assigned to either “GTA” or 251 

“virus” category by running the SVM classifier with the identified optimal parameters for each gene g 252 

(Table 2). 253 

The proximity of the individually predicted RcGTA-like genes in each genome was evaluated by 254 

running the DBSCAN algorithm (Ester et al. 1996) implemented in an in-house Python script (available 255 
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in a GitHub repository; see “Software Implementation” section below). The retrieved homologs were 256 

designated as an RcGTA-like head-tail cluster if at least 6 of the RcGTA-like genes had no more than 257 

8,000 base pairs between any two adjacent genes. The maximum distance cutoff was increased from the 258 

5,000 base pairs used for the clustering of homologs in the training datasets (see “SVM Training Data” 259 

section) because the SVM classifier evaluates only 11 of the 17 RcGTA-like head-tail cluster homologs 260 

and therefore the distances between some of the identified RcGTA-like genes can be larger. 261 

To reduce the bias arising from the overrepresentation of particular taxa in the estimation of the RcGTA-262 

like cluster abundance in Alphaproteobacteria, the 1,423 genomes were grouped into Operational 263 

Taxonomic Units (OTUs) by computing pairwise Average Nucleotide Identity (ANI) using the FastANI 264 

v1.1 program (Jain et al. 2018) and defining boundaries between OTUs at the 95% threshold. Since not all 265 

OTUs consist uniformly of genomes that were either all with or all without the RcGTA-like clusters, each 266 

RcGTA-like cluster in an OTU was assigned a weight of “1/[number of genomes in an OTU]”. The 267 

abundance of the RcGTA-like clusters in different alphaproteobacterial orders was corrected by summing 268 

up the weighted numbers of RcGTA-like clusters.  269 

Software Implementation 270 

The above described SVM classifier, generation of sequence features, and preparation and 271 

weighting of training data are implemented in a Python program called “GTA-Hunter”. The source code 272 

of the program is available via GitHub at https://github.com/ecg-lab/GTA-Hunter-v1. The repository also 273 

contains training data for the detection of the RcGTA-like heat-tail cluster genes, examples of how to run 274 

the GTA-Hunter, and the script for clustering of the detected RcGTA-like genes using the DBSCAN 275 

algorithm. 276 
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Assessment of prevalence of the RcGTA-like clusters among putative prophages 277 

Putative prophages in the 1,423 alphaproteobacterial genomes were predicted using the 278 

PHASTER web server (Arndt et al. (2016); accessed in January, 2019). Only predicted prophages with 279 

the PHASTER score >90 (i.e., classified as “intact” prophages) were used in further analyses. The 280 

proportion of the predicted prophages classified by the GTA-Hunter as “GTA”s was calculated by 281 

comparing the overlap between the genomic locations of the predicted prophages and the putative 282 

RcGTA-like regions. 283 

Construction of the alphaproteobacterial reference phylogeny 284 

From the set of 120 phylogenetically informative proteins (Parks et al. 2017), 83 protein families 285 

that are present in a single copy in >95% of 1,423 alphaproteobacterial genomes were extracted using 286 

hmmsearch (E-value < 10-7) via modified AMPHORA2 scripts (Wu and Scott 2012) (Supplementary 287 

Table S9). For each protein family, homologs from Escherichia coli str. K12 substr. DH10B and 288 

Pseudomonas aeruginosa PAO1 genomes (also retrieved using hmmsearch, as described above) were 289 

added to be used as an outgroup in the reconstructed phylogeny. The amino acid sequences of each 290 

protein family were aligned using MUSCLE v3.8.31 (Edgar 2004). Individual alignments were 291 

concatenated, keeping each alignment as a separate partition in further phylogenetic analyses (Chernomor 292 

et al. 2016). The most suitable substitution model for each partition was selected using 293 

ProteinModelSelection.pl script downloaded from https://github.com/stamatak/standard-294 

RAxML/tree/master/usefulScripts. Gamma distribution with 4 categories was used to account for rate 295 

heterogeneity among sites (Yang 1994). The maximum likelihood phylogenetic tree was reconstructed 296 

with IQ-TREE v 1.6.7 (Nguyen et al. 2014). One thousand ultrafast bootstrap replicates were used to get 297 

support values for each branch (Hoang et al. 2017; Minh et al. 2013). The concatenated sequence 298 

alignment in PHYLIP format and the reconstructed phylogenetic tree in Newick format are available in 299 

the FigShare repository. 300 
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Examination of conditions associated with the decreased fitness of the knock-out mutants 301 

of the RcGTA-like head-tail cluster genes 302 

From the three genomes that are known to contain RcGTA-like clusters (Caulobacter crescentus 303 

NA100, Dinoroseobacter shibae DFL-12, and Phaeobacter inhibens BS107), fitness experiments data 304 

associated with the knock-out mutants of the RcGTA-like head-tail cluster genes were retrieved from the 305 

Fitness Browser (Price et al. (2018); accessed in May, 2019 via http://fit.genomics.lbl.gov/cgi-306 

bin/myFrontPage.cgi). Price et al. (2018) defined gene fitness as the log2 change in abundance of knock-307 

out mutants in that gene during the experiment. For our analyses, the significantly decreased fitness of 308 

each mutant was defined as a deviation from the fitness of 0 with a |𝑡 − 𝑠𝑐𝑜𝑟𝑒| ≥ 4. The conditions 309 

associated with the significantly decreased fitness were compared across the RcGTA-like head-tail cluster 310 

genes in all three genomes. 311 

Results 312 

GTA-Hunter is an effective way to distinguish RcGTA-like genes from their viral homologs 313 

The performance of the developed SVM classifier depends on values of parameters that 314 

determine type and composition of sequence features, specify acceptable levels of misclassification, and 315 

account for biases in taxonomic representation of the sequences in the training sets. To find the most 316 

effective set of parameters, for each of the 11 RcGTA-like head-tail genes with the sufficient number of 317 

homologs available (Figure 1; also, see Materials and Methods for details) we evaluated the 318 

performance of 1,225 different combinations of the parameters using a cross-validation technique 319 

(Supplementary Table S10). 320 

Generally, the classifiers that only use k-mers as the feature have higher median accuracies than 321 

the classifiers that solely rely either on physicochemical properties of amino acids or on pseudo amino 322 
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acid composition (PseAAC) (Supplementary Figure S2 and Supplementary Table S10), indicating that 323 

the conservation of specific amino acids blocks is important in delineation of RcGTA-like genes from 324 

their viral counterparts. However, the accuracies are lower for the larger k-mer sizes (Supplementary 325 

Figure S2), likely due to the feature vectors becoming too sparse. Consequently, parameter combinations 326 

with values of k above 6 were not used. The lowest observed weighted accuracies involve usage of 327 

physicochemical properties of proteins as a feature (Supplementary Figure S2 and Supplementary 328 

Table S10), suggesting the conservation of physicochemical properties of amino acids among proteins of 329 

similar function in viruses and RcGTA-like regions despite their differences in the amino acid 330 

composition. The more sophisticated re-coding of physicochemical properties of amino acids as the 331 

PseAAC feature performs better, but for all genes its performance is worse than the best-performing k-332 

mer (Supplementary Figure S2 and Supplementary Table S10). 333 

For several genes, the maximum weighted accuracy was obtained with multiple combinations of 334 

features and parameter values (Supplementary Table S10). Based on the above-described observations 335 

of the performance of individual features, we preferred parameter sets that did not include PseAAC and 336 

physicochemical composition features, and selected k-mer size that on average performed better than 337 

other k-mer sizes (see Materials and Methods for the full description of the parameter selection 338 

procedure).  339 

For individual genes, the maximum achieved weighted accuracy ranges from 95.6 to 100% 340 

(Table 2), with 5 out of 11 genes reaching 100% prediction accuracy. The two genes with the maximum 341 

weighted accuracy below 99% (g6 and g12) also have the smallest number of viral homologs available for 342 

training, which is a likely cause for the reduced classifier efficacy. Additionally, several viral homologs in 343 

the training datasets for g6 and g12 genes have smaller phylogenetic distances to “true GTA” homologs 344 

than to other “true virus” homologs (Supplementary Table S11). As a result, due to the unequal sizes of 345 

“true virus” and “true GTA” datasets (Table 1) and the usage of weighted accuracies to correct for that, 346 
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the SVM classifier based on the best set of parameters (Table 2) erroneously classifies some of the 347 

RcGTA-like g6 and g12 genes (Supplementary Table S10). 348 

For each gene, the identified most accurate parameter set (Table 2) was used to classify homologs 349 

of the RcGTA genes in the 1,423 alphaproteobacterial genomes (Supplementary Table S8). 350 

GTA-Hunter predicts abundance of RcGTA-like head-tail clusters in Alphaproteobacteria 351 

The 1,423 examined alphaproteobacterial genomes contain 7,717 homologs of the 11 RcGTA 352 

genes. The GTA-Hunter classified 6,045 of these homologs as “GTA” genes (Supplementary Table 353 

S12). From this analysis alone, however, we do not know if these putative GTA genes are located in the 354 

same neighborhood in a genome. Although in the Rhodobacter capsulatus genome the genes encoding 355 

RcGTA are distributed across at least 5 loci, the head-tail cluster genes are found in one locus (Hynes et 356 

al. 2016). Therefore, in our analyses we imposed an extra requirement of the predicted RcGTA-like head-357 

tail cluster genes to be in proximity on the chromosome. Additionally, since there is at least one known 358 

case of horizontal gene transfer of GTA genes into a virus (Zhan et al. 2016), we also required the putative 359 

RcGTA-like cluster to consist of at least 6 of the 11 tested genes. This procedure revealed that RcGTA-360 

like clusters are present in one (and only one) copy in 818 of the 1,423 (~57.5%) examined 361 

alphaproteobacterial genomes (Supplementary Table S13 and Table 3). Uneven taxonomic 362 

representation of Alphaproteobacteria among the analyzed genomes may inflate this estimation of the 363 

abundance of the GTA-harboring genomes within the class. To correct for this potential bias, 1,423 364 

genomes were grouped into 797 Operational Taxonomic Units (OTUs) based on the average nucleotide 365 

identity (ANI) of their genomes (Supplementary Table S14). Although indeed some taxonomic groups 366 

are overrepresented in the set of 1,423 genomes, in 450 of the 797 OTUs (56.4%) all OTU members 367 

contain the putative RcGTA-like clusters (Supplementary Table S14). 368 
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RcGTA-like clusters are widely distributed within a large sub-clade of Alphaproteobacteria 369 

The 818 genomes with the RcGTA-like gene clusters detected in this study are not evenly 370 

distributed across the class (Table 3), but are found only in a clade that includes seven orders (clade 4 in 371 

Figure 3). Overall, 66% of the examined OTUs within the clade 4 are predicted to have an RcGTA-like 372 

cluster (Table 3). RcGTA-like clusters are most abundant in clade 6 (Figure 3), a group that consists of 373 

the orders Rhodobacterales and Caulobacterales (Table 3).  374 

Although the two unclassified orders that contain RcGTA-like clusters are represented by only 375 

two genomes (clades 2 and 3 in Figure 3), their position on the phylogenetic tree of Alphaproteobacteria 376 

suggests that the RcGTA-like element may have originated earlier than was proposed by Shakya et al. 377 

(2017) (clade 5 on Figure 3). Given that RcGTA-like head-tail cluster genes are readily detectable in viral 378 

genomes, it is unlikely that the RcGTA-like clusters remained completely undetectable in the examined 379 

genomes outside of the clade 4 due to the sequence divergence. Therefore, an RcGTA-like element was 380 

unlikely to be present in the last common ancestor of all Alphaproteobacteria (clade 7 on Figure 3), 381 

which was suggested when only a limited number of genomic data was available (Lang and Beatty 2007). 382 

Most of the detected RcGTA-like clusters can be mistaken for prophages 383 

Among the 818 detected RcGTA-like clusters, the functional annotations of the 11 examined 384 

genes were similar to the prophages and none of them refer to a “gene transfer agent” (data not shown). 385 

Since at least 11 of the 17 RcGTA head-tail cluster genes have detectable sequence similarity to viral 386 

genes (Supplementary Table S3), it is likely that, if not recognized as GTAs, many of the putative 387 

RcGTA-like clusters will be designated as “prophages” in genome-wide searches of prophage-like 388 

regions. Indeed, of the 1,235 ‘intact’ prophage regions (see Materials and Methods for definition) 389 

predicted in the clade 4 genomes, 664 (54%) coincide with the RcGTA-like clusters (Figure 4). 390 

Conversely, 664 out of 818 of the predicted RcGTA-like clusters (81%) are classified as intact prophages. 391 
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Of the 351 RcGTA-like clusters that contain all 11 examined genes, 323 (92%) are classified as intact 392 

prophages.  393 

Interestingly, within 818 genomes that contain RcGTA-like clusters, the average number of 394 

predicted intact prophages is 1.23 per genome (Figure 5), which is significantly higher than 0.51 395 

prophages per genome in genomes not predicted to contain RcGTA-like clusters (p-value < 0.22 * 10-17; 396 

Mann-Whitney U test). If the 664 RcGTA-like regions classified as intact prophages are removed from 397 

the genomes that contain them, the average number of predicted ‘intact’ prophages per genome drops to 398 

0.42 (Figure 5) and the difference becomes insignificant (p-value = 0.1492; Mann-Whitney U test). This 399 

analysis suggests that an elevated number of the observed predicted prophage-like regions in some 400 

alphaproteobacterial genomes may be due to the presence of unrecognized RcGTA-like elements. 401 

 402 

Discussion 403 

Our study demonstrates that RcGTA-like and bona fide viral homologs can be clearly separated 404 

from each other using a machine learning approach. The highest accuracy of the classifier is achieved 405 

when it primarily relies on short amino acid k-mers present in the examined genes. This suggests that the 406 

distinct primary amino acid composition of the RcGTA-like and truly viral proteins is what allows the 407 

separation of the two classes of elements (Figure 1). However, the cause of the amino acid preferences of 408 

the RcGTA-like genes, and especially enrichment of the encoded proteins in alanine and glycine amino 409 

acids (Figure 1), remains unknown. Given the structure of the genetic code, the skewed amino acid 410 

composition may be the driving force behind the earlier described significantly higher %G+C of the 411 

genomic region encoding the RcGTA-like head-tail cluster than the average %G+C in the host genome 412 

(Shakya et al. 2017). Regardless of the cause of the skewed amino acid composition, the successful 413 

identification of RcGTA-like elements in alphaproteobacterial taxa only distantly related to Rhodobacter 414 
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capsulatus (clade 4 in Figure 3) suggests that the selection to maintain these elements likely extends 415 

beyond the Rhodobacterales order. 416 

However, the benefits associated with the GTA production that would underly the selection to 417 

maintain them remain unknown. In a recently published high-throughput screen for phenotypes associated 418 

with specific genes (Price et al. 2018), knockout of the RcGTA-like genes in the three genomes that 419 

encode the RcGTA-like elements resulted in decreased fitness of the mutants (in comparison to the wild 420 

type) under some of the tested conditions (Supplementary Table S15). Interestingly, the conditions 421 

associated with the most statistically significant decreases in fitness correspond to the growth on non-422 

glucose sugars, such as D-Raffinose, β-Lactose, D-Xylose and m-Inositol. Overall, carbon source 423 

utilization is the most common condition that elicits statistically significant fitness decreases in the 424 

mutants. The RcGTA production was also experimentally demonstrated to be stimulated by carbon 425 

depletion (Westbye et al. 2017). Further experimental work is needed to identify the link between the 426 

RcGTA-like genes expression and carbon utilization. Conversely, absence of the RcGTA-like elements in 427 

some of the clade 4 genomes (Figure 3) indicates that in some ecological settings RcGTA-like elements 428 

are either deleterious or “useless” and thus their genes were either purged from the host genomes (if 429 

RcGTA-like element evolution is dominated by vertical inheritance) or not acquired (if horizontal gene 430 

transfer plays a role in the RcGTA-like element dissemination). 431 

Previous analyses inferred that RcGTA-like elements had evolved primarily vertically, with few 432 

horizontal gene exchanges between closely related taxa (Hynes et al. 2016; Lang and Beatty 2007; 433 

Shakya et al. 2017). Under this hypothesis, the distribution of the RcGTA-like head-tail clusters in 434 

alphaproteobacterial genomes suggests that RcGTA-like element originated prior to the last common 435 

ancestor of the taxa in clade 4 (Figure 3). This places the origin of the RcGTA-like element to even 436 

earlier timepoint than the one proposed in Shakya et al. (2017). However, it should be noted that our 437 

inference is sensitive to the correctness of the inferred relationships of taxa within the 438 

alphaproteobacterial class, which remain to be disputed due to compositional biases and unequal rates of 439 
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evolution of some alphaproteobacterial lineages (Munoz-Gomez et al. 2019). The most recent 440 

phylogenetic inference that takes into account these heterogeneities (Munoz-Gomez et al. 2019) is 441 

different from the reference phylogeny shown in Figure 3. Relevant to the evolution of RcGTA-like 442 

elements, on the phylogeny in Munoz-Gomez et al.( 2019) the order Pelagibacterales is located within the 443 

clade 4 instead of being one of the early-branching alphaproteobacterial orders (Figure 3). No RcGTA-444 

like clusters were detected in Pelagibacterales, although in our analyses the order is represented by only 445 

five genomes. Better sampling of genomes within this order would be needed either to show a loss of the 446 

RcGTA-like element in this order or to re-assess the hypothesis about origin and transmission of the 447 

RcGTA-like elements within Alphaproteobacteria. 448 

Genes in the detected RcGTA-like head-tail clusters remain mainly unannotated as “gene transfer 449 

agents” in GenBank records, and therefore they can be easily confused with prophages. For example, 450 

recently described “conserved prophage” in Sphingomonadales (Viswanathan et al. 2017) is predicted to 451 

be an RcGTA-like element by GTA-Hunter. Incorporation of a GTA-Hunter-like machine learning 452 

classification into an automated genome annotation pipeline will help improve quality of the gene 453 

annotations in GenBank records and facilitate discovery of GTA-like elements in other taxa. Moreover, 454 

application of the presented GTA-Hunter program is not limited to the detection of the RcGTA-like 455 

elements. With appropriate training datasets, the program can be applied to the detection of GTAs that do 456 

not share evolutionary history with the RcGTA (Lang et al. 2017) and of other elements that are 457 

homologous to viruses or viral sub-structures, such as type VI secretion system (Leiman et al. 2009), 458 

encapsulins (Giessen and Silver 2017). 459 

 460 
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 465 

Tables 466 

Table 1. Number of the RcGTA homologs in the “true GTA” and “true virus” training datasets. 467 

Gene “true GTAs” “true viruses” 
g2 69 1646 
g3 65 769 
g4 62 465 
g5 67 627 
g6 61 19 
g8 62 96 
g9 66 61 
g12 63 12 
g13 73 57 
g14 67 124 
g15 67 155 

  468 
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Table 2. The combinations of features and parameters that showed the highest accuracy in cross-469 

validation. The listed parameter sets were used in predictions of the RcGTA-like genes in 1,423 470 

alphaproteobacterial genomes. See Materials and Methods for the procedure on selecting one parameter 471 

set in the cases where multiple parameter sets had the same highest accuracy. 472 

 473 

1 throughout the table, “-“ denotes that the feature type was not used 474 

  475 

Gene Accuracy 
(%) 

k-mer (size) PseAAC 
(value of λ) 

Grouping based on 
physicochemical 
properties of amino 
acids 

C T 

g2 100 2 -1 - 10000 0.02 
g3 100 3 - - 10000 0.02 
g4 100 3 3 - 10000 0.02 
g5 100 3 - - 100 0.02 
g6 95.9 4 - + 0.1 0.02 
g8 99.4 2 3 - 0.1 0.03 
g9 100 2 - - 100 0.1 
g12 95.6 5 - - 10000 0.05 
g13 99.1 2 - - 100 0 
g14 99.6 6 6 - 0.01 0.03 
g15 99.7 2 - - 10000 0.02 
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Table 3. Distribution of prophages and RcGTA-like elements across different orders within class 476 

Alphaproteobacteria. 477 

Order Number 
of 
genomes 

Number of 
prophages 

Number 
of 
RcGTA-
like 
clusters 

Number 
of OTUs 

Corrected 
abundance 
of RcGTA-
like 
clusters1 

Percentage 
of OTUs that 
have 
RcGTA-like 
clusters 

Acetobacterales 62 34 0 34 0 0 
Azospirillales 13 10 0 12 0 0 
Caedibacterales 1 0 0 1 0 0 
Caulobacterales 50 30 39 45 35 78 
Elsterales 1 0 0 1 0 0 
Kiloniellales 5 1 0 3 0 0 
Oceanibaculales 2 1 0 2 0 0 
Paracaedibacterales 1 2 0 1 0 0 
Parvibaculales 5 5 2 5 2 40 
Pelagibacterales 5 0 0 5 0 0 
Rhizobiales 730 763 435 300 155 52 
Rhodobacterales 241 318 208 174 150 86 
Rhodospirillales 24 10 0 15 0 0 
Rickettsiales 70 18 0 24 0 0 
Sneathiellales 2 1 0 2 0 0 
Sphingomonadales 207 115 132 169 110 65 
Thalassobaculales 1 0 0 1 0 0 
Unclassified order 1 1 0 0 1 0 0 
Unclassified order 2 1 2 1 1 1 100 
Unclassified order 3 1 2 1 1 1 100 

1 See “Detection of RcGTA-like genes and head-tail clusters in Alphaproteobacteria” subsection of 478 

the Materials and Methods for explanation about the correction. 479 

  480 
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Figure Legends 481 

Figure 1. The ‘head-tail’ cluster of the Rhodobacter capsulatus GTA “genome” and the amino acid 482 

composition of viral and alphaproteobacterial homologs for some of its genes. Genes that are used in 483 

the machine learning classification are highlighted in grey. For those genes, the heatmap below a gene 484 

shows the relative abundance of each amino acid (rows) averaged across the RcGTA-like and viral 485 

homologs that were used in the classifier training (columns). The heatmaps of the amino acid composition 486 

in the individual homologs are shown in Supplementary Figure S1. 487 

 488 

Figure 2. The pseudocode of the SVM classifier algorithm that distinguishes RcGTA-like genes 489 

from the ‘true’ viruses. The algorithm is implemented in the GTA-Hunter software package (see 490 

“Software Implementation” section in Materials and Methods). 491 

 492 

Figure 3. Distribution of the detected RcGTA-like clusters across the class Alphaproteobacteria. 493 

The presence of RcGTA-like clusters is mapped to a reference phylogenetic tree that was reconstructed 494 

from a concatenated alignment of 83 marker genes (See Materials and Methods and Supplementary 495 

Table S9). The branches of the reference tree are collapsed at the taxonomic rank of “order”, and the 496 

number of OTUs within the collapsed clade is shown in parentheses next to the order name. Orange and 497 

brown bars depict the proportion of OTUs with and without the predicted RcGTA-like clusters, 498 

respectively. The orders that contain at least one OTU with an RcGTA-like cluster are colored in green. 499 

Nodes 1, 2 and 3 mark the last common ancestors of the unclassified orders. Node 4 marks the lineage 500 

where, based on this study, the RcGTA-like element should have already been present. Nodes 5 and 7 501 

mark the lineages that were previously inferred to represent last common ancestor of the RcGTA-like 502 

element by Shakya et al. (2017) and Lang and Beatty (2007), respectively. Node 6 marks the clade where 503 
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RcGTA-like elements are the most abundant. The tree is rooted using homologs from Escherichia coli str. 504 

K12 substr. DH10B and Pseudomonas aeruginosa PAO1 genomes. Branches with ultrafast bootstrap 505 

values >= 95% are marked with black circles. The scale bar shows the number of substitutions per site. 506 

The full reference tree is provided in the FigShare repository. 507 

 508 

Figure 4. An overlap between prophage and GTA predictions. The “predicted RcGTA-like clusters” 509 

set refers to the GTA-Hunter predictions, while the “predicted intact prophages” set denotes predictions 510 

made by the PHASTER program (Arndt et al. 2016) on the subset of the genomes that are found within 511 

clade 4 (Figure 3). 512 

 513 

Figure 5. The number of predicted ‘intact’ prophages in alphaproteobacterial genomes. The 1,423 514 

genomes were divided into two groups: those without GTA-Hunter-predicted RcGTA-like clusters (in 515 

brown) and those with these RcGTA-like clusters (in dark orange). For the latter group, the number of 516 

prophages was re-calculated after the RcGTA-like clusters that were designated as prophages were 517 

removed (in light orange). The distribution of the number of predicted intact prophages within each 518 

dataset is shown as a violin plot with the black point denoting the average value. The datasets with 519 

significantly different average values are denoted by asterisks (p < 0.001; Mann-Whitney U test).  520 

 521 

Supplementary Figure Legends and Table Captions 522 

Supplementary Figure S1. The amino acid composition of viral and alphaproteobacterial homologs of 523 

the 11 RcGTA genes. These homologs were used in the training and cross-validation of the SVM 524 

classifier. Each heatmap corresponds to one of the 11 genes (see Supplementary Table S1 for the 525 
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functional annotations of the genes). Each row in a heatmap corresponds to an individual homolog of the 526 

RcGTA gene. The homologs from viruses and alphaproteobacterial are separated by the black line and 527 

labeled as “True Virus” and “True GTA”, respectively. The heatmap shows the relative abundance of 528 

each amino acid within a homolog. 529 

 530 

Supplementary Figure S2. The weighted accuracies for different types of features. The boxplots for 531 

the three feature types are color coded. The data for five examined k-mer sizes (2, 3, 4, 5, 6) are shown 532 

from the left to the right on the graphs. Each boxplot shows a median value bounded by the first and third 533 

quartiles, and the whiskers depict a deviation that was calculated using the 1.5*InterQuartile Range rule. 534 

Outliers are shown as dots. 535 

 536 

Supplementary Table S1. Functional annotations of the 'head-tail' cluster genes of the Rhodobacter 537 

capsulatus gene transfer agent. 538 

 539 

Supplementary Table S2. List of the 7,995 viral assemblies used to find RcGTA homologs for the 540 

training datasets. 541 

 542 

Supplementary Table S3. List of 1,939 viruses with at least one detected RcGTA homolog. The data 543 

in the columns show the accession numbers of these homologs.  544 

 545 

Supplementary Table S4. List of 235 alphaproteobacterial genomes used to find large RcGTA-like 546 

clusters for the training datasets. 547 
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 548 

Supplementary Table S5. List of 88 alphaproteobacterial RcGTA-like clusters detected in 85 549 

genomes. The data in the columns show the accession numbers of these homologs. 550 

 551 

Supplementary Table S6. Selected substitution matrices that were used to generate pairwise 552 

phylogenetic distances within training datasets.  553 

 554 

Supplementary Table S7. Grouping of amino acids into classes based on their physicochemical 555 

properties (after Kaundal et al., 2013). 556 

 557 

Supplementary Table S8. List of 1,423 alphaproteobacterial genomes used for testing the presence 558 

of RcGTA-like genes. 559 

 560 

Supplementary Table S9. Information about 83 marker genes that were used to reconstruct 561 

reference phylogeny of Alphaproteobacteria. 562 

 563 

Supplementary Table S10. Summary of the classifier cross-validation. Results for each gene are 564 

shown in separate tabs. Each row represents one of the 1,225 tested combinations of the parameters 565 

(columns A-E), number of correctly classified homologs averaged across 10 replicates (columns F and G), 566 

and the overall weighted accuracy of the parameter combination (column H). When a feature was not 567 

used, the value of the parameter shown in columns A-C is set to 0.  568 

 569 
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Supplementary Table S11. Phylogenetic distances of the “truly viral” homologs of the genes g6 and 570 

g12 to “true GTAs” and to other “true viruses” in the training datasets. Data for the g6 and g12 571 

homologs are shown in separate tabs. Viral homologs that are more closely related to "true GTAs" than to 572 

other "true viruses" are highlighted in yellow. 573 

 574 

Supplementary Table S12. Summary of the alphaproteobacterial RcGTA homologs’ classification. 575 

 576 

Supplementary Table S13. Information about the 818 detected RcGTA-like clusters. Data in 577 

columns D-N correspond to the RefSeq accession numbers of the encoded proteins. 578 

 579 

Supplementary Table S14. Presence of the RcGTA-like clusters in the reconstructed 580 

alphaproteobacterial Operational Taxonomic Units (OTUs). 581 

 582 

Supplementary Table S15. Results of the fitness experiments with the knock-out mutants of the 583 

RcGTA-like head-tail cluster genes in three alphaproteobacterial genomes. The data was retrieved 584 

from the Fitness Browser (Price et al 2018). Each row corresponds to a separate experiment, in which the 585 

specified gene was knocked out (column B) and decreased fitness (columns E and F) was associated with 586 

a specific condition (column D). The conditions are classified into groups (column C). Rows 587 

corresponding to the “carbon source” group are highlighted in yellow. This group is the most common 588 

among the listed experiments and is found in experiments associated with each of the three genomes. For 589 

description of conditions, refer to the Fitness Browser (Price et al 2018). 590 

 591 
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Figure 1. The ‘head-tail’ cluster of the Rhodobacter capsulatus GTA “genome” and the amino acid composition of viral and alphaproteobacterial homologs for some of its genes. 
Genes that are used in the machine learning classification are highlighted in grey. For those genes, the heatmap below a gene shows the relative abundance of each amino acid (rows) 
averaged across the RcGTA-like and viral homologs that were used in the classifier training (columns). The heatmaps of the amino acid composition in the individual homologs are shown in 
Supplementary Figure S1.
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1: Let 𝑇  =   (𝑇1, . . . ,𝑇𝑚 ) be an array of training sequences 𝑇𝑖 , 1 ≤ 𝑖  ≤ 𝑚 

 2: Let 𝑋  = (𝑥𝑖) be the feature sets for genes 𝑇𝑖  ∈ 𝑇 

 3: Let 𝑌  =   (𝑦𝑖) be the classes for genes 𝑇𝑖  ∈  𝑇 

 4: Let 𝑊  =   (𝑑𝑖) be the weights for genes 𝑇𝑖  ∈  𝑇 

 5: Let 𝑦𝑖 = − 1 if 𝑇𝑖  is a GTA and 𝑦𝑖 = 1 if it is a virus 

6: Let 𝑄𝑈𝐴𝐷𝑃𝑅𝑂𝐺 be a quadratic programming solver

 7: procedure 𝑆𝑉𝑀𝑇𝑟𝑎𝑖𝑛(𝑇,𝐶) 

 8:  𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝐿𝑎𝑔𝑟𝑎𝑛𝑔𝑒 −  𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟𝑠  = 𝑄𝑈𝐴𝐷𝑃𝑅𝑂𝐺(𝑋,𝑌,𝐶 ∗ 𝑊)  

 9:  Let 𝑎𝑙𝑝ℎ𝑎𝑠  =   {𝛼𝑖 ∈ 𝐿𝑎𝑔𝑟𝑎𝑛𝑔𝑒 −  𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟𝑠  ∶  𝛼𝑖 > 10 − 5}   

10:  Let 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑣𝑒𝑐𝑡𝑜𝑟𝑠  =   {𝑇𝑖 ∈  𝐿𝑎𝑔𝑟𝑎𝑛𝑔𝑒 −  𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟𝑠  ∶  𝛼𝑖 > 10− 5 }  

11:  return 𝑎𝑙𝑝ℎ𝑎𝑠, 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 

12: end procedure 

13:  

14: Let 𝑢 be an unclassified gene, where 𝑥𝑢  is the feature set of 𝑢  

15: procedure 𝑆𝑉𝑀𝑃𝑟𝑒𝑑𝑖𝑐𝑡(𝑎𝑙𝑝ℎ𝑎𝑠, 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑣𝑒𝑐𝑡𝑜𝑟𝑠, 𝑥𝑢) 

16: Let 𝑠𝑐𝑜𝑟𝑒  =  0 

17:  for 𝛼𝑖 ∈  𝑎𝑙𝑝ℎ𝑎𝑠 𝑎𝑛𝑑 𝑇𝑖 ∈  𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 do 

18:  𝑠𝑐𝑜𝑟𝑒  = 𝑠𝑐𝑜𝑟𝑒  +  (𝛼𝑖 ∗  𝑦𝑖 ∗  𝐾(𝑥𝑖 ∗ 𝑥𝑢))  

19: end for 

20:  if 𝑠𝑐𝑜𝑟𝑒  <  0 then 

21: return “GTA”

22:  else 

23:  return “virus” 

24:  end if 

25: end procedure 

Figure 2. The pseudocode of the SVM classifier algorithm that distinguishes RcGTA-
like genes from the ‘true’ viruses. The algorithm is implemented in the GTA-Hunter 
software package.
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Figure 3. Distribution of the detected RcGTA-like clusters across the class Alphaproteobacteria. The presence of RcGTA-like clusters is mapped to a reference phylogenetic tree that was 
reconstructed from a concatenated alignment of 83 marker genes (See Materials and Methods and Supplementary Table S9). The branches of the reference tree are collapsed at the taxonomic 
rank of “order”, and the number of OTUs within the collapsed clade is shown in parentheses next to the order name. Orange and brown bars depict the proportion of OTUs with and without the 
predicted RcGTA-like clusters, respectively. The orders that contain at least one OTU with an RcGTA-like cluster are colored in green. Nodes 1, 2 and 3 mark the last common ancestors of the 
unclassified orders. Node 4 marks the lineage where, based on this study, the RcGTA-like element should have already been present. Nodes 5 and 7 mark the lineages that were previously 
inferred to represent last common ancestor of the RcGTA-like element by (Shakya et al. 2017) and (Lang and Beatty 2007), respectively. Node 6 marks the clade where RcGTA-like elements are 
the most abundant. The tree is rooted using homologs from Escherichia coli str. K12 substr. DH10B and Pseudomonas aeruginosa PAO1 genomes. Branches with ultrafast bootstrap values >= 
95% are marked with black circles. The scale bar shows the number of substitutions per site. The full reference tree is provided in the FigShare repository (see Materials and Methods).
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Figure 4. An overlap between prophage and GTA predictions. The “predicted RcGTA-like 
clusters” set refers to the GTA-Hunter predictions, while the “predicted intact prophages” set 
denotes predictions made by the PHASTER program (Arndt et al. 2016) on the subset of the 
genomes that are found within Clade 4 (Figure 3).
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Figure 5. The number of predicted ‘intact’ prophages in alphaproteobacterial genomes. 
The 1,423 genomes were divided into two groups: those without GTA-Hunter-predicted 
RcGTA-like clusters (in brown) and those with these RcGTA-like clusters (in dark orange). For 
the latter group, the number of prophages was re-calculated after the RcGTA-like clusters that 
were designated as prophages were removed (in light orange). The distribution of the number 
of predicted intact prophages within each dataset is shown as a violin plot with the black point 
denoting the average value. The datasets with significantly different average values are 
denoted by asterisks (p < 0.001; Mann-Whitney U test). 
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Supplementary Figure S1. The amino acid composition of viral and alphaproteobacterial homologs of the 11 RcGTA genes. These 
homologs were used in the training and cross-validation of the SVM classifier. Each heatmap corresponds to one of the 11 genes (see 
Supplementary Table S1 for the functional annotations of the genes). Each row in a heatmap corresponds to an individual homolog of the 
RcGTA gene. The homologs from viruses and alphaproteobacterial are separated by the black line and labeled as “True Virus” and “True 
GTA”, respectively. The heatmap shows the relative abundance of each amino acid within a homolog.
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Supplementary Figure S2. The weighted accuracies for different types of features. The boxplots for the three feature types are 
color coded. The data for five examined k-mer sizes (2, 3, 4, 5, 6) are shown from the left to the right on the graphs. Each boxplot 
shows a median value bounded by the first and third quartiles, and the whiskers depict a deviation that was calculated using the 
1.5*InterQuartile Range rule. Outliers are shown as dots.
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