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Abstract7

Transcriptomic structural variants (TSVs) — structural variants that affect expressed regions — are8

common, especially in cancer. Detecting TSVs is a challenging computational problem. Sample het-9

erogeneity (including differences between alleles in diploid organisms) is a critical confounding factor10

when identifying TSVs. To improve TSV detection in heterogeneous RNA-seq samples, we introduce11

the MULTIPLE COMPATIBLE ARRANGEMENT PROBLEM (MCAP), which seeks k genome rearrange-12

ments to maximize the number of reads that are concordant with at least one rearrangement. This directly13

models the situation of a heterogeneous or diploid sample. We prove that MCAP is NP-hard and provide14

a 1
4 -approximation algorithm for k = 1 and a 3

4 -approximation algorithm for the diploid case (k = 2)15

assuming an oracle for k = 1. Combining these, we obtain a 3
16 -approximation algorithm for MCAP16

when k = 2 (without an oracle). We also present an integer linear programming formulation for general17

k. We completely characterize the graph structures that require k > 1 to satisfy all edges and show18

such structures are prevalent in cancer samples. We evaluate our algorithms on 381 TCGA samples and19

2 cancer cell lines and show improved performance compared to the state-of-the-art TSV-calling tool,20

SQUID.21
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1 Introduction23

Transcriptomic structural variations (TSVs) are genomic structural variants (SVs) that disturb the transcrip-24

tome. TSVs may cause the joining of parts from different genes, which are fusion-gene events. Fusion genes25

are known for their association with various types of cancer. For example, the joint protein products of BCR-26

ABL1 genes are prevalently found in leukemia [4]. In addition to fusion genes, the joining of intergenic and27

genic regions, called non-fusion-gene events, are also related to cancer [22].28

TSV events are best studied with RNA-seq data. Although SVs are more often studied with whole genome29

sequencing (WGS) [2, 5, 9, 12, 18, 20], the models built on WGS data lack the flexibility to describe30

alternative splicing and differences in expression levels of transcripts affected by TSVs. In addition, RNA-31

seq data is far more common [14] than WGS data, for example, in The Cancer Genome Atlas (TCGA,32

https://cancergenome.nih.gov).33

Many methods have been proposed that identify fusion genes with RNA-seq data. Generally, these tools34

identify candidates of TSV events through investigation into read alignments that are inconsistent with the35

reference genome (e.g. [3, 10, 11, 15, 16, 21]). A series of filtering or scoring functions are applied on each36

TSV candidate to eliminate the errors in alignment or data preparation. The performance of filters often37

relies heavily on a large set of method parameters and requires prior annotation [13]. Furthermore, most of38

the fusion-gene detection methods limit the scope to the joining of protein-coding regions and ignore the39

joining of intergenic regions that could also affect the transcriptome. An approach that correctly models40

both fusion-gene and non-fusion-gene events without a large number of ad hoc assumptions is desired.41

An intuitive TSV model is the one that describes directly the rearrangement of the genome. For example,42

when an inversion happens, two double-strand breaks (DSB) are introduced to the genome and the segment43

between the DSBs is flipped. After a series of TSVs are applied to a genome, a rearranged genome is44

produced. In order to identify the TSVs, we can attempt to infer the rearranged genome from the original45

genome and keep track of the rearrangements of genome segments. Since a model of the complete genome is46

produced, both fusion-gene and non-fusion-gene events can be detected. A recently published TSV detection47

tool, SQUID [14], models TSV events in this way by determining a single rearrangement of a reference48

genome that can explain the maximum number of observed sequencing reads. SQUID finds one arrangement49
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of genome segments such that the total number of consistent read alignments is maximized. The originally50

discordant edges that are made consistent in the rearranged genome are output as predicted TSVs and the51

other discordant edges are regarded as sequencing or alignment errors.52

Despite the generally good performance of SQUID, it relies on the assumption that the sample is homo-53

geneous, i.e. the original genome contains only one allele that can be represented by a single rearranged54

string. This assumption is unrealistic in diploid (or high ploidy) organisms. When TSV events occur within55

the same regions on different alleles, the set of inconsistent read alignments may appear conflicting with56

each other if they are coerced to be on the same allele. Under the homogeneous assumption, conflicting57

TSV candidates are regarded as errors. Therefore, this assumption leads to discarding the conflicting TSV58

candidates that would be compatible on separate alleles and therefore limits the discovery of true TSVs.59

Conflicting SV candidates are addressed in a few SV detection tools such as VariationHunter-CR [9]. How-60

ever, VariationHunter-CR assumes a diploid genome, and its model is built for WGS data that lacks ability61

to handle RNA-seq data.62

We present an improved model of TSV events in heterogeneous contexts. We address the limitation of the63

homogeneous assumption by extending the assumption to k alleles. We introduce the MULTIPLE COMPAT-64

IBLE ARRANGEMENT PROBLEM (MCAP), which seeks, for a given k, an optimal set of k arrangements of65

segments from GSG such that number of consistent read alignments is maximized, where each arrangement66

describes the permutation of all segments and orientation of each segment. The originally discordant edges67

that are concordant in any of the k arrangements are predicted as TSVs, and those edges are regarded as68

errors otherwise. We show that MCAP is NP-hard. To address NP-hardness, we propose a 1
4 -approximation69

algorithm for the k = 1 case and a 3
4 -approximation solution to the k = 2 case using an oracle for k = 1.70

Combining these, we obtain a 3
16 -approximation algorithm for MCAP when k = 2 (without an oracle). We71

also present an integer linear programming (ILP) formulation that gives an optimal solution for general k.72

We completely characterize the patterns of reads that result in conflicting TSV candidates under a single-73

allele assumption. We show that these patterns are prevalent in both cancer cell lines and TCGA samples,74

thereby further motivating the importance of SV detection approaches that directly model heterogeneity.75

We apply our algorithms to 381 TCGA samples from 4 cancer types and show that many more TSVs can76

be identified under a diploid assumption compared to a haploid assumption. We also evaluate an exact ILP77
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formulation under a diploid assumption (D-SQUID) on previously annotated cancer cell lines HCC139578

and HCC1954, identifying several previously known and novel TSVs. We also show that, in most of the79

TCGA samples, the performance of the approximation algorithm is very close to optimal and the worst case80

of 3
16 -approximation is rare.81

2 The Genome Segment Graph (GSG)82

A Genome Segment Graph, similar to a splice graph [8], encodes relationships between genomic segments83

and a set of reads. We say a read alignment is consistent with the reference genome when the orientation84

of its two ends are consistent with the reference genome (e.g. 5′-to-3′ for the forward read and the reverse85

for the mate read in Illumina sequencing). A segmentation S of the genome is a partition of the genome86

into disjoint intervals according to consistent and inconsistent paired-end alignments with respect to the87

reference genome.88

Definition 1 (Genome Segment Graph). A genome segment graph is a weighted, undirected graph G =89

(V,E,w) derived from a segmentation S of the genome and a collection of reads. The vertex set, V =90

{sh ∈ S}
⋃
{st ∈ S}, includes a vertex for both endpoints, head (h) and tail (t), for each segment s ∈ S.91

The head of a segment is the end that is closer to the 5′ end of the original genome. The tail is the end that92

is close to the 3′ end. Pairs of reads that span more than one segment are represented by edges. There are93

four types of connections: head-head, head-tail, tail-head and tail-tail. Each edge e = (ui, vj) ∈ E, where94

i, j ∈ {h, t}, is undirected and connects endpoints of two segments. The weight (we ∈ w) is the number of95

read alignments that support edge e.96

We also define the weight of a subset E′ ⊆ E of edges w(E′) =
∑

e∈E′ we. (More details on the GSG97

provided in Ma et al. [14].)98

Definition 2 (Permutation and Orientation functions). A permutation function is a function where π(u) = i,99

where i is the index of segment u ∈ S in an ordering of a set S of segments. We also define orientation100

function f(u) = 1 if segment u should remain the original orientation, or 0 if it should be inverted.101

If π(u) < π(v), we say that segment u is closer to the 5′ end of the rearranged genome than segment v. We102

call a pair of permutation and orientation functions (π, f) an arrangement.103
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Definition 3 (Concordant and discordant edges). An edge e is concordant if it connects the right end of a104

segment si and the left end of a segment sj with π(si) < π(sj). Otherwise, e is discordant.105

A discordant edge represents a set of inconsistent read alignments. In other words, each discordant edge is106

a candidate TSV. Examples of tail-tail and head-head connections are shown in Figure 1a.107

Segments connected by discordant edges can be arranged to make the edge concordant by either flipping the108

segments or changing the ordering of the segments. For example, a head-head edge e′ = (uh, vh) can be109

made concordant by flipping u into −u, or by flipping v into −v and moving −v to the front of u (here, the110

negation of a segment denotes a segment flipped relative to the reference). Biologically, a flip represents an111

inversion and a change of ordering represents an insertion or translocation.112

3 The Multiple Compatible Arrangements Problem (MCAP)113

3.1 Problem Statement114

Given an input GSG G = (V,E,w) and a constant k, the MULTIPLE COMPATIBLE ARRANGEMENTS

PROBLEM seeks a set of arrangements A = {(πi, fi)}ki=1, to optimize:

max
A

∑
e∈E

w(e) · 1 [e ∼ A] , (1)

where 1 [e ∼ A] is 1 if edge e is concordant in at least one (πi, fi) ∈ A, and 0 otherwise.115

This objective function aims to find an optimal set of k arrangements of segments where the total number of116

edges made concordant is maximized in the rearranged alleles. In the context of TSV calling, the objective117

aims to find an optimal set of TSVs such that the resulting k rearranged alleles given by these TSVs have118

the maximum number of consistent read alignments. In other words, MCAP separates the conflicting edges119

onto k alleles as shown in an example in Figure 1.120

When k = 1, the problem reduces to finding a single rearranged genome to maximize the number of121

concordant reads, which is the problem that SQUID [14] solves. We refer to the special case when k = 1 as122

SINGLE COMPATIBLE ARRANGEMENT PROBLEM (SCAP).123
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Figure 1: MCAP resolves conflicts. (a) Two conflicting edges connecting two segments u and v. If the
sample is known to be homogeneous (k = 1), then the conflict is due to errors. If k = 2, MCAP seeks
to separate two edges into two compatible arrangements as in (b) and (c). (b) In the first rearrangement,
segment v is flipped, which makes the blue edge concordant. (c) In the second rearrangement, u is flipped
to make the red edge concordant.

3.2 NP-hardness of SCAP and MCAP124

Theorem 1. SCAP is NP-hard.125

Proof Sketch. We prove the NP-hardness of SCAP by reducing from MAX-2-SAT. While 2-SAT can be126

solved in polynomial time, MAX-2-SAT, which asks for the maximum number of clauses that can be satis-127

fied, is NP-hard. For boolean variables and clauses in any MAX-2-SAT instance, we create gadget segments128

in the GSG so that the satisfaction of each clause is determined by the edge concordance and the boolean129

assignment is determined by segment inversion. The gadgets force the optimal sum of concordant edge130

weights to directly represent the number of satisfied clauses. Correspondingly, the optimal orientations of131

segments represent the assignment of boolean variables. See Appendix A for a complete proof.132

Corollary 1. MCAP is NP-hard.133

Proof. SCAP is a special case of MCAP with k = 1, so the NP-hardness of MCAP is immediate.134

4 A 1
4-approximation Algorithm for SCAP135

We provide a greedy algorithm for SCAP that achieves at least 1
4 approximation ratio and takes O(|V ||E|)136

time. The main idea of the greedy algorithm is to place each segment into the current order one by one137

by choosing the current “best” position. The current “best” position is determined by the concordant edge138

weights between the segment to be placed and the segments already in the current order.139

Theorem 2. Algorithm 1 approximates SCAP with at least 1
4 approximation ratio.140
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Data: Segment set S, genome segment graph G = (V,E,w)
Result: An arrangement of the segments and the sum of concordant edge weights

1 order = [];
2 orientation = [];
3 for i in 1 : |S| do
4 si = the ith segment in S;

// choose from 4 possible order and orientation options
5 options = [(si in the beginning of order in forward strand), (si in the beginning of order in reverse

strand), (si in the end of order in forward strand), (si in the end of order in reverse strand)] ;
6 for j in 1 : 4 do
7 weights[j] = w({e ∈ E : e connects si with sk and concordant in options[j], k < i});
8 end

// update the current order and orientation
9 opt = argmax1≤i≤4,i∈Nweights[i] ;

10 order = update segment order as given by options[opt] ;
11 orientation = update segment orientation as given by options[opt] ;
12 end

Algorithm 1: Greedy algorithm for SCAP

Proof. DenoteE′ ⊂ E as the concordant edges in the arrangement of Algorithm 1. LetOPT be the optimal141

value of SCAP. We are to prove w(E′) ≥ 1
4w(E) ≥ 1

4OPT .142

For iteration i in the for loop, the edges Ei = {e ∈ E : e connects si with sj , i < j} are considered when143

comparing the options. Each of the four options makes a subset of Ei concordant. These subsets are non-144

overlapping and their union is Ei. Specifically, the concordant edge subset is {e = (sih, s
j
t )} for the first145

option, {e = (sih, s
j
h)} for the second, {e = (sit, s

j
h)} for the third, and {e = (sit, s

j
t )} for the last.146

By the selecting the option with the largest sum of concordant edge weights, the concordant edges E′i in

iteration i satisfies w(E′i) ≥ 1
4w(Ei). Therefore, the overall concordant edge weights of all iterations in the

for loop satisfy ∑
i

w(E′i) ≥
1

4

∑
i

w(Ei) =
1

4
w

(⋃
i

Ei

)
.

Each edge e ∈ E must appear in one and only one of Ei, and thus
⋃

iEi = E. This implies
∑

iw(E′i) ≥147

1
4w(E) ≥ 1

4OPT .148

Algorithm 1 can be further improved in practice by considering more order and orientation options when in-149

serting a segment into current order. In the pseudo-code 1, only two possible insertion places are considered:150

the beginning and the end of the current order. However, a new segment can be inserted in between any pair151
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of adjacent segments in the current order. We provide an extended greedy algorithm to take into account the152

extra possible inserting positions (Algorithm 2). Algorithm 2 has a time complexity of O(|V |2|E|), but it153

may achieve a higher total concordant edge weight in practice.154

Data: Segment set S, genome segment graph G = (V,E,w)
Result: An arrangement of the segments and the sum of concordant edge weights

1 order = [];
2 orientation = [];
3 for i in 1 : |S| do
4 si = the ith segment in S;

// choose from i+ 1 possible order and orientation options
5 options = [(si in the beginning of order in forward strand), (si in the beginning of order in reverse

strand)] ;
6 for j in 1 : i− 1 do
7 Append [(si right after order[j] in forward strand), (si right after order[j] in reverse strand)] to list

of options ;
8 end
9 for j in 1 : 2i do

10 weights[j] = w({e ∈ E : e connects si with sk and concordant in options[j], k < i});
11 end

// update the current order and orientation
12 opt = argmax1≤i≤2i,i∈Nweights[i] ;
13 order = update segment order as given by options[opt] ;
14 orientation = update segment orientation as given by options[opt] ;
15 end

Algorithm 2: Extended greedy algorithm for SCAP

5 A 3
4-approximation of MCAP with k = 2 Using a SCAP Oracle155

If an optimal SCAP solution can be computed, one way to approximate the MCAP’s optimal solution is to156

solve a series of SCAP instances iteratively to obtain multiple arrangements. Here, we prove the iterative157

SCAP solution has an approximation ratio of 3
4 for the special case of MCAP with k = 2.158

Theorem 3. Algorithm 3 is a 3
4 -approximation of MCAP with k = 2. Denote the optimal objective sum of

edge weights in MCAP with k = 2 as OPT , and the sum of edge weights in iterative SCAP as W , then

W ≥ 3

4
OPT

Proof. Denote MCAP with k = 2 as 2-MCAP. Let Ed
1 and Ed

2 be concordant edges in the optimal two159
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Data: A genome segment graph G = (V,E,w)
Result: a set of two arrangements, sum of weights of edges that are concordant in either arrangement

1 a1 = optimal SCAP arrangement on G;
2 E′ = {e ∈ E : e is discordant in a1};
3 G′ = (V,E′, w);
4 a2 = optimal SCAP arrangement on G′;
5 Ẽ = {e ∈ E : e ∼ A,A = {a1, a2}};
6 W =

∑
e∈Ẽ w(e);

7 return ({a1, a2}, W );

Algorithm 3: 3
4 -approximation for MCAP with k = 2

arrangements of 2-MCAP. It is always possible to make the concordant edges of the arrangements disjoint160

by removing the intersection from one of the concordant edge set, that is Ed
1 ∩Ed

2 = ∅. Let Ed = Ed
1 ∪Ed

2 .161

The optimal value is w(Ed).162

Denote the optimal set of concordant edges in the first round of Algorithm 3 as Es
1. The optimal value of163

SCAP is w(Es
1). Es

1 can have overlap with the two concordant edge sets of the 2-MCAP optimal solution.164

Let the intersections be I1 = Ed
1∩Es

1 and I2 = Ed
2∩Es

1. Let the unique concordant edges beD1 = Ed
1−Es

1,165

D2 = Ed
2 − Es

1 and S = Es
1 − Ed

1 − Ed
2 .166

After separating the concordant edges in 2-MCAP into the intersections and unique sets, the optimal value167

of 2-MCAP can be written as w(Ed) = w(I1) + w(I2) + w(D1) + w(D2), where the four subsets are168

disjoint. Therefore the smallest weight among the four subsets must be no greater than 1
4w(Ed). We prove169

the approximation ratio under the following two cases and discuss the weight of the second round of SCAP170

separately:171

Case (1): the weight of either D1 or D2 is smaller than 1
4w(Ed). Because the two arrangements in 2-172

MCAP are interchangeable, we only prove for the case where w(D1) ≤ 1
4w(Ed). A valid arrangement173

of the second round of SCAP is the second arrangement in 2-MCAP, though it may not be optimal. The174

maximum concordant edge weights added by the second round of SCAP must be no smaller than w(D2).175

Combining the optimal values of two rounds of SCAP, the concordant edge weight is176

W ≥ w(Es
1) + w(D2) = w(S) + w(I1) + w(I2) + w(D2) ≥ w(Ed)− w(D1) ≥

3

4
w(Ed). (2)

Case (2): both w(D1) ≥ 1
4w(Ed) and w(D2) ≥ 1

4w(Ed). The subset with smallest sum of edge weights177
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is now either I1 or I2. Without loss of generality, we assume I1 has the smallest sum of edge weights and178

w(I1) ≤ 1
4w(Ed). Because the first round SCAP is optimal for the SCAP problem, its objective value179

should be no smaller than the concordant edge weights of either arrangement in 2-MCAP. Thus180

w(Es
1) ≥ w(Ed

2) = w(D2) + w(I2). (3)

A valid arrangement for the second round of SCAP can be either of the arrangements in 2-MCAP optimal181

solution. Picking the first arrangement of 2-MCAP as the possible (but not necessarily optimal) arrangement182

for the second round of SCAP, the concordant edge weights added by the second round of SCAP must be no183

smaller than w(D1). Therefore, the total sum of concordant edge weights of the optimal solutions of both184

rounds of SCAP is185

W ≥ w(Es
1) + w(D1) ≥ w(D2) + w(I2) + w(D1) = w(Ed)− w(I1) ≥

3

4
w(Ed). (4)

186

Corollary 2. An approximation algorithm for MCAP with k = 2 can be created by using Algorithm 1 as187

the oracle for SCAP in Algorithm 3. This approximation algorithm runs in O(|V ||E|) time and achieves at188

least 3
16 approximation ratio.189

The proof of the corollary is similar to the proof of iterative SCAP approximation ratio. By adding a190

multiplier of 1
4 to the right of inequalities (3) and (4), the 3

16 approximation ratio can be derived accordingly.191

6 Integer Linear Programming Formulation for MCAP192

MCAP, for general k, can be formulated as an integer linear programming (ILP) to obtain an optimal solu-193

tion. We rewrite the ith permutation (πi), orientation (fi) and decision (1[e ∼ (πi, fi)]) functions with three194

boolean variables yie, zie and xie. For i ∈ {1, 2..., k} and e ∈ E, we have:195

• xie = 1 if edge e ∼ (πi, fi) and 0 otherwise.196

• yiu = 1 if fi(u) = 1 for segment u and 0 if fi(u) = 0.197
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• ziuv = 1 if πi(u) < πi(v), or segment u is in front of v in rearrangement i and 0 otherwise.198

In order to account for the edges that are concordant in more than one arrangements in the summation in

Equation 1, we define qe such that qe = 1 if edge e is concordant in one of the k arrangements and 0 if

otherwise. The constraints for qe are as follows:

qe ≤
k∑
i

xie (5)

qe ≤ 1 (6)

The objective function becomes

max
xi
e,y

i
u,z

i
uv

∑
e∈E

w(e) · qe (7)

We then add ordering and orientation constraints. If an edge is a tail-head connection, i.e. concordant to the199

reference genome, xie = 1 if and only if ziuv = yiu = yiv. If an edge is a tail-tail connection, xie = 1 if and200

only if ziuv = −yiv = yiu. If an edge is a head-tail connection, xie = 1 if and only if ziuv = −yiu = −yiv. If201

an edge is a head-head connection, xie = 1 if and only if ziuv = −yiu = yiv. The constraints for a tail-head202

connection are listed below in Equation 8, which enforce the assignment of boolean variables yie, zie and xie:203

xie ≤ yiu − yiv + 1,

xie ≤ yiv − yiu + 1,

xie ≤ yiu − ziuv + 1,

xie ≤ ziuv − yiu + 1,

(8)

The constraints of other types of connections are similar and detailed in Ma et al. [14]. Additionally, con-204

straints are added so that all segments are put into a total order within each allele. For two segments u, v,205

segment u will be either in front of or behind segment v, i.e. ziuv + zivu = 1. For three segments u, v, w, if206

u is in front of v and v is in front of w, then u has to be in front of w: 1 ≤ ziuv + zivw + ziwu ≤ 2.207

The total number of constraints as a function of k is 4k|E| + k
(|V |

3

)
+ 2|E| = O(k(|E| + V 3)). When k208

increases, the number of constraints grows linearly. When k = 1, the ILP formulation reduces to the same209
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formulation as SQUID.210

7 Characterizing the Conflict Structures That Imply Heterogeneity211

In this section, we ignore edge weights and characterize the graph structures where homogeneous assump-212

tion cannot explain all edges. We add a set of segment edges, Ê, to the GSG. Each ê ∈ Ê connects the two213

endpoints of each segment, i.e. ê = {sh, st} for s ∈ S. The representation of GSG becomesG = (E, Ê, V ).214

Definition 4 (Conflict and Compatible Structures). A conflict structure, CS = (E′, Ê′, V ′), is a subgraph215

of a GSG where there exists a set of edges that cannot be made concordant using any single arrangement.216

A compatible structure is a subgraph of a GSG where there exists a single arrangement such that all edges217

can be made concordant in it.218

Definition 5 (Simple cycle in GSG). A simple cycle, C = (E′, Ê′, {v0, . . . , vn−1}), is a subgraph of a219

GSG, such that E′ ⊆ E, Ê′ ⊆ Ê and vi ∈ V , with (vi, vi+1 mod n) ∈ E′ ∪ Ê′ and where vi 6= vj when220

i 6= j except vn−1 = v0.221

Definition 6 (Degree and special degree of a vertex in subgraphs of GSG). Given a subgraph of GSG,222

G′ = (E′, Ê′, V ′), degE′(v) refers to the degree of vertex v ∈ V ′ that counts only the edges e ∈ E′ that223

connect to v. deg(v) refers to the number of edges e ∈ E′ ∪ Ê′ that connect to v.224

Theorem 4. Any acyclic subgraph of GSG is a compatible structure.225

Theorem 5. A simple cycle C = (E′, Ê′, V ′) is a compatible structure if and only if there are exactly two226

vertices, vj and vi such that degE′(vi) = degE′(vj) = 2.227

The details of the proof of the above two theorems are in Appendix B.228

Corollary 3. A necessary condition for a subgraph (E′, Ê′, V ′) to be a conflict structure is that it contains229

cycles. A sufficient condition for a subgraph (E′, Ê′, V ′) to be a conflict structure is that it contains a230

simple cycle which is not a compatible structure. That is, there exists a simple cycle (E∗, Ê∗, V ∗), such that231

E∗ ⊂ E′, Ê∗ ⊂ Ê′, V ∗ ⊂ V ′ and |{v : degE∗(v) = 2}| 6= 2.232

The corollary is a direct derivation of theorem 4 and theorem 5 when considering general graph structures.233
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In practice, we determine if a discordant edge, e = (u, v), is involved in a conflict structure by enumerating234

all simple acyclic paths using a modified depth-first search implemented in Networkx [7, 19] between u and235

v omitting edge e. We add e to each path and form a simple cycle. If the simple cycle satisfies Corollary236

3, we stop path enumeration and label the e as discordant edge involved in conflict structure. If the running237

time of path enumeration exceeds 0.5 seconds, we shuffle the order of DFS and repeat enumeration. If path238

enumeration for e exceeds 1000 reruns, we label e as undecided.239

8 Experimental Results240

To produce an efficient, practical algorithm for TSV detection in diploid organisms, we use the following241

approach, which we denote as D-SQUID: Run the ILP (Section 6) under the diploid assumption by setting242

k = 2 on every connected component of GSG separately. If the ILP finishes or the running time of the ILP243

exceeds one hour, output the current arrangements.244

8.1 D-SQUID Identifies More TSVs in TCGA Samples than SQUID245

We calculate the fraction of discordant edges involved in conflict structures (Figure 2a) in 381 TCGA sam-246

ples from four types of cancers: bladder urothelial carcinoma (BLCA), breast invasive carcinoma (BRCA),247

lung adenocarcinoma (LUAD) and prostate adenocarcinoma (PRAD). Among all samples, we found less248

than 0.5% undecided edges out of all discordant edges. The distribution of fraction of discordant edges249

within conflict structures are different among cancer types. The more discordant edges are involved in con-250

flict structures, the more heterogeneous the sample is. Among four cancer types, PRAD samples exhibit251

the highest extent of heterogeneity and BRCA samples exhibit the lowest. On average, more than 90% of252

discordant edges are within conflict structures in all samples across four cancer types. This suggests that253

TCGA samples are usually heterogeneous and may be partially explained by the fact that TCGA samples254

are usually a mixture of tumor cells and normal cells [1].255

We compare the number of TSVs found by D-SQUID and SQUID (Figure 2b). In all of our results, all of256

the TSVs found by SQUID belong to a subset of TSVs found by D-SQUID. D-SQUID identifies many more257

TSVs than SQUID on all four types of cancers.258

A discordant edge is termed resolved if it is made concordant in one of the arrangements. Among all259
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discordant edges in all samples, D-SQUID is able to resolve most of them (Figure 2c), while SQUID is only260

able to resolve fewer than 50% of them. The results demonstrate that D-SQUID is more capable of resolving261

conflict structures in heterogeneous contexts, such as cancer samples, than SQUID.262
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Figure 2: (a) The distribution of fractions of discordant edges that are involved in each identified conflict
structure (CS) in four cancer subtypes. Minima, maxima and means of the distributions are marked by
horizontal bars. (b) Number of TSVs identified by SQUID versus D-SQUID. (c) Histogram of fractions of
resolved discordant edges by SQUID and D-SQUID.

8.2 D-SQUID Identifies More True TSV Events Than SQUID in Cancer Cell Lines263

We compare the ability of D-SQUID and SQUID to detect fusion-gene and non-fusion-gene events on264

previously studied breast cancer cell lines HCC1395 and HCC1954 [6]. The annotation of true SVs is taken265

from Ma et al. [14]. In both cell lines, D-SQUID discovers more TSVs than SQUID. In HCC1954, D-266

SQUID identifies the same number of known TSVs including fusions of gene (G) regions and intergenic267

(IG) regions compared with SQUID. In HCC1395, D-SQUID identifies 2 more true TSV events that are268

fusions of genic regions. We tally the fraction of discordant edges in conflict structures (Figure 3c) and269

find similar fractions between HCC1395 and HCC1954, which indicates that the extent of heterogeneity in270

two samples are similar. Compared to Figure 2a, the fraction in HCC samples is much lower than that in271

TCGA samples. This matches the fact that two HCC samples contain the same cell type and are both cell272

line samples, which are known to be less heterogeneous than TCGA samples.273
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Figure 3: Performance of D-SQUID and SQUID on breast cancer cell lines with experimentally verified SV.
(a) Total TSVs found. In both cell line samples, D-SQUID discovered more TSVs than SQUID. (b) Number
of known fusion-gene and non-fusion-gene events recovered by D-SQUID and SQUID. G denotes TSVs
that affect gene regions. IG denotes TSVs that affect intergenic regions. (c) Fraction of discordant edges in
conflict structures.

8.3 Evaluation of approximation algorithms274

We evaluate the approximation algorithms for diploid MCAP (k = 2) using two different subroutines de-275

scribed in Section 4. In this subsection, A1 refers to using Algorithm 1 with worst case runtime O(|V ||E|)276

as subroutine and A2 refers to using Algorithm 2 with worst case runtime O(|V |2|E|) as subroutine. Both277

A1 and A2 solve SCAP by greedily inserting segments into the best position in the current ordering. While278

A1 only looks at the beginning and ending of the ordering, A2 looks at all the positions.279

In order to compare the performance of approximations to the exact algorithm using ILP, we run D-SQUID,280

A1 and A2 on TCGA samples in Section 8.1. The algorithms are evaluated on runtime and total weight of281

concordant edges in the rearranged genomes. “Fold difference” on the axes of Figure 4 refers to the ratio of282

the axis values of D-SQUID over that of A1 or A2. Both A1 and A2 output results in a much shorter period283

of time than D-SQUID. A2 achieves better approximation than A1, demonstrated by closer-to-one ratio of284

total concordant edge weight, at a cost of longer run time.285

The run time of D-SQUID ILP exceeds one hour on 4.5% of all connected components in all TCGA sam-286

ples. D-SQUID outputs sub-optimal arrangements in such cases. As a result, approximation algorithms,287

especially A2, appear to resolve more high-weight discordant edges than D-SQUID in some of the sam-288

ples in Figure 4, which is demonstrated by data points that fall below 1 on the y axes. A1 resolves more289

high-weight edges in 10 samples and A2 resolves more high-weight edges in 54 samples than D-SQUID.290

15

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 9, 2019. ; https://doi.org/10.1101/697367doi: bioRxiv preprint 

https://doi.org/10.1101/697367
http://creativecommons.org/licenses/by/4.0/


0 10000 20000 30000 40000 50000
Fold difference in run time

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Fo
ld

 d
iff

er
en

ce
 in

 to
ta

l w
ei

gh
ts (a)

(D, A1)

0 5000 10000 15000 20000
Fold difference in run time

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Fo
ld

 d
iff

er
en

ce
 in

 to
ta

l w
ei

gh
ts (b)

(D, A2)

Figure 4: Fold differences (ILP/approx) in run time and total weights of concordant edges resolved by D-
SQUID, A1 and A2 on TCGA samples. Horizontal and vertical red lines mark 1.0 on both axes. (a) shows
fold differences between D-SQUID and A1. (b) shows fold differences betweeen D-SQUID and A2.

9 Conclusion and Discussion291

We present approaches to identify TSVs in heterogeneous samples via MULTIPLE COMPATIBLE AR-292

RANGEMENT PROBLEM (MCAP). We characterize sample heterogeneity in terms of the fraction of dis-293

cordant edges involved in conflict structures. In the majority of TCGA samples, the fractions of discordant294

edges in conflict structures are high compared to HCC samples, which indicates that TCGA samples are295

more heterogeneous than HCC samples. This matches the fact that bulk tumor samples often contain more296

heterogeneous genomes than cancer cell lines, which suggests that fraction of conflicting discordant edges297

is a valid measure of sample heterogeneity.298

MCAP addresses this heterogeneity. In 381 TCGA samples, D-SQUID is able to resolve more conflicting299

discordant edges than SQUID. In HCC cell lines, D-SQUID achieves better performance than SQUID. Since300

D-SQUID solves MCAP by separating conflicting TSVs onto two alleles, D-SQUID’s power to find TSVs301

generally increases as the extent of heterogeneity increases.302

We show that obtaining exact solutions to MCAP is NP-hard. We derive an integer linear programming303

(ILP) formulation to solve MCAP exactly, of which the run time grows especially in more heterogeneous304

samples. We provide a 3
16 -approximation algorithm for MCAP when the number of arrangements is two305

(k = 2), which runs in time O(|V ||E|). It approximates the exact solutions well in heterogeneous TCGA306

samples.307
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Several open problems remain. MCAP relies on the number of arrangements (k) to make predictions. It308

is not trivial to determine the optimal k for any sample. In addition, although MCAP is solved by separat-309

ing TSVs onto different alleles, there are typically many equivalent phasings. Developing techniques for310

handling these alternative phasings is an interesting direction for future work.311

Funding: This work was supported in part by the Gordon and Betty Moore Foundations Data-Driven Discov-312

ery Initiative [GBMF4554 to C.K.]; the US National Institutes of Health [R01GM122935]; and The Shurl313

and Kay Curci Foundation. This project is funded, in part, by a grant (4100070287) from the Pennsylvania314

Department of Health. The department specifically disclaims responsibility for any analyses, interpretations,315

or conclusions.316

Acknowledgements: The results shown here are in part based upon data generated by the TCGA Research317

Network: https://www.cancer.gov/tcga. This work used the Extreme Science and Engineering Discovery318

Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1548562.319

Specifically, it used the Bridges system, which is supported by NSF award number ACI-1445606, at the320

Pittsburgh Supercomputing Center (PSC) [17] . C.K. is co-founder of Ocean Genomics, Inc.321

References322

[1] Dvir Aran, Marina Sirota, and Atul J Butte. Systematic pan-cancer analysis of tumour purity. Nature323

Communications, 6:8971, 2015.324

[2] Ken Chen, John W Wallis, Michael D McLellan, David E Larson, Joelle M Kalicki, Craig S Pohl,325

Sean D McGrath, Michael C Wendl, Qunyuan Zhang, Devin P Locke, et al. BreakDancer: an algorithm326

for high-resolution mapping of genomic structural variation. Nature Methods, 6(9):677, 2009.327

[3] Nadia M Davidson, Ian J Majewski, and Alicia Oshlack. Jaffa: High sensitivity transcriptome-focused328

fusion gene detection. Genome Medicine, 7(1):43, 2015.329

[4] Michael WN Deininger, John M Goldman, and Junia V Melo. The molecular biology of chronic330

myeloid leukemia. Blood, 96(10):3343–3356, 2000.331

[5] Jesse R Dixon, Jie Xu, Vishnu Dileep, Ye Zhan, Fan Song, et al. Integrative detection and analysis of332

structural variation in cancer genomes. Nature Genetics, 50(10):1388, 2018.333

17

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 9, 2019. ; https://doi.org/10.1101/697367doi: bioRxiv preprint 

https://doi.org/10.1101/697367
http://creativecommons.org/licenses/by/4.0/


[6] Adi F Gazdar, Venkatesh Kurvari, Arvind Virmani, Lauren Gollahon, Masahiro Sakaguchi, et al. Char-334

acterization of paired tumor and non-tumor cell lines established from patients with breast cancer.335

International Journal of Cancer, 78(6):766–774, 1998.336

[7] Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network structure, dynamics, and function337

using NetworkX. Technical report, Los Alamos National Lab.(LANL), Los Alamos, NM (United338

States), 2008.339

[8] Steffen Heber, Max Alekseyev, Sing-Hoi Sze, Haixu Tang, and Pavel A Pevzner. Splicing graphs and340

EST assembly problem. Bioinformatics, 18(suppl 1):S181–S188, 2002.341

[9] Fereydoun Hormozdiari, Iman Hajirasouliha, Phuong Dao, Faraz Hach, Deniz Yorukoglu, Can Alkan,342

Evan E Eichler, and S Cenk Sahinalp. Next-generation variationhunter: combinatorial algorithms for343

transposon insertion discovery. Bioinformatics, 26(12):i350–i357, 2010.344

[10] Zhiqin Huang, David TW Jones, Yonghe Wu, Peter Lichter, and Marc Zapatka. confFuse: high-345

confidence fusion gene detection across tumor entities. Frontiers in Genetics, 8:137, 2017.346

[11] Wenlong Jia, Kunlong Qiu, Minghui He, Pengfei Song, Quan Zhou, et al. SOAPfuse: an algorithm for347

identifying fusion transcripts from paired-end RNA-Seq data. Genome Biology, 14(2):R12, 2013.348

[12] Ryan M Layer, Colby Chiang, Aaron R Quinlan, and Ira M Hall. LUMPY: a probabilistic framework349

for structural variant discovery. Genome Biology, 15(6):R84, 2014.350

[13] Silvia Liu, Wei-Hsiang Tsai, Ying Ding, Rui Chen, Zhou Fang, et al. Comprehensive evaluation of351

fusion transcript detection algorithms and a meta-caller to combine top performing methods in paired-352

end RNA-seq data. Nucleic Acids Research, 44(5):e47–e47, 2015.353

[14] Cong Ma, Mingfu Shao, and Carl Kingsford. SQUID: transcriptomic structural variation detection354

from RNA-seq. Genome Biology, 19(1):52, 2018.355

[15] Andrew McPherson, Fereydoun Hormozdiari, Abdalnasser Zayed, Ryan Giuliany, Gavin Ha, et al.356

deFuse: an algorithm for gene fusion discovery in tumor RNA-Seq data. PLoS Computational Biology,357

7(5):e1001138, 2011.358

[16] Daniel Nicorici, Mihaela Satalan, Henrik Edgren, Sara Kangaspeska, Astrid Murumagi, Olli Kallion-359

18

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 9, 2019. ; https://doi.org/10.1101/697367doi: bioRxiv preprint 

https://doi.org/10.1101/697367
http://creativecommons.org/licenses/by/4.0/


iemi, Sami Virtanen, and Olavi Kilkku. FusionCatcher—a tool for finding somatic fusion genes in360

paired-end RNA-sequencing data. BioRxiv, page 011650, 2014.361

[17] Nicholas A Nystrom, Michael J Levine, Ralph Z Roskies, and J Scott. Bridges: a uniquely flexible362

HPC resource for new communities and data analytics. In Proceedings of the 2015 XSEDE Conference:363

Scientific Advancements Enabled by Enhanced Cyberinfrastructure, page 30. ACM, 2015.364

[18] Tobias Rausch, Thomas Zichner, Andreas Schlattl, Adrian M Stütz, Vladimir Benes, and Jan O Korbel.365
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A Proof of NP-hardness380

Theorem 1. SCAP is NP-hard.381

Proof. To prove the NP-hardness, we reduce from MAX-2-SAT problem. It is necessary and sufficient to382

show that for any MAX-2-SAT problem, a genome segment graph (GSG) can be constructed in polynomial383

time, and the SCAP objective directly tells the objective of the MAX-2-SAT problem. For any MAX-2-384

SAT instance, we are going to construct a GSG such that the satisfiability of a clause is indicated by the385

concordance of an edge.386

Given a MAX-2-SAT problem with n booleans {x1, x2, · · · , xn} and m clauses {c1, c2, · · · , cm}, the key387

gadget is the segments for boolean variables and clauses and the edges between them (Figure S1A). For388

each boolean variable xi, a segment Xi is constructed and termed as a boolean segment. For each clause389

ci, a segment Ci is constructed and termed as a clause segment. To ensure that the correspondence between390

the edge concordance and the clause satisfiability as well as the correspondence between the orientation391

of boolean segments and the assignment of boolean variables, we add edges between clause segments and392

boolean segments in the following way. For clause ci that involves boolean xi1 , an edge is added between393

the head of Xi1 and the head of Ci if clause ci contains the negation of xi1 , otherwise the edge is between394

the tail of Xi1 and the head of Ci. When the literal is xi1 , setting the orientation of segment Xi1 to be 1395

indicates assigning True to variable xi1 and leads to the concordance of the edge; when the literal is x̄i1 ,396

setting the orientation of segment Xi1 to be 0 indicates assigning False to variable xi1 and leads to the edge397

concordance. The edge between clause ci and the other involved boolean variable xi2 is added in the same398

principle. We call the edge between boolean segments and the clause segments as Type 1 edge. Type 1399

edges have weight of 1.400

Two extra edges between the two boolean segments involved in each clause are added. This is the401

Type 2 edge with weight of 1. For each clause ci that involves boolean xi1 and xi2 , two edges are added402

between Xi1 and Xi2 as in Table S1. When both literals in ci are True, there are two concordant Type 1403

edges; when only one literal in ci is True, one and only one of the two Type 2 edges is guaranteed to be404

concordant, to compensate for the decrease of concordant Type 1 edges.405

An extra n + m + 1 segments are added that we term blocking segments and denote as406
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{B1, B2, · · · , Bn+m+1}. Suppose w1 and w2 are large positive weights, and w2 � w1 � 1. Type 3 edges407

with edge weight w2 are constructed between each adjacent pair of blocking segments, specifically between408

the tail of Bi and the head of Bi+1 (∀i ∈ [1, n+m]). Type 3 edges are used to enforce the order and orien-409

tation among blocking segments. Type 4 edges with weight w1 are constructed between blocking segments410

and the other types of segments. Specifically, when i ≤ n, an edge is added between the tail of segment Bi411

and both the head and the tail of Xi, as well as between the tail and the head of Xi and both the head of412

Bi+1. Similarly when n < i ≤ n+m, two edges are added between the tail of Bi and Ci−n, and two other413

edges are added between the head and tail of Ci−n and Bi+1. Type 4 edges are used to enforce the relative414

order between blocking segments and the boolean and clause segments. But the orientation of the boolean415

and clause segments can be changed freely.416

clause ci edge 1 edge 2

xi1 ∨ xi2 head of Xi1 to head of Xi2 tail of Xi1 to tail of Xi2

x̄i1 ∨ xi2 tail of Xi1 to head of Xi2 head of Xi1 to tail of Xi2

xi1 ∨ x̄i2 tail of Xi1 to head of Xi2 head of Xi1 to tail of Xi2

x̄i1 ∨ x̄i2 head of Xi1 to head of Xi2 tail of Xi1 to tail of Xi2

Table S1: Construction of Type 4 edges based on the clause.

We first prove that the order of the blocking segments in the optimal arrangement is B1 < B2 < · · · <417

Bn+m+1 and the orientations of them are all in forward strand, where < denotes the ordering between418

segments. Under the arrangement that uses the forward strand of all {Bi} and have an order of B1 < B2 <419

· · · < Bn+m+1, the sum of concordant edge weights is at least (n + m)w2. If the optimal arrangement420

contains any violations of the adjacencies betweenBi andBi+1, there will at least one Type 3 edge that does421

not connect blocking segments in a tail-to-head manner and become a discordant edge in the arrangement.422

Therefore, the optimal arrangement can at most have an objective value of (n+m− 1)w2 + 4(n+m)w1 +423

4m. Since w2 � w1 � 1, the objective value is smaller than (n + m)w2, and the arrangement is not424

optimal, which contradicts the assumption. Therefore assuming the whole chain of segments is not reverse425

complemented, the orientations of blocking segments are all in forward strand, and order is B1 < B2 <426

· · · < Bn+m+1 in the optimal arrangement.427

We then prove that the Type 2 edges restrict the order of all segments but not the orientation of boolean and

clause segments. The order between blocking segments and boolean segments must be Bi < Xi < Bi+1,

the order between blocking and clause segments must be Bi < Ci−n < Bi+1, and all boolean segments
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(A)

B1 X1 B2 X2 B3 X3 B4 C1 B5 C2 B6

(B)

−X1 X3 C2

(C)

X1 X3 C2

(D)

−X1 −X3 C2

(E)

X1 −X3 C2

Figure S1: (A) Constructed GSG for boolean expression (x1 ∨ x2) ∧ (x̄1 ∨ x3). There is a segment for
each boolean variable xi (blue) and clause ci (white), and 6 blocking segments (green) to separate between
boolean segments and clause segments. Type 1 edges, black edges, are connecting between boolean seg-
ments and clause segments. Type 2 edges, blue edges, are connecting between a pair of boolean segments
that appear in the same clause. Type 3 edges, green edges in the figure, are chaining the blocking segments.
Type 4 edges, orange edges, are connecting between blocking and boolean / clause segments. (B-E) The
subgraph corresponding clause x̄1 ∨ x3. −X1 and −X3 means the segment is inverted. Solid lines indicate
the concordant edges in the arrangement, and dotted lines indicate the discordant edges. (B) The clause is
satisfied with both literals satisfied. (C) The clause is satisfied with x3 satisfied. (D) The clause is satisfied
with x̄1 satisfied. (E) The clause is not satisfied.
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must be before clause segments. When the order is Bi < Xi < Bi+1 among the three segments, and the

orientations of Bi and Bi+1 are both in forward strand, the concordant edge weights of Type two edge sum

to 2w1 no matter whether Xi is in forward strand or inverted. The same weight can be achieved for order

Bi < Ci−n < Bi+1. The arrangement with order B1 < X1 < B2 < · · · < Bn < Xn < Bn+1 <

C1 < Bn+2 < · · · < Cm < Bn+m+1 and with all blocking segments in their forward strand will achieve

a sum of concordant edge weight (n + m)w2 + 2(n + m)w1 at least. This concordant weight is summed

over Type 3 and Type 4 edges. However, if the optimal arrangement violates any Bi < Xi < Bi+1 or

Bi < Ci−n < Bi+1 order, the violated triplet can achieve at most w1 of concordant edge weights, and

thus the maximum sum of concordant edge weights is (n + m)w2 + 2(n + m − 1)w1 + w1 + 4m. Since

w1 � 1, the “optimal” arrangement objective is smaller than (n+m)w2 + 2(n+m)w1, which contradicts

the optimality. Therefore, the order of all segments in the optimal arrangement must be

B1 < X1 < B2 < · · · < Bn < Xn < Bn+1 < C1 < Bn+2 < · · · < Cm < Bn+m+1.

Third, we prove that under the above segment order there are always two concordant edges of weight 1 when428

clause segment Ci has any concordant Type 1 edge. Suppose there is a clause ci involving boolean variables429

xi1 and xi2 , segment Ci has one Type 1 edge between Xi1 and one Type 1 edge between Xi2 . When both430

Type 1 edges are concordant, both Type 2 edges between Xi1 and Xi2 are discordant (Figure S1B. When431

only one of the Type 1 edges is concordant, there is also one Type 2 edge between Xi1 and Xi2 that is432

concordant (Figure S1C,D). When neither of the Type 1 edges is concordant, both of the two Type 2 edges433

between Xi1 and Xi2 are discordant (Figure S1E). In this case, there is zero concordant edges of weight 1434

incident to Ci. Any arrangement solution of objective value W that satisfies the above segment order has435

W − (n + m)w2 − 2(n + m)w1 concordant edges of weight 1. Therefore, the arrangement solution will436

have 1
2(W − (n+m)w2 − 2(n+m)w1) clause segments with non-zero concordant Type 1 edges.437

When multiple clauses involve the same pair of segment, multi-edges between Xi1 and Xi2 are constructed438

to make sure that two edges of weight 1 are contributed by any clause segment when it has non-zero con-439

cordant Type 1 edges.440

Suppose the optimal number of satisfied clauses of the MAX-2-SAT instance is OPTm and the optimal441

sum of concordant edge weights of the constructed SCAP instance is OPTs, the following inequality holds:442
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1
2(OPTs− (n+m)w2− 2(n+m)w1) ≥ OPTm. Given the optimal solution of the MAX-2-SAT instance,443

a SCAP solution can be constructed by reversing segment Xi if xi is assigned to False while keeping the444

order of B1 < X1 < B2 < · · · < Bn < Xn < Bn+1 < C1 < Bn+2 < · · · < Cm < Bn+m+1. By445

the construction of the Type 1 edges, a clause segment will have at least one concordant Type 1 edge if446

and only if it corresponds to a satisfied clause in the MAX-2-SAT solution. Denoting the objective value of447

the constructed solution of arrangement problem as W and applying the third proof, we have the following448

equalityOPTm = 1
2(W −(n+m)w2−2(n+m)w1). Since the optimal objective value of the arrangement449

problem is as least W ,450

OPTm =
1

2
(W − (n+m)w2 − 2(n+m)w1) ≤

1

2
(OPTs − (n+m)w2 − 2(n+m)w1). (S1)

Meanwhile 1
2(OPTs − (n + m)w2 − 2(n + m)w1) ≤ OPTs. Given the optimal solution of arrangement451

problem, there are 1
2(OPTs − (n + m)w2 − 2(n + m)w1) clause segments with non-zero concordant452

Type 1 edges. Construct a MAX-2-SAT solution by assigning False to boolean variables if the corresponding453

boolean segment is reversed otherwise assigning True. The concordance of Type 1 edges guarantees that the454

corresponding literals in the MAX-2-SAT clauses are True. Thus the constructed MAX-2-SAT solution will455

have 1
2(OPTr − (n+m)w2 − 2(n+m)w1) satisfied clauses, which is smaller than or equal to the optimal456

number of satisfied clauses. Therefore457

1

2
(OPTs − (n+m)w2 − 2(n+m)w1) ≤ OPTm. (S2)

Combining inequality (S1) and inequality (S2), the maximum number of satisfied clauses in MAX-2-SAT458

instance can be directly calculated from the optimal concordant edge weights in the arrangement problem,459

that is, OPTm = 1
2(OPTs − (n+m)w2 − 2(n+m)w1).460

461

B Proof of Characterization of Conflict Structures462

Theorem 4. Any acyclic subgraph of GSG is a compatible structure.463
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Proof. We show that any acyclic subgraph with N edges (|E′|+ |Ê′| = N ), G′N = (E′, Ê′, V ′), of GSG is464

a compatible structure by induction.465

When |E′|+ |Ê′| = 1, G′1 is a compatible structure because no other edge in G′ is in conflict with the only466

edge e ∈ E′.467

Assume the theorem hold for any acyclic subgraph that contains n edges. Let G′n+1 = (E′, Ê, V ′) be an468

acyclic subgraph with n+ 1 edges. Since G′n+1 is acyclic, there must be a leaf edge that is incident to a leaf469

node. Denote the leaf node as vb and the leaf edge e = (ua, vb) ∈ E′∪ Ê′ (a, b ∈ {h, t}). By removing edge470

e and leaf node vb, the subgraph G′n = (E′−{e}, Ê′−{e}, V ′−{vb}) is also acyclic and contains n edges.471

According to the assumption, G′n is a compatible structure and there is an arrangement of the segments in472

which all edges in E′ ∪ ê′ − {e} is concordant. Because no other edge in E′ ∪ Ê′ except e connects to473

vb, it is always possible to place segment v back to the arrangement such that e is concordant. Specifically,474

one of the four placing options will satisfy edge e: the beginning of the arrangement with orientation 1, the475

beginning with orientation 0, the end with orientation 1 and the end with orientation 0. Therefore, G′n+1 is476

a compatible structure.477

By induction, acyclic subgraph G′N of GSG with any |E′| is a compatible structure.478

Theorem 5. A simple cycle C = (E′, Ê′, V ′) is a compatible structure if and only if there are exactly two479

vertices, vj and vi such that degE′(vi) = degE′(vj) = 2 and vi and vj belongs to different segments.480

Proof. We prove sufficiency and necessity separately in Lemma 1 and Lemma 2.481

Lemma 1. If C is a compatible structure, there are exactly two vertices, vi, vj that belong to different482

segments, such that degE′(vi) = degE′(vj) = 2483

Proof. We discuss compatiblity in two cases:484

Case (1): All edges are concordant in C. Sort the vertices by genomic locations in ascending order and485

label the first vertex v1 and the last vn, assuming |V ′| = n. Similarly, sort the set of segments S′ in C by486

the values of their permutation function π and label the first segment s1 and the last sm, assuming |S′| = m.487

Since concordant connections can only be right-left connections (e.g. Figure 1 b,c), v1 = s1r and vn = sml .488

Since C is a simple cycle, all vertices v ∈ V ′ have deg(v) = 2. Because v1 and vn are the first and last489

vertices in this arrangement, the edges incident to v1 or vn must be in E′. It follows that the two edges490
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incident to v1 connects to s2l and sml . Similarly, edges incident to vn connects to s1r and sn−1r . Therefore,491

we have degE′(v1) = degE′(vn) = 2. Any other vertex vi (1 < i < n) is connected by one e ∈ E′ and one492

ê ∈ Ê′ and thus has degE′(vi) = 1.493

Case (2): Some edges are discordant in C. If discordant edges exist in cycle C, according to the definition494

of compatible structure, segments in C can be arranged such that all edges are concordant. This reduces to495

case (1).496

Lemma 2. If there are exactly two vertices in V ′ that belong to different segments, vi and vj , such that497

degE′(vi) = degE′(vj) = 2, then C is a compatible structure.498

Proof. Let vi and vj be the one of the end points of segments si and sj(i 6= j) , respectively. We can arrange499

si and sj such that π(si) = mins∈S′ π(s), π(sj) = maxs∈S′ π(s) and that vi = sit, vj = sjh. Rename vi to500

v1 and vj to vn. Since C is a simple cycle, we can find two simple paths, P1 and P2, between v1 and vn and501

there is no edge between P1 and P2. Let P ′1 and P ′2 denote P1 and P2 that exclude v1 and vn and the edges502

incident to v1 and vn. Since P ′1 and P ′2 as acyclic subgraphs of GSG, according to Theorem 4, P ′1 and P ′2 are503

compatible structures and therefore segments in P ′1 and P ′2 can be arranged so that all edges are concordant.504

Denote the first and last vertices in the arranged P ′1 as v2 and v3, and the first and last vertices in the arranged505

P ′2 as v4 and v5. Because all the edges are concordant in P ′1, v2 and v3 are the left and right ends of the first506

and last segments in P ′1. Because only v1 and vn have degE′ = 2 in C, v2 must be connected to v1 or vn507

and v3 must be connected to vn or v1. A similar argument applies to v4 and v5. To ensure concordance of508

edges connected to v1 and vn, if vn is connected to v2 and v1 is connected to v3, we flip all the segments in509

P ′1. The similar operation is applied to v4, v5 and P ′2. Now we have a compatible structure.510
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