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Abstract

When reconstructing a phylogeny from molecular data, it is regarded as best prac-
tice to perform relative model selection to determine the most appropriate evolutionary
model for the data at hand. This procedure ranks all available evolutionary models
by a certain theoretic information criterion (e.g. Akaike Information Criterion, AIC),
and the best-fitting model is then specified for phylogenetic inference. While it is often
assumed that using better-fitting models results in more accurate inferences, there is in
fact no guarantee that this assumption will hold. Indeed, recent studies have observed
that the specific model employed for phylogenetic construction may not have substan-
tial effects on the inferred tree topologies. In this study, we examine whether there is a
systematic relationship between model fit and inference accuracy, in the specific context
of topological accuracy in protein phylogenetics, using both simulation studies as well
as analysis of natural sequence data. Notably, the simulations performed here employ
a robust codon-level generative approach that is fully distinct from all protein-level
inference models. We broadly find that phylogenies inferred across a range of models
with vastly different fits to the data yield highly consistent topologies. We addition-
ally find that well-fitting and poorly-fitted models alike have similar potential to infer
strongly-supported but incorrect nodes, raising the possibility that all available models
of protein evolution may be systematically misspecified. Moreover, we find that the
GTR model, where amino-acid exchangeabilities are treated as free parameters, per-
forms very similarly to models with fixed substitution rates and appears reasonable
to use in protein phylogenetics in spite of its tendency to overfit sequence data. In
sum, this work builds on a growing body of literature finding that relative model selec-
tion does not necessarily guarantee increased accuracy in phylogenetic inference, and
therefore may not be a critical step in analysis in spite of decades of tradition.
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Introduction

When analyzing sequence data in evolutionarily-aware contexts, and in particular when in-
ferring phylogenetic trees using modern statistical approaches, researchers must select an
appropriate evolutionary model. The most common modeling framework for such applica-
tions follow a continuous-time Markov process, considering either nucleotides, codons, or
amino-acids as states (Yang 2014; Arenas 2015). Since this framework’s introduction, a
wide array of model parameterizations have been developed, ranging in complexity from the
simple equal-rates Jukes-Cantor (JC) model (Jukes and Cantor 1969) where substitution
rates among all states are equal, to the most complex form where all substitution rates are
distinct (Tavare 1984). Additional levels of complexity beyond a model’s core substitution
rates, such as incorporating among site rate variation, further increase the number of models
from which practitioners can choose (Yang 2014).

To choose among dozens, if not hundreds, of available model formulations, the field has
largely converged upon a strategy of relative model selection. For a given multiple sequence
alignment, this approach systematically evaluates the statistical fit to the data for all possible
models using various metrics, most commonly theoretic information criteria (Posada and
Buckley 2004) (although see refs. Sullivan and Joyce (2005); Abadi et al. (2019) for other
frameworks). Such criteria include, for example, Akaike Information Criteria (AIC) and
Bayesian Information Criteria (BIC), which provide a measure of goodness-of-fit to the data
while penalizing models with excessive parameters that could lead to overfitting (Sullivan
and Joyce 2005). Once available models are ranked by a given criterion, the model with the
best fit to the data is subsequently specified during phylogenetic inference.

First popularized by the seminal software MODELTEST over 20 years ago (Posada and
Crandall 1998), many different computational approaches to performing model selection
on different types of data (i.e., nucleotide, protein, binary, etc.) have been developed,
with continued development as recently as 2019 (Darriba et al. 2011, 2012; Whelan et al.
2015; Kalyaanamoorthy et al. 2017; Darriba et al. 2019). Alongside this popularization has
emerged a near-dogmatic mentality that employing the best-fitting model will increase the
reliability, and potentially the accuracy, of inferences. Indeed, model selection has been
described as “an essential stage in the pipeline of phylogenetic inference” (Arenas 2015)
and is often viewed as a panacea to avoid model misspecification and biased inferences. As
a result, it is trivial to find casual and misleading remarks about the role of model selec-
tion across biological research fields. For example, the popular online database for HIV
sequences, HIV LANL (https://www.hiv.lanl.gov/), contains an analysis option “Find-
Model” to perform model selection on sequence data, leading with the header “Purpose:
FindModel analyzes your alignment to see which phylogenetic model best describes your
data; this model can then be used to generate a better tree” (emphasis added;
https://www.hiv.lanl.gov/content/sequence/findmodel/findmodel.html).

In spite of this pervasive attitude, there is no guarantee that the best-fitting model will
infer the most accurate phylogenies. Indeed, relative model selection is inherently unable to
determine whether a given model is reasonable to use in the first place. To circumvent this
drawback, many have advocated for a shift in focus towards absolute model selection meth-
ods, or similarly tests of model adequacy (Bollback 2002; Brown 2014; Brown and Thomson
2018). Such approaches, which include analysis of posterior predictive distributions or hy-
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pothesis tests that ask whether the given inference model produces molecular properties that
mirror those seen in the data at hand (Goldman 1993a,b; Ripplinger and Sullivan 2010; Gel-
man et al. 2013; Brown 2014; Duchne et al. 2015, 2016; Bollback 2002; Brown 2014; Duchne
et al. 2015; Hhna S. 2017; Brown and Thomson 2018). Inference models that generate data
with molecular features consistent with the natural sequences being analyzed, the inference
model is considered adequate for the data at hand. Despite recommendations that model
adequacy approaches should be used in conjunction with relative model selection, they have
yet to see widespread adoption in large part due to their time-consuming, computationally-
intensive nature (Duchne et al. 2015; Brown and Thomson 2018). As such, the “average”
researcher performing phylogenetic reconstruction will most often rely on relative model
selection to justify use of a selected model.

Several lines of recent research have questioned the reliability of relative model selection
in phylogenetic contexts. For example, Spielman and Wilke (2015b) showed that, in the
context of identifying selection pressures from sequence data using codon models, AIC and
BIC strongly prefer models with systematic biases, and models that in fact mitigate inference
biases have relatively poorer fit to the data. Keane et al. (2006) observed that selecting
protein models based on ad-hoc assumptions of biological relevance to the data may not
result in improved inferences. Similarly, Spielman and Kosakovsky Pond (2018) found that
the model employed when estimating site-level evolutionary rates in protein alignments has
little, if any, effect on the inferred rates, with the primary exception that the simple equal-
rates Jukes Cantor (JC) model has unique and previously unrecognized power to identify
rapidly-evolving sites.

In the context of phylogenetic inference specifically, several studies have been conducted
to investigate the consequences of employing different model selection criteria on nucleotide
data. Ripplinger and Sullivan (2008) showed that, while different criteria choose different
models, resulting phylogenies are not significantly different from one another, with most
differences occurring at poorly-supported nodes. Most recently, Abadi et al. (2019) echoed
and extended this insight to show that phylogenies inferred with the most complex nucleotide-
level model (GTR) did not differ significantly from the entirely uninformative JC model, even
though JC generally shows poor fits to most datasets. In total, these studies have suggested
that model selection itself may either be unnecessary or inadvertently lead to high confidence
in biased results. A thorough examination of the practical ramifications of relative model
selection is merited to reconcile these recent findings with the overarching sensibility that
model selection is a fundamentally necessary component of phylogenetic analysis.

In this work, we explore whether there exists a systematic relationship between model fit
and inference accuracy, such that inferences performed with better-fitting models consistently
lead to more accurate results, and similarly inferences performed with poorly-fitting models
consistently lead to less accurate results. We specifically study this question in the context
of phylogenetic inference from protein data, using both simulations and natural sequences.
Protein models are unique phenomenological compared to codon-level and nucleotide-level
because amino acids themselves do not evolve. Rather, the underlying DNA sequences
evolve, and nonsynonymous changes induce protein-level substitutions. From biological first
principles, then, there is no way to describe the actual mechanism of evolution when only
protein data is available.

The simplest protein model, under the general time reversible framework, is described by
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a continuous-time Markov process with an instantaneous rate matrix, for the substitution
amino acid i to j, Qij = rijπj scaled such that −

∑
i=1 πiQii = 1. In this model, parameters

rij describe the substitution rate, or exchangeabilities, between amino acids i and j, and πj
represents the stationary frequency of target amino acid j (Yang 2014; Arenas 2015). These
exchangeabilities represent the average propensity of each type of amino acid substitutions.
As there are 189 such free parameters, assuming symmetric exchangeabilities, these values are
rarely estimated from a given alignment itself. Instead, empirically-derived models with fixed
exchangeabilities that have been a priori derived from hundreds or thousands of training
datasets, using an approach pioneered by Jones et al. (1992) which produced the standard
JTT model, are most commonly employed (Arenas 2015). Such models include the commonly
used WAG (Whelan and Goldman 2001) and LG (Le and Gascuel 2008) general amino
acid models, as well as certain specialist amino acid models like the chloroplast-sequence–
derived cpREV model (Adachi et al. 2000) or Influenza-sequence–derived FLU model (Dang
et al. 2010). Unlike exchangeability parameters, the πj parameters are more often estimated
from the alignment at hand, either optimized during phylogenetic reconstruction or directly
obtained by counting the amino acids in the alignment, known as the +F parameterization
(Yang 2014).

While this modeling framework has become the default analysis choice for most users
constructing trees from protein sequences, it ignores heterogeneous site-specific evolutionary
constraints which are known to dominate protein evolution (Echave et al. 2016). While it is
possible to incorporate among site rate variation, generally by scaling individual site rates
according to a discrete Gamma distribution or similar (Yang 2014), these models assume
the same evolutionary pattern governs each site in a given unpartitioned alignment. Other
modeling approaches have been developed to more directly account for the pervasive hetero-
geneity in protein evolution, such as the Bayesian CAT model in PhyloBayes (Lartillot and
Philippe 2004; Le et al. 2008) or mixture models which consider a distribution of individ-
ual matrices (Le et al. 2012; Arenas 2015). In spite of their known benefits, these models’
computational complexity and resource requirements have somewhat limited their adop-
tion as the standard modeling framework standard in protein phylogenetics. For example,
while the Bayesian CAT model is well-suited for long, multi-gene alignments, the underlying
MCMC sampler generally cannot accommodate more than ∼ 100 taxa, ultimately restrict-
ing the CAT model’s utility to phylogenomic analyses on a small number of taxa (http:
//megasun.bch.umontreal.ca/People/lartillot/www/phylobayes4.1.pdf). Therefore,
in this study, we focus on the more widely-used single matrix protein exchangeability models.

Overall, we do not observe a strong, systematic relationship between relative model
fit to the data and inference accuracy. Except for the most severely misspecified models,
protein models with drastically different fits to a given dataset produce surprisingly consistent
phylogenies that, in simulations, generally are close estimates to the true tree. Our analysis
additionally considers the merits of the protein-level GTR model, which optimizes all 189 free
exchangeability parameters to the data. This framework is generally not considered usable
on protein sequence data due its excessive number of free parameters to optimize, generally
leading it to overfit most datasets. In fact, we find that GTR performs comparably to protein
models with fixed exchangeability parameters, regardless of its relative fit to a given dataset,
and in certain circumstances is uniquely able to identify the true phylogeny. We therefore
suggest that this often-ignored model may in fact be more viable than is generally assumed.
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Methods and Materials

Data Preparation

Simulations were performed along eight phylogenies obtained from the literature (Table 2)
using the site-wise mutation–selection modeling framework (Halpern and Bruno 1998) in
the Python library pyvolve (Spielman and Wilke 2015a). In this codon-level model, each
site evolves according to a distinct set of fitness parameters, and mutation rates are shared
across all sites. For all simulations, we assumed equal and symmetric mutation rates among
nucleotides, and we assumed all synonymous codons shared the same fitness with their corre-
sponding amino acid. We obtained site-specific fitness parameters for simulations using one
of three sets amino-acid propensities measured experimentally using deep-mutational scan-
ning (DMS), as described in Table 1. We simulated 20 replicates for each parameterization
along each phylogeny, resulting in a total of 480 simulated alignments. Because simulations
were performed at the codon level, simulated alignments were translated before subsequent
analysis. To ensure that the input branch lengths along phylogenies used for simulation rep-
resented expected number of amino-acid substitutions, rather than nucleotide substitutions,
all phylogeny branch lengths were scaled up by a factor of 3 during simulation.

All empirical protein datasets were collected from the obtained from the PANDIT database
(Whelan 2006). 200 alignments (and corresponding PANDIT phylogenies) were randomly
chosen from all PANDIT families where the “PANDIT-aa-restricted” set of sequences con-
tained between 20–500 (inclusive) sequences with between 100–1000 sites (inclusive).

Phylogenetic inference and analysis

All model selection, phylogenetic inference, and topology tests were performed in IQ-TREE

v1.6.7, unless otherwise stated (Nguyen et al. 2015). Model selection was performed on each
alignment using the ModelFinder (Kalyaanamoorthy et al. 2017) algorithm in IQ-TREE, spec-
ifying the argument -m TESTONLY to match commonly-used programs like ProtTest (Darriba
et al. 2011). Approximately unbiased (AU) topology tests (Shimodaira 2002) described were
performed in IQ-TREE by specifying the argument -zb 10000 -au to perform 10,000 RELL
replicates (Kishino et al. 1990). Calculation of Robinson-Foulds distance and other topolog-
ical comparisons were performed using the Python library dendropy v4.4.0 (Sukumaran
and Holder 2010).

Statistical analysis and availability

All statistical analysis and visualization was performed in R, making use of the ggplot2

visualization library and tidyverse analysis framework (R Core Team 2017; Wickham 2016,
2017). All data and code used is freely available from https://github.com/spielmanlab/

aa_phylo_fit_topology and will be deposited to Zenodo upon acceptance of the
manuscript.
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Results and Discussion

Simulation Approach

To begin, we adopted a simulation-based approach to assess whether employing models of dif-
ferent fit induce systematic shifts in the accuracy of inferred phylogenetic topologies. While
simulation is a powerful tool for studying the power and limitations of statistical methods,
the procedure is often highly confounded: A model must be employed to simulate data (gen-
erative model), but of course a model must also be chosen to analyze the data (inference
model). If the inference model is accurately specified, we can expect strong inference model
performance, particularly when using a consistent method such as maximum-likelihood (ML)
estimation (Self and Liang 1987). However, when the generative and inference models cor-
respond closely, it is easy to become overconfident about a model’s performance. Indeed, in
real data analysis, any model used will be misspecified to a degree, some more than others.

Therefore, to ensure that insights gained from simulations are as applicable to empirical
data analysis, it is key to examine how models perform when the model is misspecified to
the data. Such approaches have previously been shown, in evolutionary sequence analysis,
to reveal unrecognized performance behaviors or biases in inference methods which would
go unnoticed if the data met all model assumptions (Holder et al. 2008; Spielman and Wilke
2015b; Spielman et al. 2016; Spielman and Wilke 2016; Jones et al. 2016, 2018). Therefore,
we employ the codon-level mutation–selection model for all simulations (Halpern and Bruno
1998). The instantaneous rate matrix for this model at a given codon site k is specified as

qkij =


µij

Sk
ij

1−exp(Sk
ji)

single nucleotide change

0 multiple nucleotide changes

, (1)

for a substitution from codon i to j, where µij is the site-invariant nucleotide-level mutation
rate, and Sk

ij is the scaled selection coefficient for site k, which represents the fitness differ-
ence between codons j and i at site k. Each site k in a given alignment is specified by a
unique 61-length vector of codon fitness values (excluding the three stop codons). Therefore,
while both empirical protein models and the mutation–selection model follow general time-
reversible Markov framework, they employ entirely distinct focal parameters: The protein
models used for phylogenetic inference consider a site-invariant matrix of phenomenological
exchangeabilities among amino-acids, while the mutation–selection models used for simula-
tion consider site-specific codon fitness profiles coupled with nucleotide-level mutation rates.

Table 1: Deep mutational scanning datasets used for simulation.

Name Description Number of Sites Reference

NP Influenza H1N1 nucleoprotein 497 Bloom (2014); Doud et al. (2015)
HA Influenza H1N1 hemagglutinin 564 Thyagarajan and Bloom (2014)
HIV HIV-1 Env Protein 661 Haddox et al. (2018)

To ensure that each simulation reflected evolutionary heterogeneity seen in real proteins,
we obtained simulation parameters from three sets of site-level codon fitness values experi-
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mentally determined using deep-mutational scanning (DMS) (Table 1), assuming the same
fitness for synonymous codons. For each of these three parameterizations, we simulated 20
replicate alignments across eight different empirical phylogenies (Table 2) using the Python
library pyvolve (Spielman and Wilke 2015a). Each simulated alignment therefore captured
the site-specific fitness landscape of the respective protein whose DMS-derived parameters
were employed. We translated all alignments to amino acids before all subsequent analysis.

Table 2: Empirical trees used for simulation.

Name Number of taxa Tree length∗ Reference

Green plants 360 24.67 Ruhfel et al. (2014)
Ray-finned fish 305 29.44 Hughes et al. (2018)
Placental Mammals 274 13.88 dos Reis et al. (2012)
Aves 200 5.21 Prum et al. (2015)
Lassa virus 179 6.62 Andersen et al. (2015)
Spiralia 103 25.01 Marltaz et al. (2019)
Opisthokonta 70 20.92 Ryan et al. (2013)
Yeast 23 9.45 Salichos and Rokas (2013)

∗: Computed as the sum of branch lengths, measured in expected substitutions per site, from the

phylogeny.

For each alignment, we employed ModelFinder (Kalyaanamoorthy et al. 2017) to de-
termine relative fit of standard protein exchangeability models using Bayesian Information
Criteria (BIC), specifying arguments to mimic behavior of the commonly-used ProtTest

software (Darriba et al. 2011). Previous studies have shown that either most standard mea-
sures of fit when in phylogenetics [BIC, Akaike Information Criteria (AIC), and small-sample
Akaike Information Criteria (AICc), and Deviance Information Criteria (DIC)] perform com-
parably (Abadi et al. 2019), or that BIC may me somewhat more robust than other options
(Luo et al. 2010). We therefore focus on BIC alone in this study as the criterion for model
selection.

For each alignment, we ranked all tested models by BIC and identified five models rang-
ing in goodness-of-fit for subsequent phylogenetic inference. Specifically, we employed the
five models whose BIC values most closely matched the five-number summary (minimum,
first quartile, median, third quartile, and maximum) of the distribution of BIC values for
all models evaluated for a given alignment. This procedure allowed us to select, for each
alignment, a set of models with a consistent range of fits to the given alignment. As depicted
in Figure 1, we term the best-fitting model “M1” and so on for subsequent ranks along the
five-number summary. We then used IQ-TREE to infer a phylogeny under each of these five
models, along with two additional models: The equal-rates Jukes Cantor [JC, aka Poisson;
(Jukes and Cantor 1969)] model, as well as a GTR model where exchangeability parame-
ters are optimized to the data during inference. Notably, these two modeling frameworks
are generally unused in protein phylogenetics. The JC model is assumed to be overly sim-
plistic to reasonably describe protein evolution, and the GTR framework is presumed too
parameter-rich and likely to overfit the data (Yang 2014).
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Figure 1: Approach to determining models for phylogenetic inference. This figure depicts the full
distribution of BIC scores determined by ModelFinder for a single representative simulated alignment using
HA-derived parameters along the Placental Mammals phylogeny. “M1” indicates the best-fitting model for
this alignment, and “M5” indicates the worst-fitting model for this alignment. Models M2, M3, M4 indicate,
respectively, models whose BIC score fell at the first, second (i.e. median), and third quartile of the full
distribution of BIC values. The respective models corresponding to M1–5 are given in parentheses in the
figure. We also show where the JC and GTR models, also used for phylogenetic reconstruction, fall within
this overall distribution. For the vast majority of datasets, the JC model ranked between models M4 and
M5, as shown for this representative alignment, and the GTR model was usually the best-fitting model.

Across all simulated alignments, the JC showed, as expected, consistently poor fit and
always ranked between models M4 and M5 (Figure 1). However, JC was never actually
the worst-fitting model, suggesting that entirely uninformative models are potentially suit-
able for analysis compared to models which inaccurately describe the evolutionary process.
By contrast, the GTR model nearly always fit datasets better than did the respective M1
model. The only exceptions to this trend were certain alignments simulated along the Yeast
phylogeny, which contained the fewest taxa (23) of all simulation trees. For roughly 50%
of all simulations along the Yeast phylogeny, GTR was the best-fitting model, and M1 was
the best-fitting model overall for the remaining 50%. The surprisingly high fit of the GTR
model to most simulated datasets suggests that these simulations are rich in phylogenetic
information.
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Figure 2: Best-fitting model (M1) matrix across simulations, where each column contains 20 simulation
replicates. For visual clarity, the following abbreviations have been applied: Plant for Green plant, Fish for
Ray-finned fish, Mammals for Placental mammals, Lassa for Lassa virus, and Opis. for Opisthokonta.

In general, we expect that the best-fitting model determined by model selection (M1)
should be the model that best reflects evolutionary properties of data. If this is indeed
the case, we further expect the M1 model to be broadly consistent among simulations with
the same DMS-derived parameters. Considering only the selected model matrix (i.e. both
WAG+I and WAG+F would be considered the same model matrix, WAG), we observed this
expected trend Figure 2. Interestingly, the M1 model was consistent for all simulations, re-
gardless of which DMS parameter set was used, with either JTT-based (Jones et al. 1992) or
HIVb-based (Nickle et al. 2007) matrix emerging as the best-fitting model. As all employed
DMS simulation parameters were derived from viral proteins, it is reasonable to observe that
a virus-specialist model is often preferred. Even so, it is somewhat surprising that all simu-
lations shared this preference for two specific model matrices, with simulations along three
phylogenies (Green plant, Opsithokonta, and Yeast) consistently selecting a JTT model.
Similarly, the model matrix mtArt, a model trained on arthropod-derived mitochondrial se-
quences (Abascal et al. 2006), was always the worst-fitting M5 model across all alignments
by a substantial BIC margin. Contrasting with the M1 and M5 models, a wide range of
model matrices corresponded to M2, M4 and M4 models, with between 3–13 model matrices
observed at a given performance ranking (Figures S1–3).

There are several possible explanations for the overall similarity among M1 model matri-
ces. First, while simulations across DMS parameterizations accounted for realistic differences
in protein-level selection, other simulation parameters could have induced overly-similar
properties across alignments. Specifically, all simulations assumed symmetric and equal mu-
tation rates among nucleotides, the same fitness among synonymous codons (no codon usage
bias), and no indels (insertions/deletions). Alternatively, the similarity among M1 model
matrices may reflect inherent biases in experimentally-derived DMS data itself. While DMS
can recover local evolutionary constraints acting on each position in a protein, pooling all
sites together may obscure protein-specific evolutionary signal, giving the appearance that
entirely distinct proteins have more comparable evolutionary patterns (Ramsey et al. 2011).
Indeed, it has been suggested that DMS-derived fitnesses may not always reflect true evolu-
tionary constraints observed in nature due to the controlled laboratory conditions in which
they are obtained Haddox et al. (2016). Finally, it is possible that JTT and HIVb happen to
possess unique evolutionary information that generally represent protein evolution, in spite
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of the strong biological differences between the training datasets for each of these models.

Inferred tree topologies are consistent, although distant from the
true tree, regardless of model fit

To assess the relationship between model fit and phylogenetic topological accuracy, we first
calculated the Robinson-Foulds (RF) distance between each inferred tree and the true simu-
lation tree. To ensure consistent comparisons across simulation conditions, all RF distances
were normalized by the maximum possible RF for the given phylogeny. Throughout, we
use the acronym “nRF” to refer to normalized Robinson-Foulds distance. Figure 3 displays
the nRF distance between each set of inferred phylogenies compared to the true simulation
phylogeny across all simulations.

Lassa Virus (179) Spiralia (103) Opisthokonta (70) Yeast (23)

Green Plant (360) Ray−finned fish (305) Mammals (274) Aves (200)
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Figure 3: Normalized Robinson-Foulds distance between each inferred tree, across protein models, and
the respective true tree used in simulation. Each panel represents simulations along a given tree, with the
number of tips in the tree indicated in parentheses. Each boxplot represents simulations derived from a given
set of DMS parameters, where the number of sites is given in parentheses in the legend.

If accuracy tracks model fit in protein phylogenetics, we should observe that nRF increases
as model goodness-of-fit decreases, with the best-fitting model (here, M1 and/or GTR)
inferring the most accurate tree. Our results did not convey this trend: nRF was remarkably
consistent across inference models, with slight elevations apparent for M5 models under
certain simulation trees, most notably Opisthokonta. Instead, the dominant trend in Figure 3
is that nRF decreased as the number of sites in the dataset increased, with HIV simulations
showing much smaller nRF values compared to NP and HA simulations.

We fit a mixed effects linear model to determine the specific influence of protein model
fit on nRF in these simulations, specifying nRF as the response, the protein model (M1–M5,
JC, and GTR) as a fixed effect, and the simulation tree and DMS parameterization each as
random effects. We performed a Tukey test to evaluate pairwise differences in mean nRF
among protein models. There was no resulting significant difference in any nRF comparison
among M1, M2, M3, M4, and JC models (all P > 0.3, except M1–M4 comparison where
P = 0.03). This broad consistency suggests that most protein models, so long as they are not
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severely misspecified, will yield phylogenies of comparable distance to the true tree. We did,
on the other hand, observe significant differences for GTR-inferred and M5-inferred trees: i)
the GTR model had significantly smaller nRF compared to other models (all P < 0.007), and
ii) the M5 model had a significantly higher nRF compared to all other models (all P < 0.001).
That said, all effect sizes for significant comparisons were exceedingly small, ranging from
0.007–0.029, representing the GTR–M1 and GTR–M5 comparisons, respectively. The latter
coefficient implies that nRF increases, on average, by a mere average ∼ 3% from the best-
fitting to worst-fitting model.

All models infer similar amounts of strongly-supported but incor-
rect splits

Although model fit did not substantially affect nRF in any simulations, very few inferences
actually converged on the exact true tree (RF distance of 0). Out of the total 3360 tree
inferences conducted (480 simulated alignments × seven protein inference models), only 130
inferences across 59 distinct simulations achieved RF distance of 0 (Table S1). All of these
inferences corresponded either the Spiralia, Opthisthokonta, or Yeast phylogenies, which
were the three phylogenies with the fewest number of taxa (Table 2). Most notably, all
models, including M5, were able to reach the true tree for at least one replicate, but the
GTR model most frequently yielded the true true (44/130 times).

However, RF distance is a notoriously conservative metric that considers only presence or
absence of nodes without considering their uncertainty, i.e. the level of support for inferred
nodes under a given inference model. If differing splits are poorly supported, RF will over-
state the distance between trees being evaluated. By contrast, differing splits with strong
support represent more problematic deviations from the true tree.

We therefore evaluated bootstrap support for each inferred phylogeny using the ultra-fast
bootstrap approximation (UFBoot2) implemented in IQ-TREE (Minh et al. 2013; Hoang et al.
2017). Because UFBoot2 is a less biased measure compared to the standard nonparametric
bootstrap, it necessitates a somewhat different interpretation such that nodes with ≥ 95%
support are considered highly reliable (Minh et al. 2013; Hoang et al. 2017). In addition,
this threshold of 95% for identifying trusted supported splits corresponds to a false positive
rate of 5%.

For each inferred tree, across all models, we evaluated whether each inferred node was
accurate (present in the true tree) and whether each inferred node was strongly supported
(UFBoot2 ≥ 0.95) under the given model. We evaluated the proportion of false positive
nodes (supported nodes not present in the true tree) as well as accurately inferred nodes
(supported nodes that are present in the true tree combined with unsupported nodes not
present in the true tree). These proportions, for HA simulations, are shown in Figures 4,
with corresponding results for NP and HIV simulations in Figures S4-5.
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Figure 4: a) Proportion of false positive nodes in tree inferences, for HA simulations, using 95% UFBoot2

as a threshold. The horizontal line in each panel is the y = 0.95 line, representing the expected false positive
rate. b) Proportion of accurately-classified nodes in tree inferences, for HA simulations, using 95% UFBoot2

as a threshold. Complementary results for NP and HIV simulations, shown in Figures S5-6, are broadly
consistent to those shown here.

Results for this analysis agreed with those from nRF analysis: Protein models ranging in
fit to the data yielded similar levels of support. The proportion of false positive nodes were
remarkably similar across all conditions and were generally well-bounded below 5% with very
few exceptions (Figures 4a and S4). Similarly, accuracy was fairly high and consistent across
protein models and simulation conditions ((Figures 4b and S5).

We again analyzed this data with two linear models, considering either the proportion of
false positive nodes or accuracy as the response, both with protein model as a fixed effect and
DMS parameterization and tree as random effects, using a Tukey test to perform pairwise
comparisons across protein models. The vast majority of comparisons were not significant
(all P > 0.06), except for comparisons with M5 and GTR inferences. The M5 model yielded
significantly more false positive nodes and was significantly less accuracy compared to all
other models (both P < 0.001), but again effect sizes were extremely small. The largest
effect size for false positive nodes came from the M5–M1 comparison, with M5 showing
an average 0.6% increase in the number of false positives. Similarly, the largest effect size
for accuracy came from the the M5–GTR comparison, with M5 showing an average 2.6%
decrease in accuracy. In addition, GTR model produced significantly fewer false positive
nodes and significantly higher accuracy compared to all other models (all P < 0.004), again
with modest effect sizes of at most 1% fewer false positive nodes and at most 1.6% increase
in accuracy (except in the M5–GTR comparison described above).

In total, consistent with nRF analysis, protein models ranging in fit to the data performed
highly comparably, with the worst-fitting M5 model only producing marginally worse results
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than other models. That no significant differences were observed among M1, M2, M3, M4,
and JC models provides further evidence that model fit does not have substantial bearing
on phylogenetic inference from protein data, so long as the model’s fit is not severely poor.
In addition, these results demonstrate that, any model regardless of fit has similar potential
to detect a small proportion of highly-supported but incorrect nodes. This insight has
important consequences for fundamental questions in phylogenetics. In particular, one reason
it is desirable to avoid misspecified models is their presumed potential to yield supported
but incorrect splits, or conversely correct splits which appear unsupported by the model
Sullivan and Joyce (2005). For example, recent studies aiming to disentangle fundamental
relationships among mammals (Philippe et al. 2011; Moran et al. 2015; Tarver et al. 2016)
and metazoans (Pisani et al. 2015; Ryan et al. 2013) have suggested that one reason resolved
phylogenies have been elusive is that many studies used employed inadequate models which
tend to yield strong yet inconsistent support. Our results imply that all models are likely to
support incorrect nodes, albeit in well-bounded manner, but no model - even the strongly
misspecified M5 model - is substantially overrepresented for such nodes.

We note that these results also demonstrate the robustness of the UFBoot2 bootstrap
measurement to model misspecification, one of this measure’s stated goals (Hoang et al.
2017). Indeed, in this circumstance, all models employed are misspecified to the simulated
data, and support measures from UFBoot2 suggest that all inferred trees show comparable
levels of difference from the true tree.

Most inferred trees fall in the confidence set of trees under the M1
model

We next performed a series of AU (approximately unbiased) tests of tree topology to assess
whether the observed topological differences represented significant deviations from the true
phylogeny (Shimodaira 2002). For each alignment, we performed an AU test to compare
the alignment’s eight associated topologies: seven inferred trees and the true tree. As there
exists no standard protein exchangeability model that will be correctly specified to data, we
specified the given alignment’s M1 model for each test, thereby asking whether any trees
fell outside the confidence set of the M1 model. This approach mirrors a practical scenario
where the best-fitting model determined by relative model selection would be assumed to be
as accurately specified as possible.

Across all simulated alignments, we identified exceedingly few instances where any in-
ferred phylogeny fell outside the M1 confidence set, at a threshold of P < 0.01 (Table S2).
All trees inferred with models M2, M3, M4, and JC fell inside the respective M1 confidence
set of trees (all P ≥ 0.044). By contrast, for 19 simulations (4% of total), the M5 tree
uniquely fell outside the M1 confidence set, and for a single simulation replicate the GTR
tree uniquely fell outside the M1 confidence set. Most importantly, the true tree was in the
M1 confidence set for all but 31 simulations (6.5% of total), most commonly HA simula-
tions. None of these simulations were overlapping; for any given significant AU test, only
one topology fell outside the M1 confidence set.

In sum, nRF comparisons, UFBoot2 evaluation, and results from AU tests on simulated
data provide consistent evidence that the exact choice of protein model does not have sub-
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stantial bearing on the inferred phylogenetic topology, even if the model is a relatively poor
fit to the data. We additionally emphasize the surprisingly good performance of the JC
and GTR models in this simulation study. Neither of these models is commonly employed
in single-gene protein phylogenetics, due to their established tendencdies to underfit and
overfit data, respectively. While we indeed observed that JC underfit the data (Figure 1),
GTR in fact emerged as the best-fitting model for the majority of simulations, except for
roughly half of simulations along the smaller yeast phylogeny. The high informativeness of
our simulations may therefore have overstated the power of the GTR model in protein data,
relative to its performance on natural sequence data.

Analysis of natural sequence data reveals similar levels of consis-
tency across models

We next analyzed how protein model fit affects phylogenetic inference for a set of natural
sequence alignments. Because this analysis cannot truly assess inference accuracy (as the
true phylogeny is unknown), we instead ask whether protein models ranging in goodness-of-
fit to the data yield consistent or significantly different topologies. Furthermore, although
the JC and GTR models performed well on simulated data, it is possible that these results
were an artifact of the relative simplicity of simulated data compared to the complexity of
natural sequence data. Examining how these protein models perform on real data is therefore
crucial to properly contextualize their strong performance in simulations.

We randomly selected 200 protein alignments from the PANDIT database, considering
only those with 20–500 (inclusive) sequences and 100–1000 sites (inclusive). As with sim-
ulated data, we determined the five protein models which most closely matched the BIC
quartiles, and we used each model, as well as JC and GTR, to infer a phylogeny. The exact
protein models identified at the BIC quartiles showed substantially more variety compared
to selected models for simulated data (Figure S6), although over 75% of datasets selected an
LG-based model Figure 5a. This strong bias towards LG likely reflects that the LG model
itself was trained using PFAM alignments, the source for the PANDIT database (Whelan
2006; Le and Gascuel 2008). By contrast, similar to results from simulated data, the vast
majority of M5 models were either mtArt or mtMam, a model trained on mammalian mi-
tochondrial alignments (Yang et al. 1998). The general poor fit of certain mitochondrial
models for both simulated and natural sequence data here likely reflects the highly unique
nature of the data on which these models were originally trained.

Starkly contrasting with simulated alignments, the GTR model overfit virtually all nat-
ural alignments, emerging as the best-fitting model for only a single PANDIT alignment
(Figure 5b). Even so, the GTR model generally was a better fit to each dataset than were
JC and M5 models. As the PANDIT alignments analyzed here were substantially more
sparse compared simulated alignments, with percent of gaps and ambiguous amino acids
ranging from 19%–79% across alignments, the relatively poorer fit of the GTR model is not
unreasonable. We tested whether certain features of the alignments, including percent of am-
biguous characters, number of taxa, length of alignment, and/or treelength (sum of inferred
branch lengths) could explain the relative rank of the GTR model among the seven models
used for each alignment. Step-wise linear model selection using R2 showed that the best
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model to explain GTR rank was GTR rank ∼ number of taxa*treelength, with R2 = 0.61
(Figure 5c). As expected, then, the GTR model tends to be a better relative fit for more
informative alignments and will be a poor fit to more uninformative alignments.

9
1 5

119

1 61

34
24

0

25

50

75

100

125

FLU mtInv rtREV JTT PMB Blosum62WAG VT LG

M1 Model Matrix

C
ou

nt

a

0

50

100

150

200

1 2 3 4 5 6 7

Model rank by BIC

C
ou

nt

M1

M2

M3

M4

M5

JC

GTR

b

R2 = 0.61

0

100

200

300

400

1 2 3 4 5 6

GTR model rank

N
um

be
r 

of
 ta

xa

100

200

300

400

Treelength

c

Figure 5: Model selection results on 200 PANDIT alignments. a) Best-fitting model (M1) matrix across
PANDIT alignments. b) Relative model rank for models used for inference on PANDIT datasets, conveying
the relative fits of JC and GTR models. c) Scatterplot showing key features in PANDIT datasets which
predict the GTR model rank of the seven models examined for each alignment. Each point represents a
PANDIT alignment, and treelength represents the sum of branch lengths each alignment’s respective GTR-
inferred phylogeny.

We examined to what extent trees inferred across protein models were consistent with
one another using two separate analyses: i) an all-to-all comparison of Robinson-Foulds
distances (Figure 6), and ii) AU tests for each inferred set of trees to assess whether they fell
in the M1 confidence set (Figure 7). In Figure 6, we show the distributions of nRF distances
across each pair of models, with the median value shown for each distribution. Overall,
the mean nRF between M1 and M2 trees was significantly lower than all other comparison
distributions (P < 0.01). There was virtually other no difference in average nRF for most
comparisons among M1, M2, M3, M4, and GTR models. As such, while there are clear
topological differences among these models, no single protein model of these five stood out
has yielding substantially different topologies. These results are highly consistent with those
from simulations and again suggest that relative model fit does not systematically affect
inferred tree topologies.

By contrast, nRF comparisons with M5 and JC models were much higher, indicating that
these two protein models tended to infer distinct topologies from M1–M4 and GTR models.
We did not observe a significant difference in mean nRF between the M1–JC and M1–M5
comparisons, suggesting that M5 and JC yield trees with similar levels of deviation from M1.
Interestingly, the mean nRF for the M5–JC comparison was significantly larger than were
all other comparisons (P < 0.001). Therefore, while trees inferred with JC and M5 models
were fairly distant from M1 trees, they were even farther from one another, indicating a
qualitative difference between JC and M5 trees.
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Figure 6: Distributions of nRF differences between trees inferred with each pair of models. Distributions
are colored by the median nRF and arranged in increasing order of nRF. The vertical line through each
distribution represents its median value, and rows containing M1 comparisons are bolded for clarity.

Further analysis with AU tests revealed that, for each alignment, most trees indeed fell
in the M1 confidence set of trees (Figure 7a). For the 200 alignments examined, 199 (99.5%)
M2 trees, 194 (97%) M3 trees, and 198 (99%) GTR trees fell in the M1 confidence set of trees
(P > 0.01). While M2 and M3 models underfit the data compared to M1, and conversely
GTR models nearly alwaysd overfit the data compared to M1, trees inferred with these
three protein models were statistically consistent with those inferred with M1 models. By
contrast, the M4 models deviated from the M1 confidence set somewhat more frequently,
with only 183 (91.5%) of inferences consistent with the M1 model. Finally, at least 1/3 of
inferred trees under M5 and JC each fell outside the M1 confidence set of trees for their
respective alignments. We further asked whether the deviating trees inferred with M4, M5,
and JC models represented the same or difference PANDIT alignments, as depicted with
the Venn Diagram in Figure 7b. There was relatively little overlap between which M4 and
JC/M5 trees fell outside the M1 confidence set, but there was much more overlap between
M5 and JC such that. Even so, there were many instances where only the JC tree (from 19
alignments) or the M5 tree (from 37 alignments) uniquely differed from the M1 tree, again
suggesting that JC and M5 inferred qualitatively distinct phylogenies.
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Figure 7: a) Proportion of PANDIT alignments whose the inferred tree, for each protein model, fell inside
the M1 confidence set, as assessed with AU tests. The percentage shown at the top of each bar indicates the
percent of trees in the M1 confidence set. b) Venn diagram depicting the number of PANDIT alignments
whose trees inferred with M4, M5, and/or JC fell outside the respective M1 confidence set.

Unlike simulation results, where all JC trees fell inside the M1 confidence set, many JC
trees built from natural sequence data had significantly different topologies. We therefore
suggest that further work is necessary to truly understand the performance of this simplistic
yet potentially effective model. Indeed, based on Figure 6, it appears that the equal-rates
JC model infers unique topologies compared to any protein model with unequal exchange-
abilities. While it is impossible to know which model(s), if any, converged upon the true
phylogeny, the patterns observed from PANDIT data analysis imply that, so long as model
fit is not exceptionally poor, the specific model is unlikely to strongly mislead or bias phy-
logenetic inference on protein data.

Conclusions

We have investigated whether relative model fit has a systematic affect on inference accuracy
in single-gene protein phylogenetic inference. From both simulated and natural sequence
data, we find that that inferred topologies are highly robust to the given protein model, so
long as the model’s fit to the data is not egregiously poor. We emphasize that the GTR
model, which is often unused in protein phylogenetics due to its very large amount of free
parameters to optimize, may be a very reasonable candidate model for phylogenetic inference
even if/when it overfits the data.

This study focused exclusively on the practical ramifications of relative model selection
when a single protein exchangeability models is applied to single-gene, non-partitioned data.
Notably, we did not consider more complicated scenarios, such as the analysis of multiple
concatenated genes in a partitioned analysis (Lanfear et al. 2017; Kainer and Lanfear 2015)
and/or the use of more complex mixture models, such as the CAT model (Lartillot and
Philippe 2004; Si Quang et al. 2008) or approaches that consider several exchangeability
matrices proportioned across sites (Le et al. 2008; Huelsenbeck et al. 2008; Le et al. 2012).
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As mixture models have been shown to fit many datasets better than single exchangeability
models, in particular for saturated or highly heterogeneous data (Le et al. 2008; Si Quang
et al. 2008; Arenas 2015), future work should investigate whether the improvement in fit
these complex models confer corresponds to qualitatively different phylogenetic inferences.

In addition, we did not consider phylogenetic reconstruction from nucleotide data. How-
ever, a recent study by Abadi et al. (2019) used simulation to demonstrate that the GTR
model and JC model as applied to nucleotide alignments do not produce systematically dif-
ferent phylogenetic topologies. Our results suggest that this phenomenon may also extend
to protein-level data, ultimately providing increasing evidence that relative model selection
is not strictly necessary in phylogenetic inference, in spite of decades of tradition. That said,
while our results were very similar to those from Abadi et al. (2019), we did observe stronger
differences between GTR and JC models as applied to natural sequence data, indicating
that JC may not be as robust as simulations indicate. Either way, the finding that most
reasonable models of sequence evolution will yield comparable phylogenetic topologies with
similar levels of support stands.

The presumed relationship between model fit and inference accuracy likely emerged from
the need for researchers to justify using a particular model; in the absence of a fully mech-
anistic model that accounts for the underlying evolutionary process, high goodness-of-fit to
the data does provide a reasonable justification for using a particular model. Indeed, it
is fundamentally impossible to employ a correctly specified model; no evolutionary model,
regardless of its complexity or inclusion of parameters intended to capture fundamental bio-
logical processes (i.e. transition/transversion mutational biases), can possibly mimic the true
generative process which gave rise to the data, that is actual biological evolution.

We additionally note that model selection was first applied in phylogenetics with an eye
towards identifying the model with the most suitable level of complexity for the data, in
the context of nucleotide-level models (Posada and Crandall 1998). While nucleotide models
differ primarily in how many parameters are used to describe the substitution process, this
circumstance does not cleanly apply to empirical protein exchangeability models. Unlike nu-
cleotide models, all protein models contain the exact same number of fixed exchangeability
parameters, and options for increasing model complexity most commonly entail adding very
few additional parameters to account among site rate variation, proportion of invariant sites,
and/or customized stationary frequencies. As such, the primary differences among protein
models emerge from different relative substitution rates and not from the complexity of sub-
stitution process itself. It is therefore unclear what exact role relative model selection plays
in protein phylogenetics, relative to nucleotide phylogenetics, especially given the broadly
consistent performance of models with wide ranges in fit to the data. Future efforts may
seek to investigate what aspects of protein models drive fit to the data, as model complexity
is less likely to play as substantial a role as it plays in evaluating nucleotide models.

In sum, results presented here contribute to a growing body of evidence that the practical
ramifications of model selection in phylogenetics may be vastly overstated. A key unanswered
question in many of these findings is why there are such substantial differences in model fit
even when these models perform extremely similarly. One possible explanation is that, while
observed patterns in the data may more closely match some models than others, all available
protein models may be similarly distant from describing the evolutionary process which in
fact gave rise to the data. As such, while different models may better capture certain features
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of the data, none of them may have sufficient ability to capture the generative process of
biological evolution. This insight may pave the way for the development of categorically novel
modeling frameworks; if new protein exchangeability models are developed with improved
fit to data, but these new models do not yield meaningful consequences for inferences, the
benefit to “building a better mouse trap” is modest at best.
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