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Abstract 

 

Phosphorylation is one of the most dynamic and widespread post-translational modifications 

regulating virtually every aspect of eukaryotic cell biology. Here we present a comprehensive 

phosphoproteomic dataset for budding yeast, comprised of over 30,000 high confidence 

phosphorylation sites identified by mass spectrometry. This single dataset nearly doubles the 

size of the known phosphoproteome in budding yeast and defines a set of cell cycle-regulated 

phosphorylation events. With the goal of enhancing the identification of functional 

phosphorylation events, we performed computational positioning of phosphorylation sites on 

available 3D protein structures and systematically identified events predicted to regulate protein 

complex architecture. Results reveal a large number of phosphorylation sites mapping to or 

near protein interaction interfaces, many of which result in steric or electrostatic “clashes” 

predicted to disrupt the interaction. Phosphorylation site mutants experimentally validate our 

predictions and support a role for phosphorylation in negatively regulating protein-protein 

interactions. With the advancement of Cryo-EM and the increasing number of available 

structures, our approach should help drive the functional and spatial exploration of the 

phosphoproteome. 
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Introduction 

Post-translational modification of proteins by phosphorylation controls virtually every cellular 

process. Regulatory mechanisms based on phosphorylation have been widely explored and 

characterized. In classical approaches, phosphorylation sites are often biochemically identified 

on substrate proteins of interest and then mutated to either prevent or constitutively mimic a 

phosphorylation event in order to determine the biological relevance. The phenotypes 

associated with these “phosphomutant” proteins inform on the biological purpose of 

phosphorylation at that site. In the last 15 years, advances in mass spectrometry have greatly 

expanded our ability to identify phosphorylation events, leading to large phosphoproteomic 

databases 1-5. However, our ability to probe the biological relevance of the identified 

phosphorylation events still relies on low throughput methods. As a consequence, the functional 

importance of most catalogued phosphorylation events has not yet been determined 6. Notably, 

given the overwhelming number of identified phosphorylation events, over 100,000 in the case 

of a human cell (PhosphoSitePlus 7), and likely promiscuity in kinase actions, it is debatable 

whether all of these events are functionally relevant 8,9. In many cases where attempts have 

been made to investigate the role of specific phosphorylation events, the results are often 

negative 10, consistent with the notion that many phosphorylation events may be extensively 

redundant in nature or, perhaps, not functional 9,11. These issues highlight the necessity for 

strategies to predict functional phosphorylation sites from large phosphoproteome datasets. 

While guidelines for interpreting phosphoproteomic data sets to identify candidate sites for 

mutational analysis are available 10, strategies to efficiently and systematically identify functional 

phosphorylation events are lacking.  
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Here we present an in-depth phosphoproteome for budding yeast that constitutes, to the best of 

our knowledge, the single largest collection of phosphorylation sites for this organism. Over 10.6 

million high resolution MS/MS spectra were acquired in our mass spectrometer and subjected to 

a parallel search approach to maximize the number of phosphosites identified with high-

confidence. In addition, we utilized two independent methods for scoring phosphosite 

localization and employed an in-house algorithm to capture ambiguous phosphosites that fall 

within clusters of consecutive, phosphorylate-able residues. Remarkably, our dataset nearly 

doubles the size of the budding yeast phosphoproteome. With the goal of improving the 

systematic prediction of functional phosphorylation events, we computationally positioned 

phosphorylation onto all available 3D protein structures and systematically identified potentially 

functional phosphorylation events. Results reveal a large number of phosphorylation sites 

mapping to or near protein interaction interfaces, some of which result in steric or electrostatic 

“clashes” predicted to disrupt the interaction. Phosphorylation site mutants experimentally 

validate our predictions and establish roles for phosphorylation in negatively regulating protein-

protein interactions. We have compiled our in-depth phosphoproteome into an on-line database 

open to the community. This resource should help drive the functional and spatial exploration of 

the phosphoproteome. 
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Results 

 

In depth phosphoproteome of budding yeast 

We sought to generate an in-depth phosphoproteomic database for the model system budding 

yeast. Since most currently available phosphosite databases consist of data deposited from 

multiple independent groups, each utilizing their own instrumentation and acquisition / spectral 

search methods, we aimed to generate a repository of phosphorylation events sourced strictly 

from high-resolution spectral data acquired using a single, in-house mass spectrometer and 

processed through a unified data processing pipeline (Fig. 1). The spectral set used to 

assemble the database was generated from 75 independent SILAC-based experiments, all of 

which consisted of IMAC-mediated enrichment of phosphopeptides from whole cell lysates 

fractionated by HILIC chromatography (Fig. 1). The experiments that contributed to our dataset 

were originally performed for various unrelated biological inquiries, and explored a range of 

conditions, including distinct cell cycle stages, DNA damage treatment and carbon deprivation 

(Fig. 1). A fraction of this dataset was previously published 12. In all, the spectral library 

consisted of fragmentation spectra acquired from over 825 independent MS runs (1500+ hours 

of data-dependent acquisition time). To identify Peptide Spectrum Matches (PSMs) from our 

spectral library, we utilized three different search engines (SORCERER, Proteome Discoverer 

(PD), and MaxQuant (MQ)) (Fig. 1; see details under Materials and Methods). A critical 

challenge in the analysis of peptide-centric phosphoproteomic experiments is the need to 

properly assign the phosphorylated STY residue within a fragmented peptide 13, thus the use of 

multiple search engines allowed us to employ two prominent algorithms for determining 

phosphosite localization and maximized our ability to localize phosphorylated residues with high 

confidence. Additionally, we found our Sequest search engines to be more amenable for 

searching a massive spectral set using semi-specific tryptic digestion parameters (Fig. 1). The 
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resulting database contains over 30,000 phosphorylation sites identified with high-confidence 

site localization and represents the largest available phosphoproteome dataset for this organism 

(Supplemental Table 1). In addition to the 30,906 sites identified with high confidence 

localization, we used an in-house clustering algorithm to capture several thousand more 

“phosphosites” whose site localization scores were distributed within consecutive STY residues 

(Supplemental Figure 1 highlights the rationale behind our clustering algorithm). When also 

considering these ambiguous phosphosites that are located within clusters of consecutive 

phosphorylatable residues, the total number of phosphosites identified in our dataset exceeds 

36,000 (Supplemental Table 1). We acknowledge that the number of phosphosites added from 

the clustering step might be inflated, since in some cases multiple ambiguous phosphosites are 

represented within the same cluster of residues (Supplemental Table 1; see phosphosites 

assigned to Gic1-T221 and Gic1-S222 as an example). Consistent with the stochastic nature of 

data-dependent LC-MS/MS acquisition, a significant fraction of phosphosites from our study 

were identified from only a single phosphopeptide identification (Figure 1, Pie chart). For sites 

with a just single ID, we advise that the quality metric provided in Supplemental Table 1 (“Score” 

/ “Xcorr”) be carefully considered. 

Legend for Figure 1 (next page): An in-depth phosphoproteome database for budding yeast. A general workflow for mapping 
the budding yeast phosphoproteome using mass spectrometry. The phosphoproteomic dataset was generated from a multitude of 
different experimental conditions, including distinct cell cycle stages. Phosphopeptides were enriched directly from trypsin- or 
chymotrypsin-digested cell lysates via immobilized metal ion chromatography (IMAC). All samples were highly enriched for 
phosphorylated peptides (80-95% phosphopeptides) and, in most cases, extensively pre-fractionated via HILIC. Phosphopeptide 
fragments were captured as high resolution MS2 spectra using an obitrap mass analyzer (Q-exactive). Three separate search 
engines were used to identify phosphopeptides from the fragmentation spectra. The primary search was performed using MaxQuant 
(Andromeda engine). Phosphosites from the primary search were extracted from MaxQuants’s “Phospho STY” output table. A 
secondary search was performed using two separate Sequest-based engines, Proteome Discoverer (PD) and SORCERER. The 
secondary search utilized similar search parameters as the primary search, with the exception that tryptic enzyme digestion was set 
to semi-specific. To further increase the confidence in our Sequest searches, we only considered phosphopeptides whose backbone 
sequence appeared in both the PD and SORCERER searches. Phosphosite localization probabilities were determined using 
MaxQuant (localization score) and the PhosphoRS node within Proteome Discoverer. Phosphosites with localization scores / 
phosphoRS scores above 70% were considered to have “high-confidence localization.” A clustering algorithm was used to capture 
additional phosphosites that did not meet our requirement for high-confidence localization (see Supplement Figure 1 for a 
demonstration of the logic used to cluster phosphosites). Because PhosphoRS is run independently of the PD PSM search, its 
phosphosite localization can sometimes conflict with the localization assigned in the rank 1 PSM. To further ensure data quality, we 
required agreement between the localizations determined by PD’s PSM search and the PhosphoRS node. PD and SORCERER 
searches are considered secondary because their PSM output is only included in the final data set (Supplemental Table_1) if a 
phosphosite was not already identified in the primary search. 
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We next sought to determine the extent to which our dataset overlaps with, and expands, the 

previously available budding yeast phosphoproteome. We first defined what collection of 

phosphorylation events comprised the “previously known” phosphoproteome. In recent years, 

the primary repository for experimentally verified phosphorylation sites in budding yeast has 

been BioGRID, which contains nearly 20,000 annotated phosphosites (previously known as 

PhosphoGRID) 14. BioGRID is comprised of phosphosites identified from high throughput MS-

based studies (similar to this study) in addition to phosphosites identified from low throughput 

investigations of individual proteins or protein complexes. However, BioGRID does not contain 

phosphosites identified by a more recent phosphoproteomic screen performed by Swaney et al. 

4, which, prior to this study, was the largest single phosphoproteomic dataset generated for 

budding yeast. When added to the BioGRID compendium, Swaney et al. contributed over 3,000 

unique phosphosites (Supplemental Fig. 2). We consider the phosphosites contained within 

BioGRID and Swaney et al. to represent what was the “previously known” budding yeast 

phosphoproteome (referred from here on as BioGRID/Swaney), as together they account for 

nearly every phosphorylation site identification reported in budding yeast prior to our study. 

 

To assess how the coverage of our dataset compared to what was the known budding yeast 

phosphoproteome, we overlaid the phosphosites identified in our study with those contained in 

BioGRID/Swaney (Fig. 2a,b). Strikingly, in addition to capturing almost 2/3 of the sites contained 

within BioGRID/Swaney (Fig. 2b), our study also identified over 17,000 novel phosphosites with 

high-confidence site localization (Fig. 2a). If the sites captured by our clustering algorithm are 

considered in addition to the 17,000 sites with high confidence localization (Fig. 2b), this study 

nearly doubles the size of the budding yeast phosphoproteome. 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 13, 2019. ; https://doi.org/10.1101/700070doi: bioRxiv preprint 

https://doi.org/10.1101/700070


To further characterize the phosphorylation events being revealed by our study, we plotted our 

identified phosphosites as a function of protein abundance (Fig. 2c) 15. Despite the fact that the 

enrichment of phosphopeptides directly from cell lysates can hinder the detection of 

phosphorylation events that occur in low abundant proteins 16, we readily identified novel 

phosphorylation events in very low abundant yeast proteins, and the distribution of phosphosite 

discovery was mostly independent of the estimated protein abundance (Fig. 2c).  

 

With the addition of such a large inventory of new phosphosites to an already large database, 

we sought to estimate whether our ability to discover new phosphoproteins or phosphosites in 

budding yeast is reaching saturation. Similar to what has been done previously 17, and using the 

BioGRID/Swaney dataset as a foundation, we iteratively incorporated our dataset in a 

randomized, “chunk”-wise manner and observed that, as the final portions of our dataset were 

considered, the ability to detect new phosphoproteins and phosphosites was approaching 

saturation (Fig. 2d). We note that the discovery of novel phosphoproteins in this study was also 

likely impacted by more recent updates to the annotation of the budding yeast 

genome/proteome. Interestingly, Albuquerque et al. previously demonstrated that the extent of 

phosphorylation in identified high-throughput studies is significantly less than that which can be 

detected from affinity purified proteins 18. We reasoned that if our ability to discover 

phosphorylation was truly approaching saturation, we should be achieving coverage at depth 

comparable to low-throughput MS analyses on affinity purified proteins. One such low-

throughput study identified 25 phosphosites in Yen1 (Fig. 2e) 19, a nuclease regulated by cyclin-

dependent kinase. Remarkably, we were able to detect 18 phosphosites in Yen1 (Fig. 2e), 

nearly all of which were identified by Blanco and colleagues. The sites identified by Blanco et al. 

are not currently part of BioGRID, and BioGRID/Swaney contained only four Yen1 

phosphosites. Another study identified 39 phosphosites in the replisome protein Mrc1 18, a 
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number comparable to the 36 sites identified in our study (Fig. 2f). Together, these examples 

illustrate that, in some cases, our depth of coverage compares to depth achieved in the analysis 

of affinity purified proteins. In addition, we note that the depth achieved by our analysis 

confirmed, for the first time, the presence of phosphorylation at putative phosphosites, whose 

mutation was previously shown to preclude phosphorylation-dependent mobility shifts and 

disrupt genuine phospho-mediated regulation (Fig. 2h, bolded dark blue sites with asterisk) 20,21. 

 

 

Legend for Figure 2 (next page): Comparative and depth analysis of current and previous budding yeast phosphoproteome 
datasets. (A) Venn diagrams depicting the overlap of unique phosphosites contained within our dataset with the “known” 
phosphoproteome prior to this study. For our dataset, only non-redundant sites (i.e. sites identified from phosphopeptides that map 
uniquely to a single protein) with high-confidence localization are considered. (B) As is (A) except with the inclusion of the sites 
captured by our clustering algorithm (Supplemental Figure 1). In this comparison, sites that redundantly mapped to multiple proteins 
were considered only when identifying overlap with the BioGRID/Swaney dataset (denoted by the asterisk) and were not considered 
in the 20,315 sites discovered by this study. (C) Histogram depicting the distribution of identified phosphosites as a function of 
protein copy number. Bars representing the number of phosphosites identified in this study are plotted behind (not on top of) the 
bars representing BioGRID/Swaney. (D) Dot graph assessing saturation in the ability to identify novel phosphoproteins and 
phosphosites from the budding yeast phosphoproteome. Unique, non-redundant phosphosites from this study were iteratively added 
to the BioGRID/Swaney compendium (left to right) in randomized chunks. (E) Coverage maps comparing the Yen1 and Mrc1 
phosphosites identified in this study (above, in black) with the sites identified in low-throughput studies (below, in gray). For the low-
throughput MS analyses, phosphopeptides were enriched after affinity purification of Yen1 (et al.) or Mrc1 (et al.) from yeast lysates. 
(F) Coverage maps comparing the phosphosites identified in this study (above, exclusive to this study in blue) with those found 
within BioGRID/Swaney (below, exclusive to BioGRID/Swaney in red). The bolded blue sites denoted by an asterisk represent 
putative phosphosites that were mutated an analyzed in previous studies (but were not included in BioGRID).   
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Functional and regulatory exploration of the budding yeast phosphoproteome 

Despite the sheer quantity of phosphorylation revealed by mass spectrometry, the inability to 

distinguish meaningful phosphorylation events from “noise” within the phosphoproteome 

represents a fundamental limitation of the technology. To address this limitation, we employed a 

variety of strategies to systematically reveal potentially meaningful phosphorylation events. 

First, we took advantage of an extensive compilation of temperature sensitive (ts) budding yeast 

mutants 22. We reasoned that, since ts mutations fall within chemically sensitive regions of a 

protein’s structure, phosphorylation events which occur at or near these ts residues are more 

likely to be impactful. Our analysis revealed dozens of phosphorylation events that occur in 

immediate proximity to residues that harbor ts mutations (Supplemental Table 3), and in several 

cases the ts residue is itself phosphorylated. In one such case, rsp5-T104A, the sensitizing 

mutation is the substitution of a phosphorylatable threonine to alanine (Supplemental Table 3), 

which suggests that the phosphorylation of the Rsp5 ubiquitin ligase at T104 is somehow critical 

for its function. 

 

Because phosphorylation that is subjected to dynamic regulation is more likely to be functionally 

important 23, we next aimed to extract regulatory information for the phosphorylation events we 

identified. While the experiments that comprise this resource were not originally designed to 

precisely and systematically monitor phosphorylation dynamics across the cell cycle, we were 

still able to obtain cycle-related regulatory information for nearly 11,000 phosphorylation events 

using a curation of experiments from our dataset. We compared the relative prevalence of 

phosphopeptides identified from yeast that were synchronized within 3 distinct cell-cycle stages 

(Fig. 3a). In doing so, we were able to identify thousands of phosphorylation events whose 

prevalence fluctuates during the cell cycle. Approximately 20 % of the phosphorylation events 

were either significantly enriched or depleted in one particular stage of the cell cycle (Fig. 3b; 
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Supplemental Table 4), a proportion similar to what has been observed in fission yeast 

phosphoproteome 24. Many phosphorylation events that were subjected to cell-cycle regulation 

were either established cell stage-specific events or occurred within proteins with cell cycle-

related functions (highlighted in Fig. 3c). Despite having less temporal resolution than more 

focused investigations of mitotic-specific phosphorylation dynamics 25, to our knowledge this 

analysis currently represents the most extensive catalog of cell cycle-dependent 

phosphorylation events for this organism at various cell cycle stages.  

 

 

 

 

Legend for Figure 3 (next page): Cell cycle dynamics of the budding yeast phosphoproteome. (A) Ternary plot displaying the 
distribution phosphorylation events as a function of their detection in different stages of the cell cycle. A curated set of experiments 
from the larger dataset presented in Figure 2 was used for this analysis. Each gray dot represents a unique phosphosite 
(considering only the most prevalent phosphopeptide). The position of each dot within the plot represents the fraction of times it was 
detected in either G1, S phase, or G2/M. An 8% jitter was added to help visualize overlapping data points. (B) Table that 
corresponds to the highlighted dots from (A) and the number of times they were detected in each cell cycle stage. See 
Supplemental Table 4 for the full dataset. (C) Pie chart illustrating the fraction of phosphosites with enrichment or depletion in a 
particular cell cycle stage. To be considered enriched or depleted, a phosphopeptide must have 5-fold more or less detections in 
one particular cell cycle stage VS the other two stages (e.g. “S phase and G2/M” could alternatively be considered as “G1-
depleted”). The examples given in (B) all fit the criteria for enrichment or depletion. 
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The 3D budding yeast phosphoproteome 

In addition to probing the regulation of phosphorylation, we performed structural analysis of 

phosphorylation site position with the goal of improving the systematic prediction of functional 

phosphorylation events. Because phosphorylation events occurring at or near protein-protein 

interfaces may also be more likely to impact protein function, we first plotted the 

phosphoproteome within the context of protein-protein interactions. We utilized Interactome 

INSIDER 26, a tool that has previously been used to systematically identify, proteome-wide, 

every amino acid residue found at the interface between proteins in a crystal structure or 

homology model (interactome3D is the source for our homology models 27). In total, we 

identified 646 phosphosites that lie at the surface between interacting proteins and many more 

sites that fall within 5 a.a. residues of an interface (Supplemental Table 5). An additional feature 

of Interactome INSIDER is its ability to predict interface residues for known protein-protein 

interactions that do not currently have any structural information 26; we found 1932 

phosphorylation events that occur on these predicted protein-protein interface residues 

(Supplemental Table 5). This information has been compiled into the SuperPhos database 

(under development), which lists all identified phosphorylation sites in budding yeast and 

displays their proximity to known, or predicted, protein interaction interfaces (Fig. 4a). 

 

To further exploit available structural information in our effort to systematically identify functional 

phosphorylation sites, we computationally positioned the budding yeast phosphoproteome onto 

all available 3D protein structures within the Protein Data Bank (PDB) (Fig. 4b). When 

considering 941 yeast proteins with structural information in PDB with resolution better than 4 Å, 

we found that the majority of phosphorylation occurs only within in regions with no structural 

information (5,943 of 8,708 phosphosites), a finding consistent with the importance of intrinsic 

disorder for protein phosphorylation 28. Despite this, we were still able to map 2765 
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phosphorylation events onto structured regions (Fig. 4b). We reasoned that, because most 

crystallographic structures are prepared under conditions in which the crystalized proteins would 

not be phosphorylated (e.g. protein purified from bacteria), phosphorylation sites from our 

database that map to solvent-inaccessible regions within these protein structures would have a 

higher likely-hood of being biologically impactful. We distinguished between two types of solvent 

inaccessible residues: 1) residues buried within the core of a single polypeptide chain and 2) 

residues that lie at the interface between interacting proteins (similar to our INSIDER approach). 

We identified 539 phosphorylation sites that mapped to a buried, solvent-inaccessible region 

within a single protein (Supplemental Table 6). However, we opted to focus more on 

phosphorylation sites found at the interfaces where proteins interact, since these sites 

potentially play key regulatory roles.  

 

 
Legend for Figure 4 (next page): 3D analysis of budding yeast phosphoproteome reveals potential regulatory 
phosphorylation at protein interaction interfaces. (A) The SuperPhos database (under development). Representative example 
of data display for a protein entry. The database merges an updated version of the budding yeast phosphoproteome with the protein 
interface calculations made by interactome INSIDER. In addition to indicating interactions for which PDB structures are available (as 
shown in this example), the SuperPhos database also provides information on all predicted interaction interfaces from INSIDER (not 
shown in this example). (B) Mapping the yeast phosphoproteome to all available PDB structures and systematic prediction of 
phosphorylation that regulates protein-protein interactions. For each phosphosite that mapped to a structured region, E and S 
scores were systematically calculated based on the proximity and charge of atoms from neighboring proteins. See methods for a 
detailed explanation of how the scores were calculated. The dot plot depicts the distribution of S and E scores assigned to each 
phosphosites. Phosphosites that map to more than one crystal structure or to multiple chains within a single crystal structure were 
assigned multiple S and E scores (Supplemental Table 7). (C) Distribution of S and E scores assigned to phosphosites in the 3D 
budding yeast phosphoproteome. (D), (E), (F) Representative examples of the mapping and scoring of phosphosites within the 
structural context of protein complexes. The phosphoprotein is displayed as a green ribbon cartoon; the electron density of the 
surrounding protein(s) is colored based on the electrostatic environment (as calculated by ABPS). 
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Mapping phosphorylation sites to protein interaction interfaces reveals phosphorylation 

events that regulate protein-protein interactions 

Due to the potentially disruptive nature of adding a bulky and negatively charged phosphate 

group to an S/T/Y residue near a protein interaction surface, the presence of phosphorylation at 

a protein-protein interface could result in a steric or electrostatic clash. In these instances, we 

predict that interface phosphorylation would disrupt or prevent protein-protein interactions and 

therefore reflect a potentially important regulatory mechanism with biological implications. To 

systematically identify phosphorylation that would result in “clashes” between interacting 

proteins, we devised a minimal scoring system based on the steric and electrostatic 

environment surrounding phosphosites near a protein interface region (see methods for detailed 

explanation of how the scores were calculated). In brief, our method utilizes the per-atom 

charge calculated by employing PDB2PQR pipeline 29. Here, steric clash (S) and electrostatic 

(E) scores for a given phosphosite are calculated based on the distance and charge of atoms 

from neighboring proteins (Fig. 4c, Methods). Upon manual inspection of several 

phosphorylation events within their 3D context, we found that a phosphosite’s S and E scores 

accurately represent the surrounding steric and electrostatic environment (Figs. 4d, c, and f). 

We caution that the quality of our predictions is dependent on the quality and content of the 

structural information deposited on PDB, which can vary from structure to structure. 

 

Using our scoring system, we extracted from our dataset hundreds of sites that, if 

phosphorylated in the context of the crystal structure, would cause steric clashing, occur within 

a negatively charged environment, or both (Fig. 4c). We hypothesized that phosphorylation 

events with high S scores and low E scores may disrupt protein-protein interactions. To test this 

hypothesis, we constitutively mimicked phosphorylation by mutating a phosphosite residue from 

serine to aspartic acid and determined how that mutation impacted a predicted set of protein-
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protein interactions. We performed proof-of-principle experiments in Rad23, an evolutionarily 

conserved protein with dual roles in nucleotide excision repair and proteolysis 30. For its DNA 

repair functions, Rad23, together with Rad4, recognizes damaged DNA 31. For its role in protein 

degradation, Rad23 interacts with several proteins in the ubiquitin pathway 30. One of these 

proteins is Png1, a protein involved in the degradation of misfolded ER proteins 32. We chose 

Rad23 for our proof-of-principle experiments because it harbored a phosphosite (serine 270; 

S270) that mapped to an interface that binds two different proteins, Rad4 and Png1 (Fig. 5a). 

Based on its S and E scores, we anticipated that phosphorylation at S270 might significantly 

impact Rad23’s interaction with Png1 while having a milder effect on its interaction with Rad4. 

To test our prediction, we generated a phospho-mimetic RAD23 mutant (Rad23S270D) and 

performed IP-MS to quantitatively compare interacting proteins pulled down with Rad23WT vs 

Rad23S270D. Consistent with our prediction, we found that Rad23’s interaction with Png1 was 

specifically disrupted when phosphorylation was mimicked at S270 (greater that 25-fold change 

in the average SILAC ratios for Png1 peptides) (Figs. 5b,c). Importantly, the ability of Rad23 to 

bind to its other interacting proteins, including Rad4, was not disrupted by the mutation of serine 

270. 

 

We performed a similar analysis for the Golgi-resident Rab family GTPase, Ypt1, the essential 

Rab1 homolog that regulates ER-to-Golgi membrane trafficking by recruiting effectors to the 

membrane surfaces of ER-derived vesicles and the Golgi complex 33,34. The primary guanine-

nucleotide exchange factor (GEF) that activates Ypt1 in vivo is the TRAPPIII complex 35,36; the 

related TRAPPII complex is also capable of promoting Ypt1 activation 37. Ypt1 interacts with the 

TRAPP complexes, in part, by binding to the Trs23 subunit. The inactive (GDP-bound) form of 

Ypt1 is kept soluble in the cytoplasm by binding to Gdi1 38. Gdi1 therefore prevents inactive 

Ypt1 from accumulating on the membrane of the Golgi complex or other organelles. 
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Interestingly, we found three consecutive phosphosites in Ypt1 (S74, S75, and S76) that lie at 

its interface with both Trs23 and Gdi1, potentially disrupting these interactions when 

phosphorylated (Fig. 5d). A phosphomimetic mutation of just one of these residues, S75D, was 

enough to disrupt the interactions of Ypt1 with subunits of the TRAPP complexes (including 

Trs23) and with Gdi1, without disrupting other interactions (Figs. 5e, f). We also tested whether 

the S75D mutation retained the essential function of Ypt1. We observed that ypt1-S75D was 

unable to support viability in the absence of endogenous Ypt1 (Fig. 5g). However, the GFP-

Ypt1-S75D mutant protein appeared to retain normal Golgi localization, measured by co-

localization with the Golgi-resident protein Sec7 (Fig. 5h), suggesting that S75D is a separation-

of-function mutation that will be useful to dissect distinct mechanisms of Ypt1 regulation. 

Overall, these examples reinforce the concept that it is possible to systematically predict the 

impact of phosphorylation on the regulation of protein-protein interactions based on the 

structural context of its occurrence. 

 

Legend for Figure 5 (next page): Validation of the predicted effects of phosphorylation of Rad23 and Ypt1 in disrupting 
specific protein-protein interactions. (A) Rad23 in complex with Rad4 (left) and Png1 (right). S (left) and E (right) scores are 
displayed for the phosphorylation of Rad23 at serine 270 (circled in in both structures). (B) Quantitative mass spectrometry analysis 
of the Rad23 interaction network and the effect of a phospho-mimetic mutation at serine 270. SILAC labeled yeast cultures 
expressing Rad23-FLAG or an empty vector were subjected to anit-FLAG IP to pre-define the list of specific Rad23 interacting 
proteins shown in the graph. The average SILAC ratios represent quantitative analysis of fold changes for each of the interactions in 
IP using wild-type Rad23 versus Rad23-S270D mutant as bait (Supplemental Table 8). (C) Schematics depicting Rad23’s protein 
interaction network and the impact of a phospho-mimetic mutation at serine 270, as defined by SILAC IP-MS. (D) Ypt1 in complex 
with the TRAPP complex (left) and Gdi1 (right). We detected phosphorylation at S74, S75, and S76 of Ypt1 (all with high confidence 
localization in singly phosphorylated phosphopeptides). S (left) and E (right) scores for the monophosphorylation Ypt1 at serine 75 is 
displayed and modeled into both structures (circled). (E) Quantitative mass spectrometry analysis of the Ypt1 interaction network 
and the effect of a phospho-mimetic mutation at serine 75. SILAC labeled yeast cultures expressing Ypt1-FLAG or an empty vector 
were subjected to anit-FLAG IP to pre-define the list of specific Ypt1-interacting proteins shown in the graph. The average SILAC 
ratios represent quantitative analysis of fold changes for each of the interactions in IP using wild-type Ypt1 versus Ypt1-S75D 
mutant as bait (Supplemental Table 9). (F) Schematics depicting Ypt1’s protein interaction network and the impact of a phospho-
mimetic mutation at serine 75, as defined by SILAC IP-MS. (G) Plasmid shuffling assay to test the whether ypt1-S75D can fulfill 
Ypt1’s essential functions. (H) Fluorescent microscopy to determine whether ypt1-S75D retains proper localization to the Golgi 
complex. Plasmids expressing either wild-type GFP-Ypt1 or GFP-Ypt1-S75D were transformed into yeast cells. Single focal planes 
are shown of live-cell fluorescence microscopy images under normal growth conditions. Cells are expressing an endogenously 
tagged Golgi marker, Sec7-DsRed. Scale bar is 2um. The amount of overlap between Ypt1 and Sec7 colocalization was quantified 
using the Pearson's Correlation Coefficient. 
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Discussion 

 

Here we conducted the most in depth analysis of the phosphoproteome in budding yeast to 

date, and our efforts have nearly doubled the number of identified phosphorylation sites in this 

organism. In all, if considering both our current analysis and previous reports, the budding yeast 

phosphoproteome presently consists of approximately 40,000 identified phosphorylation sites. 

While the plot in Figure 2d indicates that our ability to identify novel phosphorylation sites in the 

yeast phosphoproteome may be approaching its limit, we acknowledge that this saturation 

analysis is biased toward our instrumentation and methodologies. Nonetheless, our coverage is, 

in some cases, approaching the coverage achievable through the analysis of purified protein 

complexes (Fig. 2e), which suggests that the majority of potentially detectable phosphorylation 

events in budding yeast have likely been identified. 

 

The biological significance of nearly all of these identified phosphorylation events remains 

unknown. The extensive scope of the phosphoproteome raises the question as to whether many 

of the identified phosphorylation events actually have tangible biological significance. While 

quantity of phosphosites identified and phosphoproteome coverage achieved in our study has 

inherent value, the ability to distinguish functional phosphorylation from what could potentially 

be “off-target” or promiscuous kinase action represents the primary challenge in dealing with 

large-scale phosphoproteomic datasets. Importantly, while the “detectability” of a particular 

phosphorylation event is impacted by factors other than its abundance (e.g. peptide solubility or 

ionization, accessibility to tryptic digestion, etc.), an argument could be made that many of the 

phosphorylation events that are buried deep within the phosphoproteome are low abundant and, 

therefore, are likely less important than the events which are readily detectable. If true, by 
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expanding the depth with which the phosphoproteome is profiled, to what extent is our dataset 

actually revealing functional phosphorylation sites? While this question is difficult to address, the 

examples presented in Figure 2f strongly indicate that even phosphorylation that exists near the 

threshold of MS detection can be biologically meaningful. In addition, the relative prevalence of 

a particular phosphorylation event does not predetermine its importance. Although specialized 

MS applications can assess the stoichiometry of protein phosphorylation 39, general MS-based 

phosphoproteomics does not inherently inform phosphorylation stoichiometry. Therefore, low-

abundant phosphoproteins that are stoichiometrically phosphorylated are often indistinguishable 

from very abundant proteins whose phosphorylated form represents only a small fraction of their 

total protein.  

 

Given the challenges highlighted above, how can one distinguish functional biologically 

meaningful phosphorylation from what might just be the “noise” of the phosphoproteome? For 

one, it is clear that the evolutionary conservation of a phosphorylated residue does not dictate 

the relevancy of the event, as many functional phosphorylation events occur on poorly 

conserved residues 17,40. One clever way to distinguish a “deliberate” phosphorylation event 

from promiscuous ones may be to measure how dynamically it changes. With the assumption 

that functional kinase-substrate interactions are better optimized for binding than promiscuous 

interactions, Kanshin et al. recently demonstrated that changes in phosphorylation occur faster 

on functional versus promiscuous substrates 23. Nevertheless, the current standard for 

determining the functionality of a phosphorylation event requires the generation of mutant yeast 

strains that either lack or constitutively mimic the phosphorylated residues in a substrate protein, 

with the ultimate goal of phenocopying the effects of a kinase’s action or inaction. However, 

generating phospho-site mutations is labor intensive and often times, due to the recessive 

nature of phospho-mutant phenotypes, requires genetic manipulation at the endogenous locus. 
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Efforts to elicit phenotypes from phospho-site mutants can be further complicated by functional 

redundancy, which in some cases can be found in serines or threonines neighboring the 

identified phosphorylation event or in another substrate whose phosphorylation results in a 

redundant effect. The phospho-regulation of Slx4 and Sld3/Dbf4 exemplifies of the extensive 

redundancy that must be overcome when making phospho-site mutants 41,42. 

 

3D phosphoproteome analysis provides insights into function and regulatory mechanism 

The challenges that hinder the interpretation of large phosphoproteomic datasets are, in some 

ways, similar to those faced in the field of human genomics. As mass spectrometry has 

exponentially expanded the catalog of phosphorylation events, genomics has similarly revealed 

tens of thousands of disease-associated mutations 43,44. Akin to the biologically impactful 

phosphorylation events in our dataset, impactful mutations exist amidst many less meaningful 

polymorphisms 45-47. Recent efforts to identify the key mutations that underpin human disease 

phenotypes have utilized the expanding collection of protein structural information 48-51, with the 

logic being that mutations that occur at or near the interfaces where proteins interact will have a 

higher likelihood of impacting protein function. Building on this logic, here we streamlined the 

identification of the functional phosphosites by identifying those located at or near protein-

interaction interfaces (Fig. 4). In addition, we were able to make systematic predictions about 

the impact of a phosphorylation event occurring near protein-protein interfaces, and its potential 

for causing steric clashes or an electrostatic environment incompatible with the crystal structure. 

Our minimalistic approach to predicting regulatory phosphorylation based on available structural 

information, though simpler than methods employed previously 52-54, was successful at 

predicting disruptive phosphorylation (Fig. 5). For example, we demonstrated that 

phosphorylation-mimicking mutation of Rad23 at S270 specifically disrupts the interaction 

between Rad23 and Png1. The formation of the Rad23-Png1 complex has been shown to be 
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critical for the efficient degradation of glycosylated ER-associated proteins 32. Thus, while the 

kinase responsible for the phosphorylation of S270 and the biological context in which this 

phosphorylation occurs remain unclear, the phosphorylation of Rad23 at S270 could, in theory, 

act as a switch to inhibit the degradation of glycosylated ER proteins. Moreover, we found that 

phosphomimetic mutation of S75 in the Rab GTPase Ypt1 disrupts its interactions with both 

Gdi1 and the TRAPP GEF complexes. This suggests that phosphorylation of S75 would result 

in decreased activation of Ypt1 but persistence of inactive Ypt1 on the Golgi membrane. 

Correspondingly, the Ypt1 phosphomutant retained its localization to the Golgi yet was unable 

to provide the essential function of Ypt1. A previous study demonstrated that phosphorylation of 

another Rab GTPase, Sec4, is a negative regulatory mechanism coupled to the cell cycle 55. 

Therefore, although it remains to be determined how phosphorylation of Ypt1 is regulated, our 

results suggest that phosphorylation of Ypt1 is a plausible regulatory mechanism for controlling 

when and where it is activated. 

 

Moving forward, the ever expanding repository of structural information will benefit 

methodologies that utilize that information to predict the functionality of post translational 

modifications. Elucidation of more protein structures, particularly through the use of emerging 

technologies like Cyro-EM, will expand the 3D characterization of the phosphoproteome. Thus, 

methods like those presented here will continue to drive the functional exploration of the 

phosphoproteome. 
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Materials and Methods 

 

Protein extraction and sample preparation for phosphoproteome analysis 

The phosphoproteomic experiments used as the source for the database were performed for a 

variety of focused biological investigations. In almost all cases these experiments were 

performed with the intention of quantifying changes in phosphopeptide abundance, and thus 

relied on a two-channel SILAC-based workflow. "Light" and "heavy"-labeled cultures ("light" 

version complemented with normal arginine and lysine; "heavy" version complemented with L-

Lysine 13C6, 15N2.HCl and L-Arginine 13C6, 15N4.HCl) were combined, harvested by 

centrifugation in TE buffer pH 8.0 containing protease inhibitors and stored frozen at -80°C until 

cell lysis. Approximately 0.3 g of yeast cell pellet (in 3 separate 2mL screwcap tubes) was lysed 

by bead beating at 4°C in 3 mL of lysis buffer (1mL per tube) containing 50 mM Tris-HCl, pH 

8.0, 0.2% Tergitol, 150 mM NaCl, 5 mM EDTA, complete EDTA-free protease inhibitor cocktail 

(Roche), 5 mM sodium fluoride and 10 mM β-glycerophosphate. Lysates of light and heavy 

conditions were mixed together (approximately 6mgs of protein from each condition). The mixed 

lysate was then denatured in 1% SDS, reduced with DTT, alkylated with iodoacetamide and 

then precipitated with three volumes of a solution containing 50% acetone and 50% ethanol. 

Proteins were solubilized in a solution of 2 M urea, 50 mM Tris-HCl, pH 8.0, and 150 mM NaCl, 

and then TPCK-treated trypsin was added. Digestion was performed overnight at 37°C, and 

then trifluoroacetic acid and formic acid were added to a final concentration of 0.2%. Peptides 

were desalted with Sep-Pak C18 column (Waters). C18 column was conditioned with 5 column 

volumes of 80% acetonitrile and 0.1% acetic acid and washed with 5 column volumes of 0.1% 

trifluoroacetic acid. After samples were loaded, column was washed with 5 column volumes of 

0.1% acetic acid followed by elution with 4 column volumes of 80% acetonitrile and 0.1% acetic 

acid. Elution was dried in a SpeedVac evaporator and resuspended in 1% acetic acid. 
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Phosphopeptide enrichment 

After protein extraction and trypsin digestion, desalted peptides were resuspended in 1% acetic 

acid and loaded in a tip column containing ~22µl of immobilized metal affinity chromatography 

(IMAC) resin prepared as previously described 56. After loading, the IMAC resin was washed 

with 1 column volume of 25% acetonitrile, 100 mM NaCl, and 0.1% acetic acid solution followed 

by 2 column volumes of 1% acetic acid, 1 column volume of deionized water and finally, eluted 

with 3 column volumes of 12% ammonia and 10% acetonitrile solution. The elutions were then 

dried and resuspended in 16.5ul H20. 

 

HILIC fractionation 

After phosphopeptide enrichment, samples were dried in a SpeedVac, reconstituted in 80% 

acetonitrile and 1% formic acid and fractionated by hydrophilic interaction liquid chromatography 

(HILIC) with TSK gel Amide-80 column (2 mm x 150 mm, 5 µm; Tosoh Bioscience). 90sec 

fractions were collected between 10 and 25 min of the gradient. Three solvents were used for 

the gradient: buffer A (90% acetonitrile); buffer B (80% acetonitrile and 0.005% trifluoroacetic 

acid) and buffer C (0.025% trifluoroacetic acid). The gradient used consists of a 100% buffer A 

at time = 0 min; 88% of buffer B and 12% of buffer C at time = 5 min; 60% of buffer B and 40% 

of buffer C at time = 30 min; and 5% of buffer B and 95 % of buffer C from time = 35 to 45 min in 

a flow of 150 µl/min. 

 

Mass spectrometry analysis and data acquisition 
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HILIC fractions were dried in a SpeedVac, reconstituted in 0.1% trifluoroacetic acid and 

subjected to LC-MS/MS analysis using a 20-cm-long 125-µm inner diameter column packed in-

house with 3 µm C18 reversed-phase particles (Magic C18 AQ beads, Bruker). Separated 

phosphopeptides were electrosprayed into a QExactive Orbitrap mass spectrometer (Thermo 

Fisher Scientific). Xcalibur software (Thermo Fischer Scientific) was used for the data 

acquisition and the Q Exactive was operated in data-dependent mode. Survey scans were 

acquired in the Orbitrap mass analyzer over the range of 380 to 1800 m/z with a mass 

resolution of 70,000 (at m/z 200). MS/MS spectra was performed selecting up to the 10 most 

abundant ions with a charge state using of 2, 3 or 4 within an isolation window of 2.0 m/z. 

Selected ions were fragmented by Higher-energy Collisional Dissociation (HCD) with 

normalized collision energies of 27 and the tandem mass spectra was acquired in the Orbitrap 

mass analyzer with a mass resolution of 17,500 (at m/z 200). Repeated sequencing of peptides 

was kept to a minimum by dynamic exclusion of the sequenced peptides for 30 seconds. For 

MS/MS, AGC target was set to 1e5 and max injection time was set to 120ms. 

 

Phosphopeptide and phosphorylation site identification: primary search using 

Andromeda 

Three separate search engines were used to search the raw MS/MS spectra. All searches were 

performed on 19 separate “chunks”, with each chunk containing an average of 500,000 MS/MS 

spectra. The primary search engine used was Andromeda, as part of the MaxQuant software 

package (version 1.6.5.0). Searching parameters for MaxQuant included a fully-tryptic 

requirement. After a “first search” at 20ppm, the precursor match tolerance was set to 4.5ppm. 

Differential modifications were 8.0142 daltons for lysine, 10.00827 daltons for arginine, 

79.966331 daltons for phosphorylation of serine, threonine and tyrosine, phosphorylation 

dehydration, and a static mass modification of 57.021465 daltons for alkylated cysteine 
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residues. N-terminal acetylation was also set as a variable modification, but only for peptides 

that correspond to the N-terminus of protein. A complete list of searching parameters can be 

found in Supplemental Table 10. The primary source for the phosphosite identification was the 

“Phospho STY” output table in MQ 2. The quality threshold for a PSM to be considered for 

phosphosite identification was an Andromeda score greater than 40 and a delta score of greater 

than 6 (similar to criteria used by 2). The 19 “Phospho STY” files (from each of the 19 chunks) 

were concatenated and redundancy eliminated by retaining the PSM entry with best 

phosphosite localization score for every identified phosphosite. The primary dataset contains 

only phosphosites with high-confidence localization, which we considered as having a 

MaxQuant localization score of greater than 0.70.  

 

Phosphopeptide and phosphorylation identification: secondary search using Sequest  

All spectra were also searched using two Sequest-based engines, Proteome Discoverer 

(Thermo) and SORCERER (Sage N Research, Inc.). For PD and SORCERER we used similar 

search parameters as MaxQuant, with the exception that we permitted semi-tryptic digestion, 

rather than require fully typtic. Precursor match tolerance for both Sequest searches was set to 

10ppm. We considered only high confidence PSMs for the pipeline, filtered to less than 1% FDR 

using percolator and sorcererscore for PD and SORCERER, respectively. To increase the 

confidence in our Sequest searches further, we only considered phosphopeptides whose 

backbone sequence appeared in both the PD and SORCERER PSM searches. For 

phosphopeptides that passed this backbone requirement, we then retained the PSM information 

acquired using Proteome Discoverer. The phosphorylation localization probabilities were 

determined using ptmRS (PhosphoRS) within Proteome Discoverer 57. The threshold for “high-

confidence” phosphosite localization was a phosphoRS percentage of >70%. 
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Inclusion of high-confidence phosphosite clusters 

Phosphopeptides that did not contain phosphosite localization scores that met our “high-

confidence” threshold (MQ: localization score above 0.75; PD/SORCERER: phosphoRS 

percentage above 70%) were subsequently searched for phosphosite “clusters”. This involved 

identifying consecutive S/T/Y residues that were assigned localization scores which sum to 

greater than 0.9 (MQ) or 90% (phosphoRS) (see Supplemental Figure 1 for hypothetical 

examples). 

 

Analysis of cell-cycle phosphorylation dynamics 

The spectral counts used to perform the cell cycle analysis were extracted from the primary 

search outlined in Figure 1. A curated set of runs were given either a G1, S phase, or G2M 

annotation. For every phosphosite (specifically, its best corresponding phosphopeptide), the 

number of identifications (i.e. spectral counts, PSMs) within runs with cell cycle annotation was 

tallied. Only phosphopeptides that were detected more than 5 times in the annotated runs 

(G1+G2M+MMS) were retained. The stringency for enrichment or depletion in a particular cell 

cycles state was a 5-fold difference in the number of identifications for one cell cycle stage VS 

the other two. 

 

G1 synchrony was achieved through alpha factor arrest. S-phase synchrony was primarily 

achieved via two hour MS treatment (in some cases, 40min release from alpha factor arrest). 

G2/M synchrony was achieved via 2.5 hours of nocodozole treatment. The use of DNA 

damaging agents to synchronize cells in S phase was counterbalanced by the inclusion of 
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multiple experiments involving the addition of 4NQO to both G1- and G2/M-arrested cell. Thus, 

each of the cell cycle stage contains analyses done with and without the presence of a DNA 

damage. 

 

Calculation of E and S scores for phosphosites near protein-protein interaction 

interfaces 

All the phosphosites were mapped onto the available 3D structures in PDB 58 using residue-

level mapping information obtained from SIFTS database 59. The sites that were mapped to 

structures with more than one chain were further considered for calculation of E and S scores. 

For each site, neighboring atoms with in a distance of 10Å were identified (excluding the atoms 

present in the same chain as the phosphosite) using an in-house python script (Atoms chosen 

to be the “phosphosite atoms”: “OG” for serine, “OG1” for threonine and “OH” for tyrosine). Next, 

the charge for all the individual neighboring atoms was obtained using a command line version 

of PDB2PQR pipeline (with amber as the forcefield and using ‘--nodebump’ option). Finally, the 

S and E scores were calculated using the following equations: 

𝑆 𝑆𝑐𝑜𝑟𝑒 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑖𝑛𝑔 𝑎𝑡𝑜𝑚𝑠

𝑚𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑖𝑛𝑔 𝑎𝑡𝑜𝑚𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 5Å 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑝ℎ𝑜𝑠𝑝ℎ𝑜𝑠𝑖𝑡𝑒 𝑎𝑡𝑜𝑚
 

          

𝐸 𝑠𝑐𝑜𝑟𝑒 =
𝐶ℎ𝑎𝑟𝑔𝑒!
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒!

!

!!!

 

Where, Chargei is the charge of neighboring atom i and Distancei is the distance between atom i 

and the phosphosite atom.  
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Quantitative MS analysis pull-down protein complexes 

Yeast carrying either GFP-YPT1 or Rad23-FLAG were grown to an O.D.600 of 0.4 in 200 mL of 

-Arg -Lys dropout media ("light" version complemented with normal arginine and lysine; "heavy" 

version complemented with L-Lysine 13C6, 15N2.HCl and L-Arginine 13C6, 15N4.HCl). After 

centrifugation, pellets were kept at -80C prior to cell lysis. Approximately 0.3 g of cell pellet of 

each strain was lysed by bead beating at 4°C in 3 mL of lysis buffer (50 mM Tris-HCl pH 7.5, 

0.2% Tergitol, 150 mM NaCl, 5 mM EDTA, Complete EDTA-free protease inhibitor cocktail 

(Roche), 5 mM sodium fluoride, 10 mM B-glycerol-phosphate). Lysates were incubated with 

GFP-TRAP (in-house) or anti-FLAG agarose resin (Sigma) for 4 hours at 4°C. After 3 washes 

with lysis buffer, bound proteins were eluted with 90uls of elution buffer (100 mM Tris-HCl pH 

8.0, 1% SDS). Eluted proteins from normal or heavy media grown cells were mixed together, 

reduced, alkylated and then precipitated with three volumes of a solution containing 50% 

acetone and 50% ethanol. Proteins were solubilized in a solution of 2 M urea, 50 mM Tris-HCl, 

pH 8.0, and 150 mM NaCl, and then Trypsin Gold was added. Digestion was performed 

overnight at 37°C, and then trifluoroacetic acid and formic acid were added to a final 

concentration of 0.2%. Peptides were desalted with Sep-Pak C18 column (Waters). Elution from 

C18 column was dried in a SpeedVac evaporator and resuspended in 0.1% trifluoroacetic acid.  

 

Fluorescent Microscopy 

Overnight cultures were grown to an OD600 between 0.1 and 0.8, then imaged. Single focal 

planes are shown of live-cell fluorescence microscopy images under normal growth conditions. 

Cells are expressing endogenously tagged Sec7-6xDsRed. Scale bar is 2um. The amount of 

overlap between Ypt1 and Sec7 was quantified using the Pearson's Correlation Coefficient.  A 

region of interest was selected surrounding 1-4 cells and propagated to all of the focal planes 
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containing those cells for correlation analysis. Each data point represents the PCC for an image 

(WT = 9 images, S75D = 10 images) containing several regions of interest totaling 4-21 cells. A 

total of 105 cells for WT and S75D, while 107 cells for S39D were analyzed. An unpaired two-

tailed t-test with Welch’s correction was used to analyze the data points. The PCC for the WT 

and S75D mutant are not significantly different (p=0.1667), but S39D is significantly different 

from both WT and S75D (p < 0.0001, and p = 0.0002). WT Mean = 0.5068, S75D Mean = 

0.4732, S39D Mean = 0.3772, error bars represent 95% CIs. 
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Figure 1: An in-depth phosphoproteome database for budding yeast. A general workflow 

for mapping the budding yeast phosphoproteome using mass spectrometry. The 

phosphoproteomic dataset was generated from a multitude of different experimental conditions, 

including distinct cell cycle stages. Phosphopeptides were enriched directly from trypsin- or 

chymotrypsin-digested cell lysates via immobilized metal ion chromatography (IMAC). All 

samples were highly enriched for phosphorylated peptides (80-95% phosphopeptides) and, in 

most cases, extensively pre-fractionated via HILIC. Phosphopeptide fragments were captured 

as high resolution MS2 spectra using an obitrap mass analyzer (Q-exactive). Three separate 

search engines were used to identify phosphopeptides from the fragmentation spectra. The 

primary search was performed using MaxQuant (Andromeda engine). Phosphosites from the 

primary search were extracted from MaxQuants’s “Phospho STY” output table. A secondary 

search was performed using two separate Sequest-based engines, Proteome Discoverer (PD) 

and SORCERER. The secondary search utilized similar search parameters as the primary 

search, with the exception that tryptic enzyme digestion was set to semi-specific. To further 

increase the confidence in our Sequest searches, we only considered phosphopeptides whose 

backbone sequence appeared in both the PD and SORCERER searches. Phosphosite 

localization probabilities were determined using MaxQuant (localization score) and the 

PhosphoRS node within Proteome Discoverer. Phosphosites with localization scores / 

phosphoRS scores above 70% were considered to have “high-confidence localization.” A 

clustering algorithm was used to capture addition phosphosites that meet our requirement for 

high-confidence localization (see Supplement Figure 1 for a demonstration of the logic used to 

cluster phosphosites). Because PhosphoRS is run independently of the PD PSM search, its 

phosphosite localization can sometimes conflict with the localization assigned in the rank 1 

PSM. To further ensure data quality, we required agreement between the localizations 

determined by PD’s PSM search and PhosphoRS node. PD and SORCERER searches are 

considered secondary because their PSM output is only included in the final data set 

(Supplemental Table_1) if a phosphosite was not already identified in the primary search. 
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Figure 2: Comparative and depth analysis of current and previous budding yeast 

phosphoproteome datasets. 

(A) Venn diagrams depicting the overlap of unique phosphosites contained within our dataset 

with the “known” phosphoproteome prior to this study. For our dataset, only non-redundant sites 

(i.e. sites identified from phosphopeptides that map uniquely to a single protein) with high-

confidence localization are considered. 

(B) As is (A) except with the inclusion of the sites captured by our clustering algorithm 

(Supplemental Figure 1). In this comparison, sites that redundantly mapped to multiple proteins 

were considered only when identifying overlap with the BioGRID/Swaney dataset (denoted by 

the asterisk) and were not considered in the 20,315 sites discovered by this study. 

(C) Histogram depicting the distribution of identified phosphosites as a function of protein copy 

number. Bars representing the number of phosphosites identified in this study are plotted 

behind (not on top of) the bars representing BioGRID/Swaney. 

 (D) Dot graph assessing saturation in the ability to identify novel phosphoproteins and 

phosphosites from the budding yeast phosphoproteome. Unique, non-redundant phosphosites 

from this study were iteratively added to the BioGRID/Swaney compendium (left to right) in 

randomized chunks. 

(E) Coverage maps comparing the Yen1 and Mrc1 phosphosites identified in this study (above, 

in black) with the sites identified in low-throughput studies (below, in gray). For the low-

throughput MS analyses, phosphopeptides were enriched after affinity purification of Yen1 (et 

al.) or Mrc1 (et al.) from yeast lysates. 

(F) Coverage maps comparing the phosphosites identified in this study (above, exclusive to this 

study in blue) with those found within BioGRID/Swaney (below, exclusive to BioGRID/Swaney in 

red). The bolded blue sites denoted by an asterisk represent putative phosphosites that were 

mutated an analyzed in previous studies (but were not included in BioGRID).   
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Figure 3: Cell cycle dynamics of the budding yeast phosphoproteome. 

(A) Ternary plot displaying the distribution phosphorylation events as a function of their 

detection in different stages of the cell cycle. A curated set of experiments from the larger 

dataset presented in Figure 2 was used for this analysis. Each gray dot represents a unique 

phosphosite (considering only the most prevalent phosphopeptide). The position of each dot 

within the plot represents the fraction of times it was detected in either G1, S phase, or G2/M. 

An 8% jitter was added to help visualize overlapping data points. 

(B) Table that corresponds to the highlighted dots from (A) and the number of times they were 

detected in each cell cycle stage. See Supplemental Table 4 for the full dataset. 

(C) Pie chart illustrating the fraction of phosphosites with enrichment or depletion in a particular 

cell cycle stage. To be considered enriched or depleted, a phosphopeptide must have 5-fold 

more or less detections in one particular cell cycle stage VS the other two stages (e.g. “S phase 

and G2/M” could alternatively be considered as “G1-depleted”). The examples given in (B) all fit 

the criteria for enrichment or depletion. 
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Figure 4: 3D analysis of budding yeast phosphoproteome reveals potential regulatory 

phosphorylation at protein interaction interfaces. 

(A) The SuperPhos database (under development). Representative example of data display for 

a protein entry. The database merges an updated version of the budding yeast 

phosphoproteome with the protein interface calculations made by interactome INSIDER. In 

addition to indicating interactions for which PDB structures are available (as shown in this 

example), the SuperPhos database also provides information on all predicted interaction 

interfaces from INSIDER (not shown in this example). 

(B) Mapping the yeast phosphoproteome to all available PDB structures and systematic 

prediction of phosphorylation that regulates protein-protein interactions. For each phosphosite 

that mapped to a structured region, E and S scores were systematically calculated based on the 

proximity and charge of atoms from neighboring proteins. See methods for a detailed 

explanation of how the scores were calculated. The dot plot depicts the distribution of S and E 

scores assigned to each phosphosites. Phosphosites that map to more than one crystal 

structure or to multiple chains within a single crystal structure were assigned multiple S and E 

scores (Supplemental Table 7). 

 (C) Distribution of S and E scores assigned to phosphosites in the 3D budding yeast 

phosphoproteome. 

(D), (E), (F) Representative examples of the mapping and scoring of phosphosites within the 

structural context of protein complexes. The phosphoprotein is displayed as a green ribbon 

cartoon; the electron density of the surrounding protein(s) is colored based on the electrostatic 

environment (as calculated by ABPS). 
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Figure 5: Validation of the predicted effects of phosphorylation of Rad23 and Ypt1 in 

disrupting specific protein-protein interactions. 

(A) Rad23 in complex with Rad4 (left) and Png1 (right). S (left) and E (right) scores are 

displayed for the phosphorylation of Rad23 at serine 270 (circled in in both structures). 

(B) Quantitative mass spectrometry analysis of the Rad23 interaction network and the effect of a 

phospho-mimetic mutation at serine 270. SILAC labeled yeast cultures expressing Rad23-FLAG 

or an empty vector were subjected to anit-FLAG IP to pre-define the list of specific Rad23 

interacting proteins shown in the graph. The average SILAC ratios represent quantitative 

analysis of fold changes for each of the interactions in IP using wild-type Rad23 versus Rad23-

S270D mutant as bait (Supplemental Table 8).  

(C) Schematics depicting Rad23’s protein interaction network and the impact of a phospho-

mimetic mutation at serine 270, as defined by SILAC IP-MS.  

(D) Ypt1 in complex with the TRAPP complex (left) and Gdi1 (right). We detected 

phosphorylation at S74, S75, and S76 of Ypt1 (all with high confidence localization in singly 

phosphorylated phosphopeptides). S (left) and E (right) scores for the monophosphorylation 

Ypt1 at serine 75 is displayed and modeled into both structures (circled). 

(E) Quantitative mass spectrometry analysis of the Ypt1 interaction network and the effect of a 

phospho-mimetic mutation at serine 75. SILAC labeled yeast cultures expressing Ypt1-FLAG or 

an empty vector were subjected to anit-FLAG IP to pre-define the list of specific Ypt1-interacting 

proteins shown in the graph. The average SILAC ratios represent quantitative analysis of fold 

changes for each of the interactions in IP using wild-type Ypt1 versus Ypt1-S75D mutant as bait 

(Supplemental Table 9). 

(F) Schematics depicting Ypt1’s protein interaction network and the impact of a phospho-

mimetic mutation at serine 75, as defined by SILAC IP-MS.  

(G) Plasmid shuffling assay to test the whether ypt1-S75D can fulfill Ypt1’s essential functions. 

(H) Fluorescent microscopy to determine whether ypt1-S75D retains proper localization to the 

Golgi complex. Plasmids expressing either wild-type GFP-Ypt1 or GFP-Ypt1-S75D were 

transformed into yeast cells. Single focal planes are shown of live-cell fluorescence microscopy 

images under normal growth conditions. Cells are expressing an endogenously tagged Golgi 

marker, Sec7-DsRed. Scale bar is 2um. The amount of overlap between Ypt1 and Sec7 

colocalization was quantified using the Pearson's Correlation Coefficient.  
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