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ABSTRACT  

The rapid development of chromosome conformation capture (3C-based) techniques as well 
as super-resolution imaging together with bioinformatics analyses has been fundamental for 

unveiling that chromosomes are organized into the so-called topologically associating 
domains or TADs. While these TADs appear as nested patterns in the 3C-based interaction 

matrices, the vast majority of available computational methods are based on the hypothesis 
that TADs are individual and unrelated chromatin structures. Here we introduce TADpole, a 

computational tool designed to identify and analyze the entire hierarchy of TADs in intra-
chromosomal interaction matrices. TADpole combines principal component analysis and 

constrained hierarchical clustering to provide an unsupervised set of significant partitions in 
a genomic region of interest. TADpole identification of domains is robust to the data 

resolution, normalization strategy, and sequencing depth. TADpole domain borders are 

enriched in CTCF and cohesin binding proteins, while the domains are enriched in either 
H3K36me3 or H3k27me3 histone marks. We show TADpole usefulness by applying it to 

capture Hi-C experiments in wild-type and mutant mouse strains to pinpoint statistically 
significant differences in their topological structure. 
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INTRODUCTION 

The organization of the genome in the cell nucleus has been shown to play a prominent role 
in the function of the cell. Increasing evidence indicates that genome architecture regulates 

gene transcription (1,2) with implications on cell-fate decisions (3-5), development (6), and 
disease occurrences such as developmental abnormalities (7,8) and neoplastic 

transformations (9-11). 

The genome organization is characterized by complex and hierarchical layers (1). For 

example, fluorescence in-situ hybridization revealed that chromosomes are positioned in 
preferential areas of the nucleus called chromosome territories (12). This large-scale feature 

has been confirmed by high-throughput Chromosome Conformation Capture (Hi-C) 
experiments (13), that provided a genome-wide picture in which inter-chromosomal 

interactions are depleted relative to intra-chromosomal. Analysis of Hi-C data also revealed 

the segregation of the genome in multi-megabase compartments characterized by different 
GC-content, gene density, and chromatin marks (13-15). Microscopy approaches, in spite of 

considerable variability, have corroborated the spatial segregation of such compartments at 
the single cell level (16). At the sub-megabase level, Hi-C experiments also revealed the 

presence, validated by microscopy approaches (17-19), of self-interacting regions termed 
Topologically Associated Domains (TADs) (20,21). TADs are composed by dense chromatin 

interactions, which promote 3D spatial proximity between genomic loci that are distal in the 
linear genome sequence. Since many of these interacting loci are cis-regulatory elements, 

TADs are usually considered as the structural functional units of the genome that define the 
regulatory landscape (22,23), and are conserved across cell types and species (20,24). 

Moreover, TADs boundaries are often demarcated by housekeeping genes, transcriptional 

start sites and specific chromatin insulators proteins, such as CTCF factor and cohesin 
complex (20,25). TADs appear to be further organized in a hierarchical fashion. For 

example, in mammalian cells, concepts such as "metaTADs" (26) or "sub-TADs" (27) have 
been introduced. The former is used to define a superior hierarchy of domains-within-

domains that are modulated during cell differentiation (26) while the latter to emphasize how 
and where the cis-regulatory elements establish physical interactions that contribute to gene 

regulation (27). 

Several computational methods to identify and characterize TADs from 3C-based interaction 

data have been reported (28,29). Based on different a priori assumptions on the TADs 

subdivision, these methods can be mainly classified as disjointed or overlapping. The former 
consider TADs as individual and unrelated structures with no possible mutual intersections 
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(e.g. directionality index (DI) (20), insulation score (IS) (30), ClusterTAD (31), ICFinder (32)). 

The latter assume that TADs are overlapping and related structures with a shared content 
(e.g. Arrowhead (13,15), armatus (33), TADtree (34), 3DNetMod (35)). However, only few 

algorithms (CaTCH (36), GMAP (37), matryoshka (38), and PSYCHIC (39)) can identify 
nested domains where each domain contain other sub-domain profiling a hierarchical 

chromatin architecture. 

Here, we present TADpole, a bioinformatics tool to disentangle the full structural chromatin 

hierarchy that automatically determines an optimal division level. Notably, TADpole is robust 
both at technical and biological benchmarks based on a published study (29) and does not 

rely on mandatory parameters. We prove the effectiveness of TADpole to investigate the 
chromatin hierarchy in capture Hi-C data (cHi-C) (40) where the chromosome topology is 

altered with local genomic inversions that drive gene misexpression associated to congenital 

malformations in mouse (41). 
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MATERIAL AND METHODS 

The TADpole pipeline 

TADpole consists in three main steps (Figure 1A): (i) pre-processing of the input Hi-C 

dataset, (ii) constrained hierarchical clustering optimization, and (iii) genome segmentation. 
TADpole has been implemented as an R package available at 

https://github.com/3DGenomes/TADpole. 

(i) Preprocessing of the input dataset. TADpole is designed to process all-vs-all intra-

chromosomal interactions matrices representing an entire chromosome, or a continuous 
chromosome region. Input data are formatted as matrices containing the interaction values 

in each cell ij. An optional filtering step can be applied to exclude columns with a low number 
of interactions, which are typically local biases (42). Specifically, the rows (and columns) that 

contain an empty cell at the main diagonal, or those whose cumulative interactions are 

below the first percentile (default) are excluded from the analysis. To enhance the signal-to-
noise ratio, the interaction matrix is transformed into its Pearson correlation coefficient (PCC) 

matrix as in (13), and a principal component analysis (PCA) is performed using the prcomp 
function from the stats R package (R Core Team, 2013). Only the first NPC (by default, 200) 

principal components are retained, which are enough to extract more than 85% of the 
variance in the test datasets (Supplementary Figure 1). To reduce memory usage and 

processing time, TADpole has the option to divide the interaction matrix by the centromere 
(considered to be the longest contiguous stretch of columns with no interactions in the Hi-C 

matrix) and process each chromosomal arm separately. This is particularly recommended 
when working with matrices of more than 15,000 bins. 

(ii) Constrained hierarchical clustering optimization. Per each value of NPC, the 

dimensionally-reduced matrix is transformed into a Euclidean distance matrix. This distance 
matrix is then partitioned into topological domains using a constrained hierarchical clustering 

procedure as implemented in the Constrained Incremental Sums of Squares clustering 
method (coniss) of the rioja R package (Juggins et al., 2017). This analysis explicitly 

assumes the following two priors: first, the genome is organized in a hierarchical manner, 
with higher-order structures containing lower-order ones, and second, every pair of 

contiguous genomic loci must either belong to the same self-interacting domain or to the 
immediately contiguous one. The constrained hierarchical clustering results in a tree-like 

description of the organization of the genome. Next, using the broken-stick model as 

implemented in the bstick function from the rioja R package (Juggins et al., 2017), the 
dendrogram is cut at the sensible maximum number of statistically significant clusters 
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(max(ND)). Next, the Calinski-Harabasz (CH) index is computed per each of the obtained 

significant partitions using the calinhara function from the fpc R package (Henning C, 2018). 
The maximum CH is associated to the optimal chromatin subdivision, while all the other 

significant hierarchical levels correspond the ones with the optimal number of first NPC 
(Figure 1B). 

(iii) Genome Segmentation. TADpole generates four main descriptors that recapitulate the 
entire sets of results, namely: (i) the optimal number of principal components; (ii) the 

dendrogram cut at the maximum significant level; (iii) the start and end coordinates of the 
domains and the CH index per each significant level; (iv) and the optimal number of 

domains. All the TADpole output is organized in a comprehensive R object. 

TADpole benchmark analysis 

Benchmark Hi-C dataset and scripts. A pre-existing benchmark dataset, that comprises Hi-C 

interaction matrices of the entire chromosome 6 in the human cell line GM12787, was used 
for the analysis (29).  A total of 24 different conditions were tested: (i) twelve matrices given 

by the combination of four different resolutions (10kb, 50kb, 100kb and 250kb) and three 
normalization strategies (raw, Iterative Correction and Eigenvector decomposition (ICE) (14) 

and parametric model of Local Genomic Feature (LGF) (43), and (ii) twelve matrices 
obtained by downsampling the ICE interaction matrix at 50kb resolution (Figure 2A). The 

scripts for benchmarking were downloaded and used as released in the repository 
https://github.com/CSOgroup/TAD-benchmarking-scripts (29) (Data availability). The 

processed Hi-C dataset was shared by Zufferey and colleagues, this eliminated from the 
analysis possible biases associated with the use of different pipelines for Hi-C interaction 

data reconstruction (28). To compare on equal footing with the other 22 TAD callers 

analyzed using the same benchmark, only levels of division that comprise at least 10 
chromatin domains were taken into consideration for the analysis. Within these levels, the 

optimal partition was identified using the CH index as described before. 

The technical benchmark. TADpole optimal topological partitions were compared over 

different resolutions, normalization strategies, and sequencing depths as previously 
described (29). To compare the conservation of the TAD borders between two partitions, two 

different metrics were applied: 

1. The overlap score (29) was used to compare partitions across different resolutions. 

This is the percentage of overlapping borders, with one bin of tolerance. The 

statistical significance of each overlap score was estimated by drawing 10,000 
random partitions at the finer resolution (preserving the number of optimal clusters of 
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the real case) and computing their overlap with the subdivision at the coarser 

resolution. The p-value of the real-case overlap was computed as the fraction of 
randomized partitions with larger overlap. 

2. The Measure of Concordance (MoC) (29), was used to compare partitions across 
different resolutions and normalization strategies. MoC ranges from 1 for a perfect 

match to 0 for poorly scoring comparisons. 

The biological benchmark. To test the biological relevance of the TADs identified by 

TADpole, the enrichment of main architectural proteins determined at TAD borders (CTCF, 
SMC3, and RAD21) and within TADs (H3K27me3, and H3K36me3) were studied. CTCF and 

cohesin sub-units, such as SMC3, and RAD21 have been shown, in fact, to be enriched at 
TAD borders (15,44) while H3K27me3 and H3K36me3 marks have been related to acting as 

a differentiator of TADs because topological domains are enriched in either one or the other, 

but not both (13,15,20,21). The ChIP-seq profiles were downloaded from ENCODE (45) 
(https://www.encodeproject.org/) (Supplementary Table 1). For each protein, a consensus 

profile was determined as the intersection of the peaks identified in each experiment using 
the multiIntersectBed function from the BEDTools suite (Quinlan and Hall, 2010). Similar to 

Zufferey et al.  (29), the fold change enrichments of CTCF, RAD21 and SMC3 at TAD 
borders, and the H3k27me3/H3k36me3 log10-ratio for a given partition were computed. 

Difference score between topological partitions (DiffT) 

The TADpole tool was next applied to two Capture Hi-C (cHi-C) datasets in embryonic day 

E11.5 mouse limb buds (41). Specifically, two homozygous strains were considered 
comprising the wild type (WT) and the so-called inversion1 (Inv1). The cHi-C interaction 

maps were downloaded from GEO (46) at the GSM3261968 and GSM3261969 entries for 

WT and Inv1, respectively. The region chr1:73.92-75.86 Mb was extracted and used for 
further analysis. 

To compare the WT and Inv1 partitions identified by TADpole at a fixed level of the 
hierarchy, we defined a difference topology score (DiffT). Specifically, the partitioned 

matrices were transformed into binary forms W for WT, and analogously V for Inv1, in which 
each entry wij (vij) is equal to 1 if the bins i and j are in the same TAD and 0 otherwise. Then, 

DiffT is computed as the normalized (from 0 to 1) difference between the binarized matrices 
as a function of the bin index l as: 

𝑆(𝑙) =
∑ ∑ '𝑤),+ − 𝑣),+'.

+/0
1
)/0

∑ ∑ '𝑤),+ − 𝑣),+'.
+/0

.
)/0
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where N is the size of the matrix. 

To test whether the identified partition in Inv1 is different from WT, at each level of the 
chromatin hierarchy, a statistical analysis was introduced. This analysis assesses the 

significance of DiffT at each bin of the matrix. A total of 10,000 random partitions of the 
region were simulated excluding the bad columns of the Inv1 matrix. The DiffT score was 

computed between simulated and WT partitions (DiffTsimulated-wt). At each bin, the fraction of 
DiffTsimulated-wt lower or equal to the DiffTInv1-wt score estimates the p-value. A p-value < 0.05 

means that a significant difference is located from the bin under consideration onwards. 
Hence, the bin with the minimum p-value marks the starting point of the genomic region 

where the most significant fraction of the DiffT score is located. 
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RESULTS 

TADpole benchmark analysis 

To quantitatively compare TADpole with other 22 TAD callers, we applied the multiple 

conditions test proposed in (29) on the same reference benchmark dataset (Figure 2A and 
Material and Methods).  

Technical benchmarking. We assessed various technical aspects of TADpole as well as the 
robustness of TADpole identified domains with respect to different resolutions, normalization 

strategies, and sequencing depths of the input matrix (Figure 2A). Firstly, we examined the 
number and the size (in kilobases and in bins) of the optimal domain partition of the ICE 

normalized maps at different resolutions (Figure 2B). We found that, as the resolution of the 
Hi-C interaction map decreased, both the numbers of TADs and the mean TAD size in bins 

decreased with a 4-fold reduction. TADpole followed a similar grow tendency (positive when 

the TADs are measure in kilobases and negative with the TADs are measured in bins) as the 
majority of the other TAD callers independently on the normalized strategy applied 

(Supplementary Table 2). 

We also inspected if TADpole identified robust boundaries that were conserved at different 

resolutions. To measure this conservation, we tested if a border detected in the ICE 
normalized Hi-C matrices at a certain resolution was conserved in the resolution immediately 

finer (Figure 2C). At the coarser resolutions, that is 250kb vs. 100kb, we found a high 
agreement (67%), that decreased only slightly to (59%) at intermediate ones (100 vs. 50kb). 

Interestingly, we found that even at the finer resolutions (50kb vs. 10kb), where the 48% of 
the borders were conserved, this analysis was consistent with a statistically significant 

overlap (p-value<0.05). 

Next, we used the Measure of Concordance (MoC) (Material and Methods) to estimate if 
the number and the position of the borders of chromatin domains identified by TADpole were 

affected by the matrix resolutions and by different normalization strategies. Interestingly, we 
found that the MoC over different matrix resolutions had values in the [0.45:0.82] range with 

an average MoC of 0.63, and ranked first when compared with the other 22 TAD callers 
previously benchmarked (29). TADpole was also robust over different normalization 

strategies with an average MoC of 0.74, ranking 9th over the 22 TAD callers. Comparing the 
average of resolutions vs. normalizations MoC values of TADpole with the rest of TADcallers 

(Figure 2D), we found that TADpole appeared in the top-right corner of the plot 

demonstrating its overall high robustness and confidence to identify optimal chromatin 
domains independently of the resolution or the normalization of the input Hi-C matrix. 
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We also tested the TADpole propensity to identify consistent optimal chromatin domains 

independently of the sequencing depth (Figure 2E). We compared the partitions obtained by 
doing 12 different sub-sampling of the ICE-normalized interaction matrix at 50kb with the full 

interaction matrix using the MoC. We found that TADpole partitions were clearly robust to 
down-sampling with a MoC score of 0.79 with just 0.1% of the total data. This feature 

classified TADpole as the top TAD caller with respect to the other 22 tools.  

Biological benchmarking. With the lack of a gold standard to define TADs in Hi-C interaction 

maps (28,29), we investigated the biological relevance of the domains identified by TADpole 
in terms of their association with biological features that have been shown to have an 

important role in the formation and maintenance of TADs. We found that the intensity profiles 
of the CTCF, RAD21, and SMC3 signals were peaked at TADpole chromatin borders 

(Figure 3A). To compare these results with the set of other TAD callers, we computed the 

fold change enrichments at the peak with respect to the flanking regions (Figure 3B). 
TADpole resulted in a fold change enrichment around 1 for each of the three architectural 

proteins (1.18 in CTCF, 1.06 in RAD21 and 0.97 in SMC3, respectively), that was consistent 
with a significantly high peak at the border compared with the background (p-value<10-5). In 

this analysis, TADpole ranked as the 6th TAD caller. Additionally, more than 40% of the 
tagged boundaries are enriched in one or more of these three architectural proteins being 

CTCF (42%) and SMC3 (42%) the most abundant ones. Considering the enrichment at 
TADs boundaries, TADpole ranked 3rd within the set of 22 TAD examined callers (Figure 

3C). To further study the enrichment of these biological features at domain borders, we 
performed an analysis of the fold change of CTCF, RAD21 and SMC3 in each of the 

chromosome arms. In all the identified levels, there was a positive fold-change with certain 

variability with the level of nested data, being CTCF in all the cases, the most enriched 
architectural protein in the border regions (Figure 3D). 

TADs are usually expected to be transcriptionally either active or inactive (15)  with the TAD 
body enriched in active or inactive histone mark. To assess if the interior of TADpole 

detected partitions was indeed enriched in either active or inactive chromatin, we considered 
the signals of two marks H3K36me3 for transcriptional activity and H3K27me3 for 

repression, and measured the fraction of TADs where the Log10 of their ratio 
(H3K27me3/H3K36me3) was significantly high or low (FDR<0.1). Notably, we found that the 

majority (57%) of the TADpole identified TADs have a defined active or inactive state, 

locating TADpole within the top four TAD callers based on this criterion (Figure 3E). 
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Applications to capture Hi-C datasets 

To show the effectiveness of TADpole, we applied our caller to cHi-C experiment of 
embryonic day E11.5 mouse cells (41). Kraft et al. investigated the pathogenic 

consequences of balanced chromosomal rearrangements in embryonic mouse limb buds, 
focusing on a 1.9Mb region in chr1 (chr1:73.92-75.86 Mb) where a cluster of genomic 

regulators of Epha4 locus is located. The authors generated, together with the wild-type 
(WT), a total of 4 mutant strains, each inducing different inversions. We compared the WT 

strain with the sole inversion producing a homozygous strain (here called Inv1), that is 
located between the telomeric site of Epha4 enhancer cluster and the promoters of Resp18 

(breakpoint at chr1:75,275,966-75,898,706 Figure 4A). Analysis of the entire TADpole 
dendrogram revealed the existence of 19 and 17 significant partition levels in WT and Inv1, 

respectively. The optimal ones were 11 for WT and 2 for Inv1. At a visual inspection, the 

maps in Figure 4A show that the difference between the chromatin partitions increases with 
the partition level, and accumulates in the region of the inversion.  

To statistically quantify and localize the significant topological differences between the WT 
and Inv1 matrices, we computed their DiffT score profiles (Material and Methods and 

Figure 4B for the partition in 9 domains), at each level of the hierarchical partition. We found 
that the DiffT profiles sharply increased close to the point of the inversion (Figure 4C). 

Based on the p-value profiles (Figure 4D), we identified two regions where the minimum p-
values (one per partition level) accumulated. Notably, 70% of minimum p-values were 

located within a region, spanning 50kb, from the point where inversion was induced, 
suggesting that the significant topological changes between WT and Inv1 accumulated in the 

inverted region.  
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DISCUSSION AND CONCLUSION 

In this work we introduced TADpole, a tool to identify hierarchical topological domains from 
all-vs-all intra-chromosomal interaction matrices. In line with previously introduced concepts 

such as metaTADs (26) and sub-TADs (27), we propose that there is not a single meaningful 
subdivision of chromatin domains, but rather a set of hierarchical levels associated with 

different genomic features. Notably, TADpole characterizes the entire hierarchy of TADs 
while assessing the significance at various levels of partition, paving the way for deepening 

our understanding of the nested topology and its biological role. Indeed, the principles 
behind this nested structure are not yet fully understood. Different levels of the hierarchy can 

be involved in the dynamical modulations of TADs upon perturbation, responding to or 
causing changes in gene regulation (3,22,47). Alternatively, these nested organization can 

rise as effect of the variability in the topological conformation observed in individual cells 

(48). However, we cannot exclude the possibility that this nested structure exists in single 
cells as multi-site interactions conformation acting together to establish robust gene 

regulation networks. All these evidences highlight the importance to have a tool like 
TADpole, that systematically characterizes the entire TAD architecture from all-vs-all intra-

chromosomal interaction matrices. 

Here, we compared TADpole’s performance with a set of other 22 TAD callers following the 

benchmark analysis performed by Zufferey et al. (29). TADpole identifies a number of TADs 
over different resolutions that is in agreement with other TAD callers (Figure 2B). The 

identified domains have an average size of 855kb, in agreement with the reported average 
TADs size in mammalian cells (~900-1000kb) (15). TADpole shows one of the largest 

consistencies over different normalization strategies (including also non-normalized data), 

resolutions and sequencing depths (Figure 2D and Supplementary Table 2). These 
observations make TADpole potentially suitable for analyzing sparse datasets. TADpole has 

been shown to be technically robust. Indeed, the optimal TADpole chromatin partition 
borders present a high enrichment of architectural proteins such as CTCF, SMC3, and 

RAD21, and this enrichment is maintained, for certain partitions, over all the significant 
hierarchical levels (Figure 3D). The identified TADs are enriched in either active 

(H3K36me3) or inactive (H3K27me3) marks (Figure 3E), suggesting a strong consistency 
between the structural definition of TADs and their biological characterization. A handful of 

algorithms for the detection of chromatin domains as nested TADs have been implemented 

(CaTCH (36), GMAP (37), matryoshka (38), and PSYCHIC (39)). However, the uniqueness 
of TADpole is its ability to provide multiple significant partitions and define the optimal one in 
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an unsupervised manner by using the Broken-Stick model and the Calinski-Harabasz index 

criteria. Notably, in the benchmark analysis presented here (Figures 2 and 3), TADpole 
performs generally better than all the other nested TAD callers when considering the 

technical and biological benchmarking performed here. 

A possible advantage of TADpole over existing TAD callers is the pre-processing data step. 

Indeed, the PCC transformation and the PCA application regularize the input matrix so that 
the specific normalization applied on the input and the sparsity of the data have little effect 

on identifying TADs. Previously, other architectural features of the chromatin have been 
already studied using PCA. The first principal component is widely used to identify the 

chromatin segregation into compartments (13). The second and the third PCs have been 
associated instead to intra-arm features mainly centromere-centromere and telomere-

telomere interactions enrichment (14). Moreover, the first PCs have been used to assess the 

similarity between two interaction maps (14) as well as to quantify their reproducibility (49). 
Here we have demonstrated that there exists an optimal set of PCs capable of identifying the 

hierarchical structure of chromatin, extending the current application of PCA to characterize 
genome topology. 

We provide a proof of TADpole’s usability on a topologically complex region analyzing cHi-C 
data in both a wild-type strain and a mutant one carrying a genomic inversion (41) (Figure 

4B). The use of TADpole in combination with the DiffT score is able to identify the inverted 
region as the one with the highest difference in topological partitions, proving that this 

strategy can isolate bin-dependent and statistically significant topological dissimilarities. 
Overall, we prove that the DiffT score allows to evaluate a priori the location where the most 

significant topological differences between two hierarchical subdivisions are accumulated. 

In summary, TADpole combines straightforward bioinformatic analyses such as PCA and 
hierarchical clustering to study continuous nested hierarchical segmentation of an all-vs-all 

intra-chromosomal interactions matrix. Additionally, we demonstrated the technical and 
biological robustness of TADpole, and its usability in identifying topological difference in 

high-resolution capture Hi-C experiments.  TADpole is released as a publicly-available, 
open-source and numerically-efficient R tool. As such, TADpole represents a comprehensive 

tool that fulfils the needs of the scientific community for an accurate TAD caller able to 
comprehensively study the interplay between the hierarchical chromatin topology and 

genomic function. 
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DATA AVAILABILITY 

The TADpole is freely available for download as an R package at 
https://github.com/3DGenomes/TADpole. The scripts for the technical and biological 

benchmarks were obtained from the repository https://github.com/CSOgroup/TAD-
benchmarking-scripts (28). Specifically, the script fig2_fig3_fig4_fig5_moc_calc.R was used 

for panels Figure 2B to E, the script StructProt_EnrichBoundaries_script.R for panels 
Figure 3A to D, and the script HistMod_script.sh for panel in Figure 3E. Default parameters 

were applied. 
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TABLE AND FIGURES LEGENDS 

 

Figure 1. General overview of TADpole tool. (A) Schematic view of TADpole algorithm. 
(1) TADpole input is an all-vs-all interaction matrix. The matrix is checked for symmetry, and 

low-quality columns (bad columns) are removed. Large matrices of entire chromosomes are 
optionally split at the centromere to create two smaller sub-matrices corresponding to the 

chromosomal arms. Next, denoising and dimensionality reduction steps take place by 
computing the corresponding Pearson’s correlation coefficient (PCC) matrix, and its principal 

component analysis (PCA). (2) Per each number of first PCs retained (from 2 to 200), the 

PC matrix is transformed into the corresponding Euclidean distance, that serves as input to 
perform the constrained hierarchical clustering. The range of possible clustering levels in the 

hierarchy is given by an upper bound according to a broken-stick model, and then the 
Calinski-Harabasz (CH) index is used to select the optimal partition. (3) As output, TADpole 

returns the number of first PCs retained to obtain the optimal set of TADs, the dendrogram 
with the significant hierarchical levels, the coordinates of the chromatin domains for each 

partition with the associated CH index, and the optimal number of clusters. (B) Example of 
TADpole tool applied to a 10Mb-region from a Hi-C matrix of human chr18 at 40kb 

resolution. The complete dendrogram (left) is cut using the broken-stick model to prune non-
significant partitions. The first (2 clusters) and last (21 clusters) significant subdivisions are 

shown as light blue dashed lines. A selection of the corresponding partitions (right) is 

mapped on the analyses Hi-C matrix as light grey dashed lines. The optimal division in 16 
clusters, identified by the highest Calinski-Harabasz (CH) index, is shown as a dark blue 

dashed line.   
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Figure 2. Technical benchmark of TADpole tool. (A) Descriptions of the dataset used for 

the TADpole benchmark analysis of Zufferey et al. (29). The dataset includes the Hi-C 
interactions matrices for chromosome 6 in GM12878 cells organized in 24 different forms 

(Material and Methods). (B-E) Technical benchmark of TADpole optimal partition and 
comparison with 22 other TAD callers considered in (29). (B) Analysis of the number of 

TADs at different matrix binning and the TAD size in terms of kb and number of bins. (C) 
Fraction of conserved TADs boundaries at different resolutions in the entire chromosome 6. 

The scheme illustrates the analysis focusing on the region from 5 to 25Mb. (D) Average 

Measure of Concordance (MoC) values across normalizations vs the average MoC value 
across resolutions. The color scheme reflects the specific approach used in each TAD caller. 

(E) The MoC values over different downsampling levels of the ICE-normalized interaction 
matrix at 50kb. Panel B and D have been adapted from Figure 2C of Zufferey et al. (29) to 

include TADpole in the comparison of TAD callers. 
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Figure 3. Biological benchmark of TADpole tool. TADpole borders for the optimal level of 
the hierarchical partition and chromatin-organizer proteins. (A) The mean ChIP-seq signal 

profiles (5-kb intervals) in 1Mb region around the TADpole domains borders are shown for 
CTCF, RAD21 and SMC3. (B) The fold-change enrichment of CTCF, RAD21 and SMC3 at 

domain borders vs. background and (C) the percentage identified TADs boundaries tagged 

with CTCF, RAD21 and SMC3 are shown as bar plots. (D) Cumulative fold-change of the 
enrichment in CTCF, RAD21 and SMC3 at domain borders vs. background for all the 

significant levels (minimum 10 partitions as in (29)) retrieved by the broken-stick model in the 
two chromosomes arms (p, q) of chromosome 6. (E) The fractions of TADs with significant 

log10 ratio between H3K36me3 and H3K27me3 (Material and Methods) in TADpole and 
the 22 TAD callers are represented as bar plots. Panels B, C and E have been adapted from 

Figure 5D, 5E, 5I of Ref. (29) reporting on the results of the other TAD callers. 
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Figure 4. Characterization of topological difference in capture Hi-C datasets. (A) 

Capture Hi-C maps of chr1:73.92-75.86Mb region in wild-type (WT) and inversion 1 (Inv1) 

strains (41). In both matrices, TADpole significant partitions are shown as light gray dashed 
lines. The blue arrow indicates the centromeric breakpoint located at the promoter of Resp18 

gene in Inv1. (B) DiffT score scheme for level 9. The upper triangle of the matrix shows the 
TADs borders identified by TADpole in WT and Inv1 matrices as red and blue continuous 

lines, respectively. The lower triangle of the matrix shows the conserved and non-conserved 
areas of the TADs in orange and gray, respectively. In the panels C and D, the Inv1 

breakpoint is highlighted with a solid black line and only the significant levels (with at least a 
p-value < 0.05) are shown. (C) DiffT score profiles as a function of the matrix bins (Material 

and Methods). (D) P-value profiles per bin for automated detection of significant differences. 
In the lower panel, the bins associated with minimum p-values per level are marked with 

empty dots.  
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Supplementary Figure 1. Percentage of explained variance as a function of the 
number of retained principal components of for various datasets. (A) Each continuous 

line represents a different chromosome, and the vertical dashed lines mark the default 

maximum value of (200) first PCs retained in TADpole. (B) The Hi-C experimental datasets 
used characterized with five descriptors: cell type, restriction enzyme, the NCBI accession 

numbers, number of the valid reads retrieved after filtering using an in-house pipeline based 
on TADbit (50), and binning. The datasets from different NCBI entries are merged and the 

resulting matrices after filtering are binned using an equal bin-width of 40kb, but for 
Lieberman-Aiden dataset (13) in which bin-width is 1Mb. 
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Supplementary Table 1. Encode IDs of the Chip-seq experiments used in the biological 

benchmark analysis. 

Supplementary Table 2. The total number of TADs and the corresponding average size 

detected in raw and normalized (by ICE and LGF) Hi-C matrices across different resolutions. 
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