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Abstract 
 
Numerous theories link consciousness to informationally rich, complex neural dynamics. This 
idea is challenged by the observation that children with Angelman syndrome (AS), while fully 
conscious, display a hypersynchronous electroencephalogram (EEG) phenotype typical of 
information-poor dynamics associated with unconsciousness. If informational complexity 
theories are correct, then sufficiently complex dynamics must still exist during wakefulness and 
exceed that observed in sleep despite pathological delta (1 – 4 Hz) rhythms in children with AS. 
As characterized by multiscale metrics, EEGs from 35 children with AS feature significantly 
greater complexity during wakefulness compared with sleep, even when comparing the most 
pathological segments of wakeful EEG to the segments of sleep EEG least likely to contain 
conscious experiences, and when factoring out delta power differences across states. These 
findings support theories linking consciousness with complexity and warn against reverse 
inferring an absence of consciousness solely on the basis of clinical readings of EEG. 
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Introduction  
 
Electroencephalography (EEG) offers a window into neural activity during sleep and 
wakefulness, generally revealing low voltage, fast activity during wakefulness and high voltage, 
slow activity during non-rapid eye movement (NREM) sleep1–4. The former may be 
conceptualized as neural “chatter,” i.e., informationally rich interactions analogous to 
background noise at a sports arena, whereas the latter may be conceptualized as neural 
“chanting,” i.e., informationally poor synchronization analogous to coordinated crowd activity5. 
Similarly to NREM sleep, loss of consciousness in other states also coincides with a chanting EEG 
rhythm6–8 reflected in lower signal complexity4,9–13. For instance, in a state of anesthesia, loss of 
consciousness coincides with a widespread increase in EEG power at low frequencies3,14,15, 
marking a decrease in corticocortical interactions16,17. Absence seizures and temporal lobe 
seizures that impair consciousness are also associated with significant increases in slow 
waves18,19. Similar findings have been reported for other modes of loss of consciousness 
including advanced states of encephalopathy and coma20,21, sudden acceleration22,23, basilar 
artery migraine24, and convulsive syncope25. 
 
The association between neural chanting and loss of consciousness is consistent with the 
integrated information theory of consciousness (IIT)26,27, which asserts that spatially extended, 
low-frequency (i.e., delta) rhythms lead to a loss of information differentiation28 and a 
breakdown of effective connectivity within the thalamocortical system29, as neural signaling 
pauses diffusely at the troughs of delta oscillations30,31 and loss of consciousness results. In 
translational work, consciousness is also linked to neural complexity by the perturbational 
complexity index, a successful method of inferring consciousness based on the brain’s 
electrophysiological “echo” following a magnetic pulse9,32.  
 
In apparent contradiction to the above arguments and data, children with Angelman syndrome 
(AS) display the rich spectrum of purposeful behavior that implies conscious awareness (as seen 
here)33–35 while exhibiting the chanting EEG phenotype typical of states of reduced 
consciousness (Fig. 1)36–39. Although the AS EEG phenotype has long been described in clinical 
reports40, we are the first to characterize the degree to which the awake EEG in children with 
AS can support complex dynamics and, moreover, that these dynamics are demonstrably 
lowered as consciousness decreases during sleep.  
 
AS is caused by dysfunction of the gene UBE3A41,42. Its clinical phenotype encompasses global 
developmental delay, intellectual disability, microcephaly, epilepsy, and sleep difficulties42–44. 
Puzzlingly, awake state EEG recordings from children with AS display diffuse, slow rhythmic 
oscillations at delta (1-4 Hz) frequencies36–38 reminiscent of those seen in slow wave sleep. In 
fact, spectral power at the delta peak frequency (2.8 Hz) in awake children with AS exceeds that 
observed in typically developing (TD) children by > 1000%36. At face value, either the core ideas 
of IIT do not generalize to the hypersynchronized, but wakeful and conscious, brain in AS, or 
amidst the pathologically slow chanting rhythm observed in awake children with AS, sufficiently 
complex interactions nonetheless arise and persist over time despite the periodic presence of 
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the widespread interburst silence at the trough of each delta wave, generally assumed to 
interrupt the flow of consciousness4,28–30. 
 
To address this puzzle, we examined whether brain dynamics observed in children with AS 
during periods of wakefulness were measurably greater than those observed during periods of 
sleep, as predicted by complexity-based theories of consciousness and despite the diffuse 
presence of large delta oscillations in both states. As described below, contrary to common 
readings of EEG and despite diffuse delta oscillations, the awake EEG of children with AS 
supports significantly greater signal complexity than the asleep AS EEG. This finding persisted 
even after contrasting periods of wakefulness showing the most pathological EEG signature to 
the periods of sleep least likely to coincide with any oneiric experience45,46, and, moreover, 
after accounting for differences in delta power between states.  
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Figure 1 10 s EEG recordings from conscious states (left column) and unconscious states (right 
column). A general trend of low-voltage, fast activity is visible in all cases from conscious states 
except for AS, which paradoxically resembles unconscious EEG activity even during wakeful 
consciousness (panel A). Panels A and E display EEG from a 27-month-old girl with AS included 
in this study; other panels display data from outside this study with different acquisition, 
referencing, and preprocessing and are provided for illustrative purposes only. Direct, 
quantitative comparisons are precluded by these differences. Some EEGs are depicted with 15x 
amplitude exaggeration to better display waveforms (panels B,C,D,G,H). (A) Awake state EEG 
(channel Cz) from a 27-month-old girl with AS (Participant 10, Table S1) marked by high 
amplitude delta oscillations that are more typical of diminished consciousness (cf. left column). 
This participant did not have seizures and was not taking medication. (B) Awake state EEG 
(channel Cz) recorded from a typically developing 38-month old girl. (C) Awake state EEG 
(bipolar channel F1-F3) recorded from a healthy 37-year-old woman. (D) REM sleep EEG 
(bipolar channel F1-F3) recorded from a healthy 37-year-old woman. (E) Sleep EEG from a 27-
old-girl with AS; note the extreme similarity in waveform to awake state AS EEG in A. (F) Ictal 
EEG (bipolar channel F3-C3) recorded from a 2-year-old girl with epilepsy during a seizure. (G) 
Spontaneous EEG (channel Cz) recorded from a 59-year-old man in a vegetative state. (H) Sleep 
EEG (bipolar channel F1-F3) recorded during NREM (stage N3) from a healthy 37-year-old 
woman.  
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Results 
 
Herein, we assess the degree to which signal complexity can emerge from the pathologically 
hypersynchronous brain dynamics typical of children with AS and, specifically, whether such 
dynamics differ significantly across levels of consciousness (i.e., wake, sleep). We first address 
this question by analyzing all useable EEG data (henceforth, full comparison). We then repeat 
the analysis while controlling for two possible confounds (henceforth, targeted comparison). 
The sample included a cohort of 35 children with AS (15 female), ranging from 13 to 130 
months of age (mean ± std = 47.9 ± 28.6 months), of which 25 had a deletion of chromosome 
15q11-q13 (see Table S1 for individual demographic details and length of EEG data used in each 
of the analyses). EEG recordings were acquired in a clinical setting using an international 10-20 
EEG montage (19 channels), and sleep EEG data were collected and marked by a technician as 
children slept naturally during the EEG session. Consistent with prior studies of AS36–39,47, 
qualitative inspection of EEG recordings revealed strongly abnormal EEG patterns in both sleep 
and wakefulness (see Fig. 1A,E for examples from a participant without seizures or 
medications). 
 
To assess biomarkers for consciousness in AS, we derived EEG spectral power using a Morlet 
wavelet transform and EEG complexity using two measures, modified multiscale entropy 
(mMSE) and generalized multiscale Lempel-Ziv (gMLZ). mMSE captures the balance between 
periodicity and randomness in the signal, computed as modified sample entropy (mSampEn)48 
across 20 time-scales using a coarse graining procedure that excludes high frequencies at each 
step49. gMLZ captures the incompressibility or number of unique substrings in the signal50 and is 
also computed across 20 timescales51 using two median filters with different smoothing 
windows to exclude both low and high frequencies at each step52. We accounted for multiple 
comparisons using cluster randomization statistics53,54 to identify clusters in channel-frequency 
(power) and channel-timescale (complexity) space that show significant changes with sleep 
(one p-value derived per cluster using permutation tests). We then adjusted for 8 separate tests 
(full comparison: 3 EEG measures, targeted comparison: 3 EEG measures, targeted comparison 
covarying for delta power, 2 EEG measures) using a Bonferroni correction, yielding a test-wise 
criterion of α = 0.0063. 
 
Full Comparison 
 
The full comparison revealed peaks in the delta band for both the awake and asleep condition 
(channel-averaged), with a sharper peak in the awake state and a broader peak in the asleep 
state (Fig. 2A; see Fig. S1A for visualization of the untransformed power). The duration of 
useable EEG ranged from 3.39 to 167 minutes (awake state, mean ± std = 16.7 ± 27.1 minutes) 
and 2.89 to 123 minutes (asleep state, mean ± std = 17.3 ± 20.1 minutes). Power was generally 
decreased in wakefulness at frequencies under 20 Hz, with the largest decrease occurring as a 
53.0% reduction at f = 1.52 Hz (Fig. 2B, see Fig. S1B for percent change referenced to 
wakefulness). These changes in wakeful power mapped onto a significant cluster (p < 10-4, 
cluster permutation test) in channel-frequency space with a spatially defuse topography that 
was largest over frontocentral areas (Fig. 2C,D; effect size: d =  -0.48 ± 0.26, median ± SD; see 
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Table 1 for full details of clusters). Because the spectral profile of this cluster appeared to “fuse” 
an oscillatory change in the delta frequency range with an oscillatory change in the alpha/beta 
frequency range (Fig. 2D), we then repeated the cluster randomization statistics with a stricter 
threshold (p = 0.0005) to observe the topography of each oscillatory change separately (Fig. S2, 
Table S2). We also observed a > 100% increase in power at high frequencies (f > 28 Hz) in the 
awake state relative to the asleep state (Fig. 2B); however, the corresponding cluster did not 
reach statistical significance (Cluster 4, Table 1). 
 
We next examined mMSE and gMLZ and found greater EEG signal complexity in the awake state 
as compared to sleep. Specifically, the channel averaged mSampEn decreased monotonically 
with faster timescales, but was greater during wakefulness as compared to sleep (Fig. 3A,B), 
with the exception of frequencies ≤ 6.25 Hz (i.e., the 5 slowest timescales). Greater mMSE 
during wakefulness was marked by a significant cluster (p = 0.0007) covering all channels but 
largest over central and posterior areas (Fig. 3C,D; effect size: d = 0.69 ± 0.12, median ± SD). By 
comparison, gMLZ increased monotonically with faster timescales and was larger in 
wakefulness as compared to sleep at all timescales, particularly those with center frequencies 
corresponding to delta and beta frequencies (channel-averaged; Fig. 3E,F). These changes were 
accompanied by a significant cluster (p < 10-4) encompassing 90.8% of channel-timescale space 
(Fig. 3G,H; effect size: d = 0.63 ± 0.32, median ± SD). The cluster appeared to fuse complexity 
changes corresponding to fast and slow timescales. We thus repeated the analysis with a 
stricter threshold (p = 0.0005) to view the topography of each change separately. Effect sizes in 
the low-frequency cluster were large (d = 0.96 ± 0.27; Fig. S3, Table S4). See Fig. S4 for complete 
visualizations of all clusters. 
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Figure 2 Full comparison of EEG power in sleep vs wakefulness. (A) Channel-averaged EEG 
power traces demonstrate global maxima in the delta band. (B) Percent power change from 
sleep after channel averaging; the largest change is a 53.0% decrease in power in wakefulness 
at 1.52 Hz. Increased power >20 Hz in wakefulness may indicate residual muscle artifact. (C) 
Channel-frequency cluster (p < 10-4, dmedian = 0.48) of decreased power in wakefulness color-
coded by the number of frequency bins participating in the cluster at each channel. The cluster 
was largest along its frequency dimension at channels Cz, Fz, F3, and F4. (D) Channel-frequency 
cluster membership plotted as the number of channels participating in the cluster at each 
frequency bin. The cluster was largest along its spatial dimension at delta and beta frequencies 
and smallest at theta and alpha frequencies.  
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Figure 3 Full comparison of EEG complexity in sleep vs wakefulness. (A) Channel-averaged 
mMSE curves show greater complexity (i.e., mSampEn) at slower timescales (i.e., timescales 
with greater coarse graining). Nyquist frequency is indicated on the lower ordinate to indicate 
coarse graining, with the corresponding timescale given on the upper ordinate. (B) Percent 
change in channel-averaged mSampEn (wakefulness – sleep); the largest changes are observed 
at fast timescales (i.e., timescales with less coarse graining). (C) Membership for a channel-
timescale cluster (p = 0.0007, dmedian = 0.69) of increased mMSE in wakefulness plotted as the 
number of channels participating in the cluster at each timescale. The cluster was largest along 
its spatial dimension at faster timescales. (D) Channel-timescale cluster of increased mMSE in 
wakefulness color-coded by the number of timescales participating in the cluster at each 
channel. The cluster grew largest along its frequency dimension traveling posteriorly. (E) 
Channel-averaged gMLZ curves show greater complexity at faster timescales (i.e., timescales 
with shorter filter windows). Center frequency is indicated on the lower ordinate with the 
corresponding timescale given on the upper ordinate. (F) Percent change in channel-averaged 
gMLZ (wakefulness – sleep); complexity was greater in wakefulness, with the largest increases 
at timescales corresponding to delta and beta frequencies. (G) Membership for a channel-
timescale cluster (p < 10-4, dmedian = 0.63) of increased gMLZ in wakefulness plotted as the 
number of channels participating in the cluster at each timescale. The cluster was largest along 
its spatial dimension at timescales corresponding to delta and beta timescales. (H) Channel-
timescale cluster of increased gMLZ in wakefulness color-coded by the number of timescales 
participating in the cluster at each channel. The cluster was nearly saturated in space, with local 
minima at P3 and P4.  
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EEG 

measure 
Comparison Direction 

(awake-
sleep) 

Regressed 
covariates? 

p-value  Cohen’s 
d  

(cluster 
median) 

Cohen’s 
d  

(cluster 
SD) 

Cluster 
size 

percentage Low 
freq 

High 
freq 

Minimum 
number of 

channels 

Maximum 
number of 

channels 

Cluster 1 gMLZ Full Increase No < 10-4 0.63 0.32 345 90.79 1.0 28.6 9 19 

Cluster 2 power Full Decrease No < 10-4 -0.48 0.26 486 62.39 1.0 20.7 1 19 

Cluster 3 mMSE Full Increase No 0.0007 0.69 0.12 231 60.79 6.3 100.0 1 19 

Cluster 4 power Full Increase No 0.017 0.56 0.26 83 10.65 19.0 32.0 3 19 

Cluster 5 gMLZ Targeted Increase No < 10-4 0.64 0.32 279 73.42 1.0 28.6 1 19 

Cluster 6 mMSE Targeted Increase No 0.001 0.67 0.11 226 59.47 6.3 100.0 3 19 

Cluster 7 power Targeted Decrease No 0.0011 -0.60 0.19 177 22.72 1.0 2.2 8 19 

Cluster 8 power Targeted Increase No 0.0022 0.63 0.24 157 20.15 11.3 32.0 2 19 

Cluster 9 power Targeted Increase No 0.1727 0.24 0.02 4 0.51 4.8 6.2 1 1 

Cluster 10 power Targeted Increase No 0.2021 0.27 0.02 3 0.39 4.8 5.7 1 1 

Cluster 11 power Targeted Increase No 0.2448 0.25 0.05 2 0.26 5.2 5.2 2 2 

Cluster 12 power Targeted Increase No 0.3036 0.24 N/A 1 0.13 4.0 4.0 1 1 

Cluster 13 gMLZ Targeted Increase Yes < 10-4 2.42 1.28 361 95.00 1.0 28.6 10 19 

Cluster 14 mMSE Targeted Increase Yes < 10-4 1.92 0.81 346 91.05 5.0 100.0 11 19 

Cluster 15 gMLZ Targeted Decrease Yes 0.0844 -0.92 N/A 1 0.26 1.0 1.0 1 1 

Cluster 16 gMLZ Targeted Decrease Yes 0.0844 -0.58 N/A 1 0.26 1.0 1.0 1 1 

Cluster 17 gMLZ Targeted Decrease Yes 0.0844 -0.71 N/A 1 0.26 1.0 1.0 1 1 

 
 
Table 1 Channel-frequency (power) and channel-timescale (complexity) clusters identified using permutation cluster statistics. 
Bold rows are clusters reported in the text and figures that meet statistical significance after a Bonferroni correction (α = 0.0063). P-
values are derived from empirical cluster size distributions using permutation tests. Effect sizes are reported as Cohen’s d (median 
and standard deviation across all cluster points; standard deviation is reported as N/A for clusters with only 1 point).  
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Targeted comparison 
 
The full comparison (above) may have been influenced by two confounding factors. First, there 
is considerable variance is the delta amplitude during the awake state in AS55. It is thus 
conceivable that our findings from the full comparison would disappear when only the most 
pathological sections of awake EEG are considered. Secondly, it has been previously shown that 
some form of conscious experience can take place in up to 70% of NREM sleep in healthy 
volunteers56. Thus, it is also conceivable that our sleep data are “contaminated” by conscious 
mentation. We therefore performed the targeted comparison below to control for these 
confounds as follows. We addressed the first concern by focusing only on the most abnormal 
segments of conscious, wakeful EEG, as operationalized by delta power. We then addressed the 
second concern by contrasting the pathological wakeful EEG with the periods of sleep EEG least 
likely to correspond to any oneiric experience, as operationalized by the ratio of parietal delta 
power to high-frequency power45,46, where higher values of this ratio correspond to a greater 
probability of unconsciousness. In other words, we compared the most abnormal segments of 
EEG still corresponding, nonetheless, to a state of wakeful consciousness, to the segments of 
sleep EEG least likely to correspond to any conscious experience. By using only these segments, 
we would expect the findings from the full comparison to disappear if EEG complexity is not 
always greater during wakefulness as compared to dreamless sleep, e.g., during bouts of 
especially high amplitude delta in wakefulness55. The duration of selected EEG ranged from 2.07 
to 9.44 minutes (awake state, mean ± std = 3.96 ± 1.67 minutes) and 1.48 to 5.32 minutes 
(asleep state, mean ± std = 3.24 ± 1.02 minutes).  
 
Consistent with the data selection criteria which optimize delta power, and closely replicating 
the results described in the full comparison, the targeted awake EEG sections were 
characterized by a prominent peak in the delta band, while the targeted asleep EEG sections 
were characterized by two delta band peaks at different octaves (channel-averaged; Fig. 4A), 
which are best visualized in the untransformed power (Fig. S5A); this suggests the presence of 
two separate oscillatory processes, one related to sleep and one related more specifically to AS 
pathology. Decreases in power between the two states were restricted to the delta band (max 
change: 41.3% decrease at f = 1.34 Hz), with > 100% increases also occurring at high 
frequencies (f > 25 Hz) (Fig. 4B, see Fig. S5B for percent change referenced to wakefulness). 
Permutation cluster statistics identified two small but significant clusters differing between the 
two states. The first cluster corresponded to decreased power at low delta (1.0 – 2.2 Hz) 
frequencies in the awake state (p = 0.0011) and lacked a distinct scalp topography (Fig. 4C,D; 
effect size: d = -0.60 ± 0.19, median ± SD). The second cluster corresponded mostly to increased 
power at mostly beta (11.3 – 32 Hz) frequencies in the awake state (p = 0.0022) and displayed a 
scalp topography suggestive of neck muscle artifact (Fig. 4E,F; effect size: d = 0.63 ± 0.24, 
median ± SD). These results show that, after accounting for the confounds that motivated our 
targeted comparison, the most reliable spectral differences between sleep and wakefulness 
were found at low delta frequencies. Note that the effect sizes of the differences in power 
across states were larger in the targeted comparison than in the full comparison despite 
matching data on more stringent criteria, likely as a result of the larger cluster in the full 
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comparison fracturing into smaller clusters focused on the channel-frequency subspaces with 
the largest effects.   
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Figure 4 Targeted comparison of EEG power in sleep vs wakefulness. (A) Channel-averaged EEG 
power traces demonstrate global maxima in the delta band. (B) Percent power change from 
sleep after channel averaging; the largest change is a 41.3% decrease in power during 
wakefulness at 1.34 Hz. Increased power > 10.3 Hz in wakefulness may indicate either cortical 
arousal or muscle artifact. (C) Channel-frequency cluster (p = 0.0011, dmedian = 0.60) of 
decreased power in wakefulness color-coded by the number of frequency bins participating in 
the cluster at each channel. All channels contributed roughly equally. (D) Channel-frequency 
cluster membership plotted as the number of channels participating in the cluster at each 
frequency bin. The cluster was saturated along its spatial extent at frequencies ≤ 1.8 Hz. (E) 
Channel-frequency cluster (p = 0.0022, dmedian = 0.63) of increased power in wakefulness color-
coded by the number of frequency bins participating in the cluster at each channel. The cluster 
was largest along its frequency dimension at channels T5 and O1 and displayed an overall 
topography suggestive of neck muscle artifact. (F) Channel-frequency cluster membership 
plotted as the number of channels participating in the cluster at each frequency bin. The cluster 
became saturated along its spatial extent at frequencies ≥ 22.6 Hz, suggesting possible 
involvement of residual muscle artifact in wakefulness.   
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Figure 5 Targeted comparison of EEG complexity in sleep vs wakefulness. (A) Channel-averaged 
mMSE curves show greater complexity (i.e., mSampEn) at slower timescales (i.e., timescales 
with greater coarse graining). Nyquist frequency is indicated on the lower ordinate to indicate 
coarse graining, with the corresponding timescale given on the upper ordinate. (B) Percent 
change in channel-averaged mSampEn (wakefulness – sleep); the largest changes are observed 
at fast timescales (i.e., timescales with less coarse graining). (C) Membership for a channel-
timescale cluster of increased mMSE in wakefulness plotted as the number of channels 
participating in the cluster at each timescale. The cluster was largest along its spatial dimension 
at faster timescales (channel saturation occurred at Nyquist frequencies ≥ 24.3 Hz). (D) 
Channel-timescale cluster (p = 0.001, dmedian = 0.67) of increased mMSE in wakefulness color-
coded by the number of timescales participating in the cluster at each channel. The cluster 
grew largest along its frequency dimension traveling posteriorly. (E) Channel-averaged gMLZ 
curves show greater complexity at faster timescales (i.e., timescales with shorter filter 
windows). Center frequency is indicated on the lower ordinate with the corresponding 
timescale given on the upper ordinate. (F) Percent change in channel-averaged gMLZ 
(wakefulness – sleep); complexity was greater in wakefulness, with the largest increases at 
timescales corresponding to delta and beta frequencies. (G) Membership for a channel-
timescale cluster (p < 10-4, dmedian = 0.64) of increased gMLZ in wakefulness plotted as the 
number of channels participating in the cluster at each timescale. The cluster was largest along 
its spatial dimension at timescales corresponding to delta and beta timescales (channel 
saturation occurred at timescales with center frequencies ≤ 3.9 Hz and = 28.6 Hz). (H) Channel-
timescale cluster of increased gMLZ in wakefulness color-coded by the number of timescales 
participating in the cluster at each channel. The cluster was smallest in its frequency extent 
over parietocentral regions and nearly saturated elsewhere.  
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Analysis of EEG signal complexity in the targeted comparison revealed similar results to the full 
comparison (channel-averaged; Fig. 5A,B). Greater mMSE in wakefulness was marked by a 
significant cluster (p = 0.001) exhibiting similar topography to the corresponding cluster found 
in the full comparison (Fig. 5C,D; effect size: d = 0.67 ± 0.11, median ± SD). The gMLZ curves also 
exhibited the same behavior seen in the full comparison (channel-averaged; Fig. 5E,F) and 
yielded a significant cluster (p < 10-4) marking greater complexity during wakefulness (Fig. 5G,H; 
effect size: d = 0.64 ± 0.32, median ± SD). The cluster appeared to fuse complexity changes 
corresponding to fast and slow timescales. We thus repeated the analysis with a stricter 
threshold (p = 0.0005) to view the topography of each change separately. Effect sizes in the 
low-frequency cluster were large (d = 0.98 ± 0.20, median ± SD; Fig. S6, Table S2). See Fig. S7 for 
complete visualizations of all clusters. 
 
Finally, as shown in Fig. 4A, despite having selected the most pathological segments of the 
awake EEG dataset, delta power still differed significantly across wakefulness and sleep. Given 
the sinusoidal nature of delta oscillations, it is initially conceivable that the observed difference 
in complexity across the two states is nothing more than a trivial reflection of differences in 
delta power, i.e., high amplitude oscillations introducing strong regularities in the signal 
recorded at the scalp that diminish its complexity. Consistent with this view, delta power was 
negatively correlated with mSampEn at most timescales after averaging across channels, 
explaining the majority of the variance in mSampEn at fast timescales (R2 > 0.5 for Nyquist 
frequency ≥ 20 Hz, awake, and Nyquist frequency ≥ 50 Hz, asleep, Fig. 6A). Nonetheless, delta 
power did not mediate the effect of state (i.e., wakefulness vs sleep) on mMSE (Fig. 6B, p > 0.05 
all timescales, uncorrected). Even more so than mMSE, delta power was negatively correlated 
with gMLZ at most timescales (R2 > 0.5 for center frequency ≥ 2.82 Hz, asleep and awake state, 
Fig. 6C). Yet again, delta power did not mediate the effect of state on gMLZ (Fig. 6D, p > 0.05 all 
timescales, uncorrected). Given the observed negative relationship between delta power and 
complexity measures, in what follows we repeated the targeted comparison after covarying for 
delta power (integrated 1 – 4 Hz).  
 
As shown in Fig. 7, our overall findings remained unchanged after controlling for delta power 
differences across wakefulness and sleep. Specifically, while mMSE curves were no longer 
monotonic with timescale, they still show the awake EEG to be more complex than the asleep 
EEG. The largest percent increase from sleep occurred at low frequencies (i.e., the fastest 
timescale; channel-averaged; see Fig. 7A,B). This relative increase in mMSE during wakefulness 
corresponded to a significant (p < 10-4) and nearly saturated cluster (Fig. 7 C,D; effect size: d = 
1.92 ± 0.81, median ± SD). With respect to gMLZ, covarying for delta power again leads to the 
same qualitative result reported above, with wakefulness showing consistently greater 
complexity than sleep. Intriguingly, however, the divergence in complexity between the two 
states is even greater after factoring out delta power, with the largest percent increase from 
sleep (30.7%) occurring at the center frequency of 3.4 Hz (i.e., the 8th timescale; channel-
averaged; see Fig. 7 E,F). The relative increase in gMLZ during wakefulness corresponds to a 
significant (p < 10-4) and, again, nearly saturated cluster (Fig. 7 G,H; effect size: d = 2.42 ± 1.28, 
median ± SD). See Fig. S8 for complete visualizations of all clusters. 
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Figure 6 Targeted comparison of EEG complexity in sleep vs wakefulness after covarying for 
delta power. (A) Correlations (Pearson’s coefficient) between mSampEn and delta power 
computed after averaging across channels. Nyquist frequency is indicated on the lower ordinate 
to indicate coarse graining, with the corresponding timescale given on the upper ordinate. (B) 
Bootstrapped 95% confidence intervals of the indirect effect of sleep on mMSE mediated by 
delta power. Delta power did not mediate effects of sleep on mMSE at any timescale, even 
before correcting for multiple comparisons (p > 0.05 all timescales). (C) Correlations (Pearson’s 
coefficient) between gMLZ and delta power computed after averaging across channels. Center 
frequency is indicated on the lower ordinate with the corresponding timescale given on the 
upper ordinate. (D) Bootstrapped 95% confidence intervals of the indirect effect of sleep on 
gMLZ mediated by delta power. Delta power did not mediate effects of sleep on gMLZ at any 
timescale, even before correcting for multiple comparisons (p > 0.05 all timescales). 
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Figure 7 Targeted comparison of EEG complexity in sleep vs wakefulness after covarying for 
delta power. (A) Channel-averaged mMSE curves for both sleep and wakefulness show the 
greatest mSampEn at the 10th timescale (Nyquist frequency = 10 Hz). (B) Percent change in 
channel-averaged mSampEn (wakefulness – sleep); the largest changes are observed at the 1st 
timescales (Nyquist frequency = 100 Hz) (C) Membership for a channel-timescale cluster (p < 10-

4, dmedian = 1.92) of increased mMSE in wakefulness plotted as the number of channels 
participating in the cluster at each timescale. The cluster was saturated along its spatial 
dimension for timescales 3 – 11 (Nyquist frequency 33.3 – 9.1 Hz). (D) Channel-timescale 
cluster of increased mMSE in wakefulness color-coded by the number of timescales 
participating in the cluster at each channel. The cluster was nearly saturated along its timescale 
dimension, with its smallest extent at channels T5 and C3). (E) Channel-averaged gMLZ curves 
show greater complexity at faster timescales (i.e., timescales with shorter filter windows). (F) 
Percent change in channel-averaged gMLZ (wakefulness – sleep); complexity was greater in 
wakefulness, with the largest increase (30.7%) at the 8th timescale corresponding to a center 
frequency of 3.4 Hz. (G) Membership for a channel-timescale cluster (p < 10-4, dmedian = 2.42) of 
increased gMLZ in wakefulness plotted as the number of channels participating in the cluster at 
each timescale. The cluster was largest along its spatial dimension at timescales corresponding 
to delta and beta timescales (channel saturation occurred at timescales 3 – 19 corresponding to 
center frequencies 1.7 – 22.2 Hz). (H) Channel-timescale cluster of increased gMLZ in 
wakefulness color-coded by the number of timescales participating in the cluster at each 
channel. The cluster was nearly saturated along its frequency dimension.  
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Discussion 

Children with AS exhibit an EEG phenotype resembling states of diminished consciousness in 
typical individuals, while also exhibiting purposeful behavior consistent with a state of wakeful 
awareness, albeit marked by severe intellectual disability. This paradoxical EEG pattern during 
conscious wakefulness, together with similar circumstances occasionally observed in non-
convulsive status epilepticus57, Rett syndrome58, and schizophrenia59, may be seen as a 
conceptual falsification of theories of consciousness which emphasize the role of information-
rich brain dynamics in consciousness. At face value, the presence of pathological slow, high-
amplitude, oscillations during a state of wakeful awareness is inconsistent with theoretical 
frameworks linking consciousness to complexity4,26,27, because diffuse hypersynchronization is 
informationally poor28 and thus lacks one of the two cardinal elements needed for a system to 
be conscious: information and integration4,26,27. Yet, the data presented above suggest that 
even in the presence of pathological, diffuse slowing of brain dynamics, the complexity of scalp 
EEG signals still emerges and systematically varies with levels of consciousness. 

For each of three candidate biomarkers for consciousness tested (spectral power, mMSE, and 
gMLZ) we found significant clusters that differentiate sleep from wakefulness in AS. Significant 
clusters were found regardless of whether we performed a full comparison of all useable data 
or a targeted comparison of those EEG sections that were least likely to coincide with dream 
experiences (sleep state) or were especially abnormal as judged by delta EEG power (awake 
state). The largest within cluster effect sizes we observed (without shrinking within group 
variance by regressing out delta power) were those belonging to a low-frequency complexity 
change in the gMLZ cluster (dmedian = 0.96/0.98 (full comparison/targeted comparison), Fig. S3A, 
Fig. S4A, Fig. S6A, Fig. S7A, Table S2). These effect sizes surpassed those observed for spectral 
power, even when considering low-frequency changes encompassed by the power cluster with 
the largest effects (dmedian = 0.74/0.60 (full comparison/targeted comparison), Fig. 4C,D, Fig. 
S2A,B, Fig. S4B, Fig. S7C, Table 1, Table S2).   
 
Our results clearly indicate that despite the diffuse hypersynchronized chanting in AS, there 
remains sufficient information-rich chatter to allow the complex dynamics typical of conscious 
awareness to arise. This finding resolves what would otherwise contradict views of 
consciousness based on informational complexity4,26,27,60. Given these observations, how do 
complex brain dynamics and consciousness emerge against a background of EEG 
hypersynchronization? As in all scalp EEG recordings, the AS EEG is a superposition of signals 
from many different cortical processes and regions. To support a state of awareness, there 
must be a sufficient degree of complex chatter in AS during wakefulness, with complexity 
decreasing as consciousness vanishes (i.e., in sleep). Additionally, there must also be a high 
voltage delta chanting signal which drowns out the low voltage chatter in the AS EEG, just as 
one may no longer hear the chatter of conversation over the chanting of the crowd in an arena 
when both signals temporally coincide. To continue this analogy, the integrated energy of all 
chatter in the arena, and in the brain, may even exceed the integrated energy of the chanting, 
which, given its greater coordination, is nonetheless easier to detect61. The chanting signal in 
AS, however, must be functionally different from the high voltage, low-frequency activity 
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typically observed in states of reduced consciousness1,6,29. This is because the trough of slow 
oscillations is believed to be associated with decreased consciousness, in sleep and anesthesia, 
as the system globally enters a down-state characterized by neuronal hyperpolarization30,31,62. 
Yet, in wakeful children with AS, consciousness does not appear to be periodically interrupted 
(from an observer’s perspective) as delta oscillations reach their trough. Rather, these 
oscillations might be more closely related to delta rhythms involved in inhibiting competing 
cognitive functions63,64. Perhaps due to their pathologically large amplitude and diffuse nature, 
delta oscillations in AS might result in a broad and continuous state of cognitive inhibition, as 
reflected in the profound intellectual disabilities typical of this condition. For further 
interpretation of the AS EEG phenotype and its possible mechanisms, see Supplemental 
Discussion. 
 
Although our study found that delta power was indeed modulated by diminished consciousness 
(i.e., sleep) in AS, the effect sizes in both comparisons (dmedian = 0.60-0.74) were a fraction of 
that yielded by a prior comparison of delta power between TD control children and children 
with AS in the awake state (d = 1.22)36. Expressed as a percent change referenced to 
wakefulness, delta power increases when children with AS sleep by a maximum of 162% (Fig. 
S1B), whereas delta power in AS is greater in the awake state relative to TD control children by 
1182%36. Thus, the difference between groups during wakefulness is an order of magnitude 
greater than the difference within AS with sleep/wakefulness. Because the variance within AS 
between conscious states is much smaller than the variance between AS and TD control 
children, caution should be applied when using delta EEG power alone as a biomarker for 
consciousness. 
 
Finally, it is important to be mindful of some shortcomings of the present work. First, given the 
highly abnormal EEG presentation and the short nature of the sleep events in our data, we 
could not accurately perform sleep staging. Longer sessions (e.g., 24-hour recordings) might be 
better suited to allow an accurate sleep analysis and comparison of different stages. 
Furthermore, we were unable to compare sections of sleep EEG that were most and least likely 
to coincide with dream experiences (i.e., sleep EEG with the lowest and highest ratio of delta to 
high-frequency power) due to the circular nature of comparing EEG sections that are already 
defined such that they differ in power. Finally, while we reported a relative effect of level of 
consciousness on complexity metrics, a reference cohort of TD children is needed to assess the 
overall level of complexity present in the AS EEG. 
 
In conclusion, this work resolves the apparent paradox of wakeful, purposefully behaving, 
children with AS exhibiting an EEG phenotype most typically associated with states of low/no 
consciousness36,37,39,65. By finding complex brain dynamics that are sensitive to level of 
consciousness even under conditions of extreme cortical hypersychronization, these results 
support theoretical frameworks (i.e., IIT)4,26,27 linking complexity to the level of consciousness of 
a system. These findings, along with other rare conditions with paradoxical EEG signatures 
during consciousness57–59, warn against reverse inferring low/no consciousness in patients 
based on delta power66,67. When brain dynamics are severely altered by genetic disorders, 
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epilepsy, or brain injury, complexity-based methods, e.g., perturbational complexity index9,32,68, 
may be better suited for inferring consciousness.   
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Methods 
 
Data acquisition  
 
Spontaneous EEG recordings from children with AS were collected from two sites (Boston 
Children’s Hospital and Rady Children's Hospital San Diego) through the AS Natural History 
Study [NCT00296764]. Consent to participate in the study was obtained from families according 
to the Declaration of Helsinki and was approved by the institutional review boards of the 
participating sites. Participants were encouraged to sleep during part of the EEG acquisition; 
however, due to severe sleep disturbances in AS44, not all children were able to fall asleep. EEG 
recordings were acquired in a clinical setting using an international 10-20 EEG montage (19 
channels). Most participants were on central nervous system medications treating seizures or 
other symptoms. All EEG data were acquired at one of three native sampling rates: 250 Hz, 256 
Hz, or 512 Hz. Annotations denoting sleep, drowsiness, and behavioral state were provided by 
the EEG technician during data acquisition. Sections of data containing drowsiness were 
excluded from analysis. Due to the delayed developmental abilities of many children with AS, 
the EEG acquisition protocol did not control for eye condition (e.g., eyes open or eyes closed) 
during wakefulness. Some participants gave longitudinal data across multiple visits. From a total 
of 161 EEG recordings from 99 participants, we identified 35 children (ages 1- 18 years) with AS 
whose EEG (48 recordings) contained sections of both sleep and wakefulness. Participant 
details are given in Table S1. Only one EEG recording was analyzed per participant according to 
criteria that included age and amount of good data. See Supplemental Methods for specific 
criteria used to select data from participants with multiple visits and for details of comparison 
data displayed in Fig. 1. 
 
Preprocessing 
 
Data were imported to MATLAB (The MathWorks, Inc., Torrance, California) for processing and 
analysis. We bandpass filtered all recordings 0.5 – 45 Hz using finite impulse response filtering. 
Noisy channels and sections of data containing gross artifacts were manually marked to be 
avoided for purposes of calculating spectral power and signal complexity measures. We also 
omitted sections of data recorded while participants were exposed to light flash stimuli 
intended to trigger epileptiform activity. Stereotyped physiological and technical artifacts were 
removed with independent components analysis using the FastICA algorithm69,70. Bad channels 
were spatially interpolated using a spline interpolation. A prior publication describes the full 
details of EEG acquisition and preprocessing36.  
 
Wavelet Transform 
 
We computed EEG spectral power using a Morlet wavelet transform. We chose a spectral band-
width of 1/2 octave (corresponding to f/σf ∼8.7; σf, spectral SD) and spaced the center 
frequencies logarithmically (base 2) with exponents ranging from 0 (1 Hz) to 5 (32 Hz) (inclusive) 
in 1/8 octave increments, yielding a total of 41 frequency bins. We then computed power in 
successive 3/4-overlapping temporal windows of 1 s duration. Time-frequency representations 
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were discarded at time points where the convolution kernel overlapped with sections marked 
as artifact by more than 20% (see preprocessing). Finally, we averaged the time-frequency 
representation. Spectral power was normalized per octave, i.e., log2(Hz), rather than Hz to 
account for the logarithmic nature of EEG signals71. To plot spectral power, we first averaged 
across channels, then log-transformed power before averaging across participants. For 
statistical comparisons between groups, we log-transformed power at each point in channel-
frequency space (see Statistical Analysis below).  
 
Signal Complexity 
 
We measured EEG signal complexity using two methods, mMSE48,49 and gMLZ50–52 complexity. 
For further details on how each measure is computed, see the Supplemental Methods. To 
compute mMSE, we used 30 s segments with 20 coarse graining scales, thus allowing for as 
many as 300 samples at the 20th timescale. This number of timescales gives good coverage of 
the EEG spectrum, with a Nyquist frequency of 100 Hz for the 1st timescale and a Nyquist 
frequency of 5 Hz for the 20th timescale. Following the advice of Grandy and colleagues72, we 
rejected all segments that did not include at least 100 valid samples for each timescale. To 
compute gMLZ, we used smaller segments for reasons of computational feasibility. Ibáñez-
Molina and colleagues51 found no benefit to using EEG segments longer than 2000 samples for 
computing MLZ. For this reason, we used 12 s (2400 sample) EEG segments for computing 
gMLZ, exceeding the recommendation of Ibáñez-Molina and colleagues to afford elbow room 
for EEG segments with excised artifacts. The gMLZ derived from each EEG segment was 
normalized according to the number of valid samples n using the quantity n/log2(n)50. For each 
timescale, two moving median filters were employed, one to smooth the EEG signal itself and 
another to compute the dynamic threshold that is used to binarize the signal52. We utilized 20 
timescales with logarithmically spaced center frequencies 1 – 30 Hz. See Table 2 for gMLZ 
center frequencies, smoothing window sizes, and bandwidths at each timescale.  
 
Comparison of Sleep Versus Wakefulness 
 
Our comparison of data from sleep and wakefulness is informed by the finding that most 
awakenings from NREM sleep are accompanied by reports of dreams56 (and are thus 
“contaminated” by consciousness). In addition to the variance in level of consciousness 
encountered in sleep, there is large variance in delta amplitude encountered during 
wakefulness in AS37. For these two reasons, we performed two comparisons of EEG data: 1) a 
full comparison using all good data from both the awake and the asleep state and 2) a targeted 
comparison using sections of sleep EEG that are unlikely to coincide with conscious experience 
(as judged by parietal EEG activity) paired with sections of awake EEG that are especially 
abnormal as judged by their delta power. For a detailed explanation of how data sections were 
chosen for the targeted comparison, see Supplemental Methods.  
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Scale Center 
frequency 
(Hz) 

Bandwidth 
(Hz) 

Threshold 
frequency 
(Hz) 

Smoothing 
frequency 
(Hz) 

Thresholding 
window 
(samples) 

Smoothing 
window 
(samples) 

1 1.00 0.40 0.80 1.20 251 167 

2 1.18 0.47 0.95 1.42 211 141 

3 1.42 0.58 1.13 1.71 177 117 
4 1.68 0.68 1.34 2.02 149 99 

5 1.98 0.78 1.57 2.35 127 85 

6 2.35 0.95 1.87 2.82 107 71 

7 2.82 1.14 2.25 3.39 89 59 

8 3.39 1.34 2.74 4.08 73 49 
9 3.92 1.48 3.17 4.65 63 43 

10 4.65 1.94 3.77 5.71 53 35 

11 5.71 2.25 4.65 6.90 43 29 

12 6.90 2.59 5.41 8.00 37 25 

13 8.00 3.07 6.45 9.52 31 21 
14 9.52 4.36 7.41 11.76 27 17 

15 11.76 3.81 9.52 13.33 21 15 
16 13.33 4.86 10.53 15.38 19 13 

17 15.38 6.42 11.76 18.18 17 11 
18 18.18 6.84 15.38 22.22 13 9 

19 22.22 10.39 18.18 28.57 11 7 

20 28.57 17.78 22.22 40.00 9 5 
 
Table 2: gMLZ timescale parameters. To compute Lempel-Ziv complexity (i.e., the difficulty of 
compressing in the signal), we first apply separately two median filters at each timescale: one 
filter with a smaller kernel (smoothing window) and a second filter with a larger kernel 
(thresholding window). The output from the first filter is then binarized according to the output 
from the second filter, which acts as a dynamic threshold. Lempel-Ziv complexity is then 
computed from the binary timeseries. Smoothing and thresholding windows are both spaced 
logarithmically to allow for good coverage of the EEG spectrum at all frequency bands, and the 
difference in size between the smoothing window and the thresholding window is varied to 
allow larger bandwidth at higher frequencies.  
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Statistical Analysis 
 
Both mMSE and gMLZ are defined such that regularities (e.g., delta oscillations) in the signal 
diminish complexity. For this reason, we covaried for delta (1 – 4 Hz integrated) power using 
simple linear regression models (separate model for each channel, timescale, and complexity 
measure). We report results of the targeted comparison both with and without covarying for 
delta power. To infer whether changes in signal complexity between sleep and wakefulness 
were mediated by changes in delta power, we used a nonparametric (2 x 104 bootstraps) path 
analytic framework for mediation analysis73.  
 
To account for a large number of comparisons across channels and timescales or frequencies, 
we used permutation cluster statistics to test for differences between sleep and wakefulness in 
both complexity and spectral power53,54. We first performed t-tests at each channel and 
scale/frequency and then thresholded t-statistics using p = 0.01 before clustering in channel-
scale space (complexity) or channel-frequency space (spectral power). For each cluster, we then 
derived two-tailed statistical significance nonparametrically by permuting the condition labels 
104 times and comparing the size of the original cluster to the empirical distribution of cluster 
sizes. This approach is unbiased with respect to directionality, frequency/timescale, and 
electrode location. In total, we performed 8 separate tests: power and complexity were 
examined in both a full comparison and a targeted comparison (3 EEG measures x 2 
comparisons), and complexity was also examined in a follow-up targeted comparison in which 
we covaried for delta power (2 EEG measures x 1 comparison). We then adjusted for the total 
number of tests using a Bonferroni correction, yielding α = 0.0063. Effect sizes for each cluster 
(median across all cluster members) were measured as Cohen’s d. 
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Supplemental Methods 
 
EEG data selection 
 
In cases where participants gave data at multiple visits, we analyzed EEG from the visit that 
yielded the greatest number of valid frequency transform windows at the lowest frequency 
analyzed (1 Hz) in data sections from the targeted comparison. Ties were broken using the 
youngest visit, as delta power is known to attenuate with age in AS1. Because the sampling rate 
influences multiscale analyses, all EEG signals were downsampled to 200 Hz without filtering 
prior to computing mMSE and gMLZ. Data sections containing artifacts, drowsiness, or light 
flashes were excised prior to computing mMSE and gMLZ. In the full comparison, mMSE and 
gMLZ were computed in nonoverlapping segments; in the targeted comparison, we applied 
50% overlap between data segments to give better coverage of shorter data.  
 
Our comparison of data from sleep and wakefulness is informed by the finding that most 
awakening from NREM sleep are accompanied by reports of dreams2 (and are thus 
“contaminated” by consciousness). Siclari and colleagues recently found that dreams are most 
likely to be reported following sleep in which delta power is low and high-frequency (20 – 50 
Hz) power is high over a posterior hot zone (PHZ)3. Conversely, the same study found that 
sections of sleep characterized by high delta power and low high-frequency power in the PHZ 
are likely to coincide with no reportable conscious experience. Moreover, the PHZ encompasses 
the precuneus, a parietal area heavily implicated in conscious awareness4–6. The ability to 
stratify sleep according to sections that are more likely and less likely to correspond to 
conscious experience motivates a more targeted comparison of asleep and awake EEG in AS.  
 
In addition to the variance in level of consciousness encountered in sleep, there is large 
variance in delta amplitude encountered during wakefulness in AS. The awake state AS delta 
EEG phenotype shows greater dynamic variability (i.e., intermittent bursts of delta activity) 
across all scalp regions as compared with TD control children7. For these reasons, we performed 
two comparisons of EEG data: 1) a full comparison using all good data from both the awake and 
the asleep state and 2) a targeted comparison using sections of sleep EEG that are unlikely to 
coincide with conscious experience (as judged by parietal EEG activity) paired with sections of 
awake EEG that are especially abnormal as judged by their delta power. 
 
Data sections for the targeted comparison were identified separately for awake and asleep 
state data by partitioning the time series (awake: delta power; asleep: parietal delta/fast 
power) into regions that minimize the sum of square difference between each sample and its 
local mean. In each case, the maximum number of breaks between regions was not allowed to 
exceed the length of usable EEG data in minutes for the given condition. For sleep data, we 
optimized the ratio of delta power (integrated 1-4 Hz) over high-frequency power (integrated 
20 – 45 Hz) averaged across parietal channels (Pz, P3, and P4) from the time-frequency 
representation of spectral power. For awake data, we optimized delta power (integrated 1-4 
Hz) averaged across all channels from the time-frequency representation of spectral power. In 
each condition, we started with the region with the highest mean and continued selecting 
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additional regions with the next highest means until the combined length of all regions met or 
exceeded a fixed amount determined as a function of the total data length. These fixed 
amounts were as follows: 30 s (for total data length ≤ 60 s), 60 s (total length ≤ 120 s), 90 s (≤ 
300 s), 120 s (total length ≤ 600 s), 180 s (total length ≤ 1200 s), 240 s (total length > 1200 s). 
EEG data from these regions were then entered into the targeted comparison.  
 
Signal complexity 
 
The original multiscale entropy (MSE) was introduced by Costa and collogues8 using sample 
entropy (SampEn)9, or the tendency for short motifs to reoccur in a signal within a tolerance r 
(defined as a fixed proportion of the signal’s standard deviation). Here we used mMSE (r = 
0.15), an improved version of the original MSE algorithm based on the more robust 
mSampEn10, which is less sensitive to r. We implemented mMSE using custom code that 
patches a commonly cited shortcoming of the original MSE algorithm11,12 by computing r 
separately for each timescale.  
 
As an additional complexity measure, we also examined the number of substrings contained in 
the binarized EEG signal13 using gMLZ. A multiscale approach to Lempel-Ziv complexity was first 
advocated by Ibáñez-Molina and colleagues14, who showed that a dynamic threshold applied 
with different smoothing windows for different timescales shows better sensitivity to all EEG 
frequencies than a static threshold obtained from the median of the entire signal, which is 
biased towards lower EEG frequencies. More recently, however, Yeh and Shi15 demonstrated 
that the thresholding approach advocated by Ibáñez-Molina and colleagues may in fact be too 
biased toward higher EEG frequencies, thus risking overestimates of complexity. As a solution, 
Yeh and Shi have proposed gMLZ, which uses the same dynamic threshold as the approach 
given by Ibáñez-Molina and colleagues while also applying a moving median filter with a smaller 
smoothing window to the signal before binarizing the signal according to its threshold given by 
a moving median filter with a larger smoothing window. We implemented gMLZ by modifying 
existing code provided by Hudetz and colleagues that implements the Lempel-Ziv algorithm16. 
 
Comparison data  
 
For illustrative purposes, we qualitatively compared AS EEG waveforms with EEG waveforms 
from external data corresponding to conscious and unconscious states (Fig. 1). AS EEG 
waveforms were displayed from participant 10 of this study (Table S1), with representative 
sections extracted and display from wakefulness (Fig. 1A) and sleep (Fig. 1E). This participant 
was not on any medications and did not have epilepsy. Awake state EEG data (referential 
recording) from a typically developing 38-month-old girl were provided courtesy of Shafali Jeste 
at the University of California, Los Angeles17. The girl’s EEG data were acquired as control data 
for research purposes with her family’s consent. A representative section of this girl’s EEG was 
displayed for comparison with AS (Fig. 1B). EEG data (bipolar recordings) from a 37-year-old 
woman without sleeping problems18 (Fig. 1C,D,H) and a 2-year-old girl with epilepsy19 (Fig. 1F) 
were downloaded from PhysioNet, an National Institutes of Health funded collection of publicly 
available physiological signals20. Annotations provided by PhysioNet were used to extract and 
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display representative sections of EEG recorded during wakefulness (Fig. 1C), REM sleep (Fig. 
D), and stage 4 NREM sleep (Fig. 1H) from the 37-year-old woman, and of ictal EEG recorded 
during an epileptic seizure (Fig. 1 F) from the 2-year-old girl. Clinical EEG data from a 59-year-
old man in a vegetative state were provided courtesy of Paul Vespa at the University of 
California, Los Angeles. This patient was admitted to an intensive care unit after sustaining 
brain injury during a fall down the stairs (Glasgow Coma Scale = 3, post-resuscitation) and was 
later discharged from the intensive care unit in a vegetative state (Extended Glasgow Outcome 
Scale = 2). The patient was consented by his family to participate in research. A representative 
portion of this patient’s EEG data was extracted and displayed (Fig. 1G).  
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Supplemental discussion 
 
Children with AS display hypersynchronous delta activity suggestive of hyperpolarized cortical 
down states while nonetheless exhibiting wakeful, conscious behavior. While such activity is 
observed at all scalp electrodes, it is untenable to assume that the entire AS cortex is 
hypersynchronized while children are awake and behaving. An alternative explanation for the 
AS EEG phenotype is that such hypersynchronous activity could be driven by a focal source 
whose activity conducts broadly to all scalp regions. In this scenario, hypersynchronization is 
local, sparing most of cortex, but appears global due to volume conduction. A similar scenario 
may occur in other conditions, such as disorders of consciousness resulting from TBI, in which 
injured cortical tissue becomes pathologically synchronous at a focal site21–24, plausibly because 
of reactive astrocytes that exacerbate neuronal excitability25,26. Nonetheless, the globally 
diffuse topography of wakeful delta power in AS does not obviously suggest a focal source1, and 
global delta coherence in AS has recently been shown to be similar to that in TD children during 
both wakefulness and sleep27. The foregoing suggests that, while theoretically possible, the 
single focal generator hypothesis is also implausible.  
 
To further elucidate the mechanism and anatomical substrates of the AS EEG phenotype, EEG 
source localization estimates should be obtained from children with AS. Future work should 
also examine intracranial electrophysiology in animal models of AS (e.g., Ube3a knock-out mice) 
to assess the extent of global hypersynchronization in AS cortex. Local field potential (LFP) 
recordings from a mouse model of AS have shown hypersynchronous delta activity in Layer 4 of 
V1 while mice are awake, head-fixed, and unanaesthetized7,28. However, as argued above, a 
focal source in V1 alone is unlikely to explain the diffuse hypersynchronous delta phenotype 
observed in the AS scalp EEG.  
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Supplemental Figures 
 

 
Figure S1 Alternative visualizations of EEG change from the full comparison (A) Channel-
averaged untransformed EEG power traces demonstrate global maxima in the delta band for 
both sleep and wakefulness. This untransformed view of the data (without log-scaling) allows 
for a clearer visualization of the delta band. The delta EEG power in sleep shows a peak which is 
broader on the left side (with more power in the 1.0 – 1.6 Hz band than in wakefulness as 
judged by nonoverlapping 95% confidence intervals). Although the delta peak in the asleep 
state is broad, it features only one local maximum (cf. Fig. S6A). (B) Channel-averaged EEG 
power change referenced to wakefulness. The largest power increase in sleep occurs at f = 1.51 
Hz (162% increase), and the largest reduction in sleep occurs at f = 32 Hz (37.1% decrease).  
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Figure S2 Channel-frequency clusters of decreased power in wakefulness derived from 
permutation cluster statistics using a stricter threshold (p = 0.0005) for clustering t-statistics as 
a means of breaking apart a cluster with two oscillatory changes that were fused at a more 
permissive threshold (p = 0.01, Fig. 2C,D) in the full comparison. (A) Channel-frequency cluster 
(p < 10-4, dmedian = 0.74) of decreased power in wakefulness color-coded by the number of 
frequency bins participating in the cluster at each channel. The cluster was largest along its 
frequency dimension over frontocentral scalp regions. (B) Channel-frequency cluster 
membership plotted as the number of channels participating in the cluster at each frequency 
bin. The cluster was saturated along its spatial extent at frequencies ≤ 1.0 Hz. (C) Channel-
frequency cluster (p < 10-4, dmedian = 0.41) of decreased power in wakefulness color-coded by 
the number of frequency bins participating in the cluster at each channel. The cluster was 
largest along its frequency dimension over frontocentral scalp regions. (D) Channel-frequency 
cluster membership plotted as the number of channels participating in the cluster at each 
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frequency bin. The cluster was largest along its spatial extent at alpha and low-beta frequencies 
(8 – 14 Hz).   
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Figure S3 Channel-timescale clusters of increased gMLZ in wakefulness derived from 
permutation cluster statistics using a stricter threshold (p = 0.0005) for clustering t-statistics as 
a means of breaking apart a cluster with two complexity changes that were fused at a more 
permissive threshold (p = 0.01, Fig. 3G,H) in the full comparison. (A) Channel-timescale cluster 
(p < 10-4, dmedian = 0.96) of increased gMLZ in wakefulness color-coded by the number of 
timescales participating in the cluster at each channel. The cluster was largest along its 
timescale dimension over channel Fz and, like the mMSE cluster identified in Fig. 3D, 
encompassed the fewest timescales at the most anterior channels (F7, Fp1, Fp2, and F8). (B) 
Channel-timescale cluster membership plotted as the number of channels participating in the 
cluster at each timescale. The cluster was saturated along its spatial extent at delta frequencies 
(f = 1.68 – 3.92 Hz). (C) Channel-timescale cluster (p = 0.0004, dmedian = 0.53) of increased gMLZ 
in wakefulness color-coded by the number of timescales participating in the cluster at each 
channel. The cluster exhibited local minima (fewest timescales) over channels P3 and P4 (cf. Fig. 
3H). (D) Channel-timescale cluster membership plotted as the number of channels participating 
in the cluster at each timescale. The cluster largely encompassed beta frequencies (f = 11.8 – 
28.6 Hz).  
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Figure S4 Channel-timescale/frequency space clusters from the full comparison. Heatmaps 
reflect the unsigned effect size (Cohen’s d); flanking graphs count cluster membership. Cluster 
numbers refer to Table 1. Permutation cluster statistics correct for multiple testing across 
channels and timescales/frequencies, while a Bonferroni correction is used to correct for 
multiple testing across analyses and EEG measures. Statistical significance is determined using α 
= 0.0063 (Bonferroni correction). (A) Significant gMLZ cluster (greater in wakefulness) covering 
90.79% of channel-timescale space (see Fig. 3G,H). (B) Significant power cluster (greater in 
sleep) covering 62.39% of channel-frequency space (see Fig. 2C,D). (C) Significant mMSE cluster 
(greater in wakefulness) covering 60.79% of channel-timescale space (see Fig. 3C,D). (D) Power 
cluster (greater in wakefulness) covering 10.65% of channel-frequency space (not significant 
after Bonferroni correction). 
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Figure S5 Alternative visualizations of EEG power from the targeted comparison (A) Channel-
averaged untransformed EEG power traces (targeted comparison) demonstrate global maxima 
in the delta band for both sleep and wakefulness. This untransformed view of the data (without 
log-scaling) allows for a clearer visualization of the delta band. The EEG power in sleep shows 
two peaks in the delta band (f1 = 1.62 Hz, f2 = 2.40 Hz), whereas only one delta peak is present 
in wakefulness (f = 2.55 Hz). This suggests two separate oscillatory processes for slow waves in 
sleep and for the AS EEG phenotype. Note that because the log-transform is a nonlinear 
transform, peak frequencies differ between untransformed and log-scaled power (cf. Fig. 4A). 
The asleep EEG exhibits more power in the 1.0 – 1.4 Hz band than the awake EEG as judged by 
95% confidence intervals. (B) Channel-averaged EEG power change referenced to wakefulness. 
The largest power increase in sleep occurs at f = 1.44 Hz (136% increase), and the largest 
reduction in sleep occurs at f = 32 Hz (42.7% decrease).  
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Figure S6 Channel-timescale clusters of increased gMLZ in wakefulness derived from 
permutation cluster statistics using a stricter threshold (p = 0.0005) for clustering t-statistics as 
a means of breaking apart a cluster with two complexity changes that were fused at a more 
permissive threshold (p = 0.01, Fig. 5G,H) in the targeted comparison. (A) Channel-timescale 
cluster (p = 0.0001, dmedian = 0.98) of increased gMLZ in wakefulness color-coded by the number 
of timescales participating in the cluster at each channel. The cluster was smallest along its 
timescale dimension over right frontal scalp regions. (B) Channel-timescale cluster membership 
plotted as the number of channels participating in the cluster at each timescale. The cluster was 
saturated along its spatial extent at f = 1.42 – 1.98 Hz. (C) Channel-timescale cluster (p = 0.0013, 
dmedian = 0.50) of increased gMLZ in wakefulness color-coded by the number of timescales 
participating in the cluster at each channel. The cluster was smallest along its timescale 
dimension over posterior scalp regions. (D) Channel-timescale cluster membership plotted as 
the number of channels participating in the cluster at each timescale. The cluster largely 
encompassed beta frequencies (f = 15.4 – 28.6 Hz).   
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Figure S7 Channel-timescale/frequency-channel space clusters from the targeted comparison. 
Heatmaps reflect the unsigned effect size (Cohen’s d); flanking graphs count cluster 
membership. Cluster numbers refer to Table 1. Permutation cluster statistics correct for 
multiple testing across channels and timescales/frequencies, while a Bonferroni correction is 
used to correct for multiple testing across analyses and EEG measures. Statistical significance is 
determined using α = 0.0063 (Bonferroni correction). (A) Significant gMLZ cluster (greater in 
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wakefulness) covering 73.42% of channel-timescale space (see Fig. 5G,H). (B) Significant mMSE 
cluster (greater in wakefulness) covering 59.47% of channel-timescale space (see Fig. 5C,D). (C) 
Significant power cluster (greater in sleep) covering 22.72% of channel-frequency space (see 
Fig. 4C,D). (D) Significant power cluster (greater in wakefulness) covering 20.15% of channel-
frequency space (see Fig. 4E,F). (E) Power cluster (greater in wakefulness, not significant) 
covering 0.51% of channel-frequency space. (F) Power cluster (greater in wakefulness, not 
significant) covering 0.39% of channel-frequency space. (G) Power cluster (greater in 
wakefulness, not significant) covering 0.26% of channel-frequency space. (H) Power cluster 
consisting of only 1 point (greater in wakefulness, not significant) covering 0.13% of channel-
frequency space. 
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Figure S8 Timescale-channel space clusters from the targeted comparison covarying for delta 
power. Heatmaps reflect the unsigned effect size (Cohen’s d); flanking graphs count cluster 
membership. Cluster numbers refer to Table 1. Permutation cluster statistics correct for 
multiple testing across channels and timescales/frequencies, while a Bonferroni correction is 
used to correct for multiple testing across analyses and EEG measures. Statistical significance is 
determined using α = 0.0063 (Bonferroni correction). (A) Significant gMLZ cluster (greater in 
wakefulness) covering 95.00% of channel-timescale space (see Fig. 6I,J). (B) Significant mMSE 
cluster (greater in wakefulness) covering 91.05% of channel-timescale space (see Fig. 6D,E) (C) 
gMLZ cluster consisting of only 1 point (greater in sleep, not significant) covering 0.26% of 
channel-timescale space. (D) gMLZ cluster consisting of only 1 point (greater in sleep, not 
significant) covering 0.26% of channel-timescale space. (E) gMLZ cluster consisting of only 1 
point (greater in sleep, not significant) covering 0.26% of channel-timescale space.   
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Supplemental Tables  
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 Age 
(months) 

Sex 15q11.2-
q13.1 
deletion? 

Seizures? CNS 
meds? 

Awake data, full 
comparison (s) 

Awake data, 
targeted 
comparison (s) 

Awake 
sections, 
targeted 
comparison 

Asleep data, 
full 
comparison 

Asleep data, 
targeted 
comparison 
(s) 

Asleep sections, 
targeted 
comparison 
 

Participant 1 13 female Yes No No 1561.5 566.6 7 461.8 145.2 5 

Participant 2 13 female No Yes Yes 10019 438.1 5 7362.1 253.4 5 

Participant 3 15 male Yes Yes No 372 163.5 2 1635.5 266.3 9 

Participant 4 16 female No Yes Yes 664.5 193 5 977.2 305.3 7 

Participant 5 16 male Yes No No 470.7 149 2 989.2 182.1 5 
Participant 6 22 male Yes No Yes 264.2 192.3 4 1695.1 246.1 7 

Participant 7 24 male Yes Yes Yes 615.8 221.6 3 1804.9 288.1 7 

Participant 8 25 male Yes Yes Yes 238.5 144.5 2 1585.3 261.9 9 

Participant 9 26 female Yes Yes Yes 822.3 237.5 5 319.6 148.3 2 

Participant 10 27 female Yes No No 593 207 2 454.7 153.6 3 

Participant 11 29 male No No Yes 367.6 202 2 642.2 143 5 

Participant 12 33 female Yes Yes Yes 227.1 126.8 1 630.4 142.6 3 

Participant 13 34 male Yes Yes Yes 720.8 195 2 1338.4 257.5 7 

Participant 14 36 female Yes No Yes 1259 350.7 4 665.3 184.6 3 

Participant 15 37 male Yes Yes No 513.1 172.8 3 1774.4 241.1 7 

Participant 16 46 female No No Yes 339.6 124.4 3 227.1 96.6 2 

Participant 17 47 male No Yes Yes 431.4 195.2 3 1251.1 181.1 7 

Participant 18 47 male Yes Yes Yes 1026.1 180.9 3 709.6 196.9 5 

Participant 19 49 male No Yes Yes 1048.5 208.5 5 769.9 245 3 

Participant 20 50 male Yes Yes Yes 513.2 132.7 3 296.3 140 3 

Participant 21 50 female Yes Yes Yes 357 146.5 3 611.9 166.6 3 

Participant 22 51 male Yes Yes Yes 1092.7 464 2 693.2 126 4 

Participant 23 52 male No Yes Yes 770.1 256.2 3 535.3 133.1 5 
Participant 24 52 female No Yes Yes 1670.3 245.9 4 221.4 121.4 2 

Participant 25 52 female No Yes No 203.2 164.8 3 173.5 88.7 2 

Participant 26 52 female Yes Yes Yes 1972.6 344.8 3 440.6 204.8 3 

Participant 27 54 female Yes Yes Yes 732.5 296.5 5 471 156.9 4 

Participant 28 55 male Yes Yes No 632.1 282 3 1215.8 205 6 

Participant 29 68 male Yes Yes Yes 937.4 295 2 1255.6 319 8 

Participant 30 68 male Yes Yes Yes 619.2 222.5 4 1389.1 257.3 6 

Participant 31 78 female Yes Yes Yes 450.9 203.6 5 632.4 232 4 

Participant 32 80 female Yes Yes Yes 639.5 225.2 4 1349.2 249.8 5 

Participant 33 111 male Yes Yes Yes 1167.5 284.1 4 897.7 185.2 3 

Participant 34 118 male Yes Yes Yes 1229.3 332.1 4 233.1 145.5 2 

Participant 35 130 male No No No 449.9 152.8 2 607.9 130.2 5 
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Table S1 AS cohort demographics and data. Participants are sorted by age and described according to sex, genotype (i.e., the 
presence of absence of a 15q deletion), seizure status, and medication. The amount of data included in both the full analysis and 
targeted analysis is also given for each participant. For the targeted analysis, data length is described both in terms of data length (in 
seconds) and number of continuous data segments. 27 out of 35 (77%) participants were on at least one medication acting on the 
central nervous system (CNS, includes over-the-counter medications such as melatonin). 27 participants (overlapping with but not 
identical to the subset on medications) also had a history of seizures at the time of EEG recording.   
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EEG 

measure 
Comparison Direction 

(awake-
sleep) 

Regressed 
covariates? 

p-value  Cohen’s d  
(cluster median) 

Cohen’s d  
(cluster SD) 

Cluster 
size 

percentage Low 
freq 

High 
freq 

Minimum 
number of 

channels 

Maximum 
number of 

channels 

Cluster 1a gMLZ Full Increase No < 10-4 0.96 0.27 175 46.05 1 6.9 1 19 

Cluster 1b gMLZ Full Increase No 0.0004 0.53 0.14 77 20.26 11.8 28.6 8 18 

Cluster 2a power Full Decrease No < 10-4 -0.74 0.25 228 29.27 1 4 1 19 

Cluster 2b power Full Decrease No < 10-4 -0.41 0.12 140 17.97 5.7 19 1 15 

Cluster 5a gMLZ Targeted Increase No 0.0001 0.98 0.20 138 36.32 1 3.9 3 19 

Cluster 5b gMLZ Targeted Increase No 0.0013 0.50 0.08 34 8.95 15.4 28.6 2 13 

 
 
 
Table S2 Channel-frequency (power) and channel-timescale (complexity) clusters isolated using a stricter threshold. For the fused 
clusters in Table 1 (Cluster 1, 2, and 5), we isolated each oscillatory or complexity change using a stricter threshold (p = 0.0005) for 
clustering t-statistics. The resulting new clusters are named according to their parent cluster in Table 1 (e.g., Cluster 1a and Cluster 
1b are both encompassed by Cluster 1 in Table 1). P-values are derived from empirical cluster size distributions using permutation 
tests. Note that we performed new permutation cluster statistics here with a stricter threshold to learn more about previously 
identified parent clusters rather than to test new hypotheses. Thus, we did not assess statistical significance of new clusters; 
however, the original parent clusters were all statistically significant (see Table 1). Effect sizes are reported as Cohen’s d (median and 
standard deviation across all cluster points).  
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	Children with AS exhibit an EEG phenotype resembling states of diminished consciousness in typical individuals, while also exhibiting purposeful behavior consistent with a state of wakeful awareness, albeit marked by severe intellectual disability. Th...

