
RESEARCH ARTICLE
Refgenie: a reference genome resource manager
Michal Stolarczyk1, *, Vincent P. Reuter1, *, Neal E. Magee5, and Nathan C. Sheffield1,2,3,4,�

1Center for Public Health Genomics, University of Virginia
2Department of Public Health Sciences, University of Virginia
3Department of Biomedical Engineering, University of Virginia
4Department of Biochemistry and Molecular Genetics, University of Virginia
5Research Computing, University of Virginia
*Contributed equally
� Correspondence: nsheffield@virginia.edu

Reference genome assemblies are essential for high-throughput sequencing analysis
projects. Typically, genome assemblies are stored on disk alongside related resources;
for example, many sequence aligners require the assembly to be indexed. The result-
ing indexes are broadly applicable for downstream analysis, so it makes sense to share
them. However, there is no simple tool to do this. To this end, we introduce refgenie,
a reference genome assembly asset manager. Refgenie makes it easier to organize, re-
trieve, and share genome analysis resources. In addition to genome indexes, refgenie
can manage any files related to reference genomes, including sequences and annota-
tion files. Refgenie includes a command-line interface and a server application that
provides a RESTful API, so it is useful for both tool development and analysis.
Availability: https://refgenie.databio.org

Background
Enormous effort goes into assembling and curating ref-
erence genomes1–5. These reference assemblies provide
a common representation for comparing results and
they form the basis for a wide range of downstream
tools for sequence alignment and annotation. Many
tools that rely on reference assemblies will produce
independent resources that accompany an assembly.
For instance, many aligners must hash the genome,
creating indexes that are used to improve alignment
performance6–9.

Analytical pipelines typically rely on these aligners and
their indexes for the initial steps of a data analysis.
These assembly resources are typically shared among
many pipelines, so it’s common for a research group
to organize them in a central folder to prevent dupli-
cation. In addition to saving disk space, centraliza-
tion simplifies sharing software that uses a reference as-
sembly because software can be written around a stan-
dard folder structure. However, this does not solve the
problem of sharing genomic resources between research
groups. Because each group may use a different strat-
egy to identify shared genome resources, sharing tools
across groups may require modifying them.

One solution to this problem is to have a web-accessible
server where standard, organized reference assemblies
are available for download. Indeed, this is exactly the
goal of Illumina’s iGenomes project, which provides “a

collection of reference sequences and annotation files
for commonly analyzed organisms10.” The iGenomes
project has become a popular source of genome assets
and has greatly simplified sharing analysis tools among
research environments. However, this approach suffers
from some fundamental drawbacks and leaves several
challenges unsolved. First, the individual assets can
only be downloaded in bulk, but what if a particular
use case requires only a small subset of resources in a
package? More important, building the resources is not
scripted, so if the repository excludes a reference or re-
source of interest, there is no programmatic way to fill
the gap. In these scenarios, users must manually build
and organize genome assets individually, forfeiting the
strength of standardization among groups.

To improve the ability to share interoperable reference
genome assets, we have developed refgenie, which
enables a more modular, customizable, and user-
controlled approach to managing reference assembly
resources. Like iGenomes, refgenie standardizes ref-
erence genome asset organization so software can be
built around that organization. But unlike iGenomes,
refgenie also automates the building of genome assets,
so that an identical representation can be produced
for any genome assembly. Furthermore, refgenie
allows programmatic access to individual resources
both remote and local, making it suitable for the next
generation of self-contained pipelines.

1· Refgenie, a reference genome manager · Databio · c©The Authors

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted July 12, 2019. ; https://doi.org/10.1101/698704doi: bioRxiv preprint

mailto:nsheffield@virginia.edu
https://refgenie.databio.org
https://doi.org/10.1101/698704
http://creativecommons.org/licenses/by/4.0/

serve

genome
assets

archived
assets

FASTA
file

build archive

web API

pull

server tasks
CLI tasks

FASTA
file

refgenie
CLI

refgenie
server

Refgenconf

imports imports

user interface

software interface

A B
Components

Fig. 1: Refgenie concept and software organization. A: Refgenie provides the ability to either build or pull assets. B: Refgenie is
tripartite, made up of a conf utility, a command-line interface (CLI), and a server package. The configuration package is intended
for programmatic use, and is used by the CLI and server packages. Users and software use refgenie via the CLI or server (web API).

Refgenie can organize any files that can be assigned to
a particular reference genome assembly, which could
include not only genome indexes, but other resource
types like genome sequences and annotations11–13.

Refgenie manages genome-related resources flexibly. It
can handle any asset type, from annotations to indexes.
It provides individual, pre-built asset downloads from a
server and allows scripted building for custom inputs.
Refgenie thus solves a major hurdle in biological data
analysis.

Results and discussion
Refgenie is the first full-service reference genome asset
manager. Refgenie provides two ways to obtain genome
assets: pull, and build (Fig.1A). For common assets,
pulling a pre-built version obviates the need to install
and run specialized software to build a particular as-
set. It also makes it easier to satisfy prerequisites pro-
grammatically for pipelines and other software. How-
ever, remote-hosted assets are only practical for com-
mon genomes and assets, so for uncommon assets or
on unconnected computers, users may instead build as-
sets, which creates the same standard output for custom
genomes. By providing both build and pull, refgenie fa-
cilitates asset organization both within and between re-
search groups, increasing interoperability of tools that
rely on genome resources.

The refgenie software suite consists of three compo-
nents: 1) a command-line interface (CLI), 2) a server,
and 3) a configuration package that supports them both
(Fig.1B). Each of these relies on a local YAML file called
the genome configuration file (Fig. 2), which refgenie
uses to keep track of metadata, such as local file paths.

genome_folder: /genomes/path
genome_server: http://...
config_version: 0.2
genomes:
 hg38:
 genome_description: ...
 assets:
 bowtie2_index:
 path: bowtie2_index
 asset_description: ...
 hisat2_index:
 path: hisat2_index
 asset_description: ...

Fig.2: Genome config file. Refgenie reads and writes a genome
configuration file in YAML format to keep track of available local
assets.

Genome configuration and asset organization

Refgenie organizes genome assembly resources into
assets, each of which represents one or more files. You
can think of a genome asset as a folder of related files
tied to a particular genome assembly. For example, an
asset could be an index for a particular tool, or a group
of annotation files. Refgenie organizes such assets
by genome in the configuration file, which is both
computer-readable and human-readable. In practice,
users will not need to interact with this file at all, as
refgenie will handle both reading and writing the file.
However, users may edit the file if they need a more
complicated structure (such as storing assets on differ-
ent file systems, or adding assets manually). Together
with the refgenie software, this simple file makes
the concept of reference genome assets completely
portable. Full documentation for the configuration file
format can be found at refgenie.databio.org.

2· Refgenie, a reference genome manager · Databio · c©The Authors

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted July 12, 2019. ; https://doi.org/10.1101/698704doi: bioRxiv preprint

https://refgenie.databio.org
https://doi.org/10.1101/698704
http://creativecommons.org/licenses/by/4.0/

Refgenconf configuration package
The configuration package, refgenconf, simply pro-
vides functions and data types to read and write items
listed in the genome configuration file.

Under the hood, the refgenie CLI itself uses refgenconf
to interact with the genome configuration and assets
on disk. The server software also relies on it to read,
archive, and serve assets. The refgenconf package also
provides the starting point for any third-party python
developers by providing a fully functional python ap-
plication programming interface (API) for interacting
with refgenie assets. For example, we use refgenconf

in python pipelines we develop to make them aware of
the genome assets available in a given computing en-
vironment. Using this approach, a pipeline need only
be provided with an assembly key, like ‘hg38’, and it
can use refgenconf to locate the correct path to any
genome-related asset necessary for the pipeline. This
simplifies the process of configuring pipelines and al-
lows refgenie to be used both by humans and comput-
ers.

Refgenie command-line interface
The workhorse of refgenie is the command-line inter-
face (CLI); it is how users will typically interact with
genome assets. Its implementation as a command-line
tool not only makes it useful for general purpose ex-
ploration and access, but also allows it to be integrated
into existing workflows that require access to genome
assets from the shell. The CLI can be installed with pip

install refgenie and invoked by calling refgenie.
The refgenie CLI provides 5 functions for interacting
with local genome assets:

• refgenie init initializes an empty genome con-
figuration file

• refgenie list summarizes the genome configu-
ration file, listing local genomes and assets

• refgenie seek provides the file path to a given
asset

• refgenie add adds an already-built local asset

• refgenie build builds a new asset

The init, list, seek, and add functions follow directly
from the configuration file format. They essentially al-
low a user to easily explore and access file paths to
available assets. The build function allows a user to
build assets for any FASTA file, which is a more flexible
system than alternative approaches that provide only
downloadable assets. Refgenie has built-in capability
to build a selection of different common genome assets

(Fig.3). In addition to functions on local assets, the re-
fgenie CLI also contains additional commands that can
interact with remote assets: pull and listr:

• refgenie listr lists available remote genomes
and assets

• refgenie pull downloads a remote asset

With these commands, refgenie makes downloading a
standard index for a user as simple as a few lines of
code in a shell. For example, a new user can initialize
refgenie and then download the bowtie2 indexes for the
hg38 reference with these lines of code:

pip install --user refgenie

refgenie init -c conf.yaml

refgenie pull -c conf.yaml -g hg38 -a ASSET

Where ASSET is a unique key defining the asset of in-
terest (e.g., bowtie2 index). Once the asset has been
pulled (or built), the user can retrieve the path to it
with refgenie seek:

refgenie seek -c config.yaml -g hg38 -a ASSET

This command returns the file path to the specified as-
set for the specified genome. This command is now
portable, eliminating the need to hard-code paths, or
pass them as arguments, in a pipeline or other software
that requires access to genome assembly assets.

Refgenie server

The listr and pull functions require that the CLI in-
teract with a server. The CLI uses a configurable URL
to retrieve a remote archived tarball. After retrieving
the tarball, the CLI will unpack it into the appropriate
folder location and update the configuration file to pro-
vide access to its path via refgenie seek.

To support this remote function, we have developed a
containerized, portable, open-source companion appli-
cation called refgenieserver. Many users of refgenie
will not have to be aware of the server application; how-
ever, interested users can use refgenie server to host
their own genome asset server. For example, a tool de-
veloper may wish to simplify use by hosting indexes for
common reference assemblies.

Running the refgenie server is simple for users who
are already familiar with refgenie. It reads the same
genome configuration file format as the CLI (indeed,
it uses the refgenconf package described earlier in
the same way). In fact, refgenie server operates on
the same genome config file and asset folders that that

3· Refgenie, a reference genome manager · Databio · c©The Authors

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted July 12, 2019. ; https://doi.org/10.1101/698704doi: bioRxiv preprint

https://doi.org/10.1101/698704
http://creativecommons.org/licenses/by/4.0/

0:57:29

asset name
archive

sizegenome
asset
size

build
time

peak
memory

bowtie2_index hg38
hg38
hg38
hg38
hg38

hg38_cdna
hg38_cdna

hisat2_index
bismark_bt1_index
bismark_bt2_index
bwa_index

kallisto_index
salmon_index

3.5 GB
3.9 GB
7.5 GB
7.5GB
3.2 GB

1.6 GB
2.6GB

3.9 GB
4.2 GB

13.6 GB
13.6 GB
2.9 GB

2.2 GB
3.1 GB

0:36:22
1:10:24
2:17:22
0:51:02

0:04:30
0:03:04

5.6 GB
5.5 GB

10.8 GB
10.8 GB
4.7 GB

3.8 GB
5.3 GB

fasta hg38 2.9 GB 0.8 GB 0:51:43 0 GB

hg38star_index 24.3GB26.9 GB 1:51:11 35.8 GB

Fig.3: Assets available for build. Table listing assets that can currently be built with refgenie build, along with statistics for
size, build time, and memory high water mark. Assets were built for the human genome using a single core. Times and memory
are representative values from a single run. These assets are produced by various tools8,9,14–17 and are available to be built for any
arbitrary genome input.

API Framework

ASGI Server

Refgenie
assets

Refgenie server
software

User interface

Fig.4: Server software stack. Archived refgenie assets are
mounted into a Docker container, along with the refgenie server
software, which is built using FastAPI and uvicorn. The con-
tainer can then be accessed via the web and API user interfaces.

refgenie itself builds or downloads. The server software
comes with an archive command that prepares a
refgenie genome folder for serving. It compresses each
asset into an individual tarball. This simple system
makes it easy for users to run a server using their
refgenie assets.

This server software leverages cutting-edge web
technology to provide high-concurrency service with
minimal compute resources (Fig. 4). We built refgenie
server on top of the FastAPI python framework, which
is a high performance web framework for building
APIs. FastAPI automatically produces an API that
complies with OpenAPI 3.0 standards, which will allow
other tools to discover and automatically use the API.
It also includes a self-documenting test interface so
that users can see and test the available API endpoints.
Refgenie leverages the Starlette development toolkit
and the uvicorn server to make use of the lightning-
fast Asynchronous Server Gateway Interface (ASGI)
specification, which provides asynchronous access to
refgenie server.

Refgenie server is containerized and available on dock-
erhub, so that an interested user could run a server with

a single line of code:

docker run --rm -p 80:80 \

-v genomes_folder:/genomes rgimage \

refgenie -c /genomes/config.yaml serve

By mounting a refgenie ‘genomes’ folder into this con-
tainer, users get a fully functioning web interface and
RESTful API.

The Refgenomes database

We designed the server software so that anyone could
easily run a custom server instance. We have also
deployed our own instance of refgenieserver at re-
fgenomes.databio.org, where we host pre-built genome
assets. Like any instance of refgenieserver, our
refgenomes database provides both a web interface and
a RESTful API to access individual assets we have made
available. Users may explore and download archived
indexes from the web interface or develop tools that
programmatically query the API.

The web interface provides a graphical listing of
available genomes and assets, allowing users to browse
the site and download individual assets manually. In
addition, refgenieserver provides API endpoints to
serve lists of available genomes and assets, as well as
metadata for the individual assets, including checksums
for file integrity, file sizes, and archive content infor-
mation. Furthermore, the server provides endpoints to
download each asset individually. Endpoints include
the following: /genomes retrieves a list of available
genomes; /assets retrieves a list of all available assets;
/{genome}/assets/ retrieves a list of assets for a given
genome; and /{genome}/assets/{asset}/archive
retrieves the tarball for the specified asset. Complete
documentation is available at refgenomes.databio.org.
Because it provides a standard OpenAPI-compliant
RESTful API, our server will be useful not just for our
refgenie CLI, but for other tools that would benefit

4· Refgenie, a reference genome manager · Databio · c©The Authors

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted July 12, 2019. ; https://doi.org/10.1101/698704doi: bioRxiv preprint

http://refgenomes.databio.org
http://refgenomes.databio.org
http://refgenomes.databio.org
https://doi.org/10.1101/698704
http://creativecommons.org/licenses/by/4.0/

from automated access to reference assembly assets
and indexes.

Our refgenieserver instance runs within DC/OS as
a containerized application managed by Marathon.
Marathon deploys each application stack separately,
monitors individual container health, and connects
them to remote NFS storage and HTTP load balancers
as appropriate. Marathon also has the ability to auto-
scale cluster deployments. The refgenie application
makes genome assets available through a web appli-
cation connected directly to a remote filesystem, with
no additional database or infrastructure requirements.
Integration and deployment of frequently updated
components is automated using GitHub, Travis-CI,
Docker Hub, and a custom deployment technique
made simple in DC/OS. Changes committed in code
are generally deployed to development or production
services within 1-3 minutes.

Conclusions
Reference genomes, indexes, annotations, and other
genome assets are integral to sequencing analysis
projects, and these genome-associated data resources
are growing rapidly11. Refgenie provides a full-service
management system that includes a convenient method
for downloading, building, sharing, and using these
resources. Refgenieserver is among a growing number
of API-oriented projects in the life sciences5,18,19. Ref-
genie will simplify management of reference assembly
assets for users and groups, facilitating data sharing
and software interoperability20.

References
1. Harrow, J. et al. GENCODE: The reference human
genome annotation for the ENCODE project. Genome
Research 22, 1760–1774 (2012).

2. Pruitt, K. D., Tatusova, T., Brown, G. R. & Maglott,
D. R. NCBI reference sequences (RefSeq): Current sta-
tus, new features and genome annotation policy. Nu-
cleic Acids Research 40, D130–D135 (2011).

3. Church, D. M. et al. Modernizing reference genome
assemblies. PLoS Biology 9, e1001091 (2011).

4. Kitts, P. A. et al. Assembly: A resource for assembled
genomes at NCBI. Nucleic Acids Research 44, D73–D80
(2015).

5. Ruffier, M. et al. Ensembl core software resources:
Storage and programmatic access for DNA sequence
and genome annotation. Database 2017, (2017).

6. Sadakane, K. & Shibuya, T. Indexing huge genome
sequences for solving various problems. Genome Infor-
matics 12, 175–183 (2001).
7. Hon, W.-K., Sadakane, K. & Sung, W.-K. Breaking a
time-and-space barrier in constructing full-text indices.
SIAM Journal on Computing 38, 2162–2178 (2009).

8. Li, H. & Durbin, R. Fast and accurate short read align-
ment with burrows-wheeler transform. Bioinformatics
25, 1754–60 (2009).

9. Langmead, B. & Salzberg, S. L. Fast gapped-read
alignment with bowtie 2. Nat. Methods 9, 357–359
(2012).

10. Illumina. IGenomes. Ready-to-use reference se-
quences and annotations. support.illumina.com (2019).

11. Richa Agarwala et al. Database resources of the
national center for biotechnology information. Nucleic
Acids Research 46, D8–D13 (2018).

12. Zerbino, D. R., Wilder, S. P., Johnson, N., Juette-
mann, T. & Flicek, P. R. The Ensembl Regulatory Build.
Genome Biology 16, (2015).

13. Sheffield, N. C. & Bock, C. LOLA: Enrichment analy-
sis for genomic region sets and regulatory elements in R
and bioconductor. Bioinformatics 32, 587–589 (2016).

14. Krueger, F. & Andrews, S. R. Bismark: A flexible
aligner and methylation caller for bisulfite-seq applica-
tions. Bioinformatics 27, 1571–1572 (2011).

15. Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L.
Near-optimal probabilistic RNA-seq quantification. Na-
ture Biotechnology 34, 525–527 (2016).

16. Kim, D., Langmead, B. & Salzberg, S. L. HISAT:
A fast spliced aligner with low memory requirements.
Nature Methods 12, 357–360 (2015).

17. Dobin, A. et al. STAR: Ultrafast universal RNA-seq
aligner. Bioinformatics 29, 15–21 (2012).

18. Yates, A. et al. The ensembl REST API: Ensembl
data for any language. Bioinformatics 31, 143–145
(2014).

19. Tarkowska, A. et al. Eleven quick tips to build a
usable REST API for life sciences. PLOS Computational
Biology 14, e1006542 (2018).

20. Wilkinson, M. D. et al. The FAIR guiding principles
for scientific data management and stewardship. Sci.
Data 3, 160018 (2016).

5· Refgenie, a reference genome manager · Databio · c©The Authors

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted July 12, 2019. ; https://doi.org/10.1101/698704doi: bioRxiv preprint

https://doi.org/10.1101/698704
http://creativecommons.org/licenses/by/4.0/

	Background
	Results and discussion
	Genome configuration and asset organization
	Refgenconf configuration package
	Refgenie command-line interface
	Refgenie server
	The Refgenomes database

	Conclusions
	References

