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Abstract: Venoms are a diverse and complex group of natural toxins that have
been adapted to treat many types of human disease, but rigorous informatics ap-
proaches for discovering new therapeutic activities are scarce. We have designed
and validated a new platform—named VenomSeq—to systematically generate pu-
tative associations between venoms and drugs/diseases via high-throughput tran-
scriptomics and perturbational differential gene expression analysis. In this study,
we describe the architecture of VenomSeq, and its evaluation using the crude venoms
from 25 diverse animal species. By integrating comparisons to public repositories
of differential expression, associations between regulatory networks and disease,
and existing knowledge of venom activity, we provide a number of new therapeutic
hypotheses linking venoms to human diseases supported by multiple layers of pre-
liminary evidence. We are currently performing validation experiments in vitro to
corroborate these findings.

Contents
1. Introduction 2

2. Results 5
2.1. Venom dosages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2. mRNA sequencing of venom-perturbed human cells . . . . . . . . . . . . . . . . 5
2.3. Differential expression profiles of venom-perturbed human cells . . . . . . . . . 7
2.4. Associations between venoms and existing drugs . . . . . . . . . . . . . . . . . 9
2.5. VenomSeq technical validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5.1. VenomSeq technical validation: Recovering connectivity by integrating
cell lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5.2. VenomSeq technical validation: Impact of reference cell lines and query
drugs on expected PCL percentile ranks . . . . . . . . . . . . . . . . . . 16

2.6. Associations between venoms and disease regulatory networks . . . . . . . . . . 16
1Department of Biomedical Informatics, Columbia University, New York, NY, 10032.
2Department of Systems Biology, Columbia University, New York, NY, 10032.
3Institute for Genomic Medicine, Columbia University, New York, NY, 10032.
4Columbia Genome Center, Columbia University, New York, NY, 10032.
5Data Science Institute, Columbia University, New York, NY, 10032.
∗Corresponding author. Email: nick.tatonetti@columbia.edu.

1

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 15, 2019. ; https://doi.org/10.1101/699280doi: bioRxiv preprint 

https://doi.org/10.1101/699280
http://creativecommons.org/licenses/by-nd/4.0/


3. Discussion 18
3.1. Venoms versus small-molecule drugs . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2. Venoms versus human diseases . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3. Specific therapeutic hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3.1. Argiope lobata venom versus cardiopulmonary and psychiatric diseases 19
3.3.2. Scorpio maurus venom for cancer treatment via FGFR inhibition . . . . 20

3.4. Accessing and querying VenomSeq data . . . . . . . . . . . . . . . . . . . . . . 21
3.5. Transitioning from venoms to venom components . . . . . . . . . . . . . . . . . 21
3.6. Applying the VenomSeq framework to other natural product classes . . . . . . 22
3.7. Interpreting connectivity analysis validation results . . . . . . . . . . . . . . . . 23

4. Conclusions 24

5. Supplemental Materials 25

6. Acknowledgements and funding 25

7. Methods 25
7.1. Reagents and materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.2. Obtaining 25 venoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.3. Growth inhibition assays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.4. mRNA Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.5. Constructing expression signatures . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.6. Comparing venoms to known drugs and diseases . . . . . . . . . . . . . . . . . 30

7.6.1. Comparing to known drugs using the Connectivity Map . . . . . . . . . 30
7.6.2. Comparing to known diseases using master regulator analysis . . . . . . 32

7.7. Assessing sequencing technology and cell type compatibility . . . . . . . . . . . 33

A. PLATE-Seq quality control data 39

B. Mechanism diagrams 43

C. Miscellaneous supplemental figures 45

1. Introduction

Venoms are complex mixtures of organic macromolecules and inorganic cofactors that are used

for both predatory and defensive purposes. Since the dawn of recorded history, humans have

exploited venoms and venom components for treating a wide array of illnesses and conditions,

a trend which has continued into modern times [Lewis and Garcia, 2003]. Currently, approx-

imately 20 venom-derived drugs are in use world-wide, with 6 approved by the US Food and

Drug Administration for clinical use, and many more currently undergoing clinical trials [Pen-
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nington et al., 2018]. As new discovery of small-molecule drugs has slowed considerably in

recent decades, venoms and other natural products hold great promise for discovering inno-

vative treatments for disease and injury, especially for diseases that have evaded treatment

through conventional medical science.

Furthermore, venoms are incredibly diverse. Depending on the species, a single venom can

contain hundreds of distinct compounds [Terlau and Olivera, 2004]. Since current estimates

claim that millions of venomous species exist across the tree of life, venom-derived compounds

provide an immense library of evolutionarily optimized candidates for drug discovery [von

Reumont et al., 2014, Calvete et al., 2009].

Toxinologists have applied modern high-throughput sequencing (HTS) methodologies to the

study of venoms (a field that has come to be known as venomics) [Calvete et al., 2009].

Venomics generally involves the sequencing and structural identification of multiple types of

macromolecules—genomic DNA, venom gland mRNA transcripts, and/or venom proteins—to

best evaluate which genes, transcripts, and polypeptides (including post-translational modifi-

cations) are present in a venom and convey its activity.

Venomics has become a popular framework for drug discovery in recent years. However,

other applications of HTS and biomedical data science beyond discovery/evaluation of venom

components can be used for drug discovery. One such application is data-driven analysis of

perturbational gene expression data, in which human cells are exposed in vitro to controlled

dosages of candidate compounds and then profiled for differential gene expression via RNA

sequencing (RNA-Seq). In this paper, we present VenomSeq—a new informatics workflow for

discovering associations between venoms and therapeutic avenues of treatment for disease.

Briefly, VenomSeq involves exposing human cells to dilute venoms, and then generating differ-

ential expression profiles for each venom, comprised of the significantly up- and down-regulated

genes in cells perturbed by the venom. We then compare the differential expression profiles to

data from public compendia of perturbational gene expression data and gene regulatory data

corresponding to disease states. VenomSeq works in the absence of any predefined hypotheses,

instead allowing the data to suggest hypotheses that can then be explored comprehensively

using rigorous traditional approaches.
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Figure 1: Graphical abstract outlining the VenomSeq workflow.
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Table 1: Statistics for S. maurus growth inhibition data.
S. maurus venom vs. IMR-32

GI20(µg µl−1) 0.0926
R2 0.991

Hill slope

Bottom −2.096
Top 92.572
log GI50 −0.640
Slope (h) −1.928

2. Results

2.1. Venom dosages

In order to optimize the exposure concentrations of each venom, we performed growth inhibi-

tion assays on human cells exposed to varying concentrations of the venoms. This is necessary

to minimize the impact of toxicity while ensuring the venom is in high enough concentration to

exert an effect on the human cells. Since each venom is comprised of many (largely unknown)

molecular components, we performed the assays on samples of venom measured in mass per

volume, rather than compound concentration (molarity). We used GI20—the concentration of

a venom at which it inhibits growth of the human cells by 20%—as the effective treatment

dose in all subsequent experiments.

The experimental GI20 values and complete dose-response data for each of the 25 venoms

are provided in Appendix A (Table 9), a sample of which is reproduced (for S. maurus)

in Table 1. The resulting growth inhibition curves for all venoms are shown in Figure 2.

Venoms from L. colubrina, D. polylepis, S. verrucosa, S. horrida, C. marmoreus, O. macropus,

and P. volitans did not demonstrate substantial growth inhibition at any tested concentration,

so for those venoms we instead performed sequencing at 1.0 µg µl−1, which is the highest

concentration used in the growth inhibition curves.

2.2. mRNA sequencing of venom-perturbed human cells

After determining appropriate dose concentrations for each venom, we performed RNA-Seq on

human IMR-32 cells exposed to the individual venoms. Table 2 summarizes the experimental

conditions used for sequencing. After transforming the raw sequencing reads to gene counts
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Figure 2: Growth inhibition plots for each of the 25 venoms. GI80 values are provided, unless
growth inhibition was not observed (in which case sequencing was instead performed
at 2 mg µl−1).
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Table 2: Experimental conditions for RNA-Seq.
Venoms 25 species
Cell line IMR-32 (Human neuroblastoma)
Dosage GI20 for each venom
Time points 6/24/36 hours post-treatment
Replicates 3 per time point per venom
Controls 12 water controls, 9 untreated
Solvent Water

(see §7.4), we compiled the results into a matrix, where rows represent genes, columns represent

samples, and cells represent counts of a gene in a sample. For detailed quality control data, refer

to Appendix A, which includes links to related files. The raw (i.e., FASTQ files produced by

the sequencer) and processed (i.e., gene counts per sample) data files are available for download

and reuse on NCBI’s Gene Expression Omnibus database; accession GSE126575.

2.3. Differential expression profiles of venom-perturbed human cells

We constructed differential expression signatures for each of the 25 venoms as described in §7.5,

where each signature consists of a list (length ≥ 0) of significantly upregulated genes, and a list

(length ≥ 0) of significantly downregulated genes. The specific expression signatures are avail-

able on FigShare at https://doi.org/10.6084/m9.figshare.7609160. An excerpt from the

expression signature for O. macropus is shown in Table 3. The total number of differentially

expressed genes for each venom ranges from 2 genes (Laticauda colubrina and Dendroaspis

polylepis polylepis) to 1494 genes (Synanceia verrucosa). Note that these signatures are spe-

cific to IMR-32 cells—we expect that the same procedure applied to other cell lines would yield

substantially different expression signatures.

Gene-wise statistical significance is a function of both log2 fold change and the number of

observed counts. This relationship is illustrated in Figure 15, which is derived from the same

data shown in Table 3 (for O. macropus).
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a.)

b.)

c.)

Figure 3: Connectivity analysis results. a.) Heatmap of τ -scores between the 25 venom pertur-
bations and the 500 Connectivity Map signatures with the highest variance across
all venoms. A distinct hierarchical clustering pattern is evident across the venom
perturbations, although it does not conform to any obvious grouping pattern of the
venoms. b.) Principle component analysis of the 25 venom perturbations, where fea-
tures are all τ -scores between the venom and signatures from the Connectivity Map
reference database. 4 distinct outliers are labeled—these venoms correspond to out-
liers in the heatmap. Also shown are the ratios of variance explained by each of the
first 21 principle components—after the first principle component, the distribution
is characterized by a long tail, suggesting that much of the variance is spread across
many dimensions, underscoring the complexity of the connectivity score data. c.)
Barplot showing the number of significant differentially expressed genes for IMR-32
cells exposed to each of the 25 venoms.
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Table 3: Partial differential expression signature for O. macropus. Most of the significantly
differentially expressed genes (35 of 41 total) are omitted for brevity.

Gene Base mean log2-FC Wald statistic p-adj
SPRY4 37.38 -2.27534 -3.3084 0.0991
REPIN1 38.30 -0.95256 -4.3326 0.0061
DUSP14 33.88 -0.91311 -3.3327 0.0991

...
...

...
...

...
BRD3 130.81 1.37645 4.115 0.0096
RSRC1 63.48 1.38140 4.2042 0.0091
BAZ1B 120.05 1.69463 5.0846 0.0003

2.4. Associations between venoms and existing drugs

Using publicly-available differential expression profiles for existing drugs—many with known

effects and/or disease associations—we were able to identify statistically significant associations

between venoms and classes of drugs. These associations are based on the methods designed by

the Connectivity Map (CMap) team [Lamb et al., 2006], and utilize their perturbational differ-

ential expression data as the “gold standard” against which to evaluate the venom expression

data. In short, this approach uses a Kolmogorov-Smirnov–like signed enrichment statistic to

compare a query signature (i.e., venoms) to all signatures in a reference database (i.e., known

drugs), normalizing for cell lines and other confounding variables, and finally aggregating scores

of ‘like’ signatures (i.e., drug MoAs) using a maximum-quantile procedure. Complete details

of these methods are provided in §7.6.1.

Different venoms yield different profiles of connectivity scores based on the genes present in

their differential expression signatures. For example, all connectivity scores between B. occ-

itanus and CMap perturbagens are zero, and all connectivity scores between S. horrida and

CMap perturbagens are negative, which suggest that these venoms either behave like no known

perturbagen classes, or that the venoms have no therapeutic activity on IMR-32 cells. Kernel

density plots of the connectivity scores for each venom are shown in Figure 4. In Figure 3,

we show several visualizations of the connectivity analysis results that highlight characteristics

of the data. Interestingly, when hierarchical clustering is performed on the connectivity scores

by venom perturbation, the venom perturbations form robust clustering patterns that persist
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Table 4: Venom–drug class associations.
Venom Drug class (MoA)
Synanceia horrida ATPase inhibitor

CDK inhibitor
DNA synthesis inhibitor

Scolopendra subspinipes dehaani T-type Ca2+ channel inhibitor

Pterois volitans Topoisomerase inhibitor

Argiope lobata ATPase inhibitor
PI3K inhibitor
PPARγ agonist

Scorpio maurus FGFR inhibitor

Rhinella marina HIV protease inhibitor

across multiple non-overlapping subsets of the connectivity data. This suggests that the clus-

tering corresponds to meaningful characteristics of the venom perturbations in comparison to

known drugs, although these characteristics are not readily apparent (i.e., the clustering does

not reproduce taxonomy, or other obvious traits of the venoms).

The associations we identified are shown in Table 4. As we anticipated, only some ven-

oms show strong associations to any classes of drugs. Interestingly, only one venom (S. sub-

spinipes dehaani) was linked to an ion channel inhibition MoA—venoms, in general, tend to

have powerful ion channel blocking or activating effects. However, this may be due to a pre-

ponderance of non-ion channel MoAs in the CMap data rather than an actual lack of ability

to identify ion channel activity.

Many of these MoAs comprise either well-established or emerging classes of cancer drugs.

Some that have been used extensively as chemotherapeutic agents include CDK inhibitors

(palbociclib, ribociclib, and abemaciclib), topoisomerase inhibitors (doxorubicin, teniposide,

and irinotecan, among others), and DNA synthesis inhibitors (mitomycin C, fludarabine,

and floxuridine). Meanwhile, PI3K inhibitors and FGFR inhibitors are classes of “emerg-

ing” chemotherapy drugs, each recently leading to many high-impact research studies and

early-stage clinical trials.

The other classes are indicated for a diverse range of diseases, including circulatory and
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Figure 4: Kernel density plots of normalized connectivity scores (NCSs) for each of the 25
venoms. Note the tendency to introduce sparsity by setting NCS to zero if the
quantities a and b have opposite signs (see §7.6.1). Text labels indicate proportion of
NCSs for a single venom that are negative, zero, or positive. Each plot is based on
473,647 NCSs (all differential expression profiles in GSE92742 [Subramanian et al.,
2017]).
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mental conditions (calcium channel blockers), and cardiac abnormalities (ATPase inhibitors).

PPAR receptor agonists have been used to treat diabetes, hyperlipidemia, pulmonary inflam-

mation, and cholesterol disorders.

We are in the process of validating several of the associations listed in Table 4 using targeted,

cell-based assays, the results of which will be documented in subsequent publications.

2.5. VenomSeq technical validation

Following the procedures described in §7.7, we used a secondary PLATE-Seq dataset of 37

existing drugs (with known effects) tested on IMR-32 cells to assess whether the sequencing

technology (PLATE-Seq) and cell line (IMR-32) employed by VenomSeq are compatible with

connectivity analysis and the CMap reference dataset. In this dataset, we were able to map 20

of the 37 drugs to a single existing CMap perturbational class (PCL). The drugs, their modes

of action, and the PCLs of which they are members are listed in Table 5.

2.5.1. VenomSeq technical validation: Recovering connectivity by integrating cell lines

When we aggregated all connectivity scores between a known drug and members of the same

PCL in the CMap dataset, irrespective of cell line, the connectivity scores are significantly

greater than those in a null model in 12 out of 20 instances, which indicates that drugs within

the same functional class tend to have more similarities in the query and reference datasets than

if the compounds are chosen at random. In all 20 cases, the average effect size1 was positive,

regardless of statistical significance. These—and their corresponding measures of significance—

are shown in Figure 5 and Table 6. Overall, these data are congruent with those made by

the Connectivity Map team in [Subramanian et al., 2017]—namely, that expected connections

between query drugs and reference compounds can be recovered for some PCLs, but not for

others. Importantly, in both our observations and the observations in [Subramanian et al.,

2017], PCLs related to highly conserved core cellular functions perform better under this

approach.

1Effect size is defined as the average difference between connectivities within the expected PCL and the null
model of random connectivities for the same query
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VenomSeq data Validation data CMap reference data

Technology PLATE-Seq PLATE-Seq L1000

Measurement type Gene counts Gene counts Gene relative abundance

Human cell line(s) IMR-32 IMR-32 9 core cell lines

Exposure 
compounds

25 crude venoms 37 small molecule 
drugs

19,811 small molecule 
compounds

E ects known No Yes Some

Drug class 
annotations

None CMap perturbagen 
classes (“PCLs”)

CMap perturbagen 
classes (“PCLs”)

a.) b.)

c.)

d.)

Figure 5: Results of applying the VenomSeq sequencing and connectivity analysis workflow
to 37 existing drugs with known effects, to validate the compatibility of PLATE-
Seq and IMR-32 cells with the connectivity analysis algorithm and dataset. a.)
Scatter plot showing validation drugs that are members of a CMap PCL and the
mean differences between within-PCL connectivity scores and a null distribution
of random connectivity scores for the same drug (Table 6). Verticle axis shows
the p-value of a Student’s t-test comparing the within-PCL and null connectivity
score distributions (corrected for multiple testing). Statistically significant drugs
are labeled by name. b.) Summary of the validation strategy, showing that the
validation dataset bridges certain gaps between the VenomSeq data and the CMap
reference data. c.) Distributions of rank percentiles of expected (“true”) PCLs within
the list of all PCLs ordered by average connectivity score (Table 7), aggregated by
CMap dataset cell lines, and d.) validation drugs. Green distributions indicate a
shift towards the front of the rank ordered list, indicating stronger compatibility
with the PLATE-Seq/IMR-32 query data, based on expected connections, and “*”
indicates statistically significant shifts.
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Table 5: Drugs used to validate PLATE-Seq and the IMR-32 cell line for connectivity analy-
sis. Not all compounds of a given mechanism of action will necessarily map to that
mechanism’s associated PCL—PCLs consist of compounds that are members of the
same functional class and also have high transcriptional impact.

Drug Mechanism of Action CMap perturbagen class (PCL)
Mibefradil T-type Ca2+ channel inhibitor CP T TYPE CALCIUM CHANNEL BLOCKER
Isradipine L-type Ca2+ channel inhibitor CP CALCIUM CHANNEL BLOCKER
Nifedipine L-type Ca2+ channel inhibitor CP CALCIUM CHANNEL BLOCKER
Diltiazem Ca2+ channel inhibitor CP CALCIUM CHANNEL BLOCKER
Verapamil Ca2+ channel inhibitor CP CALCIUM CHANNEL BLOCKER
Fendiline Ca2+ channel inhibitor CP CALCIUM CHANNEL BLOCKER
Topiramate Na+ and Ca2+ channel modulator CP SODIUM CHANNEL BLOCKER
Ionomycin Ca2+ channel signal inducer
1-EBIO Ca2+-gated K+ channel activator CP POTASSIUM CHANNEL ACTIVATOR
Forskolin Adenylyl cyclase activator

Pregabalin Increases GABA biosynthesis
Gabapentin Increases GABA biosynthesis
Baclofen GABAB-receptor agonist

Memantine Glu-receptor inhibitor
Acamprostate Glu-receptor inhibitor CP GABA RECEPTOR ANTAGONIST
MTEP Glu-receptor inhibitor
Ivermectin Glu-gated Cl− channel inhibitor

Carbenoxolone Glucocorticoid metabolism inhibitor
Mifepristone Glucocorticoid receptor inhibitor CP PROGESTERONE RECEPTOR ANTAGONIST
Dexamethasone Glucocorticoid receptor agonist CP GLUCOCORTICOID RECEPTOR AGONIST
Aldosterone Mineralocorticoid receptor agonist
Spironolactone Mineralocorticoid receptor inhibitor

Olanzapine Dopamine receptor inhibitor CP DOPAMINE RECEPTOR ANTAGONIST
Eticlopride Dopamine receptor inhibitor CP DOPAMINE RECEPTOR ANTAGONIST
Ondansetron 5-HT3 serotonin receptor inhibitor CP SEROTONIN RECEPTOR AGONIST
Naltrexone Opioid receptor inhibitor

Disulfiram Acetaldehyde dehydrogenase inhibitor

Cerlitinib ALK inhibitor
Crizotinib ALK inhibitor

Sirolimus mTOR inhibitor CP MTOR INHIBITOR

Manumycin a Farnesyltransferase inhibitor CP NFKB PATHWAY INHIBITOR

Vorinostat HDAC (I/II/IV) inhibitor CP HDAC INHIBITOR

Prazosin Adrenergic receptor inhibitor CP BETA ADRENERGIC RECEPTOR AGONIST

Rolipram Phosphodiesterase-4 inhibitor

Minocycline NOS inhibitor
Pioglitazone PPARγ/α inhibitor CP PPAR RECEPTOR AGONIST
Fenofibrate PPARα agonist CP PPAR RECEPTOR AGONIST
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Table 6: Enrichment of strong connections in expected PCL annotations . p-values correspond
to independent, two-sample Student’s t-tests between “within-PCL” connectivities
and a null model of randomly sampled compound connectivities (see text) for the
same query drug, and are corrected for multiple testing using the Benjamini-Hochberg
procedure. Effect size is the difference of means between those two groups, such that
larger effect sizes correspond to higher expected connectivity scores between the query
drug and members of its same drug class. Note that effect sizes are relatively small
in most cases—this is due in part to the sparsity of connectivity scores.

Drug PCL p-value Effect size
Topiramate CP SODIUM CHANNEL BLOCKER 1.018e-31 13.168
Vorinostat CP HDAC INHIBITOR 5.952e-22 1.717
Sirolimus CP MTOR INHIBITOR 2.240e-17 1.232
Eticlopride CP DOPAMINE RECEPTOR ANTAGONIST 1.278e-11 4.175
Olanzapine CP DOPAMINE RECEPTOR ANTAGONIST 8.117e-09 2.640
Fenofibrate CP PPAR RECEPTOR AGONIST 1.012e-07 1.775
Pioglitazone CP PPAR RECEPTOR AGONIST 1.158e-07 3.252
Manumycin a CP NFKB PATHWAY INHIBITOR 4.124e-07 5.983
Dexamethasone CP GLUCOCORTICOID RECEPTOR AGONIST 2.741e-06 2.462
Prazosin CP BETA ADRENERGIC RECEPTOR AGONIST 2.476e-02 2.083
Acamprosate CP GABA RECEPTOR ANTAGONIST 4.290e-02 2.260
Mibefradil CP T TYPE CALCIUM CHANNEL BLOCKER 6.871e-02 0.355
1-EBIO CP POTASSIUM CHANNEL ACTIVATOR 2.573e-01 2.597
Fendiline CP CALCIUM CHANNEL BLOCKER 2.854e-01 2.636
Diltiazem CP CALCIUM CHANNEL BLOCKER 2.929e-01 5.719
Isradipine CP CALCIUM CHANNEL BLOCKER 4.062e-01 0.683
Nifedipine CP CALCIUM CHANNEL BLOCKER 4.100e-01 1.932
Mifepristone CP PROGESTERONE RECEPTOR ANTAGONIST 4.309e-01 3.160
Verapamil CP CALCIUM CHANNEL BLOCKER 5.404e-01 5.880
Ondansetron CP SEROTONIN RECEPTOR AGONIST 5.710e-01 2.659
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Table 7: Correct PCL ranks aggregated by cell line. Mean rank percentile is the mean rank of
the correct (“true”) PCL, aggregated over all query drugs and divided by the total
number of PCLs (92), reported by cell line.

CMap cell line Mean rank percentile FDR-corrected p-value
HA1E 0.326087 0.001663
A375 0.375000 0.004926
PC3 0.431522 0.109226
HCC515 0.446739 0.193877
HEPG2 0.461957 0.258068
MCF7 0.465217 0.279325
VCAP 0.492935 0.443995
A549 0.503804 0.468387
HT29 0.075445 0.591304

2.5.2. VenomSeq technical validation: Impact of reference cell lines and query drugs on

expected PCL percentile ranks

Since IMR-32 cells are not present in the CMap reference dataset, we were particularly in-

terested in seeing which cell lines present in the reference dataset (if any) performed better

than others at the task of recovering expected connections. Using the PCL ranking strategy

described in §7.7, 7 of the 9 core cell lines show at least a moderate tendancy to place the

true PCL towards the front of the ranked list of all PCLs, indicating that at least some of the

ability to recover expected connections is retained when looking at those 7 cell lines individ-

ually. PCL rankings stratified by drug (rather than cell line) show a similar pattern—15 of

20 PCL-annotated drugs tend to have the expected PCL ranked towards the front of the list

(“enrichment”), while 5 tend to have the expected PCL show up towards the back of the list

(“depletion”). Of these 20, the only It should be noted that—due to the rather small number of

profiles in the reference dataset that are annotated to PCLs—these two analyses were limited

in terms of statistical power, and deserve a follow up analysis in the future, when more PCLs

and members of those PCLs are present in the reference database.

2.6. Associations between venoms and disease regulatory networks

Direct observations of expressed genes (via mRNA counts) provide an incomplete image of the

regulatory mechanisms present in a cell. To complement the CMap approach that focuses on
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perturbations at the gene level, we designed a parallel approach that uses cell regulatory net-

work data to investigate perturbations at the regulatory module (e.g., pathways and metabolic

networks) level; an approach we refer to as master regulator analysis. In master regulator anal-

ysis, the ARACNe algorithm [Margolin et al., 2006] is used to obtain regulatory network data

for our cell line of interest (in this case, IMR-32), consisting a list of regulons—overlapping sets

of proteins whose expression is governed by a master regulator (e.g., a transcription factor).

The msVIPER algorithm [Alvarez et al., 2016] is then used to determine the activity of each

regulon by computing enrichment scores from observed expression levels of the genes/proteins

contained in that regulon (here, using the RNA-Seq results described in §2.2).

We matched the significantly up- and down-regulated master regulators for each venom to

diseases using high-confidence TF-disease associations in DisGeNET [Piñero et al., 2016]—a

publicly available database of associations between diseases and gene network component. This

approach is based on the idea that diseases caused by disregulation of metabolic and signaling

networks can be treated by administering drugs that “reverse” the cause (i.e., abnormal master

regulator activity) of disregulation. Since we are interested in discovering associations with

multiple corroborating pieces of evidence, we specifically filtered for diseases where two or more

linked TFs are disregulated when perturbed by the venom. The complete list of associations are

provided on figshare at https://doi.org/10.6084/m9.figshare.7609793; here, we describe

a handful of interesting observations.

The most prevalent class of illness (comprising 19.7% of all associations across all venoms)

is DISEASES OF THE NERVOUS SYSTEM AND SENSE ORGANS. This is not surprising, considering

many of the 25 venoms have neurotoxic effects, and IMR-32 is a cell line derived from neuroblast

cells. One source of bias in these results is that similar diseases tend to be associated with the

same regulatory mechanisms [Sun et al., 2011]. For example, associations between a venom

and schizophrenia will often be co-reported with associations to other mental conditions, such

as bipolar disorder and alcoholism.
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3. Discussion

3.1. Venoms versus small-molecule drugs

In the connectivity analysis portion of VenomSeq, we demonstrated that these techniques have

the ability to identify novel venom–drug class associations, and corroborate known venom

activity. One distinct advantage of performing queries against the CMap reference dataset

is their inclusion of manually-curated PCLs, which allow for normalization of data gathered

from multiple perturbagens and multiple cell lines, aggregated at a class level that corresponds

approximately with drug mode of action. For this reason, hypotheses generated by the con-

nectivity analysis portion of VenomSeq are often testable at the protein level.

One important caveat is that venom components have a tendency to interact with cell surface

receptors (e.g., ion channels or GPCRs), inciting various signaling cascades and therefore acting

indirectly on downstream therapeutic targets. While this is certainly the case for many drugs

as well (GPCRs are considered the most heavily investigated class of drug targets [Hopkins and

Groom, 2002]), small molecules often can be designed to enter the cell and interact directly

with the downstream therapeutic target. This has important implications regarding assay

selection for in vitro validation of associations learned through the connectivity analysis. For

example, if the MoA of interest is inhibition of an intracellular protein (e.g., topoisomerase), a

cell-based assay should be considered when testing venom hypotheses, since the venom likely

is not interacting directly with the topoisomerase (and, therefore, the effect would not occur

in non-cell based assays).

3.2. Venoms versus human diseases

The master regulator analysis portion of VenomSeq discovers associations between venoms and

the diseases they may be able to treat, rather than to drugs. This could be especially useful

for discovering treatments to diseases with no or few existing indicated drugs (or drugs that

are not present in public differential expression databases). Additionally, since the master

regulator approach is sensitive to complex metabolic network relationships, it is (theoretically)

more sensitive to patterns, as well as more suited to diseases with complex genetic etiologies
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that are not explainable by observed gene counts alone.

Currently, the primary drawback to the master regulator approach is that criteria for sta-

tistical significance are not well established. Therefore, it is challenging to determine which

venom-disease associations are most likely to reflect actual therapeutic efficacy. As a tempo-

rary alternative, we used several heuristics to ensure there are multiple corroborating sources

of evidence for the reported associations.

As discussed previously, the connectivity analysis produces hypotheses that are relatively

straightforward to validate experimentally, using affordable, widely available assay kits and

reagents. Since the master regulator workflow gives hypotheses at the disease level (where the

underlying molecular etiologies can be unknown), validation instead needs to be performed

at the phenotype level, either using animal models of disease, or carefully engineered, cell-

based phenotypic assays that measure response at multiple points in disease-related metabolic

pathways (e.g., DiscoverX’s BioMAP® platform [Berg et al., 2003]).

3.3. Specific therapeutic hypotheses

VenomSeq contains multiple types of data analysis for two reasons: (1) This allows us to cover

diseases with a wider array of molecular etiologies, and (2) it provides a means for obtaining

multiple pieces of corroborating evidence for a given hypothesis. If a link between a venom and

a drug/disease is suggested by both connectivity analysis and master regulator analysis, and

there is additional literature evidence that lends biological or clinical plausibility, this increases

our confidence that the suggested therapeutic effect is “real”.

3.3.1. Argiope lobata venom versus cardiopulmonary and psychiatric diseases

A. lobata is a species of spider in the same genus as the common garden spider. The species

is relatively understudied, largely due to its lack of interaction with humans, in spite of being

distributed across Africa and much of Europe and Asia. The venom from species of Argiope

spiders contain toxins known as argiotoxins [Poulsen et al., 2013], which are harmless to hu-

mans, in spite of having inhibitory effects on AMPA, NMDA, kainite, and nicotine acetylcholine

receptors, which have been implicated in neurodegenerative and cardiac diseases. VenomSeq

19

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 15, 2019. ; https://doi.org/10.1101/699280doi: bioRxiv preprint 

https://doi.org/10.1101/699280
http://creativecommons.org/licenses/by-nd/4.0/


provides supporting evidence for therapeutic activity in each of these classes.

Connectivity analysis links A. lobata venom to ATPase inhibitor drugs (see Figure 13),

which include digoxin, ouabain, cymarin, and other cardiac glycosides, and are used to treat

a variety of heart conditions. Another venom-derived compound—bufalin (from the venom

of toads in the genus Bufo) [Laursen et al., 2015]—is considered an ATPase inhibitor, and

has demonstrated powerful cardiotonic effects. Connectivity analysis also links the venom to

PPAR agonist drugs, which are used to treat cholesterol disorders, metabolic syndrome, and

pulmonary inflammation. Interestingly, PPARγ activation results in cellular protection from

NMDA toxicity. Given the known inhibitory effect of argiotoxins on NMDA receptors [Moe

et al., 1998], this is striking and biologically plausible evidence for toxin synergism, where two

or more venom components target multiple cellular structures with related functions in order

to incite a more powerful response [Laustsen, 2016].

Master regulator analysis supports these findings, as well. We found that A. lobata venom

is associated with a number of circulatory diseases, including hypertension, heart failure, car-

diomegaly, myocardial ischemia, and others. Additionally, it reveals strong associations with

an array of mental conditions, such as schizophrenia, bipolar disorder, and psychosis. These

associations are supported by recent research into argiotoxins (and other polyamine toxins),

showing that their affinity for iGlu receptors can be exploited to treat both psychiatric diseases

and Alzheimer disease [Poulsen et al., 2013].

3.3.2. Scorpio maurus venom for cancer treatment via FGFR inhibition

S. maurus—the Israeli gold scorpion—is a species native to North Africa and the Middle

East. Its venom is not harmful to humans, but it is known to contain a specific toxin, named

maurotoxin, which blocks a number of types of voltage-gated potassium channels—an activity

that is under investigation for treatment of gastrointestinal motility disorders [Beyder and

Farrugia, 2012].

Our connectivity analysis suggests an additional association with FGFR inhibitor drugs.

FGFR inhibitors are an emerging class of drugs with promising anticancer activity, and much

research focused on them aims to understand and counteract their adverse effects (see Fig-
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ure 14). Although there is no prior mention of FGFR-related activity from this or related

species of scorpions, descriptions of unexpected side effects of S. maurus venom on mice pro-

vides evidence that such activity could be true. In particular, the venom has been shown to

have biphasic effects on blood pressure: when injected, it causes rapid hypotension, followed

by an extended period of hypertension. The fast hypotension is known to be caused by a

phospholipase A2 in the venom, but no known components elicit hypertension when admin-

istered in purified form [Ettinger et al., 2013]. The observed FGFR inhibitor-like effects on

gene expression suggest that an unknown component (or group of components) may cause the

hypertensive effect via FGFR inhibition. We are currently performing experimental validation

of this link, and will report results in future revisions of this manuscript.

3.4. Accessing and querying VenomSeq data

VenomSeq is designed as a general and extensible platform for drug discovery, and we encourage

secondary use of both the technology as well as the data produced using the 25 venoms tested

on IMR-32 cells described in this manuscript. We maintain the data in two publicly-accessible

locations: (1.) a “frozen” copy of the data, as it exists at the time of writing (on figshare, at

https://doi.org/10.6084/m9.figshare.7611662), and (2.) a copy hosted on venomkb.org,

available both graphically and programmatically, and designed to be expanded as new data

and features are added to VenomKB.

3.5. Transitioning from venoms to venom components

VenomSeq is a technology for discovering early evidence that a venom has a certain therapeutic

effect. However, most successful approved drugs derived from venoms make use of the activity

of a single component within that venom, rather than the entire (crude) venom. As previously

mentioned, venoms can be comprised of hundreds of unique components, each with a unique

function and molecular target. We are in the early stages of applying VenomSeq individually to

purified samples of each of the peptides from the venom of a snail in the family Terebridae. The

goal of this project will be twofold: (1) To demonstrate the use of VenomSeq to screen individual

venom components rather than crude venoms, and (2) to determine which of these venom
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components actually exerts transcriptomic effects on human cells. Each of these questions

provides opportunities to understand better how specific venoms can cause therapeutic changes

in human cells.

Even though most existing venom-derived drugs consist of a single component, crude ven-

oms in nature use the synergistic effects of multiple components to cause specific phenotypic

effects [Laustsen, 2016]. Therefore, testing each venom component individually using the

VenomSeq workflow might fail to capture all of the clinically beneficial activities demonstrated

by the crude venom. A brute-force solution is to perform VenomSeq on all combinations of the

isolated venom components, but doing so requires a massive number of experiments (2n − 1,

where n is the number of components in the venom). Therefore, it will be necessary to estab-

lish a protocol for prioritizing combinations of venom components. One potential solution is to

fractionate the venom (i.e., using gel filtration) and perform VenomSeq on combinations of the

fractions, but this will need to be tested. Alternatively, integrative systems biology techniques

could be used to predict which components act synergistically, via similarity to structures with

well-established activities.

3.6. Applying the VenomSeq framework to other natural product classes

VenomSeq was, obviously, designed for the purpose of discovering therapeutic activities from

venoms, but it could be feasibly extended to other types of natural products, including plant

and bacterial metabolites, and immunologic components. Venoms provide a number of ad-

vantages and simplifying assumptions that were useful in designing the technology, but once

VenomSeq becomes more proven it should be possible to relax these assumptions with some

minor modifications to experimental protocol and data analysis. We foresee a few of these as

the following:

• Venoms’ targeted nature makes it easy to assume they will have some effect in animals;
other natural products may be inert.

• Venom components are intentionally delivered as a mixture; other natural product mix-
tures might only be easy to collect as a mixture, in spite of unrelated biological activities.

• Venoms are usually soluble in water, while other natural products often are not.
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• Non-venom toxins may have less-targeted MoAs, disrupting biological systems indiscrim-
inantly (e.g., by interrupting cell membranes regardless of cell type).

• The kinetics of non-venom natural products may be more subtle than venoms, which
tend to have powerful binding and catalytic protperties.

3.7. Interpreting connectivity analysis validation results

In §2.5, we described the results of the connectivity analysis procedure applied to PLATE-Seq

expression data from IMR-32 cells treated with 37 existing drugs that have known effects,

many of which are members of Connectivity Map perturbagen classes (PCLs). Since VenomSeq

uses an expression analysis technology that is different from the Connectivity Map’s L1000

platform, as well as a cell line that is not present in the Connectivity Map reference dataset,

this is crucial for establishing that one can discover meaningful associations between crude

venoms and profiles in the reference data within the VenomSeq framework.

Overall, the findings of our analysis are congruent with those made by the Connectivity

Map team in [Subramanian et al., 2017]. Specifically, PCLs that affect highly conserved,

core cellular functions (such as HDAC inhibitors, mTOR inhibitors, and PPAR receptors)

tend to form strong connectivities with members of the same class regardless of cell line.

Therefore, associations discovered between crude venoms and these drug classes are likely

“true associations”, even when using IMR-32 cells in the analysis. Furthermore, by virtue

of leveraging data corresponding to drugs with known effects, but using a new cell line and

different assay technology, we have made the following novel findings:

• Although IMR-32 is not present in the reference dataset, similarities between IMR-32
and cell lines that are present in the reference data can be leveraged to select reference ex-
pression profiles that are more likely to reproduce true associations. For example, HA1E
and A375 cells produce expression profiles that form reasonably strong connectivities
between IMR-32 query signatures and members of the same drug classes.

• More cell lines need to be included in the Connectivity Map data in order to better
understand correlation structures in cell-specific expression, as well as to better cap-
ture therapeutic associations that are specific to cell types underrepresented in current
datasets.

• Similarly, continued effort should be devoted to adding new PCL annotations. Currently,
only 12.3% of compound signatures in the reference dataset are annotated to at least one
PCL, and some PCLs contain only a few signatures. A more rigorous definition of what
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specifically comprises a PCL would allow secondary research groups to contribute to this
effort, ultimately improving the utility of the CMap data and increasing the sensitivity
of the algorithms used to discover new putative therapeutic associations.

In spite of the large degree of corroborating evidence these results provide (e.g., every drug

in our validation set produced a positive average effect on within-PCL connectivities versus

corresponding null distributions), we cannot confidently predict that the associations discov-

ered for crude venoms are true associations, rather than simply data artifacts. Although our

confidence in the novel associations would be greatly improved by more PCL annotations to

allow our analyses to attain greater statistical power, the ultimate test is to perform in vitro

and (eventually) in vivo tests for these predicted therapeutic mechanisms of action. Aside

from larger quantities of reference data against which to run the validation analyses, we also

hope to employ other data science techniques involving network analysis and more advanced

applications of master regulator analysis (see, e.g., §2.6) to further understand the dynamic

interactions between cell types, gene expression, and perturbational signals that underly ther-

apeutic processes.

4. Conclusions

Venoms provide an immensely valuable opportunity for drug discovery, but it has become

necessary to revise the techniques used for identifying new therapeutic activities. Traditional

methods—involving rigorous experimental validation and high cost—are still necessary for es-

tablishing whether associations between venoms and therapeutic effects actually work in living

systems, but data-driven computational approaches stand ready to make this process easier

by generating new hypotheses backed by existing evidence and multiple levels of statistical

validation. VenomSeq is an early example of these.

VenomSeq takes a two-pronged approach, combining connectivity analysis and master regu-

lator analysis to provide two orthogonal views of the effects venoms have on human cells, where

likely therapeutic effects are validated using publicly available knowledge representations and

databases. In this study, we tested the venomseq workflow on 25 diverse venoms applied to

human IMR-32 cells, and discovered a number of new therapeutic hypotheses supported by
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existing literature evidence.

To reinforce the validity of the hypotheses found by VenomSeq, we will need to apply the

pipeline to new venoms and new human cell lines, and to test the pipeline on venoms, venom

fractions, and isolated venom components with well-understood therapeutic modes of action.

Like described previously, we are in the process of conducting follow-up validation assays to test

specific hypotheses learned via the connectivity analysis, the results of which will be included

in a future revision of this manuscript.

5. Supplemental Materials

All relevant supplemental data and materials are available in a .zip archive accompanying this

manuscript. Additional figures and tables are available in the appendices of this manuscript,

as referred to throughout the text.
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7. Methods

Obtain 25 crude venoms

Human (IMR-32) cells

Expose cells to venoms Reverse transcribe,
barcode, and pool cDNA

cDNA

Barcoded

Extraction and
reverse transcription

Venom collection
and lyophilization 

mRNA Sequencing
and binning

CCCCTCCTCGCGAGTT…Pooled
samples

RNA-Seq

v1 v3

v2 v4

Reads by venom

PLATE-Seq

Figure 6: RNA-Seq strategy for VenomSeq. Crude venoms are extracted and lyophilized. IMR-
32 cells in culture are then treated with predetermined dosages of reconstituted
venoms, and the PLATE-Seq method [Bush et al., 2017] is used to isolate, sequence,
and count reads corresonding to cellular mRNA.
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Table 8: 25 venoms used to validate the VenomSeq workflow. Numbers in the right column are
used as placeholder names for the venoms in data files.

Species name Common name Venom number
Naja nivea Cape cobra 1
Laticauda colubrina Banded sea krait 2
Montivipera xanthina Ottoman viper 3
Dendroaspis polylepis polylepis Black mamba 4
Crotalus scutulatus scutulatus Mojave rattlesnake 5
Atractaspis sp. Burrowing asp 6

Macrothele gigas Japanese funnel web spider 7
Linothele fallax Tiger spider 8
Poecilotheria fasciata Sri Lanka ornamental spider 9
Argiope lobata — 10

Synanceia verrucosa Reef stonefish 11
Synanceia horrida Estuarine stonefish 12

Buthus occitanus Common yellow scorpion 13
Leiurus quinquestriatus Deathstalker 14
Scorpio maurus Large-clawed scorpion 15

Bufo bufo Common toad 16
Rhinella marina Cane toad 17
Bombina variegata Yellow-bellied toad 18

Apis mellifera Western honey bee 19
Vespa crabro European hornet 20
Scolopendra subspinipes dehaani Vietnamese centipede 21

Conus marmoreus Marbled cone snail 22
Conus imperialis Imperial cone snail 23
Octopus macropus Atlantic white-spotted octopus 24
Pterois volitans Red lionfish 25

7.1. Reagents and materials

We performed growth inhibition assays and perturbation experiments using IMR-32 cells—

an adherent, metastatic neuroblastoma cell line used in previous applications of PLATE-Seq

and VIPER—grown in FBS-supplemented Eagle’s Minimum Essential Medium (EMEM). All

venoms were provided in lyophilized form and stored at -20 C. Since venoms naturally exist in

aqueous solution, we reconstituted them in ddH2O at ambient temperature.
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7.2. Obtaining 25 venoms

VenomSeq is designed to apply to all venomous species across all taxonomic clades. Accordingly,

we validated the workflow using 25 venoms sampled from a diverse range of species distributed

across the tree of life. We selected the 25 species based on availability and compliance with

international law, and sought to balance maximal cladistic diversity with minimal expected

cytotoxicity (e.g., snakes in the genus Bitis are known for inducing tissue death and necro-

sis, and are therefore challenging to use for drug discovery applications [Ponte et al., 2010]).

We purchased the 25 venoms from Alpha Biotoxine in lyophilized form, and obtained prior

approval from the US Centers for Disease Control (CDC) through the Federal Select Agent

Program [Gonder, 2005] for importing venoms containing α-conotoxins. The 25 venoms we

selected are shown in Table 8. Note that we assigned a numeric identifier to each venom for

convenience—these numbers show up numerous places in the data for VenomSeq. We also have

included a rooted cladogram of the 25 species in Figure 7.

7.3. Growth inhibition assays

A major challenge in generating differential gene expression data for discovery purposes is

finding appropriate dosages for the compounds being tested. This is done to ensure the com-

pound is in sufficient concentration to be exerting an observable effect on the cells, while also

mitigating processes that result from toxicity (e.g., apoptosis). In practice, determining an

appropriate dosage concentration usually makes use of previous experimental evidence and/or

biochemical constants, but since these are generally not available for crude venoms, we instead

determined dosages based on growth inhibition.

We prepared 2-fold serial dilutions of each venom, starting from 2.0 mg µl−1. We seeded

96-well plates with IMR-32 cells and exposed them to the serial dilutions of the venoms after

24 hours of incubation. 48 hours after exposure, we quantified growth inhibition of the IMR-32

cells via cell viability luminesence assays.

For each venom, we fit these data to the Hill equation:

y = Bottom + (Top− Bottom)
1 + 10(log GI50−x)×h
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Figure 7: Rooted cladogram showing the 25 species used in VenomSeq. Clades corresponding
to major taxonomic groups are labeled as indicated.
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where x is venom concentration, y is response (i.e., percent growth compared to untreated

cells), Top and Bottom are the maximum and minimum values of y, respectively, and h is a

constant that controls the shape of the sigmoidal curve. We used the resulting GI20 values (i.e.,

the value of x such that y = 100%−20% = 80%) as the venom exposure concentrations for the

following sequencing experiments. Since some of the curves had very steep slopes (indicating

rapid loss of total cell viability after miniscule changes in venom concentration), we confirmed

the accuracy of the GI20 concentrations via secondary viability assays using the exact GI20

values extrapolated from the growth inhibition curves.

7.4. mRNA Sequencing

We prepared samples of human IMR-32 cells in 96-well cell culture plates, allowing for 3

replicates at each of 3 time points (6, 24, and 36 hours post-treatment) for each of the 25

venoms. The layout of the samples across 2 96-well plates is available in Appendix A.

We reconstituted the crude venoms in water, and treated the samples with corresponding

venoms at the previously determined GI20 values. We additionally prepared 12 control samples

treated with water only, and 9 control samples that were untreated. Following total mRNA

extraction, we carried out the PLATE-Seq protocol [Bush et al., 2017] to obtain gene counts

for each sample. All sequencing was performed on the Illumina HiSeq platform. We used

STAR [Dobin et al., 2013] to (1) map the demultiplexed reads to the human genome (build

GRCh38 [Schneider et al., 2017]) and (2) count the reads mapping to known genes. For detailed

quality control data for the sequencing experiments, refer to Appendix A.

7.5. Constructing expression signatures

We constructed differential gene expression signatures using the DESeq2 [Love et al., 2014]

library for the R programming language. DESeq2 fits observed counts for each gene to a

negative binomial distribution with mean µij and dispersion (variance) αi, which we find to

be a more robust model than traditional approaches based on the Poisson distribution (i.e., by

allowing for unequal means and dispersions). In practice, users can substitute any method for

determining significantly up- and down-regulated genes from count data. We filtered for genes
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Functional
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Figure 8: Strategy for discovering new associations from VenomSeq data. After obtaining pro-
cessed gene counts per sample, we generated differential expression signatures for
each venom, and then used the signatures in two parallel analyses: connectivity
analysis, and master regulator analysis.

with an FDR-corrected p-value < 0.05, and recorded their respective mean log2-fold change

values, noting whether expression increased (up-regulated) or decreased (down-regulated).

7.6. Comparing venoms to known drugs and diseases

7.6.1. Comparing to known drugs using the Connectivity Map

We retrieved the most recently published Connectivity Map dataset from the Clue.io Data

Library (GSE92742), which contains 473,647 perturbational signatures, each consisting of ro-

bust Z-scores for 12,328 genes, along with relevant metadata. We then used the procedure

described by the Connectivity Map team [Subramanian et al., 2017] to generate connectivity

scores between each of the VenomSeq gene expression signatures and each of the reference ex-

pression profiles in the Connectivity Map database. This procedure, adapted for VenomSeq, is

summarized below.
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Let a query qi be the two lists of up- and down-regulated genes corresponding to the dif-

ferential expression signature for venom i, and rj ∈ R be a vector of gene-wise Z-scores in

reference expression signature j. We first generate a Weighted Connectivity Score (WCT) (or

Raw Connectivity Score) between qi and rj :

wqr =

 (ESq,r
up − ES

q,r
down)/2 if sgn(ESq,r

up ) 6= sgn(ESq,r
down)

0 otherwise

where sgn denotes the sign function d
dx |x|, and ESqr

· is the signed enrichment score for either

the up- or down-regulated genes in the signature, calculated separately (see Appendix 7.6.1

for details).

Although we validated VenomSeq on only a single human cell line, the reference database

provided by the Connectivity Map provides expression profiles on 9 core cell lines, across

multiple classes of perturbagens. Therefore, we compute normalized versions of WCS called

Normalized Connectivity Scores (NCSs):

NCSq,r =

 wq,r/µ
+
c,t if sgn(wq,r) > 0

wq,r/µ
−
c,t otherwise

where µ+
c,t and µ−

c,t are the means of all positive or negative WCTs (respectively) for the given

cell line and perturbagen type.

The final step in computing connectivity scores between a venom q and a reference r is to

convert NCSq,r into a value named τ , which represents the signed quantile score in the context

of all positive or negative NCSs:

τq,r = sgn(NCSq,r)100
N

N∑
i=1

[|NCSi,r| < |NCSi,r|]

where N is the number of all expression signatures in the reference database and |NCS| is the

absolute magnitude of an NCS.
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Enrichment Score computation For a venom q and reference expression signature r, the

enrichment score ESqr
· is a signed Kolmogorov–Smirnov-like statistic indicating whether the

subset of up- or down-regulated genes in q tend to occur towards the beginning or the end of a

list of all genes ranked by expression level in r. We follow a procedure similar to that described

by Lamb et al. in [Lamb et al., 2006]. Specifically, we compute the following two values:

a = tmax
j=1

[
j

t
− Vqr(j)

n

]

b = tmax
j=1

[Vqr(j)
n

− (j − 1)
t

]

where Vqr is the vector of nonnegative integers that gives the indexes of the genes in q within

the list of all genes ordered corresponding to their assumed values in r, t is the number of genes

in q, and n is the number of genes reported in the reference database (in practice, t� n). We

then set ES as follows:

ESqr
· =

 a if a > b

−b if a < b

Since each query q consists of two lists—one of up-regulated and one of down-regulated genes—

we compute both ESqr
up and ESqr

down, respectively, and use these two values to compute wqr, as

described above.

7.6.2. Comparing to known diseases using master regulator analysis

We discovered associations between the venom expression profiles and known diseases (coded

as UMLS concept IDs) as the result of two sequential steps: (1) algorithmic determination of

substantially perturbed cell regulatory modules (called regulons), and (2) mapping master reg-

ulators to diseases using high-confidence associations distributed in the DisGeNET database.

These took as input the same differential expression data used in the connectivity analysis.

IMR-32 regulon data (in the form of an adjacency matrix, where nodes are genes and edges

are measures of mutual information with respect to their coexpression) were provided by the

authors of the ARACNe algorithm.

In order to identify perturbed regulons, we first performed a 2-tailed Student’s t-test between
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the genes’ expression in the ‘test’ set (samples perturbed by venoms) and the ‘reference’ set

(control samples). To make the final expression signatures, we then converted the results of the

t-tests to Z-scores, to make them consistent with the models used by downstream algorithms.

We generated null scores by performing the same test on the expression data with permuted

sample labels, to account for correlation structures between genes. Once we had computed

Z-scores, we ran the msVIPER algorithm, which derives enrichment statistics for each regulon

based on the expression levels of the genes contained in the regulon. The result of msVIPER

is a table of regulons (labeled by their master regulator), with enrichment scores, p-values, and

FDR-corrected adjusted p-values.

We then compared the significantly upregulated regulons to the manually curated subset

of TF–disease associations from the DisGeNET database. To do so, we mapped the statisti-

cally significant master regulator TFs for each venom to TFs reported in DisGeNET, and then

mapped those TFs to their associated diseases. To help with filtering venom–disease associa-

tions with low evidence, we only retained diseases where at least two of the regulons that were

significantly disregulated by the venom are associated with the same disease. Accordingly, we

considered diseases with the highest number of significantly disregulated master regulators to

comprise the associations with the greatest amount of evidence.

Similarly to how we mapped drugs to drug classes, we mapped diseases to disease categories.

To do so, we identified the set of ICD-9 codes for each disease, based on the diseases’ entries in

the UMLS (UMLS CUIs were provided by DisGeNET). We then identified the disease category

as the top-level ICD-9 ‘chapter’ corresponding to that ICD-9 code (e.g., NEOPLASMS, MENTAL

DISORDERS, DISEASES OF THE RESPIRATORY SYSTEM, etc.). In rare instances where a disease

or condition was present in two locations (e.g., ‘hypertension’ is found in 2 chapters: DISEASES

OF THE CIRCULATORY SYSTEM (401), and INJURY AND POISONING (997.91)), we opted for the

more specific of the two (e.g., avoiding entries containing “not elsewhere classified”).

7.7. Assessing sequencing technology and cell type compatibility

Since VenomSeq uses a sequencing technology (PLATE-Seq) and a cell line (IMR-32) that

have not been used previously with the connectivity analysis approach, we evaluated their
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compatibility using a secondary dataset consisting of IMR-32 cells perturbed with 37 drugs

and sequenced using PLATE-Seq. Since these drugs have known effects—and since many are

present in the L1000 reference dataset—we sought to determine the extent to which connectiv-

ity analysis captures functional similarities between these drug data and the L1000 reference

expression profiles. The 37 drugs are listed in Table 5. For the purposes of this discussion,

a “query signature” is an expression signature corresponding to one of the 37 drugs in the

validation dataset, and a “reference profile” is an L1000 expression profile from the dataset

(GSE92742) published by the Connectivity Map team and used in the crude venom connec-

tivity analysis.

Using these data (consisting of gene count matrices with several technical replicates per

drug), we constructed differential expression signatures and performed the connectivity analysis

algorithm in the same manner as we had for IMR-32 cells exposed to the 25 crude venoms. We

annotated each of the 37 drugs (where possible) with perturbagen classes (PCLs) defined by the

Connectivity Map team, which allowed us to identify L1000 expression profiles that come from

the same drug classes as the drugs in our validation dataset. We then evaluated connectivity

scores among members of the same PCL from two perspectives: (1) By aggregating all τ

scores for reference profiles corresponding to a given compound, integrating evidence from all

cell lines, and (2) by aggregating τ scores within individual cell lines, allowing us to assess the

degrees to which specific cell lines are compatible with IMR-32/PLATE-Seq query signatures.

For the first of these two approaches, we collected all values of τ connecting query signatures

in a PCL to reference profiles in the same PCL, and constructed null models by retrieving τ

scores between the same query signature and all reference profiles that are members of any

PCL. We defined the “effect size” of each PCL annotation as the difference of the mean of the

scores within the true PCL and the mean of the scores in the null model. Additionally, we

determined statistical significance using independent two-sample Student’s t-tests. To correct

for multiple testing, we adjusted p-values using the Benjamini-Hochberg procedure (α = 0.05).

For the second approach—in which we evaluated each of the 9 core L1000 cell lines separately

for each query signature—we retrieved τ scores between query signatures and each of the 92

PCLs in the reference dataset. Then, for each of the 9 cell lines and each of the query signatures
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annotated to a PCL, we constructed ordered lists of all PCLs ranked by their mean τ score

in descending order (highest to lowest connectivity). In each of those lists, we determined the

rank corresponding to the expected (“true”) PCL—which we call the rank percentiles—and

aggregated these ranks separately by (a) the drug corresponding to the query signature and

(b) cell line of the reference profile. These two strategies allow us to separately assess the

effects of drugs and cell lines on the behavior of connectivity scores. Under the null hypothesis

that there is no selective preference for the true PCL in the connectivity data, the mean rank

percentiles would follow a continuous uniform distribution in the range [0, 1]. Alternatively,

if there is a selective preference for the expected PCL in the connectivity data, this rank will

tend to occur towards the front of the list of ranks (and vice-versa).
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Appendix A PLATE-Seq quality control data
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Figure 9: Quality control plots. (a.) Number of detected genes (mapped reads ≥ 2) as a
function of the total number of mapped reads per sample. (b.) Saturation analysis
by in silico subsampling. Original data points are indicated by the black dots.
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Figure 10: Barplot showing the number of mapped reads per sample.
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Figure 11: Barplot showing the number of detected genes per sample.
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Plate 1:
Well Venom Conc. (uG/uL) Time (Hrs)
A1 1 0.008 6 6
B1 2 2.000 0 6
C1 3 0.001 9 6
D1 4 2.000 0 6
E1 5 0.001 6 6
F1 6 0.007 9 6
G1 7 0.003 6 6
H1 8 0.124 7 6
A2 9 0.531 9 6
B2 10 1.085 4 6
C2 11 2.000 0 6
D2 12 2.000 0 6
E2 13 0.754 4 6
F2 14 0.949 1 6
G2 15 0.092 6 6
H2 16 0.000 2 6
A3 17 0.000 2 6
B3 18 0.157 9 6
C3 19 0.024 2 6
D3 20 0.838 2 6
E3 21 0.008 2 6
F3 22 2.000 0 6
G3 23 0.709 7 6
H3 24 2.000 0 6
A4 25 2.000 0 6
B4 Water − 6
C4 Water − 6
D4 Water − 6
E4 Water − 6
F4 Untreated − 6
G4 Untreated − 6
H4 Untreated − 6
A5 1 0.008 6 24
B5 2 2.000 0 24
C5 3 0.001 9 24
D5 4 2.000 0 24
E5 5 0.001 6 24
F5 6 0.007 9 24
G5 7 0.003 6 24
H5 8 0.124 7 24
A6 9 0.531 9 24
B6 10 1.085 4 24
C6 11 2.000 0 24
D6 12 2.000 0 24
E6 13 0.754 4 24
F6 14 0.949 1 24
G6 15 0.092 6 24
H6 16 0.000 2 24
A7 17 0.000 2 24
B7 18 0.157 9 24
C7 19 0.024 2 24
D7 20 0.838 2 24
E7 21 0.008 2 24
F7 22 2.000 0 24
G7 23 0.709 7 24
H7 24 2.000 0 24
A8 25 2.000 0 24
B8 Water − 24
C8 Water − 24
D8 Water − 24
E8 Water − 24
F8 Untreated − 24
G8 Untreated − 24
H8 Untreated − 24
A9 1 0.008 6 36
B9 2 2.000 0 36
C9 3 0.001 9 36
D9 4 2.000 0 36
E9 5 0.001 6 36
F9 6 0.007 9 36
G9 7 0.003 6 36
H9 8 0.124 7 36
A10 9 0.531 9 36
B10 10 1.085 4 36
C10 11 2.000 0 36
D10 12 2.000 0 36
E10 13 0.754 4 36
F10 14 0.949 1 36
G10 15 0.092 6 36
H10 16 0.000 2 36
A11 17 0.000 2 36
B11 18 0.157 9 36
C11 19 0.024 2 36
D11 20 0.838 2 36
E11 21 0.008 2 36
F11 22 2.000 0 36
G11 23 0.709 7 36
H11 24 2.000 0 36
A12 25 2.000 0 36
B12 Water − 36
C12 Water − 36
D12 Water − 36
E12 Water − 36
F12 Untreated − 36
G12 Untreated − 36
H12 Untreated − 36

Plate 2:
Well Venom Conc. (uG/uL) Time (Hrs)
A1 1 0.008 6 6
B1 2 2.000 0 6
C1 3 0.001 9 6
D1 4 2.000 0 6
E1 5 0.001 6 6
F1 6 0.007 9 6
G1 7 0.003 6 6
H1 8 0.124 7 6
A2 9 0.531 9 6
B2 10 1.085 4 6
C2 11 2.000 0 6
D2 12 2.000 0 6
E2 13 0.754 4 6
F2 14 0.949 1 6
G2 15 0.092 6 6
H2 16 0.000 2 6
A3 17 0.000 2 6
B3 18 0.157 9 6
C3 19 0.024 2 6
D3 20 0.838 2 6
E3 21 0.008 2 6
F3 22 2.000 0 6
G3 23 0.709 7 6
H3 24 2.000 0 6
A4 25 2.000 0 6
B4 Water − 6
C4 Water − 6
D4 Water − 6
E4 Water − 6
F4 Untreated − 6
G4 Untreated − 6
H4 Untreated − 6
A5 1 0.008 6 24
B5 2 2.000 0 24
C5 3 0.001 9 24
D5 4 2.000 0 24
E5 5 0.001 6 24
F5 6 0.007 9 24
G5 7 0.003 6 24
H5 8 0.124 7 24
A6 9 0.531 9 24
B6 10 1.085 4 24
C6 11 2.000 0 24
D6 12 2.000 0 24
E6 13 0.754 4 24
F6 14 0.949 1 24
G6 15 0.092 6 24
H6 16 0.000 2 24
A7 17 0.000 2 24
B7 18 0.157 9 24
C7 19 0.024 2 24
D7 20 0.838 2 24
E7 21 0.008 2 24
F7 22 2.000 0 24
G7 23 0.709 7 24
H7 24 2.000 0 24
A8 25 2.000 0 24
B8 Water − 24
C8 Water − 24
D8 Water − 24
E8 Water − 24
F8 Untreated − 24
G8 Untreated − 24
H8 Untreated − 24
A9 1 0.008 6 36
B9 2 2.000 0 36
C9 3 0.001 9 36
D9 4 2.000 0 36
E9 5 0.001 6 36
F9 6 0.007 9 36
G9 7 0.003 6 36
H9 8 0.124 7 36
A10 9 0.531 9 36
B10 10 1.085 4 36
C10 11 2.000 0 36
D10 12 2.000 0 36
E10 13 0.754 4 36
F10 14 0.949 1 36
G10 15 0.092 6 36
H10 16 0.000 2 36
A11 17 0.000 2 36
B11 18 0.157 9 36
C11 19 0.024 2 36
D11 20 0.838 2 36
E11 21 0.008 2 36
F11 22 2.000 0 36
G11 23 0.709 7 36
H11 24 2.000 0 36
A12 25 2.000 0 36
B12 Water − 36
C12 Water − 36
D12 Water − 36
E12 Water − 36
F12 Untreated − 36
G12 Untreated − 36
H12 Untreated − 36

Table 9: Layout of samples in 2 96-well plates for PLATE-Seq.
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Figure 12: Detected genes and spike-ins. (a.) Association between the number of mapped reads
and detected genes for each of the 96 analyzed samples. (b.) Heatmap showing the
number of reads (thousands) mapping to spike-ins for each of the samples.
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Appendix B Mechanism diagrams

The following mechanisms—from the Reactome web resource—describe the molecular functions

for ATPase inhibitor and FGFR inhibitor drugs, which have similar effects on global gene

expression as A. lobata and S. maurus venom, respectively (see §3.3).

Figure 13: Structure of digoxin (left), a cardiac glycoside that inhibits the function of the
Na+/K+ ATPase (ATP1A; right) in the myocardium, which causes a decrease in
heart rate [Kühlbrandt, 2004]. A. lobata venom has similar differential expression
effects to those of digoxin and other ATPase inhibitor drugs, based on connectivity
analysis. Diagram from Reactome [Fabregat et al., 2015].
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Figure 14: Diagram of FGFR signaling pathways. FGFR inhibitors target 1 of the 4 types
of FGFR complexes, abnormal activity of which are involved in angiogenesis.
VenomSeq suggests therapeutic similarity between S. maurus venom and existing
FGFR inhibitor drugs. Pathway diagram from Reactome [de Bono et al., 2007].
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Appendix C Miscellaneous supplemental figures
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Figure 15: MA plot showing genewise relationship between log2 fold change and mean of nor-
malized counts in samples corresponding to O. macropus venom. Each point repre-
sents one gene. Points in red indicate statistically significant genes with regard to
differential expression.
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