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Abstract 

Unraveling the complex structure and functioning of microbial communities is essential 

to accurately predict the impact of perturbations and/or environmental changes. From all 

molecular tools available today to resolve the dynamics of microbial communities, 

metaproteomics stands out, allowing the establishment of phenotype-genotype linkages. 

Despite its rapid development, this technology has faced many technical challenges that still 

hamper its potential power. How to maximize the number of protein identification, improve 

quality of protein annotation and provide reliable ecological interpretation, are questions of 

immediate urgency. In our study, we used a robust metaproteomic workflow combining two 

protein fractionation approaches (gel-based versus gel-free) and four protein search databases 

derived from the same metagenome to analyze the same seawater sample. The resulting eight 

metaproteomes provided different outcomes in terms of (i) total protein numbers, (ii) 

taxonomic structures, and (iii) protein functions. The characterization and/or 

representativeness of numerous proteins from ecologically relevant taxa such as 

Pelagibacterales, Rhodobacterales and Synechococcales, as well as crucial environmental 

processes, such as nutrient uptake, nitrogen assimilation, light harvesting and oxidative stress 

response were found to be particularly affected by the methodology. Our results provide clear 

evidences that the use of different protein search databases significantly alters the biological 

conclusions in both gel-free and gel-based approaches. Our findings emphasize the importance 

of diversifying the experimental workflow for a comprehensive metaproteomic study.  
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Background 

Metaproteomics aims at characterizing the total proteins obtained from microbial 

communities [1] and, in association with metagenomics, unraveling the functional complexity 

of a given ecosystem [2]. Since the first environmental metaproteomic study performed in the 

Chesapeake Bay [3], numerous investigations were carried out in a variety of environments 

using descriptive, comparative and/or quantitative approaches [4]. Comparative 

metaproteomics was often used to describe spatial and seasonal changes in aquatic ecosystems 

using (i) in situ [5-8] (ii) mesocosms [9, 10] or (iii) microcosms [11] approaches.  

Metaproteomics on marine ecosystems is a rapidly expanding field that involves a 

series of challenging steps and critical decisions in its workflow [4, 12-14]. The marine 

metaproteomic workflow consists mainly of four steps: (i) sampling and protein extraction, (ii) 

protein separation, (iii) mass spectrometry, and (iv) protein identification/annotation [15]. Until 

now, standardized experimental protocols are still missing, leading to methodological 

inconsistencies and data interpretation biases across metaproteomic studies [16-18]. 

Protein identification strongly relies on both the quality of experimental mass spectra 

and the comprehensiveness of the protein search database (DB) [15]. Both gel-based [19] and 

shotgun gel-free [5, 20] approaches have been used in metaproteomic analyses and both were 

found to be complementary [4]. Two main data sources are commonly used to construct protein 

search DB: public protein repositories, and/or metagenomic data [13]. Identifying proteins by 

searching against public protein repositories such as UniProtKB/SwissProt, 

UniProtKB/TrEMBL, UniRef, NCBI, or Ensembl is challenging because of the large size of 

these DBs, which increase search space and overestimate false discovery rate (FDR), thus 

decreasing the total number of identified proteins [17, 18, 21, 22]. To address the issue of large 

size DB, different strategies were developed such as taxonomy-based filtration [13], partial 

searches against smaller sub-DB [23, 24] or the two-round DB searching method [22]. The 
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two-round DB searching method consists in searching experimental mass spectra against a 

refined database composed of the protein sequences identified in a preliminary error tolerant 

search, allowing significant increase in the total number of identified proteins. This strategy 

was extensively used in recent metaproteomics studies [25-28]. Regarding metagenomic data, 

both assembled [6] and non-assembled [24, 30] sequencing reads were used in metaproteomics 

for protein search DB creation. Skipping read assembly was shown to prevent information loss 

and potential noise introduction and led to higher protein identification yield [29]. 

Metaproteomic data analysis also involves taxonomic and functional annotation. Due 

to the protein inference issue (i.e. a same peptide can be found in homologous proteins), 

inaccurate protein annotations are commonly encountered in metaproteomics [30]. To 

overcome this issue, protein identification tools such as Pro Group algorithm (Protein Pilot) 

[31], Prophane [32] or MetaProteomeAnalyzer [33] automatically group homologous protein 

sequences. In our study, we used mPies program [34], which computes taxonomic consensus 

annotation on protein groups using LCA [13, 35]   and provides a novel consensus functional 

annotation based on Uniprot DB giving more accurate insights into the diversity of protein 

functions compared to former strategies mapping proteins on broader functional categories, 

such as KEGG [36] or COGs [37].  

To what extend the methodology affects the metaproteome interpretation has already 

been studied in artificial microbial communities [17] and gut microbiomes [24, 38] but its 

impact on marine samples still remains poorly documented [18]. In this study, we used a robust 

experimental design comparing the combined effect of protein search DB choice and protein 

fractionation approach on the same sea surface sample. For this purpose, two sets of peptide 

spectra resulting from gel-based and gel-free approaches were searched against four DBs 

derived from the same raw metagenomic data. The resulting eight metaproteomes were 

quantitatively and qualitatively compared, demonstrating to which extent diversifying 
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metaproteomic workflow allows the most comprehensive understanding of microbial 

communities dynamics.  

 

Materials and methods 

Sampling 

Seawater samples (n=4) were collected in summer (June 2014) at the SOLA station, 

located 500 m offshore of Banyuls-sur-mer, in the Northwestern Mediterranean Sea (42° 49’ 

N, 3° 15’ W). Each sample consisted of 60 liters of sea surface water, pre-filtered at 5 µm and 

subsequently sequentially filtered through 0.8 and 0.2 µm pore-sized filters (polyethersulfone 

membrane filters, PES, 142 mm, Millipore). Four independent sets of filters were obtained and 

flash frozen into liquid nitrogen before storage at – 80 °C.  

Protein isolation for gel-based and gel-free approaches 

A combination of different physical (sonication/freeze–thaw) and chemical 

(urea/thiourea containing buffers, acetone precipitation) extraction techniques were used on the 

filtered seawater samples to maximize the recovery of protein extracts from the filters. The 0.2 

µm filters were removed from their storage buffer and cut into quarters using aseptic 

procedures. Protein isolation was performed on four 0.2 µm filters. The same protein isolation 

protocol was used for both gel-based and gel-free approaches. The filters were suspended in a 

lysis buffer containing 8 M Urea / 2 M Thiourea, 10 mM HEPES, and 10 mM dithiothreitol. 

Filters were subjected to five freeze–thaw cycles in liquid N2 to release cells from the 

membrane. Cells were mechanically broken by sonication on ice (5 cycles of 1 min with tubes 

on ice, amplitude 40 %, 0.5 pulse rate) and subsequently centrifuged at 16 000 g at 4 °C for 15 

min. To remove particles that did not pellet during the centrifugation step, we filtered the 

protein suspension through a 0.22 mm syringe filter and transferred into a 3 kDa cutoff Amicon 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 10, 2019. ; https://doi.org/10.1101/697599doi: bioRxiv preprint 

https://doi.org/10.1101/697599


Ultra-15 filter unit (Millipore) for protein concentration. Proteins were precipitated with cold 

acetone overnight at −80 °C, with an acetone/aqueous protein solution ratio of 4:1. Total 

protein concentration was determined by a Bradford assay, according to the Bio-Rad Protein 

Assay kit (Bio-Rad, Hertfordshire, UK) according to manufacturer's instructions, with bovine 

γ-globulin as a protein standard. Protein samples were reduced with 25 mM dithiothreitol 

(DTT) at 56 °C for 30 min and alkylated with 50 mM iodoacetamide at room temperature for 

30 min. For gel-free liquid chromatography tandem mass spectrometry analysis, a trypsic 

digestion (sequencing grade modified trypsin, Promega) was performed overnight at 37 °C, 

with an enzyme/substrate ratio of 1:25.  

Gel-based proteomics approach 

Protein isolates diluted in Laemmli buffer (2 % SDS, 10 % glycerol, 5 % β-

mercaptoethanol, 0.002 % bromophenol blue and 0.125 M Tris-HCl, pH 6.8) and sonicated in 

a water bath six times for 1 min at room temperature. After 1 min incubation at 90 °C, the 

protein solutions were centrifuged at 13 000 rpm at room temperature for 15 min. The SDS-

PAGE of the protein mixtures was conducted using 4–20 % precast polyacrylamide mini-gels 

(Pierce). The protein bands were visualized with staining using the Imperial Protein Stain 

(Thermo) according to the manufacturer's instructions. The corresponding gel lane containing 

proteins was cut in 17 pieces of 1 mm each. Enzymatic digestion was performed by the addition 

of 10 µL modified sequencing grade trypsin (0.02 mg/mL) in 25 mM NH4HCO3 to each gel 

piece. The samples were placed for 15 min at 4 °C and incubated overnight at 37 °C. The 

reaction was stopped with 1 µL 5 % (v/v) formic acid. Tryptic peptides were analyzed by liquid 

chromatography tandem mass spectrometry. 

Liquid chromatography tandem mass spectrometry analysis 

Purified peptides from digested protein samples from gel-free and gel-based proteomics 

were identified using a label-free strategy on an UHPLC-HRMS platform composed of an 
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eksigent 2D liquid chromatograph and an AB SCIEX Triple TOF 5 600. Peptides were 

separated on a 25 cm C18 column (Acclaim pepmap 100, 3 μm, Dionex) by a linear acetonitrile 

(ACN) gradient [5–35 % (v/v), in 15 or 120 min] in water containing 0.1 % (v/v) formic acid 

at a flow rate of 300 nL min-1. Mass spectra (MS) were acquired across 400–1,500 m/z in high-

resolution mode (resolution > 35 000) with 500 ms accumulation time. Six microliters of each 

fraction were loaded onto a pre-column (C18 Trap, 300 µm i.d.×5 mm, Dionex) using the 

Ultimate 3000 system delivering a flow rate of 20 µL/min loading solvent (5 % (v/v) 

acetonitrile (ACN), 0.025 % (v/v) TFA). After a 10 min desalting step, the pre-column was 

switched online with the analytical column (75 µm i.d.×15 cm PepMap C18, Dionex) 

equilibrated in 96 % solvent A (0.1 % (v/v) formic acid in HPLC-grade water) and 4 % solvent 

B (80 % (v/v) ACN, 0.1 % (v/v) formic acid in HPLC-grade water). Peptides were eluted from 

the pre-column to the analytical column and then to the mass spectrometer with a gradient from 

4-57 % solvent B for 50 min and 57-90 % solvent B for 10 min at a flow rate of 0.2 µL min−1 

delivered by the Ultimate pump. Positive ions were generated by electrospray and the 

instrument was operated in a data-dependent acquisition mode described as follows: MS scan 

range: 300 – 1 500 m/z, maximum accumulation time: 200 ms, ICC target: 200 000. The top 4 

most intense ions in the MS scan were selected for MS/MS in dynamic exclusion mode: 

ultrascan, absolute threshold: 75 000, relative threshold: 1 %, excluded after spectrum count: 

1, exclusion duration: 0.3 min, averaged spectra: 5, and ICC target: 200 000. Gel-based and 

gel-free metaproteomic data were submitted to iProx [39] (Project ID: IPX0001684000).  

Databases creation and protein identification 

Protein searches were performed with ProteinPilot (ProteinPilot Software 5.0.1; 

Revision: 4895; Paragon Algorithm: 5.0.1.0.4874; AB SCIEX, Framingham, MA) (Matrix 

Science, London, UK; v. 2.2). Paragon searches 34 were conducted using LC MS/MS Triple 

TOF 5600 System instrument settings. Other parameters used for the search were as follows: 
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Sample Type: Identification, Cys alkylation: Iodoacetamide, Digestion: Trypsin, ID Focus: 

Biological Modifications and Amino acid substitutions, Search effort: Thorough ID, Detected 

Protein Threshold [Unused ProtScore (Conf)] >: 0.05 (10.0%).  

Three DBs were created using the same metagenome (Project number: ERP009703, 

Ocean Sampling Day 2014, sample: OSD14_2014_06_2m_NPL022, run ID: ERR771073) and 

were generated with mPies v 0.9, our recently in house developed mPies program freely 

available at https://github.com/johanneswerner/mPies/ (Additional file 4) [34]. The three DBs 

were: (i) a non-assembled metagenome-derived DB (NAM-DB), (ii) an assembled 

metagenome-derived DB (AM-DB) and (iii) a taxonomy-derived DB (TAX-DB) (Table 1). 

Briefly, mPies first trimmed sequencing raw reads with Trimmomatic [40]. For NAM-DB, 

mPies directly predicted genes from trimmed sequencing reads with FragGeneScan [41]. For 

AM-DB, mPies first assembled trimmed sequencing reads into contigs using metaSPAdes [42] 

and subsequently called genes with Prodigal [43]. For TAX-DB, mPies used SingleM [44] to 

predict operational taxonomic units from the trimmed sequencing reads and retrieved all the 

taxon IDs at genus level. All available proteomes for each taxon ID were subsequently 

downloaded from UniProtKB/TrEMBL. Duplicated protein sequences were removed with CD-

HIT [45] from each DB.  

Gel-based and gel-free MS/MS spectra were individually searched twice against the 

DBs. In the first-round search, full size NAM-DB, AM-DB and TAX-DB were used (Table 1). 

In the second-round search, each DB was restricted to the protein sequences identified in the 

first-round search. For both gel-free and gel-based approaches, the second round NAM-DB, 

AM-DB and TAX-DB were merged and redundant protein sequences were removed, leading 

to two combined DBs (Comb-DBs), subsequently searched against gel-based and gel-free 

MS/MS spectra. Consequently, a total of 8 metaproteomes obtained from four DBs: NAM-DB, 

AM-DB, TAX-DB and Comb-DB were analyzed in this paper. A FDR threshold of 1%, 
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calculated at the protein level was used for each protein searches. Proteins identified with one 

single peptide were validated by manual inspection of the MS/MS spectra, ensuring that a series 

of at least five consecutive sequence-specific b-and y-type ions was observed.  

Protein annotation 

Identified proteins were annotated using mPies. For taxonomic and functional 

annotation, mPies used Diamonds [46] to align each identified protein sequences against the 

non-redundant NCBI DB and the UniProt DB (Swiss-Prot) respectively and retrieved up to 20 

best hits based on alignment score. For taxonomic annotation, mPies returned the last common 

ancestor (LCA) among the best hits via MEGAN (bit score >80) [35]. For functional 

annotation, mPies returned the most frequent protein name, with a consensus tolerance 

threshold above 80% of similarity amongst the 20 best blast hits. Proteins annotated with a 

score below this threshold were manually validated. Manual validation was straightforward as 

the main reasons leading to low annotation score were often explained by the characterization 

of protein isoforms or different sub-units of the same protein. To facilitate the understanding 

of this annotation step, examples were provided in Additional file 5. Annotated proteins files 

are available in Additional file 6.  

 

Results and discussion 

Database choice affects the total number of protein identification 

The two-rounds search strategy commonly used in recent metaproteomics studies [25-

28] significantly reduced the size of protein search DBs number, which in turn increased the 

total number of total identified proteins with both assembled metagenome-derived database 

(AM-DB) and non-assembled metagenome-derived database (NAM-DB) (Table 1). Overall, 

the total number of identified proteins was found to be consistent with other metaproteomics 
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studies conducted in marine oligotrophic waters [7, 47-50]. NAM-DB led to greater protein 

identifications (gel-based: 714, gel-free: 1 131) than AM-DB (gel-based: 277 and gel-free: 549) 

and taxonomic-derived database (TAX-DB) (gel-based: 434 and gel-free: 464) for both 

proteomics approaches. Combined-database (Comb-DB) gave comparable results than NAM-

DB in both approaches (gel-based: 700 and gel-free: 1 048). In AM-DB approach, the assembly 

process involved the removal of reads that cannot be assembled into longer contigs, leading to 

loss of gene fragments and consequently fewer identified proteins [51]. As high proportions of 

prokaryotic genomes are protein-coding, gene fragments can directly be predicted from non-

assembled sequencing reads [52]. TAX-DB suffered from a reduction of protein detection 

sensitivity due to its large size, which negatively influenced FDR statistics and protein 

identification yield [22]. 

 

Protein search DB affects the taxonomic structure 

The proportion of proteins, for which a LCA was found, decreased with lowering 

taxonomic hierarchy (Domain > Phylum > Class > Order > Family > Genus), independently of 

the methodology (Figure 1). The proportion of annotated proteins at the domain, phylum and 

class levels remained constant with an average of 97.3 ± 1.0%, 92.0 ± 1.1% and 80.3 ± 0.8% 

respectively (Figure 1, Additional file 1). At order level and below, TAX-DB performed the 

best at assigning a LCA, in both gel-free and gel-based approaches. These results can be 

explained by the fact that the proteins were annotated using the program mPies which relies on 

protein sequence quality [34]. Indeed, TAX-DB comprised well-annotated protein sequences, 

obtained from bacterial proteomes retrieved from UniProtKB, while the other DBs used 

environmental reads, including fragmented and unsequenced bacterial genomes. This 

confirmed that the proportion of protein assigned to a LCA was affected by the DB choice, as 

previously demonstrated at the peptide level by May et al. (2016) [29]. 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 10, 2019. ; https://doi.org/10.1101/697599doi: bioRxiv preprint 

https://doi.org/10.1101/697599


At phylum level, most of the proteins identified were assigned to Proteobacteria and 

the least abundant were mainly assigned to Bacteroidetes and Cyanobacteria (Table 2). 

Although Proteobacteria showed similar proportion in all metaproteomes (90.9 ± 0.97%), the 

representativeness of Bacteroidetes and Cyanobacteria was found to be more variable across 

the different DBs. The general similar distribution can be explained by the fact that the three 

DBs used in this study were derived from the same metagenome. Indeed, by using distinct data 

sources (metagenomes and different public repositories), contrasting distributions can be 

anticipated, as it was recently demonstrated [18]. In our study, Alphaproteobacteria were found 

to be the most represented class (72.9 ± 1.9%) followed by Gammaproteobacteria (18.2 ± 

2.0%), Flavobacteriia (4.1 ± 0.5%) and unclassified Cyanobacteria (3.0 ± 0.7%) (Table 2). 

The dominance of Alpha- and Gammaproteobacteria was often reported in other marine 

metaproteomic studies [5, 7, 8] due to their high distribution in most marine sampling sites. 

Other studies focusing on sea surface sample also supported the presence of Cyanobacteria 

[47] and Flavobacteriia [49]. 

At the order level and below, the choice of DB was found to affect both qualitatively 

and quantitatively the taxonomic distribution, independently of the protein fractionation 

approach (Figure 2, Additional files 2 and 3). Although Pelagibacterales and Rhodobacterales 

were found to be the most dominant taxa independently of the methodology, Pelagibacterales 

were found to be overrepresented in NAM-DB and AM-DB (Figure 2a). Pelagibacterales are 

comprised of the most dominant marine microorganisms in the oceans [48] and the consistent 

representativeness of this order in all metaproteomes was in line with prior sea surface 

metaproteomic studies [5, 7, 8, 47, 53]. The observation of high protein expression profiles 

assigned to Rhodobacterales was also previously reported [50]. Flavobacteriales were overall 

more represented in the gel-free approach as well as Cellvibrionales but only with NAM-DB 

and AM-DB. Synechococcales were more frequently identified in the metaproteomes obtained 
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from the gel-based approach. TAX-DB led to the characterization of many proteins from the 

following taxa: Pseudomonadales, Rhizobiales and Sphingomonadales. These taxa were either 

absent or rarely represented in NAM-DB or AM-DB. As stated above, TAX-DB provided the 

highest number of proteins successfully annotated, explaining the more diverse distribution 

obtained using this DB. Interestingly, the taxonomic distributions obtained with Comb-DB 

were found to be a good compromise between TAX-DB, NAM-DB and AM-DB (Figure 2a). 

Striking discrepancies in taxonomic diversity was observed between metaproteomes. As shown 

in the Venn diagrams provided in Figure 2b, only one quarter out of the 34 and 41 unique 

orders observed in gel-based and gel-free approaches respectively, was common to all DBs. 

Around 40 and 30% of unique orders were exclusively characterized in TAX-DB and Comb-

DB in gel-based and gel-free approaches respectively, demonstrating the great performance of 

those DBs at extracting the broadest diversity.  

Proteomics workflow and protein search DB affect functional identification 

The total number of proteins, for which a functional consensus annotation was found, 

decreased with the following order: TAX-DB (gel-based: 66 %, gel-free: 77 %) > AM-DB 

(gel-based: 61 %, gel-free: 54 %) > NAM-DB (gel-based: 50 %, gel-free: 54 %) (Figure 1, 

Table S2). Using Comb-DBs, 59 and 67% of functional annotation were observed in gel-based 

and gel-free approach respectively. In all metaproteomes, the 60 kDa chaperonin was found to 

be the most abundant protein (Figure 3a). The prevalence of chaperonin proteins was 

previously observed in other marine metaproteomic studies [7, 47, 53]. The 60 kDa chaperonin 

is an essential protein involved in large range of protein folding and could potentially act as 

signaling molecule [54]. Moreover, this protein is found in nearly all bacteria. Some taxa, such 

as Alphaproteobacteria or Cyanobacteria, often contain several 60 kDa chaperonin homologs 

[55]. On top of its ubiquity and its vital role, the abundance of the 60 kDa chaperonin could be 

interpreted as a response to environmental stresses exposure [7, 47, 53]. 
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Protein fractionation (gel-based versus gel-free) was found to affect both qualitatively 

and quantitatively the functional distribution as shown in Figure 3. The gel-free approach 

provided the greatest diversity of protein functions in comparison to the gel-based approach 

(Figure 3a). Only 16 and 20% of the protein functions were found to be common in all DBs 

from the gel-based and gel-free approaches respectively (Figure 3b). In the gel-based approach, 

three main functions namely the elongation factor protein, the amino-acid ABC transporter-

binding protein, and the ATP synthase were observed in all DBs (Figure 3a). In contrast, in the 

gel-free approach, a higher number of abundant proteins was observed, including: 50S 

ribosomal proteins, elongation factor protein, ATP synthase, DNA-binding protein, amino-acid 

ABC transporter-binding protein, 10 kDa chaperonin and the chaperone protein DnaK (Figure 

3a). In both proteomics approaches, each individual DB allowed the characterization of a 

significant number of unique protein functions (Figure 3b). Comb-DB proved to be effective 

at merging the results obtained from each individual DB, leading to the highest number of 

identified functions.  

Metaproteomic workflow alters biological interpretation 

 All proteins accurately annotated at both taxonomic (order rank) and functional levels 

were clustered and visualized into heatmaps for each DB (Figures 4). Interestingly, in 5 out of 

6 heatmaps derived from NAM-DB, AM-DB and TAX-DB, Pelagibacterales was found to be 

a taxonomic cluster that stood out from all other taxa comprising of Rhodobacterales, 

Rhizobiales, Pseudomonadales, Oceanospirillales, Cellvibrionales, Flavobacteriales or 

Synechococcales. An exception was observed for TAX-DB in the gel-based approach where 

Rhodobacterales formed a distinct cluster instead of Pelagibacterales. Both Pelagibacterales 

and Rhodobacterales clustered apart together from all other taxa when using the Comb-DB. 

Regarding the functional clustering, the 60 kDa chaperonin was found to stand out all other 

functions apart from NAM-DB in the gel-based approach. Despite the similar trend observed 
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for the most abundant taxa and most represented protein functions for all metaproteomes, 

Figure 4 clearly shows that the methodology was found to significantly alter the 

structure/function network. 

Interestingly, the detection in all metaproteomes of numerous transporters with a broad 

range of substrates across different taxa could be interpreted as a strategy allowing bacteria to 

survive under nutrient-limited environments (Figure 5) [56, 57]. Proteins involved in amino-

acid/peptide and carbohydrate transport were the most abundant transporters. In contrast, other 

proteins crucial in environmental processes, such as phosphorous, iron or vitamin transporters 

were heterogeneously characterized in a limited number of metaproteome, highlighting the risk 

of building upon incomplete visualization of community members coping with oligotrophic 

conditions. 

The detection of amino-acid/peptide transporters, together with other proteins involved 

in nitrogen metabolism (i.e. glutamate and glutamine synthase or nitrogen regulatory protein 

PII), strengthened the nitrogen-depleted habitat hypothesis and suggested that a wide range of 

bacteria were metabolically adapted to survive under nitrogen depletion [58, 59]. Surprisingly, 

only 3 of the 14 proteins involved in nitrogen metabolism were observed in the gel-based 

approach, emphasizing how protein fractionation could alter the understanding of nitrogen 

cycle.  

The detection of proteins involved in light-harvesting, photosynthesis and oxidative 

stress response was found to be particularly dependent of the workflow (Figure 5). A total of 

16 of the 26 proteins were characterized in only one metaproteome, showing that a robust 

experimental design using multiple methodologies will improve the understanding of the 

microbial light response. Indeed, combining the information found in all metaproteomes helped 

at depicting the variety of pigments belonging to photoautotrophs or photoheterotrophs [60]. 
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The characterization of the carbon dioxide-concentrating mechanism protein Ccmk together 

with the ribulose bisphosphate carboxylase (RuBisCO) informed on how primary producers, 

such as Synechococcales and Rhodobacterales overcome inorganic carbon limitation [47, 61]. 

Overall, several oxidative stress-related proteins and numerous chaperonin proteins were 

identified in all metaproteomes, suggesting the adaptability of the microbial community to cope 

with oxidative stress. As a reminder, surface water samples were collected in summer at the 

surface of the Mediterranean Sea, where high solar irradiance was encountered. Chaperones 

are essential for coping with UV-induced protein damage and maintaining proper protein 

function [62]. Consequently, those metaproteomics results suggest that strategies used by 

microorganisms to cope with high solar radiation could be similar to the ones extensively 

described in axenic cultures using microcosms experiments [62, 63]. 

 

Conclusion 

Metaproteomics enables to progress beyond a mere descriptive analysis of microbial 

community diversity and structure, providing specific details on which bacteria, and which 

pathways of those key players, are impacted by possible perturbations. Nevertheless, using this 

powerful tool without fully apprehending the limitations could lead to significant 

misinterpretations, especially in the case of comparative metaproteomic studies. This study 

clearly evidenced the implications of critical decisions in metaproteomic workflow. Our 

findings lead to the general recommendation of diversifying when possible the protein search 

database as well as protein fractionation, especially if only one condition/ecosystem was 

studied. A robust diversified workflow allows crossing information from multiple 

metaproteomes in order to accurately describe the functioning of microbial communities. In a 

comparative metaproteomic study however, the best compromise relies on the creation of a 
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combined DB. Our findings will undoubtedly serve future studies aiming at reliably capturing 

how microorganisms operate in their environment. 
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Tables and figures captions 

Table 1. Two-round search performances obtained for each methodology. Searching 

parameters are provided in the Material and methods section. 

Table 2. Comparison of the distribution of proteins assigned at phylum and class levels 

for each methodology. Values represent the proportion of proteins with identical taxonomy on 

total identified protein using TAX-DB, NAM-DB, AM-DB or Comb-DB in both gel-free and 

gel-based approaches. The number of peptides detected for each protein was used as 

quantitative value. Taxa displaying a proportion < 1 % were gathered into “Other” category. 
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Figure 1. Taxonomic and functional protein annotation. Comparison of the proportion 

of proteins for which a consensus annotation was found. Bars represent the percentage of 

annotated proteins versus total identified proteins depending on methodology. 

 

Figure 2. (a) Relative taxonomic composition at order level for each methodology. 

Values represent the proportion of proteins with identical taxonomy on total identified protein 

using TAX-DB, NAM-DB, AM-DB or Comb-DB in both gel-free and gel-based approaches. 

The number of peptides detected for each protein was used as quantitative value. Taxa 

displaying a proportion < 1 % were gathered into “Other” category. (b) Venn diagrams showing 

the number of common and unique taxa identified at order level.  

Figure 3. (a) Relative functional composition for each methodology. Values represent 

the proportion of proteins with identical functional name on total identified protein using TAX-

DB, NAM-DB, AM-DB or Comb-DB in both gel-free and gel-based approaches. The number 

of peptides detected for each protein was used as quantitative value. Functional name 

displaying a proportion < 1 % were gathered into “Other” category. (b) Venn diagrams showing 

the number of common and unique protein functions.  

Figure 4. Heatmaps of the taxonomic (top clusters) and the functional (right clusters) 

linkages for each methodology. Proteins annotated at both order and functional levels were 

ranked according to the number of identified peptides. Clusters were determined using 

complete linkage hierarchical clustering and Euclidean distance metric. 

Figure 5. Diversity and taxonomic distribution of proteins involved in nutrient 

transport, nitrogen assimilation, light harvesting and oxidative stress response for each 

methodology. Horizontal and vertical bar charts correspond to the total number of peptides 

detected for a given function (y axis) or order (x axis) in all metaproteomes. The lack of symbol 
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in colored boxes means that the protein was observed in both gel-free and gel-based 

approaches.   
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Database 

Number of 

proteins in 

database 

Number of 

peptide spectra 

identified a 

Coverage of 

peptide spectra 

identified (%) 

Number of 

distinct peptides 

Identified a 

Number of 

proteins after 

validation a,b 

First-round searches 

G
el-free

 

AM-DB 64 613 24 684 7.8 3 237 347 

NAM-DB 462 821 35 430 11.1 4 295 834 

TAX-DB 13 426 277 10 626 3.3 1 624 607 

G
el-b

a
sed

 

AM-DB 64 613 2 066 24.7 1 408 201 

NAM-DB 462 821 2 584 30.9 1 849 652 

TAX-DB 13 426 277 2 304 27.5 1 526 496 

Second-round searches 

G
el-free

 

AM-DB 782 42 831 13.4 8 487 549 

NAM-DB 4 277 57 840 18.2 9 113 1 131 

TAX-DB 18 480 31 700 10.0 4 497 464 

Comb-DB 23 405 56 530 17.7 8 273 1 048 

G
el-b

a
sed

 

AM-DB 377 2 619 31.3 1 815 277 

NAM-DB 3 080 2 897 34.6 2 034 714 

TAX-DB 19 036 2 951 35.3 1 777 434 

Comb-DB 22 493 3 684 44.0 2 244 700 

a values comprised in 95% confidence interval 

b values at 1% global FDR and after manual validation for proteins identified with one peptide  
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 Gel-based Gel-free  
TAX-DB NAM-DB AM-DB Comb-DB TAX-DB NAM-DB AM-DB Comb-DB 

Phylum 

Proteobacteria 87.2 92.7 95.2 89.8 87.6 92.9 91.5 90.0 

Cyanobacteria 6.3 2.9 2.0 4.0 2.6 4.8 1.6 2.0 

Bacteroidetes 4.9 4.2 2.4 5.0 7.6 1.4 6.1 5.8 

Other (<1%) 1.6 0.2 0.4 1.2 2.2 0.9 0.8 2.2 

Class 

Alphaproteobacteria 73.7 81.6 79.9 74.3 69.7 68.4 68.4 67.5 

Gammaproteobacteria 12.9 11.5 14.8 14.4 18.0 25.7 24.4 23.5 

Flavobacteriia 6.5 3.7 2.2 3.9 6.3 3.5 4.9 4.8 

Unclassified Cyanobacteria 3.9 2.7 1.8 5.3 2.5 1.4 1.2 2.1 

Other (<1%) 3.0 0.5 1.2 2.1 3.6 1.0 1.0 2.2 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 10, 2019. ; https://doi.org/10.1101/697599doi: bioRxiv preprint 

https://doi.org/10.1101/697599


 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 10, 2019. ; https://doi.org/10.1101/697599doi: bioRxiv preprint 

https://doi.org/10.1101/697599


 

 

 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 10, 2019. ; https://doi.org/10.1101/697599doi: bioRxiv preprint 

https://doi.org/10.1101/697599


not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 10, 2019. ; https://doi.org/10.1101/697599doi: bioRxiv preprint 

https://doi.org/10.1101/697599


 

 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 10, 2019. ; https://doi.org/10.1101/697599doi: bioRxiv preprint 

https://doi.org/10.1101/697599


 

 

 

 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 10, 2019. ; https://doi.org/10.1101/697599doi: bioRxiv preprint 

https://doi.org/10.1101/697599

