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ABSTRACT15

The human brain consists of functionally specialized areas, which flexibly interact and integrate forming a multitude of complex
functional networks. The principles underlying this functional differentiation and integration remain unknown. Here, we
demonstrate that a fundamental principle ubiquitous in nature - harmonic modes - explains the orchestration of the brain’s
functional organization. Applied to the functional connectivity in resting state averaged across 812 participants, harmonic
modes give rise to functional harmonics revealing the communication channels of the human brain. Remarkably, the isolines
of the continuous functional harmonic patterns (gradients) overlap with the borders of cortical areas. Furthermore, each
associated with a different spatial frequency, the functional harmonics provide the frequency-ordered building blocks to
reconstruct any pattern of brain activity. We show that 47 brain activation patterns elicited by 7 different task categories in the
Human Connectome Project task battery can be reconstructed from a very small subset of functional harmonics, uncovering
a parsimonious description of the previously unknown relationship between task and resting state brain activity. Crucially,
functional harmonics outperform other well-known basis functions such as those used in principle component analysis (PCA)
or independent component analysis (ICA) in both, reconstructing the task activation maps as well as explaining the emergence
of functionally specialized regions. Thus, our findings not only unify two competing views of the brain’s functional organization,
i.e. modular vs gradiental perspective, by revealing that the functional specialization of the human cortex occurs in a gradiental
manner across multiple dimensions in the functional harmonic basis, but also evidence that this basis underlies task-elicited
human brain function.

16

Introduction17

The human brain is topographically organized into functionally specialized brain areas1. Integration of these areas in various18

different constellations allows for the immense complexity of human brain function2. Despite remarkable progress in mapping19

the brain into functionally meaningful subdivisions, known as cortical areas3, 4, and in identifying functionally relevant20

combinations of these areas forming the functional networks of the brain5, the principles governing this functional segregation21

and integration in the human brain have remained unknown. Here we demonstrate that a fundamental principle ubiquitous22

in nature, i.e. harmonic modes, when applied to functional connectivity data in humans, reveals both, the brain’s functional23

networks as well as its topographic organization.24

The topographic organization of the brain into functionally specialized areas is one of its fundamental properties, observed25

in evolution as early as the last common ancestor of vertebrates4, 6. The individuality of each brain area is determined by its26

functional specification, its microstructure (cyto- and myeloarchitecture)4, and its inter- and intra-area connectivity3. Significant27

effort in neuroscience has been directed towards subdividing the brain into adjoining parcels, which are assumed to have28

uniform functional specification and homogeneous connectivity3, 4. A multitude of functionally distinct brain areas coordinate29

through synchronous fluctuations in their activity7. Coherent oscillations among distinct brain areas have been shown to be30

another evolutionarily conserved aspect of brain activity8. The overlap of the networks formed through these spontaneous31

1

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 29, 2019. ; https://doi.org/10.1101/699678doi: bioRxiv preprint 

https://doi.org/10.1101/699678
http://creativecommons.org/licenses/by-nc-nd/4.0/


system oscillations, termed the functional connectivity patterns, with the functional networks of the human brain identified by32

various sensory, motor, and cognitive task paradigms9–12, strongly indicates their relevance for the brain’s functionality.33

However, this modular view of brain organization, where separate, adjoining brain areas with uniform functionality and34

homogeneous structural connectivity integrate into functional networks through coherent oscillations, has been challenged by35

the presence of gradually varying boundaries between brain areas suggesting a degree of transition instead of sharply separated36

brain areas13, as well as by the existence of topographic mappings, which characterize the differences within a functionally37

specific brain area14–16. Topographic mappings including retinotopy14, somatotopy15, tonotopy16, show that representation38

of our visual field, body and auditory frequency spectrum are spatially continuously represented across the areas of the39

primary visual, somatomotor and auditory cortices, respectively, challenging the assumption of uniform functionality within40

the determined brain areas and demonstrating a smoothly varying functionality13. As an alternative, theoretical work17, 18 and41

recent experimental findings13 suggested a ”gradiental perspective”, where the functional organization of the cortex is argued to42

be continuous, interactive and emergent as opposed to mosaic, modular and prededicated17. Similar to the smoothly varying43

functionality of primary sensory and motor areas, association cortices functioning as integration centres for more complex44

or elaborated mental processes are hypothesized to emerge from the convergence of information across sensory modalities18
45

with increasing spatial distance on the cortex from the highly functionally specialized primary cortices19. Supporting this46

hypothesis, a principal connectivity gradient of cortical organization in the human connectome has been identified, where the47

functional networks of the human brain are located according to a functional spectrum from perception and action to more48

abstract cognitive functions13. Although converging evidence13, 20, 21 supports the continuous and emergent view of cortical49

organization, the principles underlying the functional organization in the brain remain largely unknown.50

Here, we demonstrate that the functional segregation and integration in the brain are governed by the same natural principle51

of harmonic modes that underlies a multitude of physical and biological phenomena including the emergence of harmonic52

waves (modes) encountered in acoustics22, optics23, electron orbits24, 25, electro-magnetism26, 27 and morphogenesis28, 29. By53

solving the time-independent (standing) wave equation30, 31 on the functional connectivity (FC) structure of the human brain,54

we uncover the spatial shapes of the harmonic modes emerging from synchronous hemodynamic fluctuations in large scale55

brain activity as measured with functional magnetic brain imaging (fMRI). These harmonic modes decompose the functional56

connectivity into a hierarchical set of (spatial) frequency-specific communication channels, which naturally emerge from57

coherent, spontaneous brain activity, and unveil both, the principal connectivity gradient13, as well as cortical parcellations3.58

Our results indicate that the functional segregation and integration in the brain are governed by a multi-dimensional harmonic59

representation that we call ”functional harmonics”. Finally, the decomposition of the brain activity maps elicited by various60

cognitive tasks into the set of functional harmonics reveals that each task primarily involves activation of a very small subset of61

functional harmonics, suggesting that the functional harmonics reveal fundamental building blocks of not only resting state62

activity, but also various cognitive functions.63

Estimation of functional harmonics64

Mathematically, the patterns of harmonic modes of a dynamical system are estimated by the eigendecomposition of the Laplace65

operator, which lies at the heart of theories of heat, light, sound, electricity, magnetism, gravitation and fluid mechanics32. In66

vibrating systems, eigenfunctions of the Laplacian constitute standing waves, which also have been proposed as the mechanism67

underlying cortical communication observed in electroencephalogram (EEG) data33. Theoretical studies as well as experimental68

findings have shown that spherical harmonics, i.e. Laplace eigenfunctions on a sphere, underlie cortical activation patterns69

in fMRI34. Harmonic modes of the structural connectivity of the human brain, i.e. Laplace eigenfunctions on the human70

connectome, have been found to predict the collective dynamics of cortical activity at the macroscopic scale, and reveal resting71

state networks31.72

In this work, we hypothesized that the harmonic modes of the brain’s communication structure given by its functional73

connectivity underlie its functional integration and segregation. There are several crucial properties of harmonic modes that led74

us to form our hypothesis:75

1) The dense functional connectivity (dense FC) matrix, in our study estimated from the pairwise temporal correlations76

between all pairs of vertices on the cortical surface (59.412 vertices in total), encodes the communication structure of the human77

brain. In order to find a multi-dimensional representation that best preserves this functional communication structure, we78

utilized the discrete counterpart of the harmonic modes defined on a graph, i.e. the eigenvectors of the graph Laplacian, which79

have been shown to optimally preserve the local graph structure while embedding it into a lower-dimensional space35. Hence,80

the functional harmonics estimated by the harmonic modes of the dense FC in this work, reveal the optimal multi-dimensional81

mapping between the communication structure of the brain given by the dense FC and the cortical surface in the sense that the82

strongest functional relationships given by the largest correlation values are optimally preserved.83

2) Functional harmonics are the smoothest patterns that respect the constraints posed by the functional relationships given84

by the FC35. This implies that the average difference between neighbouring nodes in a graph representation is minimized.85
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Intriguingly, theoretical work has shown that activation patterns on graphs in which neighbouring nodes co-activate lead to86

patterns with minimum free energy or entropy36, 37, and that the transition between such patterns requires minimal energy38.87

3) Due to their orthogonality, Laplace eigenfunctions provide a new function basis. When applied to a one-dimensional88

domain with cyclic boundary conditions, i.e. to a circle, Laplace eigenfunctions constitute the well-known Fourier basis, whereas89

on a sphere, they yield the spherical harmonics. Each eigenfunction corresponds to a unique eigenvalue related to its spatial90

frequency, and the set of all eigenfunctions forms a function basis, in which any signal can be represented in the frequency91

domain. Considering this particular aspect of harmonic patterns, functional harmonics provide a new frequency-specific92

function basis driven by the brain’s communication structure (dense FC), where each dimension provides a frequency-specific93

communication channel on the cortex.94

4) The eigenfunctions of the Laplacian explain self-organizing patterns in many dynamical systems24–26, 28, 39, ranging95

from relatively simple physical phenomena like vibrating strings and metal plates22 to complex biological processes such as96

biological pattern formation and morphogenesis28, 29.97

Considering that functional harmonics provide an optimal, frequency-specific mapping of the brain’s communication98

structure to the cortex; that they represent the most energy-efficient activation patterns which respect the constraints posed99

by this communication structure; and given the ubiquity of harmonics in nature, we hypothesized that functional harmonics100

provide the ideal candidate to explain functional segregation and integration in the brain. In order to test this hypothesis, we101

used the dense FC computed from resting state fMRI data averaged across 812 subjects, provided by the Human Connectome102

Project (HCP) 900 subjects data release40–47. We obtained the functional harmonics by estimating the eigenvectors of the graph103

Laplacian computed on the graph representation of the FC (Figure 1). We compared our results to five alternative function bases.104

In order to test the effect of each step in our processing pipeline, we compared the performance of the functional harmonics105

first to that of the eigenvectors of the dense FC matrix (Figure 1c, SI Figure 5); second to the eigenvectors of the adjacency106

matrix (SI Figure 4), which is obtained after thresholding and binarizing the dense FC matrix, and which encodes the graph of107

the brain’s communication structure (Figure 1d); and third to a surrogate harmonic basis created by applying spherical rotations108

to the functional harmonics48 (SI Figure 8 for an example). Furthermore, to relate the performance of functional harmonics to109

other well-known function bases, we also performed comparisons to the basis functions of PCA (SI Figure 6) and ICA (SI110

Figure 7).111

Functional harmonics reveal functionally relevant communication channels112

We first investigated whether functional harmonics yield functionally meaningful communication channels, i.e. patterns of113

correlated activity. Figure 2 shows the first 11 non-constant functional harmonics (referred to as [ψ1,ψ2, · · · ,ψ11]), ordered114

starting from the lowest eigenvalue, illustrating that each harmonic is a smoothly varying pattern on the cortex between a115

positive and a negative polarity; i.e., a gradient. There is an intrinsic relation between the Laplace eigenvalues and the spatial116

frequency/wavelength; namely as the eigenvalue increases, spatial frequency also increases, while the spatial wavelength117

decreases. Hence with increasing eigenvalue, the functional harmonics become increasingly more complex and segregate the118

cortex into an increasing number of nodal areas30 (contiguous areas of the cortex with similar colors in the surface plots in119

Figure 2). This means that functional harmonics yield not only a multi-dimensional, but a multiscale description of the cortex.120

Note that the ordering by the wavelength/frequency is a property that emerges from the Laplacian and therefore only applies to121

the functional harmonics themselves and, by definition, their rotations; whereas other function bases used as controls in this122

study, shown in SI Figures 4-7, are not ordered by wavelength (or equivalently wavenumber) and thus do not implicitly possess123

this multiscale property.124

As shown in Figure 2, functional harmonic resemble known functional systems and brain areas. In order to test the degree125

of this correspondence, we quantified the overall overlap between functional harmonic patterns and the brain regions (parcels)126

delineated by the HCP parcellation3. To this end, for each of the functional harmonics shown in Figure 2, we compared the127

within- and between-area-variability of each cortical region, where a large difference between the within- and between-area128

variability, indexed by a large silhouette value, indicates that that particular region is well-separated from the rest of the cortex49.129

We compared the resulting values to those obtained from spherical rotations of the functional harmonics, in which we rotated130

the functional harmonic patterns on a spherical version of the cortical surface48 (see SI Figure 8 for an example). This control131

still yields smooth, symmetrical harmonic patterns on the cortex, but they do not emerge from the communication structure (FC132

matrix) of the brain and are not necessarily orthonormal. Furthermore, we repeated this analysis for the other four function133

bases (FC eigenvectors, adjacency eigenvectors, PCA and ICA), using spherical rotations of these basis functions. As shown134

in Figure 3a, we found an alignment between the isolines of the functional harmonics and parcel borders for each of the135

first 11 functional harmonics, as verified by significantly larger silhouette values for functional harmonics compared to the136

rotated harmonic basis (pcorr < 0.05 after Bonferroni correction, Monte Carlo tests; see Online Methods for details). The only137

exception to this alignment was functional harmonic 4 (ψ4), which captures the retinotopic organization of early visual regions138

(see below for a discussion of retinotopic organization of functional harmonics). Importantly, this was not the case for any of139
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Figure 1. Workflow for the estimation of functional harmonics. a: Brain activity measured with functional magnetic resonance
imaging (fMRI) in resting state for 812 subjects provided by the Human Connectome Project (HCP, 900 subjects data
release).40–47 b: Illustration of brain time series activity of three representative vertices on the cortex (x1, x2, · · · , xn). c: The
dense functional connectivity (FC) matrix computed from the temporal correlations between the time courses of each pair of
vertices as shown in b averaged across 812 subjects. d: Representation of the dense FC as a graph, where the edges indicate
strong correlations between the corresponding vertices. The anatomical location of the vertices are colour-coded3. e: Functional
harmonics are estimated by the eigenvectors of the graph Laplacian computed on the graph representation of the FC. The first
five functional harmonics ordered from the lowest to higher spatial frequencies are illustrated on the FC graph representation
(top), in the eigenvector format as 59412 × 1 dimensional vectors (middle) and on the cortical surface (bottom). For illustrative
purposes, the graph representations are shown for a parcellated version of the FC matrix using the HCP parcellation3 in d and e.
We note that the computation of the functional harmonics have been performed on the dense FC using 59412 × 59412 without
using any parcellation.

the control function bases, where in each case at least some of the first 11 basis functions and their rotations performed equally140

well (Figure 3b-e). For qualitative evaluation, the overlap between parcels and functional harmonics as well as other bases is141

shown in SI Figures 3-7.142

In the following, we provide some insight into the functional significance of each of the functional harmonics shown in143

Figure 2. Functional harmonics 1 (ψ1) and 2 (ψ2) correspond to previously identified large-scale gradients13 that delineate144

the separation between the major sensory and the uni- vs. multimodal cortices in the brain, respectively (see SI Figure 1a).145

Figure 2a and b demonstrate the overlap between the visual and sensorimotor networks as defined in Yeo et al. (2011)50 and the146

gradiental patterns of the first and second functional harmonics. We observed that functional harmonic 3 (ψ3) reveals a finer147

subdivision of the somatosensory/motor system51–53. The overlay of the borders of the five somatotopic areas defined by the148

HCP3, 54 on the third functional harmonic are shown in Figure 2c. Similarly, in functional harmonic 4 (ψ4), we found a finer149

segregation of the visual system, following a retinotopic eccentricity gradient (for further details on retinotopic mapping see the150

following section)55. The overlay of the borders of early visual areas (V1-V4) on functional harmonic 4 (ψ4) are shown in151

Figure 2d.152
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Figure 2. a-k: The first 11 non-constant harmonics plotted on the cortical surface. White lines show borders of HCP parcels.
V1-V4: visual areas 1 to 4; MT: middle temporal visual area; 24dd: an area that contains a higher order representation of the
hand; fusiform face complex: an area that responds specifically to images of human faces.

The regions found in the positive polarity of functional harmonic 5 (ψ5) (borders shown on the left 3 panels in Figure 2e)153

closely resemble the sensory-motor pathway50 (Figure 2e), and are known to be modulated by visuospatial attention56. In154

the negative polarity, we found the auditory cortex and parts of the somatosensory/motor network (Figure 2e). In contrast, in155

functional harmonic 6 (ψ6), auditory and visual areas were both localized in the positive polarity, forming a network related to156

audiovisual object (including faces) recognition57–59, i.e. recognition of the ”outer world”. The negative polarity of functional157

harmonic 6 (ψ6) segregates the somatotopic face area as well as parts of the default mode network (DMN), a network of regions158

whose activity has been related to self-referential tasks60. Thus, the negative polarity of functional harmonic 6 (ψ6) forms a159

self-referential processing stream60–62. Functional harmonic 7 (ψ7) provides a further somatotopic gradient, including a higher160

hand area, 24dd, in the medial cortex51 (see Figure 2g and annotations in Figure 2c). Functional harmonics 8 to 10 (ψ8,ψ9,ψ10)161

correspond to different subdivisions of higher order networks such as the frontoparietal network and DMN (see SI Figure 2). In162

particular, the DMN63 is delineated in the positive polarity of functional harmonic 9 (ψ9) (borders of the DMN as defined by163

Yeo et al. (2011)50 are overlaid on functional harmonic 9 (ψ9) in Figure 2i). Functional harmonic 11 (ψ11), the first asymmetric164

harmonic between the two hemispheres, yields the separation between the right and left somatotopic hand areas64. Overall,165

these results demonstrate that functional harmonics provide a multitude of functionally relevant communication channels, each166
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Figure 3. a-e: Silhouette values quantifying the degree to which isolines of the functional harmonics as well as control basis
sets (colored circles) and their rotations (grey crosses) follow the borders of the HCP parcellation. The silhouette value lies
between -1 if all vertices were to be assigned to the wrong parcel, and 1 if all vertices were to be assigned to the correct parcel.
For each basis function set, 220 rotations were computed.

associated with a unique spatial frequency, and enable a set of parallel processing streams in the human brain.167

Functional harmonics reveal brain areas and topographic mappings168

The fact that functional harmonics display both, well-delineated specialized regions; e.g. in functional harmonics 3 (ψ3), 7169

(ψ7), and 11 (ψ11), also evident by the large silhouette values mentioned in the previous section, as well as gradients that170

integrate brain regions from different functional systems; e.g. in functional harmonics 5 (ψ5) and 6 (ψ6), led us to hypothesize171

that functional harmonics provide a unifying explanation for two seemingly opposing perspectives of cortical organization: the172

gradiental perspective arguing that cortical organization is continuous on the one hand and the modular perspective stating that173

brain function emerges from modular organization of specialized brain regions on the other. We therefore explicitly tested174

whether functional harmonics fulfill the constraints posed by both of these views.175

In addition to the parcels delineated in the HCP parcellation3, we investigated whether functional harmonics also capture176

somatotopy15 and retinotopy14, two major topographic mappings found in the brain. Topographic mappings represent sensory177

input on the cortical surface such that the relative positions of the receptors, which receive these inputs, are preserved. Five178

somatotopic sub-areas (in each hemisphere) as defined by the HCP3 form a topographic map of the surface of the body on the179

cortex, i.e., the face, hands, eyes, feet, and trunk.180

To quantify the degree to which each somatotopic sub-area is delineated within functional harmonics 3 (ψ3), 7 (ψ7), and181

11 (ψ11), we again utilized the within- and between-area-variability as above, but applied this measure specifically to the 10182

somatotopic sub-areas (see SI Figure 9). We measured their separation both from the rest of the brain as well as from other183

somatotopic areas. We found that for each of the tested functional harmonics, at least one somatotopic region is significantly184

separated (pcorr < 0.05 after Bonferroni correction, Monte Carlo tests with 300 permutations). This finding indicates that185

functional harmonics capture somatotopic organization in the cortex. Figure 4a illustrates the two-dimensional subspace formed186

by functional harmonics 3 harmonics 3 (ψ3), and 11 (ψ11), which strikingly accounts for the precise mapping of the human187

body onto the somatotopic regions of the cortex (see SI Figure 1b-d for further examples).188

We next investigated the presence of retinotopic mapping of early visual regions (V1-V4), where cortical representations of189

the visual field reflect the positions of the receptors such that each vertex within the patterns of functional harmonics is assigned190

an eccentricity (distance from the fovea) and an angle (top, bottom, left, right).55 To investigate the degree of agreement191

between the functional harmonics and the retinotopic mappings, we measured the correlation between eccentricity as well192

as polar angle maps and the functional harmonic patterns in V1-V4. We found significant correlations (pcorr < 0.05 after193

Bonferroni correction) between the retinotopic eccentricity map and all harmonics except functional harmonic 9 (ψ9); and194

between the retinotopic angular map and harmonics 1-4 (ψ1, · · · ,ψ4), 7-9 (ψ7, · · · ,ψ9), and 11 (ψ11). Examples of polar plots195

of the retinotopic gradients are shown in Figure 4c, d (all polar plots are shown in SI Figure 10).196

Besides the two major topographic mappings of the cortex, we observed that functional harmonic 10 (ψ10) captures the197

hierarchical organization of the auditory system. To quantify this agreement, we measured the correlation between the spatial198

pattern of functional harmonic 10 (ψ10) and the extent to which each area is associated with the auditory network in the resting199

state (degree of auditory involvement)3. We found a significant correlation (r = −0.63, p = 4 · 10−21) between functional200

harmonic 10 (ψ10) and the degree of auditory involvement of the functional areas (Figure 4b).201
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Figure 4. a: Functional harmonics 3 (ψ3) and 11 (ψ11) in their own space. The location of 4 somatotopic areas in this space is
annotated. b: Correlation between the degree to which areas are related to auditory regions3 and the value of functional
harmonic 10 (ψ10), averaged within each of the 360 parcels. The color code is taken from the parcellation in Glasser et al.
(2016)3, see also figure 1d. c and d: Retinotopies of functional harmonics 4 (c; ψ4) and 8 (d; ψ8). Each panel shows, on the left,
the colors of the respective functional harmonic in early visual areas V1-V4 on a polar plot of eccentricity (distance in degree
from the fovea) and angle on the visual field (see legend at the bottom of the figure). On the right, the respective functional
harmonic is shown on a flat map of early visual cortex (left hemisphere). V1, V2, V3, V4: visual areas 1, 2, 3, 4.

Functional harmonics are basis functions of human cognition202

Considering the parallel between functional harmonics and the well-known Fourier basis, i.e. the fact that they both are defined203

as Laplacian eigenfunctions, the former applied to a one-dimensional domain with cyclic boundary conditions (a circle) and the204

latter to the communication structure of the human brain (dense FC matrix), functional harmonics provide an extension of the205

Fourier basis to the communication structure of the human brain. As such, they provide per definition a frequency-specific206

function basis, in which any pattern of brain activity can be represented as a weighted combination of functional harmonics.207

Given the experimental evidence showing that resting state functional connectivity reflects connectivity during task9–12, we208

hypothesized that functional harmonics provide building blocks of task activity measured on the cortex. In order to test this209

hypothesis, we reconstructed 47 group-level task maps provided by the HCP54 from the functional harmonics (see Online210

Methods). The 47 maps consist of activation maps as well as contrasts derived from 7 groups of tasks (working memory, motor,211

gambling, language, social, emotional, relational - see Online Methods for summaries). The functional harmonic reconstruction212

yields a coefficient (weight) for each functional harmonic, quantifying how much it contributes to a certain task map. The set of213

all coefficients forms a spectrum equivalent to the power spectrum obtained from a Fourier transform, in this case the power214

spectrum of the functional harmonic basis.215

We first tested whether it is possible to approximate task maps as superpositions of subsets of functional harmonics, linearly216

combining them in the order of their eigenvalues. We quantified the goodness of fit by measuring the distance between the217

original and the reconstructed task maps. Figure 5a-g shows the average normalized reconstruction errors for all groups of tasks218

and for all function bases: for the functional harmonic basis (red line), the error drops from about 1.00 to about 0.5 when using219

only the first 11 functional harmonics shown in Figure 2, corresponding to 0.02% of the total functional harmonic spectrum.220

This corresponds to a level of correlation of around 0.7 between the original and reconstructed task maps (see SI Figure 11b).221

Figure 5h illustrates the reconstruction procedure for one specific task (working memory: body; see also SI Figures 16-22).222

We compared the performance of the first 11 non-constant functional harmonics in reconstructing task activation maps to223

that of the control function bases (rotations of functional harmonics, eigenvectors of the adjacency matrix, eigenvectors of224

the FC, principal components, and independent components; Figure 5a-g). We found that functional harmonics outperform225

the rotated harmonic basis (pcorr < 0.005, Monte-Carlo tests with 1000 permutations, Bonferroni corrected for multiple226

comparisons), adjacency eigenvectors (pcorr < 0.005, Monte-Carlo tests with 1000 permutations, Bonferroni corrected for227
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Figure 5. a-g: Mean reconstruction errors for each of the 7 task groups and all 6 basis function sets (see also SI Figures
11-15); h: One example for a reconstruction using a working memory task. The top panel is the original task activation map
(working memory - body), and subsequent panels use the number of harmonics indicated on the left to reconstruct it.

multiple comparisons), as well as PCA (pcorr < 0.005, Monte-Carlo tests with 1000 permutations, Bonferroni corrected for228

multiple comparisons) and ICA (pcorr < 0.005, Monte-Carlo tests with 1000 permutations, Bonferroni corrected for multiple229

comparisons), and did not exhibit any significant difference to the performance of the FC eigenvectors (p > 0.15 before230

correction for multiple comparisons, not significant (n.s.)).231

In order to examine the reconstruction performance of each function basis for different task groups, we applied the same232

Monte-Carlo analysis to each of the 7 task categories separately. We found that reconstruction errors of functional harmonics233

were significantly lower than those of their rotations for each of the task groups (all pcorr < 0.035, Monte-Carlo tests with 1000234

permutations, Bonferroni corrected for multiple comparisons), and significantly lower than those of the adjacency eigenvectors235

in six out of seven task groups (all pcorr < 0.035, Monte-Carlo tests with 1000 permutation, Bonferroni corrected for multiple236

comparisons, except language, where p = 0.18, before correction for multiple comparisons, n.s.). In comparison to FC237

eigenvectors, while there was no significant difference in the reconstruction performance when all tasks were pooled, we found238

that functional harmonics performed significantly better in the reconstruction of motor tasks (pcorr < 0.035, Monte-Carlo tests239

with 1000 permutations, Bonferroni corrected for multiple comparisons; see inset in Figure 3c). Compared to PCA and ICA,240

the reconstruction errors of functional harmonics were significantly lower for motor and working memory task groups (all241

pcorr < 0.035, Monte-Carlo tests with 1000 permutation, Bonferroni corrected for multiple comparisons), while for all other242

task groups there were no significant differences (all p > 0.01 before correction for multiple comparisons, n.s.). These results243

indicate that functional harmonics delineate the functional systems involved in working memory and motor tasks more precisely244

than other function bases used as control. It is important to note that the number of tasks in the remaining categories is smaller245

(3 tasks per category) than that of the motor and working memory task groups, and more data may be required to achieve246

significant differences for these categories. In summary, when all individual task groups as well as the overall performance in247

reconstructing the complete task pool is considered, the functional harmonics outperform all 5 control function bases using248

only first 11 non-constant components.249

Given that functional harmonics constitute functionally relevant communication channels, we hypothesized that the task250

activation maps can be characterized by their power spectrum. Figure 6a, d and Figure 6b, e, show two examples of task251

activation maps and the corresponding normalized power of the first 11 non-constant functional harmonics, respectively,252

revealing how strongly each of the 11 functional harmonics shown in Figure 2 contributes to these particular task maps. For253

qualitative evaluation, we display the task activation maps reconstructed by superimposing functional harmonics in the order of254

their contribution strength for varying numbers of functional harmonics in Figure 6c, f (see also SI Figures 16-22). Across all255

47 task maps that were evaluated, the functional harmonic which was the strongest contributor was always either the constant256

functional harmonic or one of the first 11 non-constant harmonics shown in Figure 2.257

In order to evaluate the uniqueness of the functional harmonic power spectrum of each task activation map, we computed258

the distance between a given reconstructed map and all original task maps, resulting in a confusion matrix for each number259
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Figure 6. a: Map of the contrast between working memory (face) and average working memory from the HCP task dataset54,
b: Contributions (normalized coefficients of the graph Fourier transform) for the first 11 non-constant functional harmonics, c:
Reconstruction of the task map in panel a when using the functional harmonic with the strongest contribution (highest coefficient)
only, the four functional harmonics with the strongest contributions, and the forty functional harmonics with the strongest
contributions. d-f: The same as a-c using the map of the contrast between motor (right hand) and average motor. g-i: Confusion
matrices. Black entries mark the task map-reconstruction-pair which has the lowest reconstruction error, colored squares
indicate the task group as in Figure 5. j: Proportion of reconstructions, for each number of harmonics, which have the minimum
reconstruction error with their exact original task map (thick line) and a task map belonging to the same group of tasks as the
original map (thin line).

of harmonics with maximum contribution. If task maps can indeed be characterized by their functional harmonics power260

spectra, the error should be minimal between a reconstruction and its corresponding task map compared to the error of the261

reconstruction of the other 46 task maps. The confusion matrices in Figure 6g-i show the pairs of the original and reconstructed262

task activation maps with the minimum distance when using 1, 4, and 40 functional harmonics with maximum contribution.263

Coloured squares mark the 7 task groups as in Figure 5. The proportion of unambiguously identified tasks in relation to the264

number of functional harmonics is shown in Figure 6j. We found that sparse representations using the 4 functional harmonics265

with the largest power for each task are sufficient to unambiguously characterize the seven task groups with the exception of266

one working memory task (Figure 6h), and 70% of all individual tasks. When the 40 functional harmonics with maximum267

contribution are used, which corresponds to 0.1% of the complete spectrum of functional harmonics, 44 out of 47 task maps are268

correctly identified from their reconstructions (Figure 6i).269

Overall, our results demonstrate that that functional harmonics provide a novel functionally relevant representation, where270

the brain activity accompanying different tasks can be uniquely identified from the activation profiles of a small range of271

functional harmonics.272

Discussion273

We reveal a previously unknown principle of cortical organization by applying a fundamental principle ubiquitous in nature274

- harmonic modes - to the communication structure of the human brain. The resulting modes termed functional harmonics275

reveal a data-driven, frequency-specific function basis derived from the human resting state functional connectivity matrix and276
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constitute the optimal mapping of the communication structure encoded in this matrix onto the cortex.277

We demonstrate the meaning of the first 11 functional harmonics as functional communication channels in the brain.278

Functional harmonics estimated as the eigenvectors of the graph Laplacian provide an orthogonal function basis that can279

reconstruct any pattern of cortical activity. Furthermore, harmonic function bases are unique in that its basis functions exhibit280

an implicit ordering according to their wavelength (spatial frequency) and hence provide not only a multi-dimensional but281

also a multiscale representation of brain activity. In this work, we show that when this harmonic basis is estimated from the282

communication structure of the human brain, each basis function, i.e. each functional harmonic, yields a frequency-specific283

communication channel, where specific brain regions communicate through their correlated activity. Crucially, our findings284

using the functional harmonic representation suggest that a brain region is able to fulfill a multitude of functions because of its285

simultaneous membership in several communication channels, which are orthogonal to each other and separated by spatial286

frequency.287

Moreover, functional harmonics unify the competing views that brain activity arises either from smoothly varying gradients288

or from the modular and specialized regions. Within the functional harmonic framework, specialized regions emerge from289

the interaction of functional harmonics across multiple dimensions. Hence our findings provide, to our knowledge, the first290

principle that unifies the gradiental and modular aspects and reveals the multi-dimensional nature of cortical organization.291

Furthermore, by definition, functional harmonics are the extension of the well-known Fourier basis to the functional292

connectivity of the human brain. As such they provide a function basis to reconstruct any pattern of brain activity as293

superpositions of these harmonic patterns. We explicitly show that functional harmonics are building blocks of cognitive294

activity in the brain by characterizing a multitude of task activation maps from their functional harmonic reconstructions. In295

particular, our results demonstrate that although there is a multitude of function bases one can choose to represent patterns of296

brain activity such as the well-known principal components or independent components of PCA and ICA, functional harmonics297

stand out in their ability to capture certain aspects of cortical organization: our findings reveal that out of the 5 function bases298

used to represent patterns of cortical activity; i.e. (i) eigenvectors of the FC matrix , (ii) eigenvectors of the adjacency matrix,299

(iii) rotated versions of functional harmonics, (iv) PCA, (v) ICA, only the functional harmonics yield both, a delineation of300

cortical areas and an efficient reconstruction of task activation maps, and thus provide the strongest candidate to be the basis301

functions of human cognition.302

Considering that the principle of harmonic modes when applied to the structural connectivity of the human brain - the303

human connectome - have been shown to reveal the functional networks31, our results point to the emergence of the same304

fundamental principle in multiple aspects of human brain function. Beyond the results presented here, functional harmonics305

suggest novel ways to understand the dynamics of the human brain in health and in pathology as well to explore individual306

differences within this multi-dimensional harmonic representation.307
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Online Methods432

Data433

The data used in this study was acquired and made publicaly available by the Human Connectome Project, WU-Minn434

Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes435

and Centers that support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for Systems Neuroscience436

at Washington University. All study protocols were approved by the Washington University institutional review board, and437

informed consent was obtained in all cases40, 41.438

In this study, we used the dense functional connectivity (FC) matrix, which is part of the Human Connectome Project’s 900439

subjects data release40–47. It is available under db.humanconnectome.org/data/projects/HCP 120065. Clicking on ”812 Subjects,440

recon r227, Dense Connectome” will download the appropriate .zip-archive (user login necessary). The list of names of all441

the files used in this study is shown in Table 1. Note that in this release, many of the subjects are related to at least one other442

subject of the group. The group average functional connectivity matrix was obtained by correlating group-PCA eigenmaps443

from 812 out of the 900 subjects included in this release, which are the subjects that having completed all four sessions of444

15-minute resting state fMRI.445

For task reconstructions, we used data contained in the S1200 group average data release, which is available on446

www.humanconnectome.org/study/hcp-young-adult/document/extensively-processed-fmri-data-documentation, as447

”HCP S1200 GroupAvg v1 Dataset”.448

For the analyses involving retinotopic maps, we used data available on osf.io/bw9ec/ and described in Benson et al. (2018)55.449

The relevant file is named ”prfresults.mat” and contains a variable ”allresults” of dimensionality 91282 (grayordinates) ×450

6 (quantities) × 184 (181 subjects plus 3 different group averages) × 3 (model fits). We used only the quantities ’ang’451

and ’ecc’, the first model fit, of the group average across all available subjects, which uses all available time points. See452

osf.io/bw9ec/wiki/home/ for details.453

Data are encoded in CIFTI file format40, which means that coordinates are defined on the cortical surface (”grayordinates”),454

i.e. using n vertices rather than voxels47. The file was read using connectome workbench functions65 and converted to a single455

precision vector of length (n ·n−n)/2 (due to its symmetry) using Matlab66. We also excluded the medial wall. This reduced456

the size of the FC matrix in memory from 33 GB to approximately 6 GB, greatly easing subsequent computations. The loss457

in precision is negligible compared to the accuracy with which pairwise correlation can be estimated from noisy fMRI time458

courses.459

For visualization purposes, we used the surfaces provided with the functional data.460

Software461

All data analysis was performed using MATLAB 2014b or 2017b, using also scripts and functions from the following freely462

available software packages:463

• Fieldtrip version 20180903464

• Connectome workbench (https://www.humanconnectome.org/software/connectome-workbench)465

• gifti toolbox (https://www.artefact.tk/software/matlab/gifti/)466

Background: Functional Harmonics467

The approach presented here relies on representing the human brain’s communication structure (dFC) as a graph and estimating468

the eigenfunctions of graph Laplacian applied to this structure. The graph representation of the brain’s communication469

structure G = (V ,E ) is created by representing the vertices sampled form the gray matter cortical surface as the nodes470

V = {vi|i ∈ 1, · · · ,n} with n being the total number of nodes (n = 59.412 in this study) and by representing the connections471

between the vertices as the edges E = {ei j|(vi,v j) ∈ V ×V }, which come from the connections in the dFC matrix. We472

represent this graph structure G by its n×n adjacency matrix A = [ai j] that is formed by connecting each node i to its k-nearest473

neighbours (k = 300 in this study) according to its correlations in the dFC matrix, i.e.:474

ai j =

{
1 ci j ∈ κi,∀ j : 1≤ j ≤ n, j 6= i
0 ci j /∈ κi,∀ j : 1≤ j ≤ n, j 6= i ,

(1)

where κi is the set of the k largest values in row i in the dFC matrix. In order to ensure A is symmetric, we also set a ji = 1, if475

ai j = 1. Defining A as such results in a symmetrical sparse binary matrix.476
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Table 1. Files used in our computations. All data was downloaded from the human connectome project database
(db.humanconnectome.org/data/projects/HCP 1200) unless otherwise specified.

Purpose file name comment

Dense functional con-
nectivity matrix

HCP S900 820 rfMRI MSMAll groupPCA d4500ROW...
... zcorr.dconn.nii

Medial wall index file Human.MedialWall Conte69.32k fs LR.dlabel.nii

Cortical surfaces S900.<hemisphere>.inflated MSMAll.32k fs LR.surf,
S900.<hemisphere>.flat.32k fs LR.surf.gii,
<hemisphere>.sphere.32k fs LR.surf.gii (downloaded from BALSA
database, balsa.wustl.edu)

replace
<hemisphere>
with ”L” for left
hemisphere, ”R” for
right

Cortical surface la-
bels

Q1-Q6 RelatedValidation210.<hemisphere>. ...
...CorticalAreas Final Final Areas Group Colors.32k fs LR.label.gii

replace
<hemisphere>
with ”L” for left
hemisphere, ”R” for
right

Borders Parcellation: Q1-Q6 RelatedParcellation210. ...
...<hemisphere>.CorticalAreas.32k fs LR.border,

Somatotopy: Q1-Q6 RelatedParcellation210. ...
...<hemisphere>.SubAreas.32k fs LR.border

replace
<hemisphere>
with ”L” for left
hemisphere, ”R” for
right

HCP atlas colours atlas.mat from osf.io/bw9ec/

Task maps HCP S1200 997 tfMRI ALLTASKS level2 cohensd...
... hp200 s2 MSMAll.dscalar.nii

www.humanconnectome.org/study/hcp-young-
adult/document/extensively-processed-fmri-data-documentation

2mm smoothing ker-
nel

Retinotopy maps prfresults.mat from osf.io/bw9ec/ using ”group subject”
(ID 999999) and full
model fit

Yeo et al. 7-networks
parcellation

RSN-networks.<hemisphere>.32k fs LR.label replace
<hemisphere>
with ”L” for left
hemisphere, ”R” for
right

Principal components HCP S1200 812 rfMRI MSMAll groupPCA d4500 Eigenmaps ...
... recon2.dtseries.nii

Independent compo-
nents

melodic IC.dscalar.nii exists for each num-
ber of ICs (15, 25, 50,
100, 200, 300)
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Then we estimate the graph Laplacian defined as

LG = D−A , (2)

where A is the adjacency matrix as defined above, and D is the degree matrix, which is defined as a diagonal matrix with
diagonal elements

dii =
n

∑
j=1

ai j . (3)

As such, the degree matrix D contains each node’s degree in its diagonal. Finally, we estimate the functional harmonics as the
eigenfunctions Ψ = {ψ1,ψ2, · · · ,ψn} by solving:

LG ψi = λiψi, i ∈ {0,1, · · · ,n} , (4)

where ψi are the n×1 eigenvectors and λi are the corresponding eigenvalues.477

Control function bases478

1. Spherical rotations: We performed comparisons against spherical rotations of surface maps. We followed48, adapting479

freely available code (github.com/spin-test/spin-test) to be used with HCP surfaces. In this approach,480

surface maps are projected to a spherical surface and then rotated by a random angle. Values are then mapped back to481

the nearest vertex, and the map is symmetrized in order to preserve this property. Parts of the corpus callosum that are482

rotated to the cortical surface are labelled as missing data (NaNs) and are ignored in any subsequent calculations (e.g.483

within- and across area distances, see below). Since we used multi-dimensional function based, we rotated the surface484

maps corresponding to each dimension by the same angle. Note that, however, the resulting rotated function basis is no485

longer orthonormal due to the symmetry preserving step.486

2. Principal components (PCs): PCA (principal component analysis) is a popular dimensionality reduction technique which487

preserves the maximum amount of variance in the data. It consists of taking the eigenvectors of the covariance matrix of488

the time series. These principal components are provided by the HCP via Connectome DB (see Table 1). The first 20489

PCs are shown in SI Figure 6.490

3. Eigenvectors of the dense FC: An intuitive basis is to take the eigenvectors of the dense FC without applying a threshold491

as done for obtaining the adjacency matrix. These eigenvectors have been shown to contain valuable information about492

dynamical FC67. The first 20 eigenvectors of the dense FC are shown in SI Figure 5.493

4. Eigenvectors of the adjacency matrix: In order to test the effect of thresholding/binarizing on the one hand and the effect494

of using the graph Laplacian instead of the adjacency matrix itself on the other, we also compared to the eigenvectors of495

the adjacency matrix, i.e. the dense FC thresholded such that only the 300 nearest neighbors of each vertex are retained496

and set to 1. The first 20 eigenvectors of the adjacency are shown in SI Figure 4.497

5. Independent components (ICs): A very popular dimensionality reduction technique in resting state fMRI68, independent498

component analysis is the foremost method for obtaining resting state networks. It consists of analyzing the time series of499

the data and finding those spatial patterns that are maximally independent. We tested all sets of ICs that are provided by500

the HCP (see Table 1, and found that the set with the lowest number of components, i.e. n = 15, performs best. Therefore,501

we restricted our comparisons to this set of ICs. Note that ICs are not orthonormal and thereform do not form a basis in502

the strictly mathematical sense. The 15 ICs used in our comparisons are shown in SI Figure 7.503

Monte Carlo simulations504

We used a Monte-Carlo approach for statistical validation.505

For the silhouette values, we followed48, where permutations consist of rotated surface maps (see previous section) of the506

functional harmonics as well as principal components, independent components, eigenvectors of the dense FC, and eigenvectors507

of the adjacency matrix. Silhouette values were then computed for the original, non-rotated map as well as for n = 220 rotated508

maps, and p-values were computed based on the number P of rotations that performed better than the original map:509

p = (P+1)/(n+1) (5)
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We performed Bonferroni correction by multiplying the resulting p-value by 11, i.e. the number of dimensions that was510

tested.511

We used the same approach for the somatotopy index, but only applied to the functional harmonics and their rotations.512

Since in this case, we had five somatotopic areas (we averaged over the two hemispheres) and tested three of the 11 functional513

harmonics (ψ3, ψ7, and ψ11), we required n = 300 rotations in order to achieve a significance level of α = 0.05 with 15514

comparisons.515

We also applied a Monte-Carlo permutation test to the mean reconstruction errors by permuting the labels of the basis 1000516

times for each control basis. Here, we pooled the reconstruction errors over the first 11 non-constant components. For the517

overall reconstruction performance, we also pooled all 47 task maps; for ad-hoc tests of each task category, we pooled only518

over the tasks in each category.519

Silhouette values520

To test whether isolines of the functional harmonics follow the boundaries of the parcels as defined in the HCP parcellation3,
we compute the silhouette value49 of each functional harmonic as:

S =
1
N ∑

i
(Mbetween(i)−Mwithin(i))/max(Mbetween(i)−Mwithin(i)) , (6)

where Mbetween(i) is the average Euclidean distance between vertices belonging to a parcel i and vertices belonging to all other521

parcels, while Mwithin(i) is the average distance between vertices within the parcel i. If all vertices belonging to a parcel i have522

the same value, and at least some vertices outside the parcel i have different values, then Mbetween(i)> 0, Mwithin(i) = 0 and523

S(i) = 1. By averaging over the silhouette values of all parcels, one obtains a measure of how well the data fit the parcellation.524

Note that we replaced the somatosensory/motor core areas 1, 2, 3a, 3b, and 4 with the somatotopic sub-areas given by the HCP3
525

for a more detailed evaluation.526

To evaluate the somatotopic organization of the functional harmonics, we use a measure that was similar to the silhouette527

value, but adapted to measure the separation from the rest of the cortex and from other somatotopic areas.528

Ssom = (Mbetween,som +Mbetween)/max(Mbetween,som,Mbetween) ·Mbetween,som , (7)

where Mbetween,som is the average Euclidean distance between vertices belonging to a somatotopic area and all other vertices529

belonging to all other somatotopic areas. The first term of the equation is between 1 and 2 and is close to 2 if both Mbetween,som530

and Mbetween are equal. Multiplying by Mbetween,som ensures that Ssom is not large if both Mbetween,som and Mbetween are small.531

Task maps532

We used group-averaged task activation maps provided with the S1200 group average data release of the HCP (see Table 1,533

www.humanconnectome.org/study/hcp-young-adult/document/extensively-processed-fmri-data-documentation). Here we534

provide a summary of the tasks that form part of the HCP task battery54. There are 7 groups of tasks: working memory, motor,535

gambling, language, social, emotional, relational. Subjects performed all tasks in two separate sessions (working memory,536

gambling, and motor in the first session, language, social cognition, relational processing, and emotion processing in the537

second).538

Working memory. Four different stimulus types were used, presented in separate blocks: pictures of faces, places, tools and539

body parts. Two different task types were used: a 2-back working memory task, where subjects had to respond if a stimulus540

matched that two trials back, and a 0-back working memory task, where subjects had to respond whenever a single stimulus541

returned that was presented at the beginning of the block. This results in a total of 19 different working memory task maps,542

consisting of 14 activation maps (such as 0-back, 2-back, face, body, etc.) and 5 contrasts (between the two task types, between543

each stimulus type and the average across all stimuli, etc.).544

Motor. Visual cues indicated whether participants should move their left or right fingers, left or right toes, or move their545

tongue. The goal was to identify the motor areas that correspond to these five body parts. This results in 26 different task maps546

(7 activation maps for 5 body parts plus visual cue plus average, and 6 contrast maps).547

Gambling. (Incentive processing.) Subjects played a game in which they could win or lose money. The game was to guess548

whether the number on a ”mystery card” that could range between 1 and 9 would be less or more than 5. The numbers were549

given after subjects made their guess and were chosen according to the trial type: ”win” - the number would correspond to their550

guess and they would win 1$; ”neutral” - the number would equal 5 and they would neither win nor lose any money; ”loss”551

- the number would not correspond to the guess and participants would lose $0.50. Separate blocks are used in which trials552
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are either mostly win or mostly lose, resulting in two conditions, punish and reward. This results in 3 different task maps (2553

activation maps, i.e. one for each condition, and 1 contrast).554

Language. Two different task types were used, ”story” and ”math”. ”Story” consisted of participants listening to 5-9555

sentences of a story, and answering a 2-alternative forced choice question thereafter. ”Math” required participants to solve556

simple addition and subtraction problems. The two task types are similar in terms of auditory input and attentional load, but557

different in terms of semantic and numerosity related processing. As for gambling, the two task types result in 3 task maps (2558

activation, 1 contrast).559

Social. (Theory of Mind, TOM.) Subjects viewed videos of objects (squares, circles, triangles) that moved around in one of560

two ways: ”Random” - there was no interaction between the objects, or ”TOM” - the objects moved as if they were reacting to561

the other objects’ ”thoughts and feelings”. They then had to judge whether the objects were interacting or not, or respond with562

”not sure”. As with gambling and language, the two task types result in 3 task maps (2 activation, 1 contrast).563

Emotional. Subjects viewed one of two types of stimuli, ”faces” or ”shapes”, and had to decide which of two stimuli564

presented at the bottom of the screen matched the stimulus at the top of the screen. The faces included emotional stimuli, i.e.565

angry or fearful expressions. Again, the two task types result in 3 task maps (2 activation, 1 contrast).566

Relational. There were two conditions, ”match” and ”relational”. In all cases, stimuli can have one of six shapes combined567

with one of six textures. In the ”match” condition, which served as a control condition, two shapes were presented at the top568

and one at the bottom of the screen. A word (”shape” or ”texture”) that appears in the middle of the screen instructs subjects to569

decide whether the bottom stimulus matches either of the top stimuli in the dimension indicated by the word. In the ”relational”570

condition, two stimuli are presented each at the top and at the bottom of the screen, with no word in the middle. Instead,571

participants have to determine themselves across which dimension the top pair differs, and, subsequently, indicate whether the572

bottom pair differs over the same dimension. Again, the two task types result in 3 task maps (2 activation, 1 contrast).573

Task maps were computed using FSL’s FEAT and FLAME69, 70 and conducting a between-subject (”level 2”) analysis,574

resulting in effect sizes (Cohen’s d). We used the task maps with minimal smoothing (2mm total smoothing); see 1200 subjects575

data release reference manual, pp. 45-54 and 100-104.576

Reconstructing the task maps from functional harmonics577

The spatial pattern of each task map on on the cortex s(v) was decomposed into and reconstructed from the functional harmonics
Ψ = {ψk}n

k=1 as:

ŝ = α1ψ1 +α2ψ2 + · · ·+αnψn =
n

∑
k=1

αkψk(v), (8)

where the coefficient αk of each functional harmonic ψk was estimated by projecting the task map ŝ(v) onto that particular
harmonic ψk. As such αk are estimated as:

αk = 〈ŝ,ψk〉 . (9)

Then, each task map is reconstructed using Eq. 8. In this study, we limit our reconstructions to using a maximum of 100578

non-constant functional harmonics (n = 101).579

For a reconstruction s∗(m), where m indicates a binary vector of dimensionality 101×1 which contains ones for harmonic
basis functions that are used in the reconstruction and zeros otherwise, we then compute the reconstruction error as:

RE(m) =
√

∑
i
(si− s∗

(m),i)
2/∑

i
s2

i (10)

We also computed the Pearson correlations between s and s∗(m). For comparing the correlations between task maps and580

reconstructions obtained from real functional harmonics versus randomized connectivity harmonics, we considered the number581

of comparisons to be nC = nTasks · nLevels, where the number of tasks equals 47 and the number of levels refers to the different582

numbers of harmonics used in the reconstructions, i.e. 0, 1, 2, 3, ..., 20, 30, 40, ..., 100, in 29 levels. From this we obtained a583

corrected alpha level of αcorr = 0.05/nC, and we computed the critical value as Fisher’s z-transform of the correlation which a584

sample has to exceed in order to be significantly higher than the random correlation:585

zcrit =
zα · (

√
1

N1−3 +
1

N2−3 )

zrand
(11)
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We obtain zcrit = 0.44, which corresponds to a minimum required empirical correlation of 0.41, with N1 = N2 = 59.412586

(the number of vertices that contribute to the correlation values), zα = 0.438 (the inverse Student’s t distribution with587

N1 = N2 = 59.412 degrees of freedom evaluated at 1−αcorr), and zrand = atanh(0.05) (Fisher’s z-transform of the maximal588

random correlation between any reconstruction - with any number of functional harmonics - and any task).589

Visualization590

Somatotopic areas. In the visual and somatosensory/motor cortices, functional harmonics are rather determined by retinotopy591

and somatotopy than by anatomical or microstructural features. For the former, somatotopic areas occupy exactly the same592

surface area as the sensorimotor core areas, 1, 2, 3a, 3b, and 4. We therefore replaced, where appropriate, the borders of the593

HCP parcellation by the borders of the five somatotopic regions.594

Parcel borders for visualization. In order to discuss the meaning of the functional harmonics, we show borders of certain595

parcels on the cortical surfaces (Figure 2). We used three different methods to select which borders to show. First, for some596

functional harmonics, it was feasible to select these areas manually (for example, early visual areas in functional harmonic 4,597

somatotopic areas in functional harmonics 3 and 4). The anatomical supplementary information from Glasser et al. (2016)3
598

uses a functional grouping of many regions that we often used as a guideline, for instance to distinguish between early and599

association auditory cortex. Second, for some functional harmonics (for instance, functional harmonics 1 and 2), we show600

the borders of parcels that belong to resting state networks as defined by Yeo et al. (2011)50. The 7-network parcellation is601

provided by the HCP, which does not perfectly overlap with the HCP parcellation. We adjusted the network borders slightly to602

align the network borders to follow those of the parcels defined in HCP. Thereby we assigned each parcel to the RSN with603

which it had the most overlap. Third, some functional harmonics are too complex to manually select areas or networks (namely,604

functional harmonics 5, 6, 8, and 10). Here we employed simple k-means clustering on the functional harmonic, using k=2605

(functional harmonics 5, 6, and 8) or k=3 (functional harmonic 10). To obtain meaningful clusters in the somatosensory/motor606

cortex, we again replaced the sensorimotor core regions 1, 2, 3a, 3b and 4 with the somatotopic areas. For this purpose, we used607

vertices within the core regions and re-assigned them to the somatotopic areas based on their distances to the sub-area borders.608
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