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1 Abstract

2 In this study, we start by proposing a causal induction model that incorporates symmetry bias. This 

3 model is important in two aspects. First, it can reproduce causal induction of human judgment with higher 

4 accuracy than conventional models. Second, it allows us to estimate the level of symmetry bias of subjects 

5 from experimental data. We further propose an inference method that incorporates the aforementioned causal 

6 induction model into Bayesian inference. In this method, the component of Bayesian inference, which 

7 updates the degree of confidence for each hypothesis, and the component of inverse Bayesian inference that 

8 modifies the model of the hypothesis coexist. Our study demonstrates that inverse Bayesian inference enables 

9 us to deal flexibly with unstable situations where the object of inference changes from time to time. 

10

11 Author summary

12 We acquire knowledge through learning and make various inferences based on such knowledge and 

13 observational data (evidence). If the evidence is insufficient, then the certainty of the conclusion will decline. 

14 Moreover, even if the evidence is sufficient, the conclusion may be wrong if the knowledge is incomplete in 

15 the first place. In order to model such inference based on incomplete knowledge, we proposed an inference 

16 system that performs learning and inference simultaneously and seamlessly. Prepare two coins A and B with 

17 different probabilities of landing heads, and repeat the coin toss using either of them. However, the coin that 

18 is being tossed is also replaced repeatedly. The system observes only the result of coin toss each time, and 

19 estimates the probability of landing heads of coin tossed at the moment. In this task, it is necessary not only 

20 to estimate the probabilities of the landing heads of coin A and B, but also to estimate which coin is being 

21 used at the moment. In this paper, we show that the proposed system handles such tasks very efficiently by 

22 simultaneously performing inference and learning.

23

24 Introduction
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25 As a cognitive bias observed in humans, the disposition to infer from ‘if P then Q’ to ‘if Q then P’ 

26 or to ‘if not P, then not Q’ is well documented [1, 2, 3, 4, 5, 6, 7, 8]. The former is termed symmetry bias [9] 

27 and the latter is termed mutual exclusivity bias [4]. 

28 Consider a simple example. We tend to infer from ‘if you clean the room, then I will take you out’ 

29 to ‘I will take you out if and only if you clean the room’ or ‘if you don’t clean the room, then I will not take 

30 you out’. Although these inferences are invalid according to classical logic, various people are inclined to 

31 make them regardless of age. 

32 In contrast, among non-human animals, the symmetry bias has been reported in behaviour of only 

33 some California sea lions [10] and chimpanzees [11]. Although the symmetry bias produces wrong inferences 

34 from the classical logic point of view, humans do show some positive features apparently stemming from the 

35 symmetry bias. For instance, once you are able to respond to the question ‘What is this?’ with ‘This is an 

36 apple’ through learning, you will also be able to identify the correct object when asked ‘Which one is an 

37 apple?’. In other words, we automatically infer from ‘This is an apple’ to ‘An apple is this’ without any 

38 instruction. The symmetry bias has been studied in relation to stimulus equivalence in the field of comparative 

39 psychology [1, 2]. On the other hand, the mutual exclusivity bias has been studied primarily in the field of 

40 developmental psychology in the context of young children’s language acquisition [4]. Thus, although the 

41 symmetry and mutual exclusivity biases have been studied in different fields of psychology, since the 

42 contrapositive of ‘if Q then P’ is ‘if not P then not Q’, and since they are equivalent according to classical 

43 logic, the same implications can be associated with both biases. An example of such a shared implication is 

44 that both biases may be caused by the same neuroscientific factor.

45 Concurrently, in the field of cognitive psychology, experiments on causal induction were carried 

46 out, seeking to identify how humans evaluate the strength of causal relations between two events. In a regular 

47 conditional statement of the form ‘if p then q’, the degree of confidence is considered to be proportional to 

48 the conditional probability  which is the probability of occurrence of q following the occurrence of 𝑃(𝑞│𝑝)

49 p [12]. Further, in the case of causal relation, it has been experimentally demonstrated that humans have a 
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50 strong sense of causal relation when  is high, as well as when  is high, where  is 𝑃(𝑝│𝑞) 𝑃(𝑞│𝑝) 𝑃(𝑝│𝑞)

51 a conditional probability of the antecedent occurrence of p, given the occurrence of q [13].

52 Consider a simple causal induction model that infers the strength of a causal relation from the cause 

53 candidate of event C to the effect event E from four pieces of co-occurring information concerning C and E: 

54 the joint presence of C and E, absence of E given C, presence of the E given no C, and the joint absence of 

55 C and E. The most representative model of causal induction is the  model [14]. It takes the difference ∆𝑃

56 between the conditional probability  of occurrence of E given the occurrence of C and the 𝑃(𝐸│𝐶)

57 conditional probability  of occurrence of E given non-occurrence of C (denoted by ) as an 𝑃(𝐸│¬𝐶) ¬𝐶

58 index for causal strength, that is, . ∆𝑃 = 𝑃(𝐸│𝐶) ‒ 𝑃(𝐸│¬𝐶)

59 Hattori and Oaksford proposed the dual-factor heuristic (DFH) model [13]. This model is based on 

60 the geometric mean of , which stands for the predictability of the effect from the cause, and its 𝑃(𝐸│𝐶)

61 inverse , that is, . 𝑃(𝐶│𝐸) 𝐷𝐹𝐻 = 𝑃(𝐸│𝐶)𝑃(𝐶│𝐸)

62 Both  and  models contain  In other words, given the occurrence of C, if the ∆𝑃 𝐷𝐹𝐻 𝑃(𝐸│𝐶).

63 probability of occurrence of E following C is high, the chance of C to be the cause of E increases. Intuitively 

64 speaking, the strength of the causal relation does not seem to be solely determined by  The second 𝑃(𝐸│𝐶).

65 item in the  model, shows that even if the probability of occurrence of E is high given the ∆𝑃  ‒ 𝑃(𝐸│¬𝐶), 

66 occurrence of C, if the probability of occurrence of E is still high in the absence of the occurrence of C, that 

67 is, if the probability of occurrence of E is high irrespectively of the occurrence of C, then the chance of C 

68 being the cause of E decreases. 

69 Whereas for the  model, if the probability , which is the probability of the antecedent 𝐷𝐹𝐻 𝑃(𝐶│𝐸)

70 occurrence of C given the occurrence of E, is high, the chance of C being the cause of E increases. This can 

71 be understood as a probabilistic expression of the belief that where there is no cause, there is no effect. 

72 We can also consider the  model and the  model in terms of biases. For the sake of ∆𝑃 𝐷𝐹𝐻

73 simplicity,  and  are expressed as  and  respectively. Here, if we assign  ∆𝑃 𝐷𝐹𝐻 ∆𝑃(𝐸|𝐶) 𝐷𝐹𝐻(𝐸|𝐶) ¬𝐶
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74 and  to C and E respectively in , we can obtain mutual exclusivity as ¬𝐸 ∆𝑃(𝐸|𝐶) = 𝑃(𝐸│𝐶) ‒ 𝑃(𝐸│¬𝐶)

75 ∆𝑃(¬𝐸│¬𝐶) = 𝑃(¬𝐸│¬𝐶) ‒ 𝑃(¬𝐸│¬(¬𝐶)) = (1 ‒ 𝑃(𝐸│¬𝐶)) ‒ (1 ‒ 𝑃(𝐸│𝐶)) = 𝑃(𝐸│𝐶) ‒ 𝑃(𝐸│¬𝐶)
76 . If, on the other hand, C in  is replaced by E, we can get = ∆𝑃(𝐸│𝐶) 𝐷𝐹𝐻(𝐸|𝐶) = 𝑃(𝐸│𝐶)𝑃(𝐶│𝐸) 𝐷𝐹𝐻

77  and the symmetry obtains. (𝐶│𝐸) = 𝑃(𝐶│𝐸)𝑃(𝐸│𝐶) = 𝑃(𝐸│𝐶)𝑃(𝐶│𝐸) = 𝐷𝐹𝐻(𝐸│𝐶)

78 Aside from the  and  models, Takahashi and colleagues [15] proposed the pARIs ∆𝑃 𝐷𝐹𝐻

79 (proportion of assumed-to-be rare instances) as yet another model that has an unusually high affinity with the 

80 human causal induction judgment, , where  𝑝𝐴𝑅𝐼𝑠(𝐸|𝐶) = 𝑃(𝐶,𝐸) (𝑃(𝐶,𝐸) + 𝑃(𝐶,¬𝐸) + 𝑃(¬𝐶,𝐸)) 𝑃(𝑥,𝑦)

81 represents joint probability of x and y. If C in  is replaced by E, we get 𝑝𝐴𝑅𝐼𝑠(𝐸|𝐶) 𝑝𝐴𝑅𝐼𝑠(𝐶|𝐸) =

82  and the symmetry obtains.𝑃(𝐸,𝐶) (𝑃(𝐸,𝐶) + 𝑃(𝐸,¬𝐶) + 𝑃(¬𝐸,𝐶)) = 𝑝𝐴𝑅𝐼𝑠(𝐸|𝐶)

83 To view the relation between two events as a causal relation can therefore be understood as having 

84 both symmetry and mutual exclusivity biases. 

85 Bayesian inference is based on the notion of conditional probability. Bayesian inference speculates 

86 the hidden cause behind an observation results from retrospectively applying statistical inferences. The 

87 relation between Bayesian inference and brain function has been attracting attention in recent years in the 

88 field of neuroscience [16, 17].

89 In Bayesian inference, the degree of confidence in a hypothesis is updated based on a model of 

90 predefined hypotheses and current observational data. In other words, Bayesian inference is a process of 

91 narrowing down hypotheses to one which best explains observational data. Changing the model of each 

92 hypothesis or adding new ones in the course of performing Bayesian inference is not allowed. In addition, 

93 Bayesian inference itself does not deal with alterations in the inference target during the inference or with its 

94 replacement. Therefore, such inference substantially needs to assume the identity of the target. 

95 Note, however, that requirements of the invariability of the hypothetical model and the identity of 

96 the inference target stem from the theoretical framework, and they are not always met in actuality. For 

97 instance, if the object is unknown, it would be impossible to infer what it is without adding a new hypothetical 
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98 model. Moreover, it is likely that, under unsteady circumstances, the inference target undergoes alteration 

99 from time to time or is replaced by some other object. 

100 In order to predetermine whether the object is replaced by another, one must first infer its identity. 

101 A correct inference depends on as much observational data as possible. However, in order to properly use 

102 accumulated observational data, it must be ensured that these data derive from the same object. In other 

103 words, to determine whether the object has been replaced or not, the object must be hypothesized not to have 

104 been replaced in the first place. In this sort of situation, it is necessary to infer what the object is while at the 

105 same time evaluating the legitimacy of the inference itself. How, then, could we model the inference under 

106 the situation described above?

107 Arecchi [18] proposed the concept of the inverse Bayesian inference where the hypothetical model, 

108 which is fixed in the traditional Bayesian inference, is modified according to circumstances. Gunji et al. [19, 

109 20] and Horry et al. [21] formulated the inverse Bayesian inference and demonstrated that animal herding 

110 and human decision-making can be satisfactorily modelled by combining Bayesian inference and inverse 

111 Bayesian inference. This framework can be said to seamlessly perform Bayesian inference, by picking up the 

112 optimal hypothesis from the predefined set of hypotheses, and simultaneously apply inverse Bayesian 

113 inference (learning), which creates a new hypothesis according to observational data. Although the inverse 

114 Bayesian inference was formulated by Gunji and others [19, 20], it is not necessarily linked with causal 

115 inference and symmetry bias.

116 We propose a causal induction model that primarily incorporates symmetry bias. First, we propose 

117 an extended model of degree of confidence that extends conditional probability by parametrising the mixed 

118 rate of  and , i.e., the strength of symmetry bias. Second, we propose a realistic human 𝑃(𝑞│𝑝) 𝑃(𝑝│𝑞)

119 inference model that incorporates the extended model into Bayesian inference, and we show that it 

120 necessarily involves inverse Bayesian inference. Specifically, we propose a framework of extended Bayesian 

121 inference which allows seamless and simultaneous learning and inference by replacing the conditional 

122 probability schema in Bayesian inference with the extended model of degree of confidence. Third, we explain 
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123 a conducted simulation, derived from the problem of inference, of the probability of getting heads in the 

124 course of repetitive coin toss and how it helps verify the legitimacy of the Extended Bayesian Inference. 

125

126 Results

127 Proposal of extended confidence model 

128 We seek to establish an extended model of degree of confidence as the generalised weighted average 

129 of  and its inverse  using parameters  and . 𝑃(𝑞│𝑝)  𝑃(𝑝│𝑞) 𝛼 𝑚

𝐶(𝑞│𝑝) = [(1 ‒ 𝛼)𝑃(𝑞│𝑝)𝑚 + 𝛼𝑃(𝑝│𝑞)𝑚]
1

𝑚 (1)

130

131 Hereinafter,  will be termed the Extended Confidence Model. Here  takes values in the range 𝐶(𝑞│𝑝) 𝛼

132  and denotes a weighted value of  and , and  takes values in the range 0.0 ≤ 𝛼 ≤ 1.0 𝑃(𝑞│𝑝) 𝑃(𝑝│𝑞) 𝑚

133  and denotes the manner of taking the mean. For example, suppose  and , ‒ ∞ ≤ 𝑚 ≤ ∞ 𝛼 = 0.5 𝑚 = 1.0

134 then  representing the arithmetic mean. Supposing , the  𝐶(𝑞│𝑝) = 0.5𝑃(𝑞│𝑝) + 0.5𝑃(𝑝│𝑞) 𝑚 = 0.0

135 formula (1) is undefinable. If, however, we represent the mean value in the limit of , we get𝑚→0.0  𝐶(𝑞│𝑝)

136 , where if , the geometric mean  it coincides = 𝑃(𝑞│𝑝)1 ‒ 𝛼𝑃(𝑝│𝑞)𝛼 𝛼 = 0.5 𝐶(𝑞│𝑝) = 𝑃(𝑞│𝑝)𝑃(𝑝│𝑞)

137 with the DFH model. If , the formula represents the harmonic mean of  and 𝛼 = 0.5, 𝑚 =‒ 1.0  𝑃(𝑞│𝑝) 𝑃

138  and we get(𝑝│𝑞)

𝐶(𝑞│𝑝) =
2𝑃(𝑞│𝑝)𝑃(𝑝│𝑞)

𝑃(𝑞│𝑝) + 𝑃(𝑝│𝑞) =
2𝑃(𝑝,𝑞)

2𝑃(𝑝,𝑞) + 𝑃(𝑝,¬𝑞) + 𝑃(¬𝑝,𝑞) =
2𝑝𝐴𝑅𝐼𝑠

1 + 𝑝𝐴𝑅𝐼𝑠
(2)

139 and  can be expressed as a harmonic mean of 1 and . In other words,  and  𝐶(𝑞│𝑝) 𝑝𝐴𝑅𝐼𝑠 𝑝𝐴𝑅𝐼𝑠 𝐶(𝑞│𝑝)

140 are related by monotonically increasing functions that are in one-to-one correspondence. According to this, 

141  can be seen as a disguised form of . Here, the parameter  can be regarded as a parameter 𝑝𝐴𝑅𝐼𝑠 𝐶(𝑞│𝑝) 𝛼
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142 that controls that strength of the symmetry bias. When ,  obtains irrespectively of  𝛼 = 0 𝐶(𝑞│𝑝) = 𝑃(𝑞│𝑝)

143 the value of , and expresses a normal conditional probability without the symmetry bias.𝑚 𝐶(𝑞│𝑝) 

144 Thus, the proposed model can be described as an extended model which accommodates the normal 

145 conditional probability P, DFH and  as inner special cases. 𝑝𝐴𝑅𝐼𝑠

146

147 Evaluation of descriptive validity of extended confidence model

148 In order to evaluate the descriptive validity of various models including the DFH model, Hattori and 

149 Oaksford [13] performed meta-analysis using data from eight types of causal induction experiments. To test 

150 the descriptive performance of the extended confidence model, we also performed the meta-analysis using 

151 the same datasets as Hattori and Oaksford [13]. 

152 Generally, in a simple causal induction experiment, participants are given four types of co-

153 occurrence information concerning the cause C and the effect E (Table 1). Then, they are asked to assess 

154 subjectively the strength of the causal relation between C and E using a number from 0 to 100. To measure 

155 each model’s fit to the data, we calculated the determination coefficient  from the pair of participants’ 𝑅2

156 mean ratings of causal strength and the estimated value of each model computed from the same co-occurrence 

157 information given to the participants in the experiments.

158 Table 1. The 2 × 2 contingency table for elemental causal induction.  

effect ( )𝐸 no effect ( )¬𝐸 marginal 
frequency

cause ( )𝐶 𝑁(𝐶,𝐸) 𝑁(𝐶,¬𝐸) 𝑁(𝐶)
no cause ( )¬𝐶 𝑁(¬𝐶,𝐸) 𝑁(¬𝐶,¬𝐸) 𝑁(¬𝐶)

marginal 
frequency 𝑁(𝐸) 𝑁(¬𝐸)

159 N(x) denotes the frequency of occurrence of x, and N(x,y) denotes the frequency of co-occurrence 
160 of x and y.
161
162 The experiment data used in the meta-analysis consists of the experiment I from [22], experiments 

163 I and III from [23], experiments I and II from [13], experiments I and III from [24], and experiment II and 

164 VI from [25]. The experiment data above will be abbreviated as AS95, BCC03.1, BCC03.3, HO07.1, 
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165 HO07.2, LS00, W03.2, and W03.6 respectively. See the methods section below for the content of each 

166 experiment. 

167 Values in parameters  and  in formula (1) were shifted each with 0.05 increment in the interval 𝛼 𝑚

168   and the determination coefficient  between assessment by participants and the [0.0,1.0] and [ ‒ 2.0,2.0] 𝑅2

169 estimated value by the proposed model was calculated for each pair of parameters. Table 2 shows the pair of 

170 parameters  and  at which  becomes maximum in each experiment. As seen in Table 2, the 𝛼 𝑚 𝑅2

171 determination coefficients were greater than 0.9 for all experiments.  was around 0.5 (0.25-0.6) and did  𝛼

172 not reach 0.0, which stands for the normal conditional probability P. This suggests that symmetry bias was 

173 deeply involved in causal induction. Moreover,  took a negative value in all experiments. This suggest 𝑚

174 people show strong awareness of causal relations only if both  and its inverse  are large. 𝑃(𝐸│𝐶)  𝑃(𝐶│𝐸)

175 Table 2. Performance evaluation of the extended confidence model based on the meta-analytic data 
176 from Hattori and Oaksford (13). 

AS95 BCC03.1 BCC03.3 HO07.1 HO07.2 LS00 W03.2 W03.6
𝑅2 0.97 0.98 0.99 0.99 0.99 0.91 0.97 1.00
𝛼 0.3 0.55 0.35 0.6 0.3 0.55 0.35 0.25
𝑚 -0.65 -0.45 -0.25 -2.0 -2.0 -1.4 -1.6 -2.0
𝑁 80 13 6 12 9 11 8 4

177  is a determination coefficient,  and  are model parameters, and N is a number of combinations of 𝑅2 𝛼 𝑚
178 stimuli.
179
180 In these analyses, the optimal parameter value was calculated for each experiment. In what follows, 

181 all experiments will be analysed comprehensively using common parameters. The determination coefficient 

182 when parameters have fixed values will be calculated for each experiment along with their mean. The mean 

183 value to be calculated is the weighted average using Fisher’s Z conversion. This procedure was repeated by 

184 changing the parameter values with 0.05 increment. Fig 1 shows the mean coefficient of determination for 

185 each pair of parameter values.

186

187 Fig 1. Mean coefficient of determination for each pair of parameter values. The mean value for the 

188 determination coefficient peaked when (α,m)=(0.35,-1.15) and the value was .𝑅2 = 0.93
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189

190 Hattori and Oaksford [13] demonstrated that their DFH model (without parameters) showed the best 

191 fit compared to 33 models without parameters and seven models with parameters. We used eight types of 

192 experimental data to compare the performance of our proposed model with that of other models including 

193 DFH, ,  model, and conditional probability . The results are shown in Table 3.𝑝𝐴𝑅𝐼𝑠 ∆𝑃  𝑃

194 Table 3. A replication trial of the meta-analysis of Hattori and Oaksford (13). 
AS95 BCC03.1 BCC03.3 HO07.1 HO07.2 LS00 W03.2 W03.6 𝑅2

𝐶 0.92 0.90 0.97 0.97 0.96 0.72 0.91 0.93 0.93
𝑃 0.82 0.68 0.82 0.80 0.0 0.17 0.20 0.54 0.75

∆𝑃 0.78 0.84 0.70 0.50 0.0 0.77 0 NA 0.73
𝐷𝐹𝐻 0.91 0.95 0.91 0.93 0.96 0.80 0.69 0.80 0.91

𝑝𝐴𝑅𝐼𝑠 0.89 0.96 0.94 0.93 0.99 0.80 0.78 0.88 0.90
195 Values in the table represent the determination coefficient between the estimated value of each model and 
196 the assessment value of the subject of each experiment. C represents the extended confidence model when 
197 α=0.35, m=-1.15. P represents the conditional probability. The rightmost column represents the weighted 
198 average of the determination coefficient for each experiment. Bold-faced numbers represent the value of the 
199 model that marked the greatest determination coefficient for each experiment.
200

201 While the mean determination coefficient exceeded 0.9 for our proposed model, DFH and , 𝑝𝐴𝑅𝐼𝑠

202 it did not for the  model or the conditional probability P. Particularly, the proposed model recorded the ∆𝑃

203 highest determination coefficient in five out of eight experiments, as well as in the mean of all experiments. 

204 Thus, it was shown that introducing symmetry bias into the conditional probability could significantly 

205 improve the determination coefficient with human assessment.

206

207 Proposal of extended Bayesian inference

208 In this section, we propose the extended Bayesian inference where the conditional probability in 

209 Bayesian inference is replaced by the extended confidence model. 

210 First, we describe Bayesian inference. This study deals with the problem of inferring a generative 

211 model (probability distribution) from observational data. To this end, in what follows, the hypothesis and ℎ 

212 data  will be used on behalf of  and . Moreover, discrete models will be considered.𝑑  𝑝 𝑞

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 10, 2019. ; https://doi.org/10.1101/698290doi: bioRxiv preprint 

https://doi.org/10.1101/698290
http://creativecommons.org/licenses/by/4.0/


11

213 Bayesian inference first defines several hypotheses  and provides a model for each hypothesis  ℎ𝑖

214 (probability distribution of data) in the form of conditional probability  When data are fixed and  P(𝑑│ℎ𝑖).

215 regarded as a function of a hypothesis, this conditional probability is termed likelihood. The confidence P

216  for each hypothesis is given as a prior probability. (ℎ𝑖)

217 We can take  and  as initial values and calculate the posterior probability  P(𝑑|ℎ𝑖) P(ℎ𝑖) P(ℎ𝑖|𝒅)

218 when observing data  using Bayes’ theorem as follows. 𝒅

𝑃(ℎ𝑖|𝒅) = 𝑃(ℎ𝑖)
𝑃(𝒅|ℎ𝑖)

𝑃(𝒅)
(3)

219 Hereinafter, data observed at a point in time are represented by the bold . Afterwards, we can replace the 𝒅

220 posterior probability with the prior probability using Bayesian updating.

𝑃(ℎ𝑖)←𝑃(ℎ𝑖|𝒅) (4)

221 By combining formulas (3) and (4), we get 

𝑃(ℎ𝑖)←𝑃(ℎ𝑖)
𝑃(𝒅|ℎ𝑖)

𝑃(𝒅)
(5)

222 Whenever new data are observed,  in the formula (5), i.e., confidence in each hypothesis, is 𝑃(ℎ𝑖)

223 updated and the inference continues. The inference distribution during this procedure can be expressed as

𝑃(𝑑) = ∑
𝑖
𝑃(ℎ𝑖)𝑃(𝑑|ℎ𝑖) (6)

224 Note that in Bayesian inference, while the probability  of each hypothesis changes over time,  𝑃(ℎ𝑖)

225 the probability of the model of each hypothesis  does not. Fig 2 (a) shows an overview of the  𝑃(𝑑|ℎ𝑖)

226 processing flow of Bayesian inference.

227 The extended Bayesian inference is an inference that has  as parameters and 𝛼 and 𝑚

228 accommodates normal Bayesian inference as its special case when . Specifically, it is constructed by 𝛼 = 0

229 the following two update formulas. 

𝐶(ℎ𝑖)←
𝐶(ℎ𝑖)𝐶(𝒅|ℎ𝑖)

[(1 ‒ 𝛼)(𝐶(𝒅)) ‒ 𝑚 + 𝛼(𝐶(ℎ𝑖)) ‒ 𝑚] ‒ 1
𝑚

(7)
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𝐶(𝒅|𝒉)←
𝐶(𝒉)𝐶(𝒅|𝒉)

[(1 ‒ 𝛼)(𝐶(𝒉)) ‒ 𝑚 + 𝛼(𝐶(𝒅)) ‒ 𝑚] ‒ 1
𝑚

(8)

230

231 In formula (8), the bold-faced  represents the hypothesis that has the highest confidence. See the methods  𝒉

232 section below for a detailed derivation of the update formulas. Here, we can see that, supposing  in 𝛼 = 0

233 formula (7), the right side shows the same form as that of Bayesian inference seen in formula (5). 

𝐶(ℎ𝑖)←
𝐶(ℎ𝑖)𝐶(𝒅|ℎ𝑖)

𝐶(𝒅)
(9)

234 Now, in the case of Bayesian inference, the model  was invariable. We can ask if this is the 𝑃(𝑑|ℎ𝑖)

235 same for extended Bayesian inference. Here, if we look closely to the right side of formula (8), supposing 

236 , formula (8) becomes a tautology as shown below. 𝛼 = 0

𝐶(𝒅|𝒉)←
𝐶(𝒉)𝐶(𝒅|𝒉)

𝐶(𝒉) = 𝐶(𝒅|𝒉) (10)

237

238 In other words, if , then formula (8) substantially disappears. Conversely, if ,  𝛼 = 0  𝛼 > 0  𝐶(𝒅|𝒉)

239 is subject to the denominator  in the right side, that is, the estimated value of the data. Following Gunji 𝐶(𝒅)

240 et al. [19], the process shown in formula (8) is termed Inverse Bayesian Inference.

241 In what follows we show the processing flow of Extended Bayesian inference. First, we take 𝑃(𝑑|ℎ𝑖

242  and  as initial values and substitute them with . ) 𝑃(ℎ𝑖) 𝐶

𝐶(𝑑|ℎ𝑖) = 𝑃(𝑑|ℎ𝑖)

𝐶(ℎ𝑖) = 𝑃(ℎ𝑖)
(11)

243

244 Second, we calculate the degree of confidence for each hypothesis  and the model  𝐶(ℎ𝑖) 𝐶(𝒅|𝒉)

245 using the formula (7) and (8) whenever  is observed. Following the application of formulas (7) and (8), 𝒅

246 we can normalise  and  . 𝐶(ℎ𝑖) 𝐶(𝑑|ℎ𝑖)
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𝐶(ℎ𝑖)←
𝐶(ℎ𝑖)

∑
𝒌
𝐶(ℎ𝑘)

𝐶(𝑑|ℎ𝑖)←
𝐶(𝑑|ℎ𝑖)

∑
𝒋
𝐶(𝑑𝑗|ℎ𝑖)

(12)

247 Finally, we can calculate the estimated distribution values as with Bayesian inference.

𝐶(𝑑) = ∑
𝑖
𝐶(ℎ𝑖)𝐶(𝑑|ℎ𝑖) (13)

248 Fig 2(b) shows an overview of the processing flow of extended Bayesian inference.

249

250 Fig 2. A flow chart comparing Bayesian Inference to Extended Bayesian inference. (a) An overview of 

251 the processing flow of Bayesian inference; and (b) An overview of the processing flow of extended Bayesian 

252 inference. In (b), for simplicity, the portion that belongs to the normalisation process is omitted. In (b), if we 

253 suppose α=0, the portion of inverse Bayesian inference disappears, corresponding to the Bayesian inference 

254 in (a). 

255

256 Performance evaluation of extended Bayesian inference using simulation 

257 To observe the behaviour of extended Bayesian inference, a simulation was performed. Specifically, 

258 a coin was tossed repeatedly, using a simulator, to observe the results and estimate the probability of getting 

259 heads using extended Bayesian inference. The probability of landing heads at the  trial was designated 𝑡𝑡ℎ 𝑝𝑡

260 , and the probability of it landing tails was designated as  to handle cases where the probability 1 ‒ 𝑝𝑡

261 changes over time. In each trial, a uniformly distributed random number was generated from interval [0.0, 

262 1.0]. Numbers equal to or less than predefined  were regarded as heads; numbers larger than , were 𝑝𝑡 𝑝𝑡

263 tails.

264 Whenever a coin toss result is observed, the correct probability of landing heads (  is estimated 𝑝𝑡)

265 by extended Bayesian inference. Additionally, for comparison with extended Bayesian inference, estimation 
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266 using only inverse Bayesian inference and estimation using Exponential Moving Average (EMA) were also 

267 carried out.

268 First, let heads be expressed as  and tails as . Second, we prepare  hypotheses 𝐻𝐸𝐴𝐷 𝑇𝐴𝐼𝐿 𝑁 (ℎ1,

269  and define the probability of heads and the probability of tails in each hypothesis  as follows. ℎ2,⋯,ℎ𝑁)  ℎ𝑖

𝐶(𝐻𝐸𝐴𝐷|ℎ𝑖) = 0.5

𝐶(𝑇𝐴𝐼𝐿|ℎ𝑖) = 1.0 ‒ 𝐶(𝐻𝐸𝐴𝐷|ℎ𝑖) = 0.5
(14)

270

271 That is, the models for all hypotheses are the same, and it means that this system has substantially no 

272 model of hypothesis at the initial stage.

273 Further, we must suppose that the prior probability for each hypothesis is equal. 

𝐶(ℎ𝑖) =
1
𝑁

(15)

274

275 Whenever a coin toss result is observed, by performing extended Bayesian inference using formulas (7), 

276 (8), (12), and (13),  is successively updated. In the simulations, . For the simplicity of 𝐶(𝐻𝐸𝐴𝐷)  𝑁 = 3

277 subsequent analysis, in the following simulations, the parameter  was fixed to  in the extended 𝑚 ‒ 1

278 Bayesian inference. 

279 When updating the degree of confidence for each hypothesis using formula (7), we set the 𝐶(ℎ𝑖) 

280 minimum value  to impose a restriction so that the degree of confidence will not be zero. 𝜀

𝐶(ℎ𝑖)←𝑚𝑎𝑥(𝜀, 
𝐶(ℎ𝑖)𝐶(𝒅|ℎ𝑖)

[(1 ‒ 𝛼)(𝐶(𝒅)) ‒ 𝑚 + 𝛼(𝐶(ℎ𝑖)) ‒ 𝑚] ‒ 1
𝑚

) (16)

281 Where  is a function whose output is a larger value of the two arguments . In the simulation, 𝑚𝑎𝑥 (𝑥,𝑦)  𝑥,𝑦

282  was set to 0.00001.𝜀

283 In case only inverse Bayesian inference is performed, the hypothesis is limited to only , the process of 𝒉

284 formula (7) is not performed, and  is always set to 1.0.𝐶(𝒉)
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285 In this paper, we deal with a task in which the probability of heads can take two values, and they are 

286 replaced by the probability . If a uniformly distributed random number generated from interval [0.0, 1.0] 𝜃

287 at the  trial is denoted as , the probability of heads is expressed by the following formula.𝑡𝑡ℎ 𝑟𝑛𝑑𝑡

288

𝑝𝑡 + 1 = { 𝑝𝑡 𝑖𝑓 𝑟𝑛𝑑𝑡 > 𝜃
1 ‒ 𝑝𝑡 𝑒𝑙𝑠𝑒 (17)

289

290 In this simulation, was set to 0.0001. The initial value of the probability of heads  was set to 0.85. 𝜃 𝑝0

291 That is, the probability of heads can take two values of 0.15 and 0.85.

292 EMA is calculated as a weighted average between the current estimated value and the observed data as 

293 follows.

𝑠𝑡 + 1 = 𝛽𝑑𝑡 + (1 ‒ 𝛽)𝑠𝑡 = 𝑠𝑡 + 𝛽(𝑑𝑡 ‒ 𝑠𝑡) (18)

294

295 Here,  and represent estimated values of the probability of heads at  and  trial, 𝑠𝑡 𝑠𝑡 + 1 𝑡𝑡ℎ 𝑡 + 1𝑡ℎ

296 respectively.  represents a learning rate, which takes a value of interval [0.0.1.0].   represents the 𝛼  𝑑𝑡

297 result of coin toss at  trial; in the case of , , and in the case of , . The weight 𝑡𝑡ℎ 𝐻𝐸𝐴𝐷 𝑑𝑡 = 1 𝑇𝐴𝐼𝐿 𝑑𝑡 = 0

298 of each data decreases exponentially as it goes to the past, and it is expressed by . In the 𝛽(1 ‒ 𝛽)𝑥𝑑𝑡 ‒ (𝑥 + 1)

299 simulation, the value of  was shifted from 0.0005 to 0.0063 with 0.0002 increment. That is, the 𝛽

300 estimations by EMA were performed using  of the 30 patterns.𝛽

301 Fig 3 (a), (b), and (c) show the results of extended Bayesian inference, inverse Bayesian inference 

302 and estimations by EMA. However, for EMA, only three results of ,  and  = 𝛽 = 0.0005 𝛽 = 0.0021 𝛽

303 0.0063 are shown for easy viewing.

304 As can be seen from Fig 3(c), in the estimations by EMA, although rapid change can be followed as the 

305 learning rate  increases, the fluctuation in the stable period becomes larger. In other words, there is a 𝛼

306 trade-off between the ability to follow change and the accuracy in the stable period.
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307 The result of only inverse Bayesian inference is very similar to the estimation result by EMA with 𝛽

308 . On the other hand, although extended Bayesian inference takes time to follow changes as in the = 0.0021

309 case of inverse Bayesian inference initially, the ability to follow gradually improves, and it becomes possible   

310 to respond rapidly to sudden changes.

311

312 Fig 3. Time progress of the estimated values for the probability of head landing. The figure includes the 

313 correct probability. (a) Estimated values by extended Bayesian inference. (b) Estimated values by only 

314 inverse Bayesian inference. (c) Estimated values by EMA.

315 Fig 4 shows the internal state of the extended Bayesian inference. Fig 4 (a) shows the time progress 

316 of the probability of head landing for each hypothesis. Initially, the probabilities for all hypotheses were 0.5 

317 by definition, but learning by inverse Bayesian inference gradually formed hypothesis models. After the 

318 middle stage, the probabilities of head landing for three hypotheses ,  and  became approximately ℎ1 ℎ2 ℎ3

319 0.15, 0.85, and 0.5, respectively. Here, 0.15 and 0.85 correspond to two correct values in this simulation, as 

320 shown in formula (17). 

321 Figure 4(b) shows the time progress of the hypothesis with the greatest degree of confidence. As can 

322 be observed from the figure, in the second half of the simulation, extended Bayesian inference switches the 

323 hypotheses quickly when the probability of head landing is replaced. That is, extended Bayesian inference 

324 tries to respond to changes by learning using inverse Bayesian inference in the first half of the simulation, 

325 while in the second half of the simulation, abrupt changes are dealt with by switching the hypotheses formed 

326 by the learning.

327

328 Fig 4. Internal state of extended Bayesian inference. (a) Time progress of the probability of head landing 

329 for each hypothesis . (b) Time progress of the hypothesis with the greatest degree of confidence.

330
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331 We show the relationship between the ability to follow the sudden change and the accuracy of the 

332 estimation in the stable period. Fig 5 shows the results of estimation by extended Bayesian inference, 

333 inverse Bayesian inference, and EMA in an enlarged manner between  trial at which the 40914𝑡ℎ

334 probability of heads suddenly changed from 0.15 to 0.85 and the  trial.60913𝑡ℎ

335

336 Fig 5. Time progress of the estimated values for the probability of head landing. The figure includes the 

337 correct probability. 

338

339 This period was divided into the first half interval from  trial to  trial and the second 40914𝑡ℎ 50913𝑡ℎ

340 half interval from  trial to  trial, and the differences between the correct values and the 50914𝑡ℎ 60913𝑡ℎ

341 estimated values were calculated using root-mean-square error (RMSE) in each interval. RMSE is defined 

342 as follows.

𝑅𝑀𝑆𝐸 = ∑𝑇 + 𝑘 ‒ 1

𝑡 = 𝑘
(𝑥𝑡 ‒ 𝑥𝑡)2

𝑇
(19)

343
344 Here,  and  represent the correct value and the estimated value in  trial, respectively.  𝑥𝑡 𝑥𝑡 𝑡𝑡ℎ 𝑇

345 represents the length of the interval.

346 We use the RMSE of the first half as a measure of the ability to follow rapid changes, and the RMSE of 

347 the second half as a measure of the accuracy of the estimation in the stable period.

348 Fig 6 shows the relationship between the followability and the estimation accuracy in the extended 

349 Bayesian inference, the inverse Bayesian inference, and EMA estimations.

350 As can be seen from the figure, there was a trade-off relationship of the accuracy being lost if the 

351 followability improved in EMA estimation. The regression curve for EMA data is also shown in this figure.
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352 The data of the inverse Bayesian inference was located slightly lower left on this trade-off curve. On the 

353 other hand, the data of the extended Bayesian inference was almost the same as the data of the inverse 

354 Bayesian inference with regards to the accuracy, but the followability was greatly improved. 

355 That is, it can be seen that the extended Bayesian inference broke the trade-off found in EMA estimation.

356

357 Fig 6. Relationship between the followability and the estimation accuracy in the extended Bayesian 

358 inference, the inverse Bayesian inference, and EMA estimations. 

359

360 In the extended Bayesian inference, the inverse Bayesian inference could be applied only to the 

361 hypothesis  which has the greatest degree of confidence. Moreover, we set . Because of this, we 𝒉 m = ‒ 1

362 can rewrite formula (8) for inverse Bayesian inference as follows. 

𝐶(𝒅|𝒉)←
𝐶(𝒉)

(1 ‒ 𝛼)𝐶(𝒉) + 𝛼𝐶(𝒅) ∙ 𝐶(𝒅|𝒉) (20)

363 Here, we can see that the denominator on the right side is the weighted average of  and , 𝐶(𝒉) 𝐶(𝒅)

364 if , , so  increases. At this point, the increment of  𝐶(𝒉) > 𝐶(𝒅)  𝐶(𝒉) > (1 ‒ 𝛼)𝐶(𝒉) + 𝛼𝐶(𝒅) 𝐶(𝒅|𝒉) 𝐶

365  is larger if the degree of confidence  is higher. (𝒅|𝒉)  𝐶(𝒉)

366 Conversely, if ,  so  decreases greatly if the 𝐶(𝒉) < 𝐶(𝒅)  𝐶(𝒉) < (1 ‒ 𝛼)𝐶(𝒉) + 𝛼𝐶(𝒅), 𝐶(𝒅|𝒉)

367 degree of confidence  is lower.  𝐶(𝒉)

368 Let us turn to the analysis of the stable period where . When , the total sum of 𝐶(𝒉) = 1  𝐶(𝒉) = 1

369 confidence of all hypotheses is 1, and for any hypothesis  other than , . Hence, formula (13) ℎ𝑖 𝒉 𝐶(ℎ𝑖) = 0

370 can be rewritten as follows.

𝐶(𝑑) = ∑
𝑖
𝐶(ℎ𝑖)𝐶(𝑑|ℎ𝑖) = 𝐶(𝑑|𝒉) (21)

371 At this step, formula (20) for inverse Bayesian inference can also be rewritten as follows. 

𝐶(𝒅|𝒉)←
1

(1 ‒ 𝛼) ∙ 1 + 𝛼𝐶(𝒅|𝒉) ∙ 𝐶(𝒅|𝒉) (22)

372
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373 The right side of this formula shows the weighted harmonic average of 1 and  Since 𝐶(𝒅|𝒉). 0 ≤ 𝐶

374 , the denominator is necessarily less than 1, and the likelihood  increases whenever (𝒅|𝒉) ≤ 1 𝐶(𝒅|𝒉)

375 updated. In other words, when certain data are observed, the connection between the data and the hypothesis 

376 with the highest degree of confidence at that time is reinforced. Conversely, unobserved data, i.e., for  𝑑𝑗

377 other than ,  can be standardised using formula (12), hence decreasing by the increment amount 𝒅  𝐶(𝑑𝑗|𝒉)

378 in . Here, the rate of increase for  depends on . When , regardless of the presence 𝐶(𝒅|𝒉)  𝐶(𝒅|𝒉) 𝛼  𝛼 = 1

379 value of , the right side of formula (22) is 1. As  gets smaller, the increase rate lowers, and when  𝐶(𝒅|𝒉)  𝛼

380 , it coincides with Bayesian inference and  becomes invariable. 𝛼 = 0 𝐶(𝒅|𝒉)

381 These considerations suggest that  becomes larger according to increase of updates to the model. 𝛼

382 In this sense, we can say that formula (20) for inverse Bayesian inference during the steady period represents 

383 a process of learning, and  corresponds to the rate of learning.  𝛼

384 With respect to the portion that corresponds to Bayesian inference, suppose  in the formula m = ‒ 1

385 (7), then we can rewrite it as:

𝐶(ℎ𝑖)←
𝐶(ℎ𝑖)𝐶(𝒅|ℎ𝑖)

[(1 ‒ 𝛼)(𝐶(𝒅)) ‒ 𝑚 + 𝛼(𝐶(ℎ𝑖)) ‒ 𝑚] ‒ 1
𝑚

=
𝐶(ℎ𝑖)𝐶(𝒅|ℎ𝑖)

(1 ‒ 𝛼)𝐶(𝒅) + 𝛼𝐶(ℎ𝑖) (23)

386 Through careful observation of this formula we can note that  becomes larger, , i.e., 𝛼  while 𝐶(𝒅)

387 the effect of observation data, gets smaller. Where , the denominator  disappears so  in  𝛼 = 1  𝐶(𝒅) 𝐶(ℎ𝑖)

388 the numerator and denominator is cancelled, and the formula can be expressed as follows. 

𝐶(ℎ𝑖)←𝐶(𝒅|ℎ𝑖) (24)

389

390 This means that when , the degree of confidence in each hypothesis  does not even 𝛼 = 1  𝐶(ℎ𝑖)

391 consider the past observation history and is seen to be identical to the likelihood at that point in time. This 

392 coincides with the maximum likelihood estimation. In contrast, when , the present formula coincides  𝛼 = 0

393 with the Bayesian inference expressed in formula (5). 
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394 A comparison of formula (5) with formula (24) reveals that their difference lies in the presence or 

395 absence of  on the right side, because  can be regarded as a constant. In this sense, the difference 𝐶(ℎ𝑖) 𝑃(𝒅)

396 between them can be said to lie in the extent to which they accept history in order to determine degree of 

397 confidence. 

398 As shown above, in extended Bayesian inference, symmetry bias plays two roles. First, the strength 

399 of symmetry bias indicates the rate of learning in portions of inverse Bayesian inference. In other words, the 

400 stronger the symmetry bias, the greater the degree of modification to the hypothesis model based on 

401 observational data. Second, the strength of the symmetry bias indicates how much the model takes into 

402 account past history in portions of Bayesian inference. In other words, as symmetry bias gets stronger, 

403 confidence in each hypothesis is updated based solely on more recent observational data. 

404

405 Discussion

406 In this study, we first proposed a different causal induction model. This model can replicate human 

407 judgments concerning causal induction with higher accuracy than previous models. Then we formulated an 

408 inference model that incorporates the said causal induction model into Bayesian inference. We noticed this 

409 inference model necessarily involves inverse Bayesian inference, which allows for flexibility to handle 

410 unsteady situations where the inference target changes from time to time. Finally, we demonstrated how this 

411 model can work well with unknown situations by forming new hypotheses through inverse Bayesian 

412 inference. 

413 The causal induction model that we are proposing has two parameters that control the strength of 

414 symmetry bias. Conditional probability and causal induction models like DFH and pARIs can be shown to 

415 be special cases where particular values are assigned to parameters in our model. In other words, using the 

416 proposed model allows us to seamlessly express degree of confidence in those statements of the forms ‘if P 

417 then Q’, which stand for prediction, as well as those in the form of ‘P therefore Q’, which stand for causal 
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418 relation in a single model. The results of the meta-analysis of causal induction experiments revealed that the 

419 proper incorporation of symmetry bias in the proposed model allows it to replicate human judgment with 

420 high accuracy. However, as shown in Table 2, the values of the parameters are different for each experiment. 

421 It is known that the interpretation of conditionals largely change depending on the type and the contents of 

422 the conditionals, as well as subject’s age [26]. Further studies are necessary to determine how parameters 

423 change according to type and contents of conditionals, as well as age.

424 The performance of the present model and the catalogue performance of DFH and pARIs were 

425 compared using eight sorts of experiment data. It turned out that the proposed model recorded the best 

426 determination coefficient in five of these experiments and the mean of all experiments. Thus, the present 

427 model is important in two ways. First, regarding human causal induction judgments, it has a capability that 

428 outperforms DFH and pARIs, which had hitherto demonstrated the best catalogue performance. Second, by 

429 using the extended confidence model, it is possible to determine the parameters α and m that can best explain 

430 the participant’s judgement from the data of simple causal induction experiments. In other words, we can 

431 measure the strength of symmetry bias the participant has. It would be possible to compare the strength of 

432 symmetry bias in patients with a mental illness against that of healthy individuals. For example, ‘the Von 

433 Domarus principle’ applies to the speech of schizophrenic patients [27] and refers to an inference of the form 

434 ‘Men die. Weed die. Therefore, men are weed’. There is a widely observed tendency in schizophrenic patients 

435 to identify two things as the same when they share a common property – a mechanism said to underlie 

436 delusion [28]. Logically, it is wrong to conclude from ‘A is C’ and ‘B is C’ that ‘A is B’. However, if the 

437 symmetry bias allows derivation of ‘C is B’ from ‘B is C’, then from ‘A is C’ and ‘C is B’, we can derive ‘A 

438 is B’. In other words, one influence on the delusion of schizophrenic patients may be a strong susceptibility 

439 to symmetry bias. To test this hypothesis, it is possible to use the proposed model to estimate and compare 

440 the strength of symmetry bias in both patients with schizophrenia and healthy people. This is a research goal 

441 we can trace. 
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442 Parameters that denote the strength of symmetry bias indicate, in the case of extended Bayesian 

443 inference, the strength of inverse Bayesian inference, that is, the rate of learning. At the same time, they 

444 indicate how much the history is taken into account when updating the degree of confidence in each 

445 hypothesis. In this way, learning and inference become interlocked via parameters that denote the strength of 

446 symmetry bias in such way that it takes account only of more recent observational data in inference as the 

447 rate of learning becomes greater. 

448 As a third form of inference following induction and deduction, various authors mention abduction. 

449 Abduction is an inference from knowledge or from known theories, for example, that ‘if it rains, people open 

450 an umbrella’ and to determine that from ‘people open an umbrella’ we can infer ‘it is raining’. Abduction 

451 can be seen as a procedure of selecting hypothesis that best explain the observational data. In this regard, 

452 abduction is akin to maximum likelihood estimation and Bayesian inference. They differ, however, in that 

453 while the latter two inferences proceed by extracting the optimal hypothesis from the existing ones based on 

454 observational data, abduction focuses in the formation of a new hypothesis. An example is Newton, who 

455 introduced the law of universal gravitation to explain free fall of physical bodies. 

456 Whereas the models for maximum likelihood estimation and Bayesian inference remain constant, 

457 the model for extended Bayesian inference is modified by virtue of inverse Bayesian inference enabling the 

458 model to match observation data. In other words, a new hypothesis that better explains the fact is formed in 

459 each case. In this sense, extended Bayesian inference that accompanies inverse Bayesian inference can be 

460 said to be akin to abduction. 

461 In interpersonal communication, it is important to mutually estimate emotions of others. Further, for 

462 future studies on human-machine interaction this sort of information is essential. When estimating the 

463 emotion of others, since we cannot directly observe private internal states, there is no way to estimate their 

464 emotion other than using external clues (observational data) such as facial expression and tone of voice. In 

465 general, to perform proper estimation under these circumstances, the more observational data the better. 

466 However, emotions are not always constant, it is a variable that changes from time to time. Under these 
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467 circumstances, we must infer emotions while considering whether observational data to be used for 

468 estimation derive from the same emotions. In the future it would be interesting to apply extended Bayesian 

469 inference to tasks like these. 

470 Suppose that we have knowledge (based on models of others) of the kinds of emotions the other has 

471 and how they are expressed in him. Of course, one cannot attain perfect or complete knowledge because his 

472 mental states have some degree of privacy. Suppose that when estimating based on incomplete knowledge 

473 that the other is pleased, his expression suddenly changes. At this moment, one may think that his emotion 

474 has changed or that this is another way of expressing pleasure. The former is an inference based on knowledge 

475 and corresponds to Bayesian inference. The latter, on the other hand, is a modification of knowledge or an 

476 addition of new knowledge and it corresponds to inverse Bayesian inference. 

477 Incorporating the function of inverse Bayesian inference may help to develop robots that 

478 autonomously learn and make various human-like inferences. 

479

480 Methods

481 Data used in meta-analysis

482 To test the descriptive performance of the extended confidence model, we performed the meta-

483 analysis using the same data as [13]. The analysis was conducted using eight types of experiment data, that 

484 is, AS95, BCC03.1, BCC03.3, HO07.1, HO07.2, LS00, W03.2, and W03.6. 

485 In AS95, forty graduate and undergraduate students were recruited. They were given co-occurrence 

486 information about the presence or absence of drug treatment and the presence or absence of the side effects. 

487 The subjects were asked to judge a number of problems, and each problem involved a sequence of instances 

488 of these four information types. The frequencies of each information type varied from problem to problem. 

489 At the end of a problem, the subjects were asked to enter a number from 0 to 100 that best reflected their 

490 judgment of the drugs causing the side effects.
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491 In BCC03.1, 109 undergraduate students were recruited and divided into two groups (preventive 

492 group and generative group). In preventive group, they evaluated how effectively each vaccine prevented the 

493 corresponding disease by giving a rating on a scale from 0 (the vaccine does not prevent the disease at all) to 

494 100 (the vaccine prevents the disease every time). They also evaluated the influence of ray exposure on the 

495 mutation of viruses in generative group. 

496 Thirty-one undergraduate students participated in BCC03.3. With regard to the side effects of drugs 

497 that reduce allergy, participants determined whether there were side effects of headache and, if so, assessed 

498 the causal strength between the drug and the headache.

499 In HO07.1, participants were 39 undergraduate students. They were asked to assess the strength of 

500 the causal relation between a particular type of fertiliser and plants blooming. They only observed a sequence 

501 of scenes in which fertiliser and plant blooming were either present or absent. After observing a series of 

502 situations, participants rated the subjective strength of the causal relation with a value between 0 (completely 

503 unrelated) and 100 (completely related).

504 In HO07.2, participants were 50 undergraduate students. In this experiment the cause was ‘drinking 

505 milk’ and the effect was ‘stomach-ache’. They judged the causal strength between drinking milk and 

506 stomach-ache according to given co-occurrence information.

507 In LS00, the participants of experiments 1, 2 and 3 were 27, 16, and 24 students, respectively. They 

508 assessed the extent to which a certain chemical causes a mutation in animals’ DNA using a number from 

509 between 0 and 100, where 0 indicates that the chemical does not cause mutations at all and 100 indicates that 

510 the chemical causes a mutation.

511 In W03.2, the participants were 40 undergraduate students. They were given information on the 

512 additives (manganese trioxide) contained in the foods a patient has eaten, and information on whether the 

513 patient has developed an allergic reaction. They were asked to judge the extent to which the statement 

514 ‘Manganese trioxide causes the allergic reaction in this patient’ was right for that patient and to write a 
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515 number from 0 (zero) to 100, where 0 (zero) means that the statement is definitely not right, and 100 means 

516 that the statement is definitely right.

517 In W03.6. the participants were 43 first-year undergraduate students. Most features of method, 

518 including initial written instructions; format of stimulus presentations; and procedure, were the same as in 

519 W03.2. The studies differed in design, however. 

520

521 Extended Bayesian inference

522 First, we can replace  and  in formula (1) with  and . 𝑝 𝑞  ℎ𝑖 𝑑

𝐶(𝑑|ℎ𝑖) = [(1 ‒ 𝛼)𝑃(𝑑|ℎ𝑖)𝑚 + 𝛼𝑃(ℎ𝑖|𝑑)𝑚]
1

𝑚 (25)

523 Then we apply the Bayes’ theorem to the right side of the formula (25), and we can obtain the conversion as 

524 follows.

𝐶(𝑑|ℎ𝑖) = [(1 ‒ 𝛼)(𝑃(ℎ𝑖)𝑃(𝑑|ℎ𝑖)
𝑃(ℎ𝑖) )

𝑚

+ 𝛼(𝑃(ℎ𝑖)𝑃(𝑑|ℎ𝑖)
𝑃(𝑑) )

𝑚]
1

𝑚

= [(1 ‒ 𝛼)( 1
𝑃(ℎ𝑖))𝑚

+ 𝛼( 1
𝑃(𝑑))𝑚]

1
𝑚

𝑃(ℎ𝑖)𝑃(𝑑|ℎ𝑖)

= [(1 ‒ 𝛼)(𝑃(ℎ𝑖)) ‒ 𝑚 + 𝛼(𝑃(𝑑)) ‒ 𝑚]
1

𝑚𝑃(ℎ𝑖)𝑃(𝑑|ℎ𝑖) =
𝑃(ℎ𝑖)𝑃(𝑑|ℎ𝑖)

[(1 ‒ 𝛼)(𝑃(ℎ𝑖)) ‒ 𝑚 + 𝛼(𝑃(𝑑)) ‒ 𝑚] ‒ 1
𝑚

(26)

525 By replacing  and  in formula (25), to perform the same conversion, we getℎ𝑖 𝑑

𝐶(ℎ𝑖|𝑑) =
𝑃(𝑑)𝑃(ℎ𝑖|𝑑)

[(1 ‒ 𝛼)(𝑃(𝑑)) ‒ 𝑚 + 𝛼(𝑃(ℎ𝑖)) ‒ 𝑚] ‒ 1
𝑚

=
𝑃(ℎ𝑖)𝑃(𝑑|ℎ𝑖)

[(1 ‒ 𝛼)(𝑃(𝑑)) ‒ 𝑚 + 𝛼(𝑃(ℎ𝑖)) ‒ 𝑚] ‒ 1
𝑚 (27)

526 In the next step, we replace the conditional probability  on the right side of formulas (26) and (27) 𝑃

527 with the extended confidence  to make the formulas recursive, and then we replace the equation with the 𝐶

528 update formula. 

𝐶(𝑑|ℎ𝑖)←
𝐶(ℎ𝑖)𝐶(𝑑|ℎ𝑖)

[(1 ‒ 𝛼)(𝐶(ℎ𝑖)) ‒ 𝑚 + 𝛼(𝐶(𝑑)) ‒ 𝑚] ‒ 1
𝑚

(28)

𝐶(ℎ𝑖|𝑑)←
𝐶(ℎ𝑖)𝐶(𝑑|ℎ𝑖)

[(1 ‒ 𝛼)(𝐶(𝑑)) ‒ 𝑚 + 𝛼(𝐶(ℎ𝑖)) ‒ 𝑚] ‒ 1
𝑚

(29)

529
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530 As seen in formula (28), in inverse Bayesian inference, the amount of modification to the model of 

531 each hypothesis increases as  becomes larger. However, in this article, not all hypothetical models are 𝛼

532 uniformly modified, and the amount of modification changes according to confidence levels as follows. 

𝛼𝑖 = 𝛼 ∙ 𝜋(ℎ𝑖) (30)

533 However, 

𝜋(ℎ𝑖) =
𝑒𝑥𝑝(𝐶(ℎ𝑖) 𝜏)

∑
𝒊
𝑒𝑥𝑝(𝐶(ℎ𝑖) 𝜏) (31)

534

535 Here, formula (31) is a procedure from the field of machine learning called Softmax [29], and 𝜏

536  is a parameter termed temperature.  remains the same value for all hypotheses if the temperature ( > 0) 𝜋

537 is high with the limit . On the other hand, if the temperature is low,  becomes greater for hypotheses  𝜏→∞ 𝜋

538 with a higher confidence level.  takes the value 1 in the limit  for hypotheses with the highest  𝜋 𝜏→0

539 confidence level, and takes value 0 for all the other hypotheses. 

540 In inverse Bayesian inference, the hypothetical model is modified when  is observed using  as 𝒅 𝛼𝑖

541 follows. 

𝐶(𝒅|ℎ𝑖)←
𝐶(ℎ𝑖)𝐶(𝒅|ℎ𝑖)

[(1 ‒ 𝛼𝑖)(𝐶(ℎ𝑖)) ‒ 𝑚 + 𝛼𝑖(𝐶(𝒅)) ‒ 𝑚] ‒ 1
𝑚

(32)

542 Here, there are reasons why the degree of modification for each hypothetical model changes 

543 according to the level of confidence. First, this process is a modification of the hypothetical model, which 

544 can be understood as a learning procedure rather than inference. Second, it is more likely that the currently 

545 observed data  derives from a hypothesis, if that hypothesis has a higher degree of confidence. Therefore, 𝒅

546 when modifying the model for each hypothesis based on observed data , the hypothesis with a higher 𝒅

547 degree of confidence requires a greater modification of its model. Of course, when , all hypothetical 𝜏→∞

548 models can equally be modified. On the other hand, when , only the hypothesis model with the highest 𝜏→0
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549 degree of confidence is modified. Moreover, supposing , in formula (30),  obtains for all 𝛼 = 0 𝛼𝑖 = 0

550 hypotheses. 

551 In the simulation,  was set. In other words, the inverse Bayesian inference was applied to only 𝜏→0

552 the hypothesis  that has the highest confidence value. 𝒉
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