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Abstract
Recent findings suggest that acetylcholine me-
diates uncertainty-seeking behaviors through
its projection to dopamine neurons – another
neuromodulatory system known for its major
implication in reinforcement learning and
decision-making. In this paper, we propose a
leaky-integrate-and-fire model of this mecha-
nism. It implements a softmax-like selection
with an uncertainty bonus by a cholinergic
drive to dopaminergic neurons, which in turn
influence synaptic currents of downstream
neurons. The model is able to reproduce
experimental data in two decision-making
tasks. It also predicts that i) in the absence
of cholinergic input, dopaminergic activity
would not correlate with uncertainty, and that
ii) the adaptive advantage brought by the
implemented uncertainty-seeking mechanism
is most useful when sources of reward are not
highly uncertain. Moreover, this modeling
work allows us to propose novel experiments
which might shed new light on the role of
acetylcholine in both random and directed ex-
ploration. Overall, this study thus contributes
to a more comprehensive understanding of
the roles of the cholinergic system and its
involvement in decision-making in particular.

1Sorbonne Université, CNRS UMR 7222, Institut
des Systèmes Intelligents et de Robotique, ISIR, F-
75005 Paris, France.
2ETIS Laboratory, UMR 8051, Université Paris Seine,
ENSEA, CNRS, Université de Cergy-Pontoise, F-95000
Cergy-Pontoise, France.
3Department of Cognitive Sciences,University of Cali-
fornia, Irvine, Irvine, CA 92697, USA.
4Department of ComputerScience, University of Cali-
fornia, Irvine, Irvine, CA 92697, USA

*Corresponding author: MB, belkaid@isir.upmc.fr

1 Introduction
Animals constantly face uncertainty due to
noisy and incomplete information about the
environment. From the information-processing
perspective, uncertainty is typically considered
a burden, an issue that has to be resolved
for the animal to behave correctly [Cohen
et al., 2007; Rao, 2010]. In the framework of
reinforcement learning, for example, to allow
optimal exploitation and outcome maximiza-
tion, agents must explore the environment
and gather information about action–outcome
contingencies [Sutton and Barto, 1998; Rao,
2010].

The neural mechanisms driving the decision
to perform actions with uncertain outcomes
are still poorly understood. In contrast, the
processes by which individuals learn to per-
form successful actions have been extensively
studied. Notably, the dopaminergic system is
thought to play a key role in these processes,
both in the learning- and in the motivation-
related aspects [Schultz, 2002; Berridge, 2012;
Berke, 2018]. Moreover, studies have reported
dopaminergic activities that are correlated
with the uncertainty of reward [Fiorillo et al.,
2003; Linnet et al., 2012].

Another neuromodulatory system which
has been largely implicated in the processing
of novelty and uncertainty is the cholonergic
system. For instance, Yu and Dayan [2005]
suggested that acetylcholine (ACh) suppresses
top-down, expectation-driven information
relative to bottom-up, sensory-induced signals
in situations of expected uncertainty, i.e.
when expectations are known to be unreliable.
Additionally, Hasselmo [1999, 2006] proposed
that the level of ACh in the hippocampus
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determines whether it is encoding new infor-
mation or consolidating old memories. The
cholinergic system also interacts with the
dopaminergic system. In particular, there are
cholinergic projections onto neurons in the
ventral tegmental area (VTA), one of the two
major sources of dopamine (DA) in the brain
[Avery and Krichmar, 2017; Scatton et al.,
1980]. In a recent study, Naudé et al. [2016]
provided evidence that these projections might
mediate the motivation to select uncertain
actions.

The softmax rule, where the probability
of choosing an action is a function of its
estimated value, is generally thought to be
a good model of human [Daw et al., 2006]
and animal [Cinotti et al., 2019] decision-
making. But Naudé et al. [2016] showed that
the decisions made by wild-type (WT) mice
exhibited an uncertainty-seeking bias and
followed a softmax function which included
an uncertainty bonus. In contrast, mice
lacking the nicotinic acetylcholine receptors
on the dopaminergic neurons in VTA showed
less uncertainty-seeking behaviors and their
decisions rather followed the standard softmax
rule.

In neural networks, decision-making pro-
cesses are generally modeled using competition
mechanisms [Rumelhart and Zipser, 1985; Car-
penter and Grossberg, 1988]. Such mechanisms
can constitute a neural implementation of the
softmax rule. In particular, Krichmar [2008]
proposed a model where neurotransmitters act
upon different synaptic currents to modulate
the network’s sensitivity to differences in input
values, much like the temperature parameter
in the softmax model [Sutton and Barto, 1998].
In this paper, we propose a new version of this
model using leaky-integrate-and-fire neurons
and integrating an uncertainty bonus. We use
this model, in comparison with three alterna-
tive models, to verify a set of hypotheses about
how cholinergic projections to dopaminergic
VTA neurons in mediate uncertainty-seeking.
We then perform additional experiments to
assess the interest of such a mechanism for
animals foraging in volatile environments.
These simulations suggest that ACh effects
behavior by translating uncertainty into a

source of motivation thus driving exploratory
behaviors.

2 Background

2.1 Dopamine

Dopamine (DA) is involved in decision-making
through its role in reward processing and mo-
tivation [Schultz, 2002; Berridge, 2012]. The
largest group of dopaminergic neurons is found
in the ventral tegmental area (VTA) [Scatton
et al., 1980]. It projects to the basal ganglia
(BG), in particular to the striatum, but also to
the frontal cortex. The substantia nigra is also
an important source of dopamine in the BG.

There is strong evidence of the role of
dopamine in the learning of the value of
actions, stimuli and states of the environment.
In this context, Schultz and colleagues hypoth-
esized that the activity of DA neurons encodes
a reward prediction error [Schultz, 2002].
Indeed, phasic dopaminergic activities show
strong correlations with an error in the pre-
diction of conditioned stimuli after Pavlovian
learning. Moreover, Berridge and colleagues
suggest that DA is essential for “incentive
salience” and “wanting”, i.e. for motivation
[Berridge and Kringelbach, 2008; Berridge,
2012]. For instance, DA deprived rats are
unable to generate the motivation arousal
necessary for ingestive behavior and can starve
to death although they are able to move and
eat [Ungerstedt, 1971]. However, dopamine
has also been suggested to signify novelty,
which may be related to an uncertainty signal
[Redgrave and Gurney, 2006]. In summary,
the dopaminergic system seems to implement
a series of mechanisms that reinforce and favor
stimuli and actions that have been rewarding
in the past, or that may be of interest in the
future.

2.2 Acetylcholine

Acetylcholine (ACh) originates from various
structures in the brain: the laterodorsal
tegmental (LDT) and the pedunculopontine
tegmental (PPT) mesopontine nuclei pro-
jecting to the VTA and other nuclei in the
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brainstem, basal forebrain and basal gan-
glia [Mena-Segovia, 2016]; the medial septal
nucleus mainly targeting the hippocampus;
and the nucleus basalis in the basal forebrain
mainly acting on the neocortex [Baxter and
Chiba, 1999]. In addition, striatal interneurons
provide an internal source of ACh in the BG.

ACh has been largely implicated in the pro-
cessing of novelty and uncertainty. Significant
research highlighted this role in the septo-
hippocampal cholinergic system for instance.
In this case, novelty detection increases the
level of septal ACh: novel patterns elicit little
recall which reduces hippocampal inhibition
of the septum and allows ACh neurons to
discharge [Meeter et al., 2004]. In addition,
Hasselmo [1999, 2006] proposed that high and
low levels of ACh in the hippocampus – during
active waking on the one hand, and quiet
waking and slow-wave sleep on the other hand
– respectively allow encoding new information
and facilitate memory consolidation. Similarly,
higher activity of the cholinergic neurons in
the tegmentum and nucleus basalis have been
shown to be associated with cortical activation
during waking and paradoxical sleep [Jones,
2005] – a sleep phase physiologically similar to
waking states. Thus, various computational
models of the cholinergic system have focused
on its role in learning and memory [Hasselmo,
2006; Pitti and Kuniyoshi, 2011; Grossberg,
2017].

A complementary theory was devel-
oped by Yu and Dayan [2005] suggesting
that acetylcholine suppresses top-down,
expectation-driven information relative to
bottom-up, sensory-induced signals in sit-
uations of expected uncertainty, i.e. when
expectations are known to be unreliable. To
illustrate their theory, the authors modeled
the so-called Posner task. Posner [1980]
proposed this paradigm to study attentional
processes. Typically, a cue is presented to the
participants, followed by a target stimulus.
Posner [1980] showed that individuals respond
more rapidly and accurately on correctly cued
trials (i.e. cue on the same side as the target)
than on incorrectly cued trials (i.e. cue on
opposite side). The difference in response
time between valid and invalid trials is termed

validity effect (VE). The model proposed by
Yu and Dayan [2005] reproduced the results
obtained by Phillips et al. [2000] which showed
in rats experiments that VE varies inversely
with the level of ACh which was manipulated
pharmacologically. Additionally, ACh has
been hypothesized to set the threshold for noa-
drenergic signaling of unexpected uncertainty
[Yu and Dayan, 2005] which calls for more
exploration by counterbalancing DA-driven
exploitation [Cohen et al., 2007].

3 Methods

3.1 Bandit task

The experiment reported by Naudé et al.
[2016] was a 3-armed bandit task adapted
for mice. The setup was an open-field in
which three target locations were associated
with a certain probability of rewards (Figure
1A), which was delivered through intracranial
self-stimulation (ICSS). Mice could not receive
two consecutive ICSS at the same location.
Thus, each time they were at a target location,
they had to choose the next target among the
two remaining alternatives. As in a classical
bandit task, this is referred to as a gamble.
Since the outcome is binary (i.e. reward
delivered or not), the expected uncertainty
was represented by the variance p(1 − p) of
Bernoulli distributions (Figure 1B).

Naudé et al. [2016] used this task to
study the influence of uncertainty on decision-
making, and more specifically on the dopamin-
ergic activity under the influence of cholinergic
projections. Notably, they showed that while
wild type (WT) mice exhibited uncertainty-
seeking behavior in their task, such behaviors
were suppressed in mice with deleted nicotinic
acetylcholine receptors in the dopaminergic
neurons in VTA (hereafter KO mice).

3.2 Neural Network Model of Un-
certainty Seeking

We model the decision-making process in-
volved in this task using an artificial neural
network (Figure 1C). This network has
three channels, each corresponding to one of
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Figure 1: Bandit task and core model A) Task
setup used by Naudé et al. [2016]. B) Expected reward
and uncertainty as a function of reward probability in
this task. C) Neural network model of decision-making.
(see text for description).

the targets. Similar to Krichmar [2008], the
competition takes place in a decision layer were
neurons have lateral excitatory and inhibitory
connections in addition to extrinsic input from
downstream layers. Neuromodulatory signals
driven by the cholinergic and dopaminergic
representative neurons modulate this competi-
tion. When the dopaminergic activity is low,
the low signal-to-noise ratio in decision neurons
leaves room for exploration. However, strong
dopaminergic activity amplifies the efficacy
of extrinsic input connections and those of
inhibitory interconnections in order to achieve
exploitative decisions. This neuromodulation
thus implements a neuronal equivalent to the
softmax decision policy based on the value of
the target. Moreover, the cholinergic activity
increases the firing of DA and introduces an
uncertainty bias in the softmax-like neuro-
modulation of the competition. In the bandit
task simulations, the value and uncertainty
signals are manually provided to the model
(see Section 3.2.1).

All neurons are leaky-integrate-and-fire
(LIF) neurons. The change in the membrane

potential V is represented as follows:

τ.
dV (t)

dt
= −V (t) + Vrest + Iin(t).R (1)

where τ is the time constant, Vrest is the resting
potential, R the resistance of the membrane,
and Iin the input current:

Iin(t) =Iext(t) + I0(t) (2)
with I0 ∼ N (µ0, σ0) (3)

where Iext and I0 are respectively extrinsic and
background input currents. The latter is mod-
eled as a Gaussian distribution N (µ0, σ0) and
accounts for spontaneous activities as well as
possible other extrinsic inputs which are not
specifically modeled here. When the membrane
potential is higher than a threshold Vth, the
neuron fires, i.e. the potential rises to Vspike
then decreases to Vrest and a current Iout is
transmitted to post-synaptic neurons:

If V (t) > Vth then


V (t) = Vspike

V (t+ 1) = Vrest

Iout(t) = 1

(4)

A single trial of the experiment consists of
a decision made between two target locations.
For simplicity, neurons of the target identifica-
tion layer (in blue in Figure 1A) were tuned
such that they fire every two iterations (a spike
is followed by a refractory period) with random
initialization. Only the two target neurons cor-
responding to the current options are activated
in each trial.

Similarly to the model used by Krichmar
[2008], the extrinsic input current of the deci-
sion neurons Idecext (in green in Figure 1A) is
defined as follows:

Idecext (x, t) = w(1 + nm(x, t)).I tarout(x, t) (5)

+
∑
y 6=x

w.Idecout(y, t− dt)

−
∑
y 6=x

w(1 + nm(x, t)).Idecout(y, t− dt)
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where x ∈ {A,B,C} corresponds to the gam-
bling options, w is a synaptic weight and nm
is a neuromodulation factor that we will define
below.

As for selection neurons (in orange in Fig-
ure 1A), the extrinsic input current is simply
Iselext(x, t) = Idecout(x, t). This layer implements a
winner-takes-all readout of the decision. The
first spike corresponds to the network’s deci-
sion.

In this model, decisions are modulated
by the dopaminergic system. To account for
the difference between wild type (WT) mice
and mice in which nicotinic achetylcholine
receptors in dopamine neurons were removed
(KO) reported by Naudé et al. [2016], we
defined two variants of the neuromodulation
component: the WT and KO models.

3.2.1 WT model

The ability to learn the reward probability
and maximize the outcome is thought to be
mediated by the dopaminergic system. Thus,
in our model, DA activity is a function of
the targets value v(x) representing the reward
probability. Besides, Naudé et al. [2016]
observed an uncertainty-driven motivation
in WT mice in addition to the motivation
to maximize reward by choosing the target
with highest reward probability. They showed
that this uncertainty-seeking behavior was
dependent upon the cholinergic projections
to DA neurons, which also modulate the
dopaminergic activity. Since the expected
uncertainty is thought to be encoded by ACh
neurons, in our model, ACh activity is deter-
mined by the reward uncertainty u(x) which
we represent as the variance of a Bernouilli
distribution v(x)(1 − v(x)) (Figure 1B). We
define Iu =

∑
x∈(O) u(x) as an input current

generated by the overall expected uncertainty
in the current trial, and Iv =

∑
x∈(O) v(x) an

input current generated by the overall expected
rewards in the current trial. Thus, the activity
in neuromodulation network is determined by
the following equations:

IACh
ext (t) = Iu (6)
IDA
ext (t) = Iv + IACh

out (t) (7)
nm(x, t) = IDA

out (t).(v(x) + u(x)) (8)

Introducing the output current of the ACh
neuron as an input to the DA neuron is consis-
tent with the increase of dopaminergic activity
observed in the presence cholinergic receptors
[Graupner et al., 2013; Naudé et al., 2016]. In
the bandit task, v(x) and u(x) of each target
were manually fixed for simplicity. But in the
foraging task, these variables were estimated by
the model (see Section 3.5).

3.2.2 KO model

Naudé et al. [2016] showed that uncertainty-
seeking was removed in KO mice. Their de-
cisions were rather exploitative, similarly to a
classical softmax policy. Thus, in this variant of
the model, the cholinergic effect on decision is
eliminated and the dopaminergic activity only
depends on reward probabilities:

IDA
ext (t) = Iv (9)

nm(x, t) = IDA
out (t).v(x) (10)

3.3 Alternative models

The proposed model assumes that: i) uncer-
tainty is processed by ACh, and that ii) cholin-
ergic projections to DA neurons not only in-
crease the latter’s firing rate but also the neu-
romodulation of the action selection process.
To further validate these hypotheses, we tested
three alternative models – all including a WT
and a KO variants – introducing the following
changes.

Alternative model 1. In this model, ACh
simply increases DA firing rate independently
from uncertainty. It is set to fire at a similar
rate as previously using a constant input. But,
uncertainty is neither processed by ACh nor
DA. Hence, there is no difference in the neu-
romodulation term between the WT and KO
variants, both using the form in Equation (10).
The only difference between the WT and KO
variants is whether ACh activates DA.
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Alternative model 2. In this model, the
ACh neuron also has a constant input indepen-
dent from reward uncertainty. However, un-
certainty is processed by DA neurons. Hence,
there is no difference in the neuromodulation
term between the WT and KO variants, this
time both using the form in Equation (8). The
only difference between the WT and KO vari-
ants is again whether ACh activates DA:

IDA
ext (t) =

{
(Iv + Iu)/2 + IACh

out (t), if WT
(Iv + Iu)/2, if KO

(11)

Alternative model 3. In this model, every-
thing is similar to the WT model with one ex-
ception: ACh projections only increase DA fir-
ing rate. Hence, there is again no difference
in the neuromodulation term between the WT
and KO variants, this time both using the form
in Equation (10). The only difference between
the WT and KO variants is again whether ACh
activates DA. This model differs from Alterna-
tive model 1 in that ACh firing is not driven by
a constant input but rather by the estimated
uncertainty of reward.

3.4 Foraging task

Naudé et al. [2016] did an additional exper-
iment with a dynamic setup simulating a
volatile environment. More specifically, in
each session, two of the targets were rewarding
100% of time while the remaining one was
not. The non-rewarding target changed from
one session to another (Figure 4A), which
required that animals detect the change of rule
and learn the new reward probabilities.

3.5 Learning task statistics

In Equations (6 - 10), the expected reward
probability v and uncertainty u for each
target were manually fixed. But to model
the dynamic foraging task, these statistics
about the environment outcomes could no
longer be hardwired and had to be learned by
trial-and-error.

To learn the expected reward probabilities,
we used the Rescorla-Wagner rule [Rescorla
and Wagner, 1972]:

dv(x, t)

dt
= αδ(x, t) (12)

with δ(x, t) = r(t)− v(x, t) (13)

where r is the reward function, equal to 1 when
a reward is obtained, and to 0 otherwise.

Additionally, the reward uncertainty could
be estimated as follows [Balasubramani et al.,
2014; Naudé et al., 2016]:

du(x, t)

dt
= α(δ2(x, t)− u(x, t)) (14)

The hyperparameter α was set to 0.1.

3.6 Model fitting

The hyperparameters τ , Vspike, Vth, Vrest, µ0

and σ0 are common to all neurons and were
set manually so as to determine the dynamics
of the network (see values in Table 1). The
values of Rach and Rda, i.e. the membrane resis-
tance in ACh and DA neurons respectively, was
accordingly set to match the mean firing rate
reported by Naudé et al. [2018]. We did not
have data on the firing rate of ACh neurons in
the mesopontine nuclei but the obtained firing
rate is within the range that has been reported
for other areas.

The values of Rdec, Rsel and w, i.e. re-
spectively the membrane resistance in the de-
cision and the selection layers and the baseline
synaptic weight in the lateral connection within
the decision layer, were optimized using a grid
search (see ranges listed in Table 1) to fit the
proportion of exploitative choices observed by
Naudé et al. [2016] in WT and KO mice. The
models’ results were averaged over 30 runs com-
prising 300 trials each and the fitness score S
was calculated as follows:

S = 100−
(∑

g∈G

|XWT
mice(g)−XWT

model(g)|∑
g∈G

|XKO
mice(g)−XKO

model(g)
)
/6

(15)

where X is the average proportion of exploita-
tive choices and G is the set of gambles.
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4 Results

4.1 Bandit task

In this task reported by Naudé et al. [2016],
animals had to make binary choices (called
gambles) among the remaining two out of
three target locations that were set to deliver
rewards with probabilities P = 25%, 50% and
100% respectively (Figure 2A). We modeled
this decision-making process with a neural
network (Figure 1C). The hyperparameters
determining the dynamics of the model were
first manually set to match the mean firing rate
reported by Naudé et al. [2018] in DA neurons
in vivo (Figure 2B and C). The remaining
hyperparameters of the model were optimized
to fit the proportion of exploitative choices
observed by Naudé et al. [2016] in WT and
KO mice (Figure 2D). As a result, the model
reproduced experimental data (Figure 2D).
Notably, the two groups had distinct profiles
which respectively correspond to uncertainty
bonus and standard softmax decision rules.

Interestingly, the WT and KO models also
reproduced the repartition of choices among
targets (i.e. overall percentage of times each
target was selected across trials) that was
observed by Naudé et al. [2016] (Figure 2E).

Hyperparameter Value
τ 20
Vspike 5
Vth 1
Vrest −2
µ0 0.15
σ0 0.05
Rach 60
Rda 5.5

Hyperparameter Range Step
Rdec [10, 60] 1
Rsel [5, 16] 1
w [0, 1] 0.05

Table 1: Hyperparameter values (when set) and
ranges (when optimized). The hyperparameters τ ,
Vspike, Vth, Vrest, µ0 and σ0 were chosen manually. Rach

and Rda were set to fit experimentally observed firing
rates of DA neurons. Rdec, Rsel and w were optimized
through a grid search.

A C

B
50%

25%

100%

A

B C

E

F

model

model

model

modelmice

mice

mice
D

Gamble 1

50%

100%

50%

100%

Gamble 2

50%

25%

50%

Gamble 3

25%

100%100%

n.s.

n.s.

Figure 2: The proposed model reproduces mice
behavior A) Schematic illustration of the task setup
and the three possible gambles. B) Example of spike
trains generated by the model. C) Mean firing rate
produced by the WT and KO versions of the model.
D) Percentage of exploitative transitions (i.e. choos-
ing the option with the highest reward probability) in
each gamble. WT and KO mice (Left) had distinct pro-
files, which the WT and KO models (Right) were able
to reproduce. E) Percentage of targets selection as a
function of their reward probability. The model (Right)
also reproduced the repartition of choices exhibited by
mice (Left). F) Dwell time (i.e. time to decision) was
also similar between targets with our model (Right),
like in mice (Left). Mice results were plotted with data
from Naudé et al. [2016].
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Figure 3: Alternative models fail to fully reproduce mice behavior A) Schematic illustration of the
differences in the neuromodulatory component between the core model and the three alternative models. B)
Percentage of exploitative transitions. C) Percentage of targets selection as a function of their reward probability
across gambles. In B) and C), the alternative models did not fit the profiles observed in WT and KO mice.

As with the softmax rule, KO mice and the
corresponding model selected targets propor-
tionally to their probability of reward whereas
WT mice and the corresponding model ex-
hibited a bias in favor of uncertainty in the
case of reward probability 50%. Additionally,
like in mice, there was no difference between
the targets in terms of dwell time (i.e. time
to make a decision, calculated in the model
as the time of the first spike in the trial). In
other words, there was no effect of the reward
probability on the decision time (H = 4.70,
p = 0.09, Kruskal-Wallis test; Figure 2F).
Importantly, these two criteria (repartition of
choices and dwell time) were not explicitly
optimized by the model fitting procedure.

To further validate our model, we tested

three alternative models introducing two types
of changes in the neuromodulatory component:
i) uncertainty could be either encoded by
dopamine directly or not taken into account
at all, ii) the absence of ACh receptors on
DA only affected the latter’s firing but not
the neuromodulatory effect (Figure 3A; see
‘Methods’ for more detailed explanation).
Upon optimization, none of the alternative
models was able to fully fit the behavioral data.
Indeed, the fitness scores (calculated using
Equation (15)) for these alternative models
were significantly lower than our model’s
(model versus alt1, t(29) = 3.38, p = 0.0013,
model versus alt2, t(29) = 5.63, p = 10−6,
model versus alt3, t(29) = 3.35, p = 0.0014,
t-test; Table 2). Fitness scores quantify the
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ability of the WT and KO variants of a model
to fit the proportion of exploitative transitions
made by the corresponding group of mice.
Lower scores can be explained by the fact that
WT variants of the alternative models did not
follow the same linear increase from gamble
1 to 3 (Figure 3B). Moreover, qualitatively,
the differences in exploitative transitions and
probability of selection of each target between
the WT and KO model were smaller than with
our model (Figure 3B and C).

Rdec Rsel w Score
model 12 12 0.7 96.19
alt 1 59 5 1 94.95∗∗

alt 2 43 7 0.6 94.72∗∗∗

alt 3 10 13 0.8 95.06∗∗

Table 2: Model fitting results. Optimized param-
eters and fitness scores. The proposed model has the
highest score. Rdec and Rsel are the membrane resis-
tance in the decision layer and the selection layer respec-
tively. Stars indicate the results of a t-test comparison
between the model’s score to each of the alternative
models’ score: ** p < 0.01, *** p < 0.001.

4.2 Foraging task

We also tested our model in a foraging task
where only two of the targets were rewarding.
The non-rewarding target changed from one
session to another (Figure 4A). In such a
volatile environment, animals must detect the
changes in reward probabilities and adapt
their decisions accordingly. We initially tested
a setup in which rewarding targets had 100%
probability in the original experiments [Naudé
et al., 2016]. In line with the experimental
results, we found that the KO model had
a lower foraging efficacy (i.e. global reward
rate) than the WT model (WT versus KO:
t(29) = −3.92, p = 0.0002, t-test; (Figure
4B). We split the sessions in half to analyze
the model’s behavior more closely (Figure
4C). The WT and KO models had similar
failure rates in the beginning of sessions
(WT versus KO, U = 4249.0, p = 0.566,
Mann-Whitney test), and both significantly
reduced their failure rates at the end of session
(beginning versus end of session for WT,
T = 854.5, p = 6.10−11, for KO, T = 854.5,

0%

100%

100%

B

D

A

***

*** ***

***
n.s.

C

Reward probability = 1.; uncertainty = 0.

Reward probability = .9; uncertainty = 0.09

Reward probability = .75; uncertainty = 0.1875

Reward probability = .5; uncertainty = 0.25

session 1 session 2 session 3

E
***

***

n.s.

n.s.

WT KO

Figure 4: Model’s results and predictions in
the foraging task. A) Schematic illustration of the
dynamic setup consisting of three sessions. Full circles
indicate the two rewarding targets and empty circles
indicate the non-rewarding target. B) Higher foraging
efficacy with the WT model than KO model. Efficacy is
defined as the success rate, i.e. the average proportion
of rewarded choices. C) Failure rate in the beginning
and in the end of sessions shows a decrease for both WT
and KO models but is lower for WT. D) Reward prob-
ability v and uncertainty u were correctly estimated by
the model throughout sessions. Dashed lines indicate
the correct values. E) The model predicts that the dif-
ference in foraging efficacy between WT and KO mice
vanishes in situations where the reward uncertainty is
high. *** p < 0.001, n.s. not significant at p > 0.05.
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p = 5.10−5, Wilcoxon test). However, the rate
of failure was significantly lower at the end of
session for the WT model (WT versus KO,
U = 5695.5, p = 2.10−6, Mann-Whitney test),
suggesting that the KO model adapted more
slowly to condition changes.

To assess how robust was this effect on
foraging efficacy, we further tested similar
setups where reward probability in the two
rewarding targets were lower (but still equal)
resulting in higher uncertainty: p=90%, 75%
and 50% probability of reward corresponding
to mid-low, mid-high and high uncertainty.
The model successfully estimated the ex-
pected reward probability v and uncertainty
u (Figure 4D; see Equations (12 - 14)).
While the foraging efficacy was still higher for
the WT model with reward probability 90%
(WT versus KO: t(29) = −4.64, p = 2.10−5,
t-test; Figure 4E), the difference was no
longer significant with a probability of 75%
(WT versus KO: t(29) = −1.89, p = 0.06,
t-test; Figure 4E) and 50% (WT versus
KO: t(29) = −1.73, p = 0.08, t-test; Figure
4E). Overall, these results demonstrate the
interest of the uncertainty-seeking behaviors
mediated by the cholinergic projections to
VTA dopaminergic neurons but suggest that
the scope of such an adaptively advantageous
mechanism is limited to situations where the
uncertainty is low.

5 Discussion
Prominent theories about the role of acetyl-
choline hold that it helps control the balance
between the storage and update of mem-
ory [Hasselmo, 1999] and between top-down
expectation-driven and bottom-up stimulus-
driven attention [Yu and Dayan, 2005; Cohen
et al., 2007; Avery et al., 2012]. Accordingly,
most computational models of this neuromod-
ulator at the functional level focus on memory-
and attention-related functions [Hasselmo,
2006; Pitti and Kuniyoshi, 2011; Grossberg,
2017; Yu and Dayan, 2005; Avery et al., 2012].
In this paper, we targeted another aspect of
the cholinergic action which was highlighted in
recent experimental studies [Naudé et al., 2016,
2018]. These studies suggest that, through

its projections to dopaminergic neurons in
the ventral tegmental area, acetylcholine also
promotes exploratory uncertainty-seeking
behaviors. In other words, that the neu-
romodulator participates in the process by
which individuals decide to perform actions
associated with uncertain outcomes.

We modeled this process using a decision-
making neural network under the influence of
cholinergic and dopaminergic modulation. This
model is based on the following hypotheses:
a) dopamine encodes the estimated value, b)
dopamine modulates the decision-making net-
work such as to implement a softmax-like rule,
c) acetylcholine encodes the estimated uncer-
tainty, d) acetylcholine increases dopamine fir-
ing, e) acetylcholine introduces an uncertainty
bonus in the softmax-like decision rule. The
model was tested in two decision-making tasks
– bandit task and foraging task – and success-
fully reproduced the behavioral results reported
by Naudé et al. [2016]. In addition, the model
fitted the experimental data from the bandit
task better than three alternative models which
differed in the expression of the neuromodu-
lation component. Overall, these results vali-
date the above mentioned hypotheses, confirm-
ing that the cholinergic influence on dopamine
mediates uncertainty-seeking behaviors. More-
over, the model makes the following predictions
which can be further tested experimentally: i)
the correlation of dopaminergic activity with
reward uncertainty as reported by Fiorillo et al.
[2003] should not be observed in the absence
of the cholinergic influence on DA neurons; ii)
the adaptive advantage brought by the imple-
mented uncertainty-seeking mechanism is most
useful when sources of reward are not highly
uncertain.

How animals generate variable decisions
and manage the exploitation–exploration
dilemma (i.e. choosing between predictably
rewarding actions and other uncertain and
suboptimal options) is still poorly understood.
It has been suggested that humans rely on
two types of exploratory behaviors [Wilson
et al., 2014]: directed exploration in which
uncertain actions are purposely chosen for the
sake of information-gathering; and random
exploration where actions are selected regard-
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less of their predicted outcome. Our model
formally describes how these two exploratory
processes can be implemented: the former via
the uncertainty bonus driven by the cholinergic
influence on dopamine and the latter through a
global decrease of dopaminergic modulation of
decisions which results in lower selectivity and
higher sensitivity to noise. This model could
be thus be tested against other experimental
data to further assess the validity of our
hypotheses.

Moreover, some models suggested that
the striatal cholinergic interneurons modulate
the level of noise during action selection in
the basal ganglia [Stocco, 2012]. This would
imply a key role of acetylcholine, not only
in directed exploration as we showed in this
paper, but also in random exploration. We
believe that new experimental studies are
required which specifically investigate this
possible dual implication of acetylcholine in
exploratory processes. For instance, using
tasks that leverage both random and directed
exploration, lentiviral expression could se-
lectively target cholinergic receptors in the
striatum and in VTA to evaluate their respec-
tive involvement in these behaviors as well as
possible interdependences. Furthermore, it is
still unclear whether the cholinergic receptors
in VTA dopamine neurons are required for
learning the uncertainty bonus or solely for
operating the bonus during action selection.
These two alternatives could be differentiated
experimentally via genetic-chemical manip-
ulations rendering the cholinergic receptors
light-controllable [Durand-de Cuttoli et al.,
2018]. If the receptors are switched off during
the initial sessions in which animals learn
the statistics of reward delivery, and then
switched on again, we should be able to find
out whether the uncertainty seeking behavior
appears rapidly or requires additional learning.

This work is a step toward a more com-
prehensive understanding of the implication of
the dopaminergic and cholinergic systems in
decision-making. It highlights their role in mo-
tivation and the execution of decisions. More
effort is yet needed to further disentangle these
neural mechanisms. For instance, more real-
istic neuron models could offer a complemen-

tary insight into the learning process [Deperrois
and Gutkin, 2018]. It has also been suggested
that to be able to account for both learning-
and motivation-related processes, it is impor-
tant to distinguish dopamine cell firing from
local dopamine release on dopamine terminals
[Berke, 2018]. Thus, a more detailed model of
the decision-making network might be neces-
sary to fully capture the role and functioning
of the neuromodulators in these processes. By
showing how ACh might drive uncertainty seek-
ing behavior through its influence on DA, the
present model is a first step in that direction.
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