- 1 Title: A humanized yeast phenomic model of deoxycytidine kinase to predict
- 2 genetic buffering of nucleoside analog cytotoxicity
- 3
- 4 **Author List and Affiliations:**
- 5 Sean M. Santos¹, Mert Icyuz¹, Ilya Pound¹, Doreen William², Jingyu Guo¹, Brett A.
- 6 McKinney¹, Michael Niederweis², John Rodgers¹, John L. Hartman IV¹
- 7 University of Alabama at Birmingham, ¹Department of Genetics and ²Department
- 8 of Microbiology, Birmingham, AL
- 9

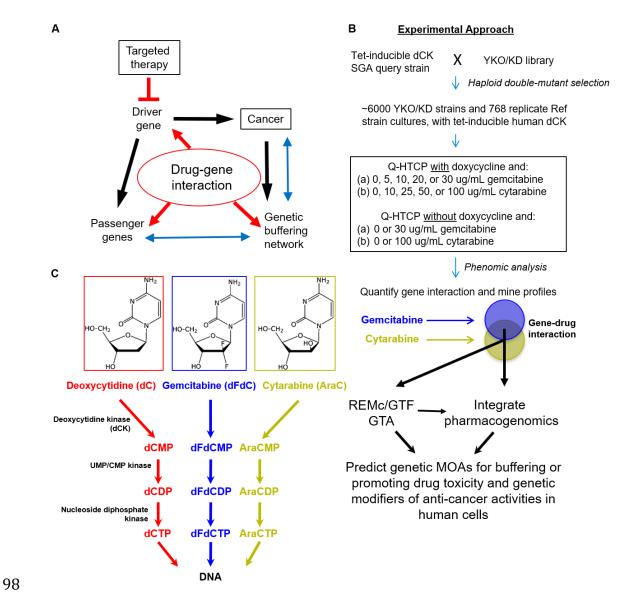
10 Abstract:

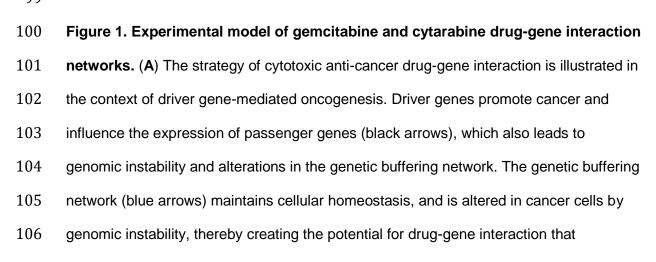
11 Knowledge about synthetic lethality can be applied to enhance the efficacy of 12 anti-cancer therapies in individual patients harboring genetic alterations in their cancer 13 that specifically render it vulnerable. We investigated the potential for high-resolution 14 phenomic analysis in yeast to predict such genetic vulnerabilities by systematic. 15 comprehensive, and quantitative assessment of drug-gene interaction for gemcitabine 16 and cytarabine, substrates of deoxycytidine kinase that have similar molecular structures 17 vet distinct anti-tumor efficacy. Human deoxycytidine kinase (dCK) was conditionally 18 expressed in the S. cerevisiae genomic library of knockout and knockdown (YKO/KD) 19 strains, to globally and guantitatively characterize differential drug-gene interaction for 20 gemcitabine and cytarabine. Pathway enrichment analysis revealed that autophagy, 21 histone modification, chromatin remodeling, and apoptosis-related processes influence 22 gemcitabine specifically, while drug-gene interaction specific to cytarabine was less 23 enriched in Gene Ontology. Processes having influence over both drugs were DNA 24 repair and integrity checkpoints and vesicle transport and fusion. Non-GO-enriched 25 genes were also informative. Yeast phenomic and cancer cell line pharmacogenomics 26 data were integrated to identify yeast-human homologs with correlated differential gene

- 27 expression and drug-efficacy, thus providing a unique resource to predict whether
- 28 differential gene expression observed in cancer genetic profiles are causal in tumor-
- 29 specific responses to cytotoxic agents.
- 30

31 Keywords:

- 32 yeast phenomics, gene-drug interaction, genetic buffering, quantitative high
- 33 throughput cell array phenotyping (Q-HTCP), cell proliferation parameters (CPPs),
- 34 gemcitabine, cytarabine, recursive expectation-maximization clustering (REMc),
- 35 pharmacogenomics
- 36


37 Introduction:


38 Genomics has enabled targeted therapy aimed at cancer driver genes and 39 oncogenic addiction [1], yet traditional cytotoxic chemotherapeutic agents remain among 40 the most widely used and efficacious anti-cancer therapies [2]. Changes in the genetic 41 network underlying cancer can produce vulnerabilities to cytotoxic chemotherapy that 42 further influence the therapeutic window and provide additional insight into their 43 mechanisms of action [3,4]. A potential advantage of so-called synthetic lethality-based 44 treatment strategies is that they could have efficacy against passenger gene mutation or 45 compensatory gene expression, while classic targeted therapies are directed primarily at 46 driver genes (Fig. 1A). Quantitative high throughput cell array phenotyping of the yeast 47 knockout and knockdown libraries provides a phenomic means for systems level, high-48 resolution modeling of gene interaction [5-9], which is applied here to predict cancer-49 relevant drug-gene interaction through integration with cancer pharmacogenomics 50 resources (Fig. 1B).

51 Nucleoside analogs include a diverse group of compounds with anticancer, 52 antiviral, and immunosuppressive efficacy [10]. The anti-cancer agents have tissue-53 specific efficacy ranging from solid tumors to leukemias, yet details about how these 54 agents confer differential activity are unknown [10,11]. Gemcitabine (2',2'-difluoro 2'-55 deoxycytidine, dFdC) and cytarabine (Ara-C) are deoxycytidine analogs that undergo 56 the first step of conversion to their active triphosphate forms by deoxycytidine kinase 57 (dCK) (Fig. 1C). The nucleoside triphosphate analogs can be incorporated into DNA and 58 inhibit the functions of polymerases and other enzymes involved of DNA metabolism. 59 For example, gemcitabine inhibits ribonucleotide reductase (RNR), which limits the 60 production of deoxyribonucleotides (**dNTPs**) that are needed for DNA synthesis and 61 repair [11]. Gemcitabine has been used as a single agent in the treatment of some 62 cancers, such as pancreatic, and in combination with platinum-based drugs in non-small 63 cell lung, breast, and ovarian cancers [12-15]. Cytarabine, on the other hand, has been 64 an important agent in treatments for acute myeloid leukemia and acute lymphoblastic 65 leukemia [16].

66 Deoxycytidine kinase (**dCK**) phosphorylates deoxycytidine to deoxycytidine 67 monophosphate (**dCMP**), similarly phosphorylating gemcitabine and cytarabine to 68 dFdCMP and AraCMP, respectively. UMP/CMP kinase and the nucleoside diphosphate 69 kinase are subsequently involved in conversion to the triphosphate form (Fig. 1C). 70 Reduced expression of dCK or high expression of RNR subunits *RRM1* and *RRM2* is 71 associated with increased gemcitabine resistance [10,12,17-21]. Genomic analyses have 72 suggested genetic influences on the efficacy of gemcitabine or cytarabine [22-26], which 73 we model here at a systems level by surveying gene-drug interaction to elucidate biology 74 underlying differential anti-cancer efficacies of the respective drugs, and thereby aid in 75 predicting treatment outcomes based on individual patient cancer genetic profiles.

76 Saccharomyces cerevisiae does not have a dCK homolog and is thus naturally 77 resistant to gemcitabine and cytarabine. To examine the gene-drug interaction networks 78 for gemcitabine and cytarabine in yeast, we introduced human dCK into the yeast 79 knockout and knockdown (YKO/KD) library by the synthetic genetic array (SGA) method 80 [27-29], and conducted phenomic analysis on the resulting double mutant library by 81 quantitative high throughput cell array phenotyping (Q-HTCP) [6-8,30], using multiple 82 growth inhibitory concentrations of gemcitabine or cytarabine (Fig. 1B). Cell proliferation 83 parameters (**CPPs**) obtained by Q-HTCP were used to quantify and compare drug-gene 84 interaction for gemcitabine vs. cytarabine. The unbiased results provide a systems level 85 resource of genetic and biological information about the cytotoxicity of these drugs, 86 incorporating knowledge about genes that either buffer or promote their effects [3.5] 87 Recent advances in cancer pharmacogenomics have provided gene expression 88 and drug sensitivity data from hundreds of cancer cell lines, establishing associations 89 between gene expression and anti-cancer efficacy for many compounds, including 90 gemcitabine and cytarabine [31-33]. We investigated the potential utility of a yeast 91 phenomic model of chemotherapy sensitivity and resistance for predicting causality in 92 correlations between differential gene expression and drug sensitivity by generating a 93 network-level drug-gene interaction resource. The resource integrates cancer 94 pharmacogenomic and yeast phenomic data, using the results to guery the cancer 95 genetics literature in order to obtain systems level biological insights about how yeast 96 phenomic models help predict cytotoxic chemotherapy efficacy based on unique genetic 97 alterations specific to each individual patient's cancer (Fig. 1A).

107	increases the therapeutic window of anti-cancer agents (red arrows). Drug-gene
108	interaction can either involve driver or passenger genes directly, or the compromised
109	genetic buffering network, which are systematically characterized by the quantitative
110	yeast phenomic model. (${f B}$) The synthetic genetic array (SGA) method was used to
111	enable tet-inducible human dCK expression in the yeast knockout and knockdown
112	(YKO/KD) collection. The phenomic model incorporates treatment of individually grown
113	cultures of the YKO/KD collection, and 768 replicate Ref strain cultures, with increasing
114	gemcitabine (0, 5, 10, 20, and 30 ug/mL) or cytarabine (0, 10, 25, 50, and 100 ug/mL) in
115	HLD media, with dCK induced by addition of doxycycline. Drug-gene interaction profiles
116	were subjected to REMc and GO term analysis to characterize phenomic modules with
117	respect to drug-gene interaction for gemcitabine or cytarabine, and integrated with
118	pharmacogenomics data to predict evolutionarily conserved drug-gene interactions
119	relevant to precision oncology. (C) Structures and metabolism of deoxycytidine analogs.

120 Materials and Methods:

121 Strains, media and drugs

We obtained the yeast gene knockout strain library (YKO) from Research
Genetics (Huntsville, AL, USA) and the knockdown (KD) collection, also referred to as
the Decreased Abundance of mRNA Production (DAmP) library, from Open Biosystems
(Huntsville, AL, USA). The YKO library is in the genetic background of BY4741 (S288C
MATa ura3-Δ0 his3-Δ1 leu2-Δ0 met17-Δ0). Additional information and strains can be

127 obtained at https://dharmacon.horizondiscovery.com/cdnas-and-orfs/non-mammalian-

128 <u>cdnas-and-orfs/yeast/#all</u>. Some mutants appear multiple times in the library and they

129 are treated independently in our analysis. HLD is a modified synthetic complete medium

130 [8] and was used with 2% dextrose (HLD) as the carbon source. Doxycycline

131 hydrochloride (BP26535) was obtained from Fisher Scientific. Gemcitabine (Gemzar)

132 was obtained from Eli Lilly and Company (0002-7502-01). Cytarabine was obtained from

133 Bedford Laboratories (55390-131-10).

134 A tet-inducible dCK query allele was constructed in the SGA background in the 135 following way: An integrating plasmid for doxycycline-inducible gene expression was 136 constructed by subcloning 3'UTR and 5'ORF targeting sequences from the LYP1 locus 137 into pJH023 [34], creating pJH023 UO lyp1, and the reverse VP16 transactivator (Tet-138 ON), obtained by PCR from pCM176 [35], was fused to the ACT1 promoter by overlap 139 PCR and subcloned into pJH023 UO lyp1, replacing the VP16 transactivator (Tet-OFF) 140 and creating the "Tet-ON" construct, pML1055 [36]. pML1055 was digested with NOT1 141 and transformed into strain 15578-1.2b_LYP1 ($MAT\alpha$ his3 $\Delta 1$ leu2 $\Delta 0$ ura3 $\Delta 0$ 142 $can1\Delta0::P_{GAL1}-T_{ADH1}-P_{MFA1}-his5^{+}_{sp}hmr\Delta0::URA3ca)$, which was derived by backcrossing 15578-1.2b (MATα his3 Δ 1 leu2 Δ 0 ura3 Δ 0 can1 Δ 0::P_{GAL1}-T_{ADH1}-P_{MFA1}-his5⁺_{sp} lyp1 Δ 0 143 144 $hmr\Delta0::URA3ca$) to restore the LYP1 locus. The resulting chromosomal integration of

145 pML1055 between the promoter and ORF at the LYP1 locus was selected with 146 nourseothricin, giving rise to yDW1 ($MAT\alpha$ his $3\Delta 1$ leu $2\Delta 0$ ura $3\Delta 0$ can $1\Delta 0$:: $P_{GAL1}-T_{ADH1}$ 147 P_{MEA1} -his5⁺_{sp} hmr Δ 0::URA3ca Pact1-revTetR-VP16-natMX-PtetO7-LYP1). Tet-inducible 148 LYP1 in vDW1 was verified phenotypically by doxycycline-dependent SAEC sensitivity 149 [36]. Overlap PCR was performed to fuse deoxycytidine kinase (from a plasmid, gift of 150 Bo Xu and William Parker, Southern Research) and the HPH gene (from pFA6a-HBH-151 hphMX4) [37], introducing flanking sequences for replacement of the LYP1 ORF (see 152 Additional File 1, Table S1 for primers). The PCR product was transformed into yDW1 153 (Additional File 2. Fig. S1) and transformants selected on hydromycin were confirmed 154 by doxycycline-induced sensitivity to gemcitabine and cytarabine, yielding yMI16. 155 The synthetic genetic array (SGA) method, a way to introduce an allele of 156 interest into the YKO/KD library and recover haploid double mutants [28.29], was used to 157 derive a haploid YKO/KD collection with doxycycline-inducible dCK expression. 158 159 Quantitative high throughput cell array phenotyping (Q-HTCP) 160 Q-HTCP, an automated method of collecting growth curve phenotypes for the 161 YKO/KD library arrayed onto agar media, was used to obtain phenomic data [38]. A 162 Caliper Sciclone 3000 liquid handling robot was used for cell array printing, integrated 163 with a custom imaging robot (Hartman laboratory) and Cytomat 6001 (Thermo Fisher 164 Scientific, Asheville, NC, USA) incubator. Images of the 384-culture arrays were

obtained approximately every 2-3 hours and analyzed as previously described [9,38]. To obtain CPPs, image analysis was performed in Matlab and data were fit to the logistic equation, $G(t) = K/(1 + e^{-r(t-1)})$, assuming G(0) < K, where G(t) is the image intensity of a spotted culture vs. time, K is the carrying capacity, r is the maximum specific growth rate, and I is the moment of maximal absolute growth rate, occurring when G(t) = K/2

170 (the time to reach half of carrying capacity) [7]. The CPPs, primarily K and L, were used

171 as phenotypes to measure drug-gene interaction.

- 172
- 173 Quantification of drug-gene interaction

174 Gene interaction was defined by departure of the corresponding YKO/KD strain

175 from its expected phenotypic response to gemcitabine or cytarabine. The expected

176 phenotype was determined by cell proliferation phenotypes of the mutant without

177 gemcitabine or cytarabine, and with 5ug/mL doxycycline, together with those of the

178 reference strain with and without gemcitabine or cytarabine [5,6,9,34]. The concentrations

179 of gemcitabine or cytarabine (ug/mL) were chosen based on phenotypic responses

180 being functionally discriminating in the parental strain. Gemcitabine, cytarabine, or

181 doxycycline, alone, did not alter cell proliferation (Fig. 2C-F; Additional File 2, Fig.

182 **S2A-D**).

183 Interaction scores were calculated as previously described [9,39], with slight

184 modifications, as summarized below. All media conditions used for interaction score

185 calculation had 5 ug/mL doxycycline to express dCK. Variables were defined as:

186 D_i = concentration (dose) of gemcitabine or cytarabine

187 R_i = observed mean growth parameter for parental Reference strain at D_i

188 Y_i = observed growth parameter for the YKO/KD mutant strain at D_i

189 $K_i = Y_i - R_i$, the difference in growth parameter between the YKO/KD mutant (Y_i) and

190 Reference (R_i) at D_i

191 $K_0 = Y_0 - R_0$, the effect of gene KO/KD on the observed phenotype in the absence of

- 192 gemcitabine or cytarabine; this value is annotated as 'shift' and is subtracted from all K_i
- 193 to obtain L_i

194 $L_i = K_i - K_0$, the interaction between (specific influence of) the KO/KD mutation on

195 gemcitabine or cytarabine response, at D_i

- 196 For cultures not generating a growth curve, Y_i = 0 for K and r, and the L
- 197 parameter was assigned Y_i max, defined as the maximum observed Y_i among all
- 198 cultures exhibiting a minimum carrying capacity (K) within 2 standard deviation (SD) of
- the parental reference strain mean at D_i. Y_i max was also assigned to outlier values (*i.e.*,
- 200 if $Y_i > Y_i max$).
- 201 Interaction was calculated by the following steps:
- 202 1) Compute the average value of the 768 reference cultures (R_i) at each dose (D_i):
- 203 2) Assign Y_i max (defined above) if growth curve is observed at D₀, but not at D_i, or if
- 204 observed Y_i is greater than Y_i max.
- 205 3) Calculate $K_i = Y_i R_i$.
- 206 4) Calculate $L_i = K_i K_0$
- 5) Fit data by linear regression (least squares): $L_i = A + B^*D_i$
- 208 6) Compute the interaction value 'INT' at the max dose: $INT = L_i max = A + B^*D_{max}$
- 209 7) Calculate the mean and standard deviation of interaction scores for reference strains,
- 210 mean(REF_{INT}) and $SD(REF_{INT})$; mean(REF_{INT}) is expected to be approximately zero, with
- 211 SD(REF_{INT}) primarily useful for standardizing against variance (Additional File 1,
- 212 Tables S2-S5; Additional Files 3-4).
- 213 8) Calculate interaction z-scores:

214
$$z$$
-score(YKO_{INT}) = (YKO_{INT} – mean(REF_{INT}))/SD(REF_{INT})

215 z-score(YKO_{INT}) > 2 for L or < -2 for K are referred to as gene deletion enhancers 216 of gemcitabine or cytarabine cytotoxicity, and conversely, L interaction score < -2 or K 217 interaction scores >2 are considered gene deletion suppressors. Because the CPP 218 distributions for KD strains were different from the reference strain, we used the mean 219 and standard deviation from the KD plates only as a conservative measure of variance 220 where z-score(KD_{INT}) = (KD_{INT} – mean(KD_{INT}))/SD(KD_{INT}).

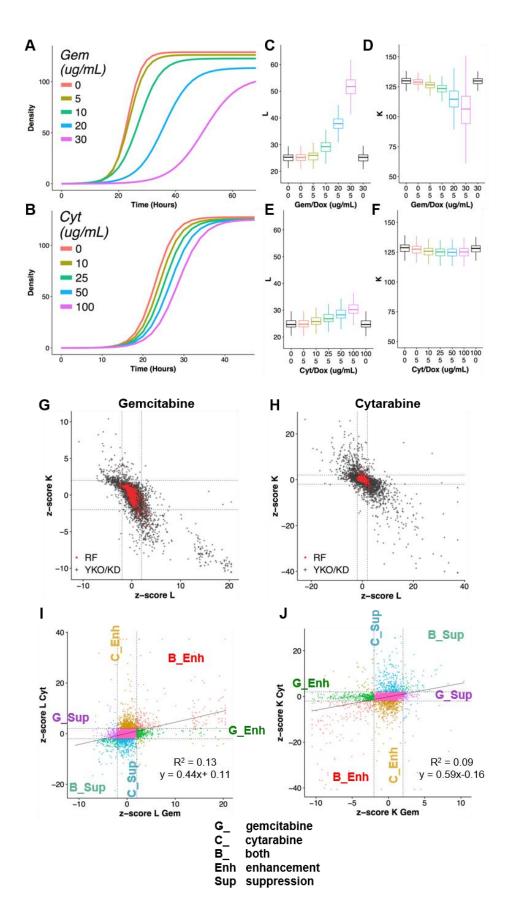
222 Recursive expectation-maximization clustering (**REMc**) and heatmap generation

- 223 REMc is a probability-based clustering method and was performed as previously
- described [40]. Clusters obtained by Weka 3.5, an EM-optimized Gaussian mixture-
- 225 clustering module, were subjected to hierarchical clustering in R (http://www.r-
- 226 project.org/) to further aid visualization with heatmaps. REMc was performed using L
- and K interaction z-scores (Fig. 3A). The effect of gene deletion on the CPP (in the
- absence of drug), termed 'shift' (K₀), was not used for REMc, but was included for
- visualization in the final hierarchical clustering. Additional File 5, Files A-B contain
- 230 REMc results in text files with associated data also displayed as heatmaps. In cases
- where a culture did not grow in the absence of drug, 0.0001 was assigned as the
- 232 interaction score, so that associated data ('NA') could be easily indicated by red coloring
- in the shift columns of the heatmaps.
- 234

235 Gene ontology term finder (GTF)

A python script was used to format REMc clusters for analysis with the command

- 237 line version of the GO Term Finder (**GTF**) tool downloaded from
- 238 <u>http://search.cpan.org/dist/GO-TermFinder/</u> [41]. GTF reports on enrichment of Gene
- 239 Ontology (GO) terms by comparing the ratio of genes assigned to a term within a cluster
- to the respective ratio involving all genes tested. Additional File 5, File C contains GTF
- 241 analysis of all REMc clusters. GO-enriched terms from REMc were investigated with
- respect to genes representing the term and literature underlying their annotations [42].
- 243
- 244 Gene ontology term averaging (**GTA**) analysis


245 In addition to using GTF to survey functional enrichment in REMc clusters, we

- 246 developed GTA as a complementary workflow, using the GO information on SGD at
- 247 <u>https://downloads.yeastgenome.org/curation/literature/</u> to perform the following analysis:

248	1. Calculate the average and SD for interaction values of all genes in a GO term.
249	2. Filter results to obtain terms having GTA value greater than 2 or less than -2.
250	3. Obtain GTA scores defined as GTA value - gtaSD; filter for GTA score > 2.
251	The GTA analysis is contained in Additional File 6 as tables and interactive plots
252	created using the R plotly package https://CRAN.R-project.org/package=plotly. GTA
253	results were analyzed using both the L and K interaction scores and are included in
254	Additional File 6 (Files A-C).
255	
256	Prediction of human homologs that influence tumor response to gemcitabine or
257	cytarabine
258	PharmacoDB holds pharmacogenomics data from cancer cell lines, including
259	transcriptomics and drug sensitivity [33]. The PharmacoGx R/Bioconductor package [43]
260	was used to analyze the GDSC1000 (https://pharmacodb.pmgenomics.ca/datasets/5)
261	and gCSI (https://pharmacodb.pmgenomics.ca/datasets/4) datasets, which contained
262	transcriptomic and drug sensitivity results. A p-value < 0.05 was used for differential
263	gene expression and drug sensitivity. For gene expression, the sign of the standardized
264	coefficient denotes increased (+) or decreased (-) expression. The <i>biomaRt</i> R package
265	[44,45] was used with the Ensembl database [46] to match yeast and human homologs
266	from the phenomic and transcriptomic data, classifying yeast-human homology as one to
267	one, one to many, and many to many. The Princeton Protein Orthology Database
268	(PPOD) was also used to manually review and further consider homology [47].
269	
270	Results:
271	Quantitative phenomic characterization of differential gene-drug interaction
272	The Q-HTCP workflow incorporates high-throughput kinetic imaging and analysis
273	of proliferating 384-culture cell arrays plated on agar media to obtain CPPs for

274	measuring gene-drug interaction, as previously described [7,9,38]. To apply it for analysis
275	of dCK substrates, a tetracycline-inducible human dCK allele was introduced into the
276	complete YKO/KD library by the synthetic genetic array method [29,48] (Figure 1B). The
277	dependence of gemcitabine and cytarabine toxicity on dCK expression was
278	demonstrated for the reference strain (Fig. 2A-F), as the two nucleosides exerted
279	cytotoxicity only if dCK was induced by the addition of doxycycline. Induction of dCK had
280	no effect on proliferation in the absence of gemcitabine or cytarabine (Fig. 2C-F).
281	Interaction scores were calculated by departure of the observed CPP for each
282	YKO/KD strain from that expected based on the observed phenotypes for the reference
283	strain treated and untreated with drug and the YKO/KD strain in the absence of drug,
284	incorporating multiple drug concentrations, 768 replicate reference strain control
285	cultures, and summarized by linear regression as z-scores [6-8,30,34,38]. Gene
286	interaction scores with absolute value greater than two were selected for global analysis
287	and termed deletion enhancers (z-score_L \geq 2 or z-score_K \leq -2) or deletion
288	suppressors (z-score_L \leq -2 or z-score_K \geq 2) of drug cytotoxicity, revealing functions

that buffer or promote drug cytotoxicity, respectively [39] (**Fig. 2**).

Figure 2. Phenomic analysis of drug-gene interaction for gemcitabine and

- 292 cytarabine. Average growth curves (from fitting pixel intensity data of 768 replicate
- 293 cultures to a logistic function) for the reference (RF) strain, treated with the indicated
- 294 concentrations of (A) gemcitabine or (B) cytarabine. (C-F) CPP distributions from data
- 295 depicted in panels A and B for (C-D) gemcitabine and (E-F) cytarabine for (C, E) L and
- 296 (D, F) K. (G, H) Comparison of drug-gene interaction scores using either the L or K
- 297 CPPs for (G) gemcitabine and (H) cytarabine. Score distributions of
- 298 knockout/knockdown (YKO/KD, black) and non-mutant parental (Ref, red) strain cultures
- are indicated along with thresholds for deletion enhancement and suppression (dashed
- 300 lines at +/- 2). (I-J) Differential drug-gene interaction using L (I) or K (J) as the CPP for
- 301 gemcitabine vs. cytarabine, classified with respect to relative drug specificity of
- 302 interactions. 'G', 'C', and 'B' indicate gemcitabine-, cytarabine-, or both drug-gene
- 303 interactions, respectively. Deletion enhancement or suppression is indicated by '_Enh' or
- 304 '_Sup', respectively.

305	Growth inhibition was greater for gemcitabine than for cytarabine (Fig. 2A-F),
306	however, the phenotypic variance was also less for cytarabine, such that interactions of
307	smaller effect size were detectable and the range of scores was greater (Additional File
308	1, Table S6). The CPP, 'L', (the time at which half carrying capacity is reached), is most
309	sensitive to growth inhibitory perturbation, while 'K' (carrying capacity) reports on more
310	extreme growth differences (Fig. 2A-H). Low correlation between the gene-drug
311	interaction profiles suggested differential buffering of these two drugs, consistent with
312	their distinct anti-tumor efficacies (Fig. 2I-J).
313	
314	Functional analysis of gene-interaction modules
315	Recursive expectation-maximization clustering (REMc) was used to identify
316	modules of genes that shared similar profiles of buffering or promoting nucleoside
317	toxicity of gemcitabine or cytarabine [40] (see Fig. 3A-F; Table 1; Additional File 5). As
318	described previously, REMc results were assessed with GO Term Finder for Gene
319	Ontology functional enrichment [41] and heatmaps generated by first adding data
320	regarding the main effect of the gene knockout or knockdown (<i>i.e.</i> , no drug) on cell
321	proliferation, termed 'shift' (see methods), followed by hierarchical clustering [40,41]. GO
322	Term Average (GTA) scores, which are based on the average and standard deviation of
323	drug-gene interaction for all genes of each GO term [39], were used as a complement to
324	REMc/GTF for identifying functions that buffer or promote drug effects (Table 2, Fig. 4,
325	and Additional File 6, Files A-C). Yeast-human homologs were judged, regarding
326	causality of differential gene expression associated with sensitivity to gemcitabine or
327	cytarabine, by the correspondence of yeast phenomic and cancer pharmacogenomics
328	results, thus establishing a model resource to test the utility of yeast phenomics to inform
329	cancer genetic profiling for predicting drug-specific, anti-tumor efficacy (Fig. 3G-H).

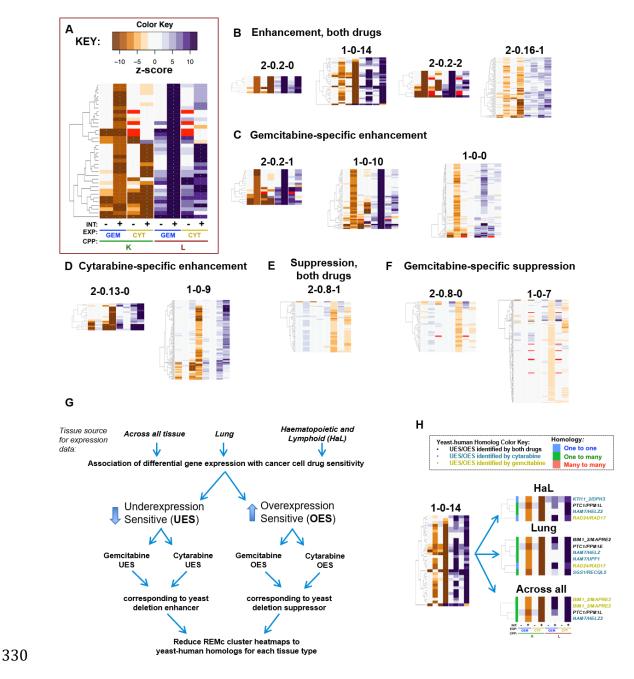


Figure 3. Prediction of drug-gene interaction in cancer cells by integration of yeast phenomic and human pharmacogenomic data. Recursive expectation-maximization clustering results were classified visually by their associated gene interaction profiles (see methods). (A) The data columns in all heatmaps are ordered from left to right, as shown in this example. K interactions for gemcitabine and cytarabine are in columns 2 and 4, respectively, with L interactions in columns 6 and 8. To the left of each interaction

337	value (indicated by '+'), is the corresponding 'shift' value (indicated by '-'), referring to the
338	ΔCPP for the respective YKO/KD culture relative to the reference culture average in the
339	absence of gemcitabine or cytarabine (see methods). (B-F) The relative strength of
340	example clusters is ordered from left to right. (B) Enhancement, both drugs. (C)
341	Gemcitabine-specific enhancement. (D) Cytarabine-specific enhancement. (E)
342	Suppression, both drugs. (F) Gemcitabine-specific suppression. (G) Differential gene
343	expression for cell lines from the GDSC database (either lung, hematopoietic and
344	lymphoid, or across all tissues) was categorized in drug-sensitive cells as either
345	underexpressed (UES) or overexpressed (OES), and filtered by correlation with yeast
346	homologs being deletion enhancing or suppressing, respectively. (H) An example of
347	yeast-human homologs identified as described in ${f G}$. The category of homology assigned
348	by BiomaRt is indicated in the left column of each heatmap (see homology color key). At
349	right, the gene label indicates whether the human homolog was verified in PharmacoDB
350	for both drugs (black), cytarabine (teal), or gemcitabine (gold). Additional Files 5 (File
351	B) and 8 (Files B-D) contains all REMc heatmaps of the types indicated to the left and
352	right, respectively, in panel H.

Table 1. GO terms enriched in REMc clusters.

354

GO Term	Drug	INT	ο	Cluster	Genes in Term	p-value	Genes	Fig	GTA Gem L	GTA Cyt L
Ubp3-Bre5 deubiquitination complex	Both	Enh	С	2-0.2-0	2/2	2.57E-05	UBP3:BRE5	5D	19.8	14.32
positive regulation of DNA-dependent DNA replication initiation	Both	Enh	Р	1-0-2	3/4	2.09E-04	RFM1:FKH2:SUM1	5B	15.7	4.9
Mre11 complex	Both	Enh	С	2-0.14-1	2/3	5.66E-04	RAD50:XRS2	5B	13.7	26.6
HOPS complex	Both	Enh	С	2-0.14-1	2/7	3.94E-03	PEP3:VPS33	5D	12.0	4.8
CORVET complex	Both	Enh	С	2-0.14-1	2/7	3.94E-03	PEP3:VPS33	5D	10.4	4.3
RecQ helicase-Topo III complex	Both	Enh	С	1-0-14	2/3	3.31E-03	SGS1:RMI1	5B	7.5	14.6
GET complex	Both	Enh	С	2-0.14-0	2/3	4.68E-04	GET1:GET2	5D	3.3	18.6
DNA integrity checkpoint	Both	Enh	Р	1-0-14	4/40	3.85E-03	DUN1:RAD17:RAD24:SGS1	5A	4.8	4.8
alpha-glucoside transmembrane transporter activity	Cyt	Enh	F	2-0.17-3	2/2	5.98E-03	MAL31:MAL11	7A	-0.7	2.2
intralumenal vesicle formation	Gem	Enh	Р	1-0-10	3/7	2.90E-03	DOA4:VPS24:BRO1	6A	9.0	1.6
HDA1 complex	Gem	Enh	С	1-0-0	2/3	7.08E-02	HDA1:HDA3	6B	4.8	0.3
Swr1 complex	Gem	Enh	С	1-0-11	3/12	3.46E-02	SWC3:VPS71:SWR1	6B	2.9	-1.6
peptidyl-tyrosine dephosphorylation	Gem	Enh	Р	1-0-0	5/20	2.18E-03	OCA2:SIW14:OCA1:OCA4:OCA6	6C	1.5	0.5
Set1C/COMPASS complex	Gem	Enh	С	1-0-0	3/6	5.74E-03	SDC1:SWD3:BRE2	6B	1.0	0.6
phospholipid-translocating ATPase activity	Gem	Sup	F	1-0-8	3/7	9.70E-03	DRS2:LEM3:DNF2	6D	-1.6	-0.9

355 356

357 For each GO term, the table indicates which drugs interact with it, the interaction type (enhancing or suppressing), the ontology ('O')

358 it derives from (cellular Process or Component, or molecular Function), the REMc cluster ID from which the term was most specific,

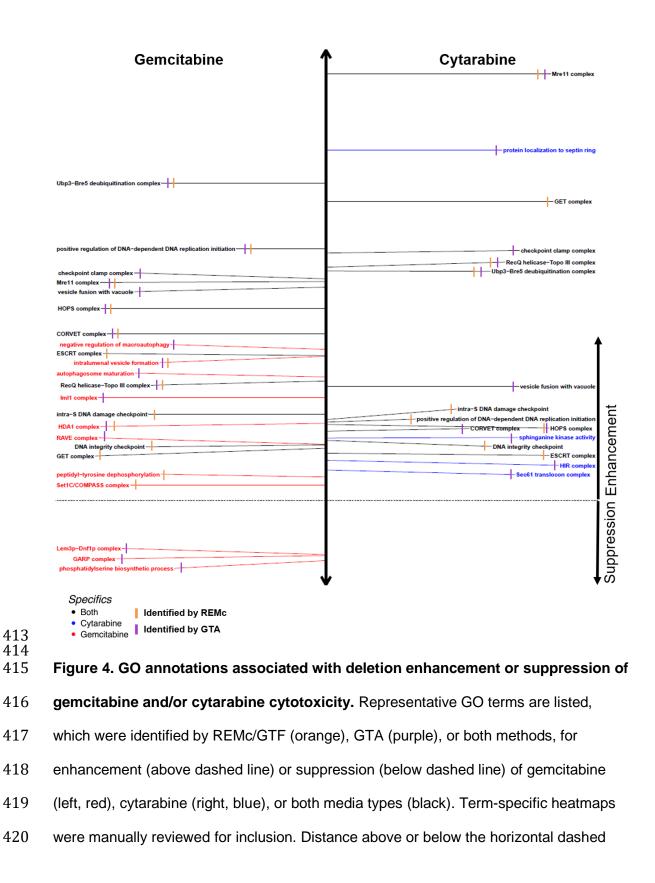
359 the fraction of the genes in the term that were observed in the cluster and the p-value for enrichment of the genes. Relevant figures

360 and associated GTA data are also given.

Table 2. GO terms identified by GTA.

Term	Drug	INT_type	Ont	Cluster	p-value	Genes	Fig	Gem GTA_K	Gem GTA_L	Cyt GTA_K	Cyt GTA_L
checkpoint clamp complex	Both	Enh L/K	С	NA	NA	RAD17 MEC3	5B	-7.3	13.8	-23.5	15.4
HOPS complex	Both	Enh L/K	С	2-0.14-1	3.94E-03	VPS16 VPS8 PEP3 VPS41 VPS33 PEP5	5D	-6.3	12.0	-11.4	4.8
Mre11 complex	Both	Enh L/K	С	2-0.14-1	5.66E-04	MRE11 RAD50 XRS2	5B	-8.8	13.7	-39.3	26.6
RecQ helicase-Topo III complex	Both	Enh L/K	С	1-0-14	3.31E-03	RMI1 SGS1 TOP3	5B	-7.7	7.5	-24.7	14.6
Ubp3-Bre5 deubiquitination complex	Both	Enh L/K	С	2-0.2-0	2.57E-05	UBP3 BRE5	5D	-9.2	19.8	-16.9	14.3
vesicle fusion with vacuole	Both	Enh L/K	Р	NA	NA	VAM3 VPS33	5D	-7.4	13.3	-11.4	7.1
Sec61 translocon complex	Cyt	Enh K	С	NA	NA	SEC61 SBH2	7A	-0.4	1.1	-5.1	1.9
HIR complex	Cyt	Enh L	С	NA	NA	HIR1 HIR2 HPC2 HIR3	7A	-1.0	1.0	-0.6	2.5
sphinganine kinase activity	Cyt	Enh L	F	NA	NA	LCB4 LCB5	7A	-0.1	0.3	-1.2	3.9
protein localization to septin ring	Cyt	Enh L/K	Р	NA	NA	ELM1 HSL1	7A	-1.3	2.5	-17.8	21.9
autophagosome maturation	Gem	Enh K	Р	NA	NA	VAM3 CCZ1	6A	-5.6	7.7	-1.6	2.5
Elongator holoenzyme complex	Gem	Enh K	С	NA	NA	TUP1 ELP4 ELP2 IKI3 IKI1 ELP3 ELP6	S4C	-3.6	3.4	-2.6	2.5
ESCRT I complex	Gem	Enh K	С	NA	NA	STP22 VPS28 SRN2 MVB12	5D	-6.9	9.1	-0.8	2.5
negative regulation of macroautophagy	Gem	Enh K	Р	NA	NA	PHO85 PHO80 KSP1 PCL5 SIC1	6A	-5.8	9.4	-4.1	1.8
protein urmylation	Gem	Enh K	Ρ	NA	NA	ELP2 UBA4 NCS2 URM1 URE2 ELP6	S4C	-3.7	1.5	1.0	1.2
CORVET complex	Gem	Enh L/K	С	2-0.14-1	3.94E-03	VPS16 VPS8 PEP3 VPS41 VPS33 VPS3 PEP5	5D	-6.6	10.4	-10.4	4.3
ESCRT-0 complex	Gem	Enh L/K	С	NA	NA	VPS27 HSE1	5D	-5.7	10.4	-3.9	2.6
HDA1 complex	Gem	Enh L/K	С	1-0-0	7.08E-02	HDA3 HDA1 HDA2	6B	-4.8	4.8	-0.6	0.3
GATOR (Iml1) complex	Gem	Enh L/K	С	NA	NA	NPR2 NPR3	6A	-4.4	6.4	1.0	2.2
intralumenal vesicle formation	Gem	Enh L/K	Ρ	1-0-10	2.90E-03	VPS20 VPS24 BRO1 DOA4 VPS4 SNF7	6A	-5.7	9.0	-1.8	1.6
positive regulation of DNA-dependent DNA replication initiation	Gem	Enh L/K	Ρ	1-0-2	2.09E-04	SUM1 FKH2 RFM1 FKH1	5B	-8.1	15.7	-2.4	4.9
RAVE complex	Gem	Enh L/K	С	NA	NA	RAV1 RAV2	6A	-4.2	3.5	0.6	-0.2
GARP complex	Gem	Sup L	С	NA	NA	VPS51 VPS53 VPS54 VPS52	6D	1.7	-3.4	1.5	-1.0
Lem3p-Dnf1p complex	Gem	Sup L	С	NA	NA	DNF1 LEM3	6D	1.6	-3.4	-0.1	0.2
phosphatidylserine biosynthetic process	Gem	Sup L	С	NA	NA	DEP1 CHO1 UME6	6D	2.6	-3.7	0.8	-0.3

364 See Table 1 for data descriptions. 'NA' indicates terms identified by GTA only (i.e., not identified by REMc/GTF).

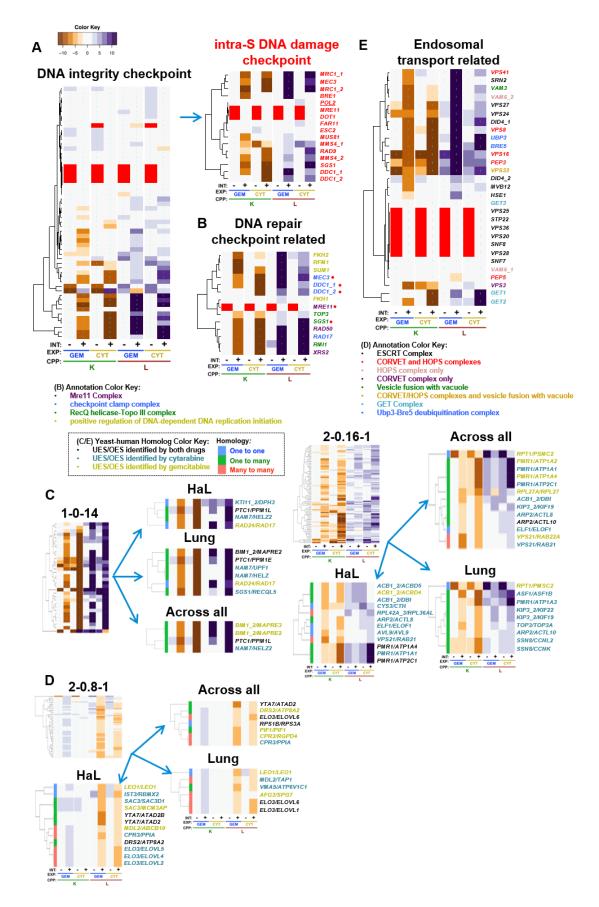

Heatmaps were also produced systematically to visualize drug-gene interaction profiles
for all genes assigned to GO terms identified by REMc/GTF or GTA; these are referred
to as term-specific heatmaps, and are grouped by GO term parent-child relationships
(Additional File 7).

Cancer pharmacogenomics data in PharmacoDB were mined using *PharmacoGx* [43] and *biomaRt* [44,45] with the GDSC1000 [31,49] or gCSI [32,50] datasets to match yeast drug-gene interaction by homology to differential gene expression in gemcitabine or cytarabine sensitive cancer cell lines (**Fig. 3G-H**; **Additional File 8**). Yeast gene deletion enhancers identified human homologs underexpressed in gemcitabine or cytarabine sensitive cells, termed UES, while yeast gene deletion suppressors identified human homologs overexpressed in drug sensitive cells, termed OES (**Fig. 3G**).

377 The analysis was focused on the GDSC database, because it had expression 378 data available for both gemcitabine and cytarabine; however, analysis of the gCSI data 379 was also conducted for gemcitabine (Additional File 8, File A). Differential expression 380 was analyzed: (1) across all tissue types, to consider interactions that might be 381 applicable in novel treatment settings; (2) in hematopoietic & lymphoid tissue; and (3) in 382 lung tissue, as cytarabine and gemcitabine are used to treat HaL and lung cancers, 383 respectively. Gemcitabine is also used for pancreatic cancer; however, the number of 384 cell lines tested (30) was lower than for lung (156) or HaL (152). Thus, yeast genes that 385 were deletion enhancing or suppressing were catalogued with human homologs that 386 were UES or OES in PharmacoDB (Figs. 3G-H, Tables 3-5, and Additional File 8). 387 In summary REMc, GTF, and GTA revealed functional genetic modules that 388 alternatively buffer (deletion enhancing) or promote (deletion suppressing) drug 389 cytotoxicity [5,40,51], and illustrated whether the effects were shared or differential 390 between gemcitabine and cytarabine (Fig. 4). Yeast phenomic information was 391 integrated with pharmacogenomics data results according to yeast-human gene

392	homology to identify correlated differential gene expression associated with drug
393	sensitivity in cancer cell lines (Figs. 5-7). This approach serves to generate hypotheses
394	regarding whether differential expression of a particular gene is causal for increased
395	drug sensitivity [52], and ultimately whether yeast phenomic models can improve the
396	predictive value of cancer pharmacogenomics data in the context of precision oncology
397	[53-58].
398	
399	Functions that respond to gemcitabine and cytarabine similarly
400	Genetic modules that buffer cytotoxicity of both gemcitabine and cytarabine
401	To characterize gemcitabine and cytarabine, which have similar molecular
402	structures and mechanisms of action, yet different spectra of anti-tumor efficacy, we first
403	surveyed for buffering genes shared in common. Examples of genes with deletion
404	enhancing interactions for both drugs are displayed in clusters 2-0.2-0, 1-0-14, 2-0.2-2
405	and 2-0.16-1 (Fig. 3B). GO enrichment was observed in these clusters for the DNA
406	integrity checkpoint, positive regulation of DNA replication, and the Mre11, RecQ
407	helicase-Topo III, CORVET, HOPS, GET, and Ubp3-Bre5 deubiquitination complexes
408	(Fig. 4, Table 1). GTA identified many of the same functions and additionally revealed
409	the terms vesicle fusion with vacuole and checkpoint clamp complex (Table 2). We
410	mapped yeast gene-drug interactions to respective human homologs in PharmacoDB to
411	find evidence for evolutionary conservation of gene-drug interaction (Fig. 5C-D,

412 Additional File 8, Files B-D) and buffering mechanisms.



- 421 line reflects the average interaction score for genes identified by REMc/GTF or the GTA
- 422 score (see methods). See **Additional Files 5 and 6** for all REMc/GTF, and GTA results.

423 DNA integrity checkpoint and repair-related complexes

424 As gemcitabine and cytarabine triphosphate analogs are incorporated into DNA, 425 we anticipated shared interactions with genes functioning in DNA metabolism and repair. 426 Overlap was observed, however there were differential effects between genes assigned 427 to the same gene ontology terms, such that GO TermFinder enrichment in REMc 428 clusters was less than might have been expected. For example, deletion enhancing 429 gene-drug interaction for the GO term, DNA integrity checkpoint, was enriched in cluster 430 1-0-14, which displayed deletion enhancement for both gemcitabine and cytarabine 431 (Table 1, Figs. 3 and Fig. 5A). However, its child term, intra-S DNA damage 432 checkpoint, was not GO-enriched because of differential clustering among drug-gene 433 interactions associated with the term (Additional File 5, File C). Similarly, intra-S DNA 434 damage checkpoint was not identified by GTA due to variation in interaction between 435 genes assigned to the term, highlighting the utility in displaying the phenomic data for 436 each GO term for manual review (Fig. 5A).

437 Enriched complexes functionally related to the DNA integrity checkpoint function 438 included the RecQ helicase-Topo III, the checkpoint clamp, and the Mre11 complexes 439 (Fig. 5B). Rmi1, Top3, and Sgs1 form the RecQ helicase Topo III complex, which is 440 involved in Rad53 checkpoint activation and maintenance of genome integrity [59], and 441 together with replication protein A functions in DNA decatenation and disentangling of 442 chromosomes [60]. RMI1 and SGS1 deletion enhancement clustered together in 1-0-14, 443 while TOP3 had a similar, but slightly weaker interaction pattern in cluster 1-0-16 444 (Additional File 5, File B). The human homolog of SGS1, RECQL5, was UES for 445 cytarabine in lung cancer cells (**Fig. 5C**; see **1-0-14** in 5C, all cluster heatmaps available 446 in Additional File 5, File B). RECQL5 preserves genome stability during

448 **Figure 5. Drug-gene interaction common to gemcitabine and cytarabine.** Genes

- that similarly influence the cytotoxicity of both gemcitabine and cytarabine suggest
- 450 common pathways that buffer or promote toxicity, as illustrated by: (A) GO term-specific
- 451 heatmaps for DNA integrity checkpoint and its child term intra-S DNA damage
- 452 *checkpoint*, which buffer gemcitabine and cytarabine, along with (**B**) genes comprising
- 453 other DNA checkpoint/repair related GO terms, such as positive regulation of DNA-
- 454 dependent DNA replication initiation, and the Mre11, checkpoint clamp, and RecQ
- 455 helicase-Topo III complexes; (**C**, **D**) REMc clusters filtered for PharmacoDB results for
- 456 yeast-human homologs that exhibited (C) deletion enhancement and UES or (D)
- 457 deletion suppression and OES; and (E) deletion enhancing endosomal-transport-related
- 458 GO terms, including vesicle fusion with vacuole, and the CORVET/HOPS, ESCRT, GET,
- 459 and Ubp3-Bre5 deubiquitination complexes. Gene labels are color-coordinated with
- 460 legends in panels B and E, and as described in **Fig. 3H** for panels C and D.

Table 3. Yeast-human homologs predicted to similarly buffer or promote both gemcitabine and cytarabine toxicity. 462

yGene	hGene	н	Drug	Cluster	Tissue	Gem K	Cyt K	Gem L	Cyt L	Ref	Description (Human)
NAM7	HELZ	2	Cyt	1-0-14	L	-6.5	-16.7	1.1	13.6	[61-64]	helicase with zinc finger
NAM7	HELZ2	2	Cyt	1-0-14	А, Н	-6.5	-16.7	1.1	13.6		helicase with zinc finger 2
NAM7	UPF1	2	Cyt	1-0-14	L	-6.5	-16.7	1.1	13.6	[65-67]	UPF1, RNA helicase and ATPase
PTC1	PPM1E	2	Both	1-0-14	L	-8.8	-12.7	7.9	15.7	[68]	protein phosphatase, Mg2+/Mn2+ dependent 1E
PTC1	PPM1L	2	Both	1-0-14	А, Н	-8.8	-12.7	7.9	15.7	[69]	protein phosphatase, Mg2+/Mn2+ dependent 1L
RAD24	RAD17	1	Gem	1-0-14	H, L	-7.4	-27.6	14.2	8.3	[70-74]	RAD17 checkpoint clamp loader component
SGS1	RECQL5	2	Cyt	1-0-14	L	-8.4	-33.4	3.4	19.3	[75,76]	RecQ like helicase 5
KTI11_2	DPH3	1	Cyt	1-0-14	Н	-7.7	-10.3	6.5	9.1	[77-79]	diphthamide biosynthesis 3
BIM1_2	MAPRE2	2	Gem	1-0-14	А	-7.7	-15.4	16.0	20.0	[80]	microtubule associated protein RP/EB family member 2
BIM1_2	MAPRE2	2	Both	1-0-14	L	-7.7	-15.4	16.0	20.0	[80]	microtubule associated protein RP/EB family member 2
BIM1_2	MAPRE3	2	Gem	1-0-14	А	-7.7	-15.4	16.0	20.0	[81]	microtubule associated protein RP/EB family member 3
ASF1	ASF1B	2	Cyt	2-0.16-1	L	-6.1	-9.5	4.1	8.3	[82]	anti-silencing function 1B histone chaperone
AVL9	AVL9	1	Cyt	2-0.16-1	Н	-4.3	-2.5	0.2	2.9	[83-85]	AVL9 cell migration associated
PMR1	ATP1A1	2	Cyt	2-0.16-1	А, Н	-3.8	-9.8	3.6	10.1	[86]	ATPase Na+/K+ transporting subunit alpha 1
PMR1	ATP1A2	2	Gem	2-0.16-1	А	-3.8	-9.8	3.6	10.1	[87]	ATPase Na+/K+ transporting subunit alpha 2
PMR1	ATP1A3	2	Cyt	2-0.16-1	L	-3.8	-9.8	3.6	10.1		ATPase Na+/K+ transporting subunit alpha 3
PMR1	ATP1A4	2	Gem	2-0.16-1	А	-3.8	-9.8	3.6	10.1		ATPase Na+/K+ transporting subunit alpha 4
PMR1	ATP1A4	2	Both	2-0.16-1	н	-3.8	-9.8	3.6	10.1		ATPase Na+/K+ transporting subunit alpha 4
PMR1	ATP2C1	2	Cyt	2-0.16-1	А	-3.8	-9.8	3.6	10.1	[88,89]	ATPase secretory pathway Ca2+ transporting 1

yGene	hGene	н	Drug	Cluster	Tissue	Gem K	Cyt K	Gem L	Cyt L	Ref	Description (Human)
PMR1	ATP2C1	2	Both	2-0.16-1	Н	-3.8	-9.8	3.6	10.1	[88,89]	ATPase secretory pathway Ca2+ transporting 1
TOP3	ТОРЗА	2	Cyt	2-0.16-1	L	-5.2	-4.0	3.3	3.4	[90-92]	DNA topoisomerase III alpha
VPS21	RAB21	3	Cyt	2-0.16-1	А, Н	-7.2	-4.1	-0.4	2.4	[93,94]	RAB21, member RAS oncogene family
VPS21	RAB22A	3	Gem	2-0.16-1	А	-7.2	-4.1	-0.4	2.4	[95-97]	RAB22A, member RAS oncogene family
ACB1_2	ACBD4	2	Gem	2-0.16-1	Н	-5.4	-4.8	4.5	0.6	[98,99]	acyl-CoA binding domain containing 4
ACB1_2	ACBD5	2	Cyt	2-0.16-1	Н	-5.4	-4.8	4.5	0.6	[100]	acyl-CoA binding domain containing 5
ACB1_2	DBI	2	Cyt	2-0.16-1	А, Н	-5.4	-4.8	4.5	0.6	[101-103]	diazepam binding inhibitor, acyl-CoA binding protein
CPR3	PPIA	3	Cyt	2-0.8-1	А, Н	2.1	1.6	-4.1	-2.8	[104-106]	peptidylprolyl isomerase A
CPR3	RGPD4	3	Gem	2-0.8-1	А	2.1	1.6	-4.1	-2.8		RANBP2-like and GRIP domain containing 4
ELO3	ELOVL1	3	Both	2-0.8-1	L	2.2	1.3	-3.4	-4.0	[107,108]	ELOVL fatty acid elongase 1
ELO3	ELOVL2	3	Cyt	2-0.8-1	Н	2.2	1.3	-3.4	-4.0	[109]	ELOVL fatty acid elongase 2
ELO3	ELOVL4	3	Cyt	2-0.8-1	Н	2.2	1.3	-3.4	-4.0		ELOVL fatty acid elongase 4
ELO3	ELOVL5	3	Cyt	2-0.8-1	Н	2.2	1.3	-3.4	-4.0		ELOVL fatty acid elongase 5
ELO3	ELOVL6	3	Both	2-0.8-1	A, L	2.2	1.3	-3.4	-4.0	[110,111]	ELOVL fatty acid elongase 6
MDL2	ABCB10	3	Gem	2-0.8-1	Н	2.5	1.5	-3.0	-3.0	[112]	ATP binding cassette subfamily B member 10
MDL2	TAP1	3	Cyt	2-0.8-1	L	2.5	1.5	-3.0	-3.0		transporter 1, ATP binding cassette subfamily B member
PIF1	PIF1	2	Gem	2-0.8-1	А	2.2	1.5	-4.5	-3.4	[113]	PIF1 5'-to-3' DNA helicase
RPS1B	RPS3A	1	Both	2-0.8-1	А	2.3	0.9	-3.9	-2.3	[114,115]	ribosomal protein S3A
SAC3	MCM3AP	2	Gem	2-0.8-1	Н	2.2	1.5	-5.2	-3.8	[116]	minichromosome maintenance complex component 3 associated protein
SAC3	SAC3D1	2	Cyt	2-0.8-1	Н	2.2	1.5	-5.2	-3.8	[117,118]	SAC3 domain containing 1
YTA7	ATAD2	2	Both	2-0.8-1	А, Н	1.8	1.0	-6.0	-3.6	[119-125]	ATPase family, AAA domain containing 2

yGene	hGene	H Drug	Cluster	Tissue	Gem K	Cyt K	Gem L	Cyt L	Ref	Description (Human)
YTA7	ATAD2B	2 Both	2-0.8-1	Н	1.8	1.0	-6.0	-3.6		ATPase family, AAA domain containing 2B

463

Genes selected for discussion in the results were included in the table. The homology types (H) are one to one (1), one to many (2), and many to many (3). Tissue types are across all (A), lung (L), and hematopoietic. Drugs (Gem, Cyt, or Both) for which the genes were UES or OES in the GDSC database are indicated. The REMc clusters 1-0-14 and 2-0.16-1 are deletion enhancing and 2-0.8-1 is deletion suppressing (see **Fig. 5C-D**). The PharmacoDB reference tissue, references cited (Ref), and gene descriptions are given.

468 Additional File 8 contains other data of this type.

469 transcription elongation, and deletion of RECQL5 increases cancer susceptibility [75.76]. 470 Human TOP3A was also UES for cytarabine in lung tissue (Fig 5C; 2-0.16-1). TOP3A is 471 underexpressed in ovarian cancer, and mutations in TOP3A are associated with 472 increased risk for acute myeloid leukemia, myelodysplastic syndromes, suggesting 473 potential cancer vulnerabilities if somatic, but can also occur in the germline, which 474 would lead to enhanced host toxicity [90-92]. 475 The checkpoint clamp in yeast is comprised of Rad17/hRad1, Ddc1, and Mec3, 476 which function downstream of Rad24/hRad17 in the DNA damage checkpoint pathway 477 [70-72] to recruit yDpb11/hTopB1 to stalled replication forks and activate the 478 yMec1/hATR protein kinase activity, initiating the DNA damage response [73]. The 479 human homolog of yeast RAD24, RAD17, was UES for gemcitabine in both lung and 480 hematopoietic & lymphoid tissue (Fig. 5C; 1-0-14), representing a synthetic lethal 481 relationship of potential therapeutic relevance. Consistent with this finding in yeast. 482 depletion of hRAD17 can sensitize pancreatic cancer cells to gemcitabine [74]. 483 Mre11, Xrs2, and Rad50 constitute the Mre11 complex, which participates in the 484 formation and processing of double-strand DNA breaks involved in recombination and 485 repair [126], and clustered together in 1-0-14 (Figs. 5B-C). Deficiency in the Mre1 486 complex is known to sensitize human cells to nucleoside analog toxicity [127], as also 487 seen in cancer cell lines deficient for other checkpoint-signaling genes, such as Rad9, 488 Chk1, or ATR, [128]. Single nucleotide polymorphisms in DNA damage response (ATM 489 and CHEK1) have been associated with overall survival in pancreatic cancer patients 490 treated with gemcitabine and radiation therapy [129]. Taken together, the results highlight 491 evolutionarily conserved genes that function in DNA replication and recombination-492 based repair and are required to buffer the cytotoxic effects of both cytarabine and 493 gemcitabine.

494

495 Positive regulation of DNA-dependent DNA replication initiation

496 The term, positive regulation of DNA-dependent DNA replication initiation, was 497 identified by REMc/GTF and GTA for buffering interactions with both drugs, though 498 stronger for gemcitabine (Tables 1 and 2). Genes representing this term were FKH2, 499 *RFM1*, and *SUM1* (Fig. 5B). The origin binding protein, Sum1, is required for efficient 500 replication initiation [130] and forms a complex with Rfm1 and the histone deacetylase. 501 Hst1, which is recruited to replication origins to deacetylate H4K5 for initiation [131]. 502 HST1 was also a strong deletion enhancer but was observed only for the L parameter 503 and clustered in 2-0.2-2. The forkhead box proteins, Fkh1 and Fkh2, contribute to proper 504 replication origin timing and long range clustering of origins in G1 phase [132], and 505 appear to buffer the cytotoxicity of gemcitabine more so than cytarabine, with FKH2 506 deletion showing a stronger effect than its paralog (Fig. 5B). Multiple human forkhead 507 box protein homologs (*yFKH2/hFOXJ1/FOXG1/FOXJ3/FOXH1*) (Fig. 6D) were 508 observed as UES in PharmacoDB, of which FOXJ1 underexpression is a marker of poor 509 prognosis in gastric cancer [133], reduced expression of FOXG1 is correlated with worse 510 prognosis in breast cancer [134], FOXJ3 is inhibited by miR-517a and associated with 511 lung and colorectal cancer cell proliferation and invasion [135,136], and FOXH1 is 512 overexpressed in breast cancer, and FOXH1 inhibition reduces proliferation in breast 513 cancer cell lines [137]. Although not UES in PharmacoDB, inhibition of the HST1 514 homolog, SIRT1, by Tenovin-6 inhibits the growth of acute lymphoblastic leukemia cells 515 and enhances cytarabine cytotoxicity [138], enhances gemcitabine efficacy in pancreatic 516 cancer cell lines, and improves survival in a pancreatic cancer mouse model [139]. Thus, 517 loss of this gene module that positively regulates DNA replication initiation appears to be 518 robustly involved in oncogenesis and is also synthetic lethal with gemcitabine and 519 cytarabine.

520

521 Endosomal transport and related processes

522 GO annotated processes, enriched by REMc/GTF and GTA and having deletion 523 enhancement profiles, related to endosome transport included vesicle fusion with 524 vacuole (VAM3 and VPS33), the CORVET/HOPS (VPS41, VPS8, VPS16, PEP3, 525 VPS33, VAM6, and VPS3), ESCRT (VPS27, VPS24, DID4, MVB12; HSE1 and SRN2 526 were gemcitabine specific), GET complex (GET1, GET2; 2-0.14-0), and Ubp3-Bre5 527 deubiquitination (UBP3 and BRE5) complexes (Tables 1-2, Fig. 5E). The CORVET and 528 HOPS tethering complexes function in protein and lipid transport between endosomes 529 and lysosomes/vacuoles, are required for vacuolar fusion, recognize SNARE complexes, 530 help determine endomembrane identity, and interact with the ESCRT complex [140,141]. 531 The ESCRT complex recognizes ubiguitinated endosomal proteins to mediate 532 degradation through the multivesicular body pathway [142,143]. The Ubp3-Bre5 533 deubiguitination complex maintains Sec23. a subunit of COPII vesicles required for 534 transport between the ER and Golgi, by cleaving its ubiquitinated form [144]. The GET 535 complex (GET1-3) mediates insertion of tail-anchored proteins into the ER membrane, a 536 critical process within the secretory pathway for vesicular trafficking [145-147]. Thus, 537 these complexes, which function in processes related to endosomal transport, appear to 538 be critical for buffering the toxicity of nucleoside analogs. 539 Several deletion enhancing, endosomal genes had human homologs associated 540 with UES in cancer cell lines and/or reported roles in cancer biology (Figs. 5E, 6D), 541 including: (1) VPS41/VPS41, in which a single nucleotide polymorphism is associated 542 with familial melanoma [148]; (2) VPS27/WDFY1, which is regulated by NPR2 to 543 maintain the metastatic phenotype of cancer cells [149,150]; (3) human homologs of 544 yeast HSE1, TOM1 and TOM1L2, TOM1L2 hypomorphic mice having increased tumor 545 incidence associated with alterations in endosomal trafficking [151]; (4) VPS8/VPS8 and 546 VAM6/VPS39, which are predicted to be homologous members of the CORVET complex

547 [152]; and (5) VPS21/RAB21/RAB22A, where RAB21 promotes carcinoma-associated 548 fibroblast invasion and knockdown inhibits glioma cell proliferation [93,94], and RAB22A 549 promotes oncogenesis in lung, breast, and ovarian cancer [95-97]. Thus, it seems tumors 550 arising in the context of deficiencies in certain endosomal trafficking genes could be 551 vulnerable to gemcitabine and/or cytarabine. 552 553 'Non-GO-enriched' homolog pairs with corresponding UES and deletion enhancement 554 We next explored yeast-human homologs exhibiting yeast deletion enhancement 555 and underexpression sensitivity in cancer, systematically and regardless of whether their 556 functions were enriched within Gene Ontology (Table 3, Fig. 5C). 'Non-enriched' 557 interaction can be explained by a small total number of genes performing the function. 558 only select genes annotated to a term impacting the phenotype, by genes contributing to 559 a function without yet being annotated to it, by novel functions, and other possibilities. 560 With regard to the above, human homologs of the yeast type 2C protein 561 phosphatase, PTC1, included PPM1L and PPM1E (Fig. 5C; 1-0-14). PPM1L has 562 reduced expression in familial adenomatous polyposis [69], while PPM1E upregulation 563 has been associated with cell proliferation in gastric cancer [68]. Such differential 564 interactions of paralogs could result from tissue specific expression and functional 565 differentiation of regulatory proteins. Previously, we reported $ptc1-\Delta 0$ to buffer 566 transcriptional repression of RNR1 [34], which is upregulated as part of the DNA damage 567 response to increase dNTP pools [153]. 568 The microtubule binding proteins, yBIM1/hMAPRE2/hMAPRE3, were deletion 569 enhancing in yeast and UES in cancer for gemcitabine (Fig. 5C; 1-0-14), of which 570 frameshift mutations were reported in MAPRE3 for gastric and colorectal cancers [81], 571 however, MAPRE2 is upregulated in invasive pancreatic cancer cells [80], demonstrating 572 that the yeast phenomic model could help distinguish causal influence in cases of

paralogous gene expression having what appear to be opposing effects on phenotypicresponse of cancer cells to cytotoxic chemotherapy.

575 *NAM7* is a yeast RNA helicase that was deletion enhancing for both drugs. 576 though slightly stronger for cytarabine, while its human homologs HELZ, HELZ2, and 577 UPF1, were UES only with cytarabine (Fig. 5C; 1-0-14). HELZ has differential influence 578 in cancer, acting as a tumor suppressor or oncogene [61-64]. UPF1 downregulation is 579 associated with poor prognosis in gastric cancer and hepatocellular carcinoma, and 580 mutations often occur in pancreatic adenosquamous carcinoma [65-67]. Thus, it is 581 possible cytarabine could have efficacy for patients with mutational loss of function in 582 members of this helicase family.

ASF1/ASF1B (**Fig. 5C**; **2-0.16-1**) functions in nucleosome assembly as an antisilencing factor, and is one of the most overexpressed histone chaperones in cancer [82]. The yeast phenomic data suggest that anti-cancer approaches that target ASF1 as a driver [154] could be augmented by combination with gemcitabine or cytarabine.

AVL9/AVL9 (Fig. 5C; 2-0.16-1) functions in exocytic transport from the Golgi [83].
AVL9 knockdown resulted in abnormal mitoses associated with defective protein
trafficking, and increased cell migration with development of cysts [84], but also reduced
cell proliferation and migration in other studies [85]. Regardless, the yeast phenomic
model together with pharmacogenomics data would predict that functional loss of AVL9
renders cells vulnerable to cytarabine.

593 *PMR1* is a P-type ATPase that transports Mn++ and Ca++ into the Golgi. Several 594 of its human homologs *ATP1A1*, *ATP1A2*, *ATP1A3*, *ATP1A4*, *ATP2C1* were UES, either 595 for gemcitabine or cytarabine, in the PharmacoDB analysis (**Fig. 5C; 2-0.16-1**). Reduced 596 expression of *ATP1A1* can promote development of renal cell carcinoma [86], reduced 597 expression of *ATP1A2* is associated with breast cancer [87], and mutations in *ATP2C1* 598 impair the DNA damage response, and increase the incidence of squamous cell tumors

in mice [88,89]. Like with *FKH2* (described above), *PMR1* deletion enhancement points

- 600 to multiple human homologs that are both implicated in the cancer literature to promote
- 601 cancer when underexpressed, yet are also UES in the pharmacogenomics data,
- 602 suggesting a potentially clinically useful synthetic lethal vulnerability.
- 603 *KTI11/DPH3* (Fig. 5C; 1-0-14), is a multi-functional protein involved in the
- 604 biosynthesis of dipthamide and tRNA modifications important for regulation of
- translation, development and stress response [77,78], and has promoter mutations
- associated with skin cancer [79]. It was observed to be UES only for cytarabine and in
- 607 hematopoietic and lymphoid cancer (the context cytarabine is used clinically).
- 608 ACB1 binds acyl-CoA esters and transports them to acyl-CoA-consuming
- 609 processes, which is upregulated in response to DNA replication stress [155]. Human
- 610 homologs of ACB1 exhibiting UES (Fig. 5C; 2-0.16-1) included: (1) DBI, which is
- 611 upregulated in hepatocellular carcinoma and lung cancer, and its expression is
- 612 negatively associated with multidrug resistance in breast cancer [101-103]; (2) ACBD4,
- 613 which promotes ER-peroxisome associations [98] and is upregulated by a histone
- 614 deacetylase inhibitor, valproic acid, in a panel of cancer cell lines [99]; and (3) ACBD5,
- 615 which also promotes ER-peroxisome associations, but its link to cancer is unclear [100].
- 616 Thus, it appears this gene family may influence epigenetic processes that buffer the
- 617 cytotoxic effects of gemcitabine and cytarabine.
- 618

619 Deletion suppression of toxicity for both nucleosides

As opposed to deletion enhancing interactions, which represent functions that buffer the cytotoxic effects of the drugs, deletion suppression identifies genes that promote toxicity, thus predicting overexpression sensitivity (OES) in pharmacogenomics data that represent causal tumor vulnerabilities. REMc/GTF identified as deletion suppressing the GO terms *glutaminyl-tRNA(GIn) biosynthesis* (1-0-3), the nucleoplasmic 625 THO (2-0.8-1), RNA cap binding (1-0-3), and the NuA3b histone acetyltransferase 626 complexes (1-0-7) (Additional File 5, File C), while GTA identified mitochondrial 627 translational elongation and the nuclear cap binding complex (Additional File 6, File A). 628 However, the respective term-specific heatmaps revealed weak effects and high shift for 629 many of the genes (Additional File 2, Fig. S3), highlighting the utility of this phenomic 630 visualization tool for prioritizing findings, and leading us to shift our focus to individual 631 yeast-human homologs identified in gene deletion suppressing clusters that were OES in 632 the pharmacogenomics analysis, as detailed below. 633 In cluster 2-0.8-1, yeast-human homologs with correlated gene deletion 634 suppression and OES for both gemcitabine and cytarabine (Fig. 5D; Table 3) included: 635 (1) YTA7/ATAD2/ATAD2B, which localizes to chromatin and regulates histone gene 636 expression. ATAD2 overexpression portends poor prognosis in gastric, colorectal, 637 cervical, hepatocellular carcinoma, lung, and breast cancer, and thus overexpression 638 sensitivity could represent the potential to target a driver gene [119-125]; (2) PIF1/PIF1, a 639 DNA helicase, which is involved in telomere regulation and is required during oncogenic 640 stress [113]; (3) RPS1B/RPS3A, which is a small subunit ribosomal protein that is 641 overexpressed in hepatitis B associated hepatocellular carcinoma and non-small cell 642 lung cancer [114,115]; (4) LEO1/LEO1, which associates with the RNA polymerase II and 643 acts as an oncogene in acute myelogenous leukemia [156]; (5) ELO3/ELOVL1/ELOVL2/ 644 ELOVL4/ELOVL6, which constitutes a family of fatty acid elongases that function in 645 sphingolipid biosynthesis, among which ELOVL1 is overexpressed in breast and 646 colorectal cancer tissue [107,108], ELOVL2 is upregulated in hepatocellular carcinoma 647 [109], and ELOVL6 is overexpressed and associated with poor prognosis in liver and 648 breast cancer [110,111]; (6) MDL2/ABCB10, which is a mitochondrial inner membrane 649 ATP-binding cassette protein and is upregulated in breast cancer [112]; (7) CPR3/PPIA. 650 which is a mitochondrial cyclophilin that is upregulated in lung cancer, esophageal, and

pancreatic cancer [104-106]; and (8) SAC3/MCM3AP/SAC3D1, which is a nuclear pore-

associated protein functioning in transcription and mRNA export, with *MCM3AP* being

653 upregulated in glioma cells [116], while SAC3D1 is upregulated in cervical cancer and

- hepatocellular carcinoma [117,118]. Yeast gene deletion suppression together with
- overexpression sensitivity of human homologs in cancer reveals potential therapeutic
- vulnerabilities that can be further explored in both systems.
- 657
- 658 Gemcitabine-specific gene interaction modules
- 659 Gemcitabine-specific gene deletion enhancement
- 660 Gemcitabine-specific deletion enhancement indicates genes for which loss of
- 661 function increases vulnerability to gemcitabine to a greater extent than cytarabine.
- 662 Therefore, these genes provide insight into cytotoxic mechanisms that are unique
- between the two deoxycytidine analogs. Representative clusters were GO-enriched for
- 664 intralumenal vesicle formation (1-0-10), peptidyl-tyrosine dephosphorylation (1-0-0), and
- the Set1C/COMPASS and HDA1 complexes (Fig. 3C, Fig. 6A-C, Table 1). GTA
- 666 identified negative regulation of macroautophagy, protein urmylation, and the RAVE,
- 667 GATOR (Iml1), and Elongator holoenzyme complexes (**Fig. 6A, Table 2**).
- 668 Pharmacogenomics integration is highlighted for clusters 2-0.2-1, 1-0-10, and 1-0-0 (Fig.
- 669 6D; see also, Additional File 8). Taken together, the results suggest that autophagy-
- 670 related processes and perhaps others less well characterized by GO buffer cytotoxicity
- 671 of gemcitabine to a greater extent than cytarabine.
- 672

Figure 6. Gemcitabine-specific gene interaction. (A-C) Cellular processes that buffer

- 676 gemcitabine to a greater extent than cytarabine included: (A) Autophagy-related
- 677 processes; (B) Histone modification and chromatin remodeling (particularly for K
- 678 interaction); and (C) Peptidyl-tyrosine dephosphorylation, representing the genes OCA
- 679 (1-6) (OCA5 was manually added to the panel (see text); OCA3/SIW14 are aliases). (D-
- 680 E) Human genes that are predicted to (D) buffer gemcitabine toxicity if they are UES and
- deletion enhancing, and to (E) promote gemcitabine toxicity if they are found to be OES
- and deletion suppressing, when comparing homolog interactions across yeast phenomic
- and cancer pharmacogenomic analyses. (F) Apoptosis-related genes and complexes
- were observed to promote toxicity of gemcitabine more than toxicity of cytarabine. Gene
- labels are color-coordinated with legends in panels A, B, and F, and as described in Fig.
- 686 **3H** for panels D and E.

yGene	hGene	н	Drug	Cluster	Tissue	Gem_K	Cyt_K	Gem_L	Cyt_L	Ref	description_Human
CLB5	CCNA1	3	Gem	1-0-0	L	-3.5	1.4	5.4	-0.1	[157]	cyclin A1
HDA1	HDAC5	2	Cyt	1-0-0	L	-6.4	-2.6	5.0	2.2	[158]	histone deacetylase 5
HDA1	HDAC6	2	Cyt	1-0-0	L	-6.4	-2.6	5.0	2.2	[99,159-165]	histone deacetylase 6
HSE1	TOM1	2	Gem	1-0-0	А	-3.3	1.2	6.5	0.0		target of myb1 membrane trafficking protein
HSE1	TOM1L2	2	Gem	1-0-0	А	-3.3	1.2	6.5	0.0	[151]	target of myb1 like 2 membrane trafficking protein
NMA1	NMNAT1	3	Cyt	1-0-0	н	-4.6	-2.0	4.2	2.5	[166]	nicotinamide nucleotide adenylyltransferase 1
NMA1	NMNAT2	3	Both	1-0-0	А	-4.6	-2.0	4.2	2.5	[167]	nicotinamide nucleotide adenylyltransferase 2
NMA1	NMNAT2	3	Cyt	1-0-0	L	-4.6	-2.0	4.2	2.5	[167]	nicotinamide nucleotide adenylyltransferase 2
NMA1	NMNAT3	3	Cyt	1-0-0	L	-4.6	-2.0	4.2	2.5		nicotinamide nucleotide adenylyltransferase 3
RAD54	ATRX	2	Gem	1-0-0	L	-4.9	-0.9	4.5	3.9	[168]	ATRX, chromatin remodeler
RAD54	RAD54B	2	Cyt	1-0-0	L	-4.9	-0.9	4.5	3.9		RAD54 homolog B
RAD54	RAD54L	2	Cyt	1-0-0	L	-4.9	-0.9	4.5	3.9		RAD54 like
SCS2	VAPB	3	Gem	1-0-0	A, H, L	-4.3	-0.2	3.8	1.4	[100,169]	VAMP associated protein B and C
VPS30	BECN1	2	Gem	1-0-0	A	-5.9	-2.0	2.4	2.6	[170]	beclin 1
VPS30	BECN1	2	Cyt	1-0-0	Н	-5.9	-2.0	2.4	2.6	[170]	beclin 1
DID4_2	CHMP2A	2	Gem	1-0-0	А	-6.1	-1.2	5.2	1.8	[171]	charged multivesicular body protein 2A
DID4_2	CHMP2B	2	Gem	1-0-0	А, Н	-6.1	-1.2	5.2	1.8	[172,173]	charged multivesicular body protein 2B
YPT32	RAB2A	3	Gem	1-0-0	А	-4.4	0.3	5.0	-1.8	[174]	RAB2A, member RAS oncogene family
YPT32	RAB2B	3	Gem	1-0-0	L	-4.4	0.3	5.0	-1.8	[175]	RAB2B, member RAS oncogene family

Table 4. Yeast-human homologs predicted to buffer or promote gemcitabine to greater degree than cytarabine.

yGene	hGene	н	Drug	Cluster	Tissue	Gem_K	Cyt_K	Gem_L	Cyt_L	Ref	yGene
KEX2	PCSK1	2	Gem	1-0-10	A, L	-7.8	-0.3	15.4	-0.9	[176]	proprotein convertase subtilisin/kexin type 1
KEX2	PCSK2	2	Gem	1-0-10	L	-7.8	-0.3	15.4	-0.9	[177]	proprotein convertase subtilisin/kexin type 2
KEX2	PCSK5	2	Gem	1-0-10	А	-7.8	-0.3	15.4	-0.9	[177,178]	proprotein convertase subtilisin/kexin type 5
KEX2	PCSK7	2	Gem	1-0-10	А	-7.8	-0.3	15.4	-0.9	[177,179]	proprotein convertase subtilisin/kexin type 7
PEP12	STX12	2	Both	1-0-10	А	-8.0	-16.1	13.6	5.3	[180,181]	syntaxin 12
PEP12	STX12	2	Cyt	1-0-10	Н	-8.0	-16.1	13.6	5.3	[180,181]	syntaxin 12
VPS27	WDFY1	2	Gem	1-0-10	L	-8.1	-9.1	14.3	5.2	[149,150]	WD repeat and FYVE domain containing 1
VPS41	VPS41	1	Cyt	1-0-10	н	-6.5	-0.9	14.0	4.0	[148]	VPS41, HOPS complex subunit
VPS8	VPS8	1	Gem	1-0-10	L	-8.5	-12.3	14.4	3.5	[152]	VPS8, CORVET complex subunit
VAM6_2	VPS39	2	Cyt	1-0-10	Н	-8.0	-2.8	13.9	4.0	[152]	VPS39, HOPS complex subunit
DID4_1	CHMP2A	2	Both	1-0-10	А	-8.0	-12.3	14.5	8.2	[171]	charged multivesicular body protein 2A
DID4_1	CHMP2A	2	Cyt	1-0-10	н	-8.0	-12.3	14.5	8.2	[171]	charged multivesicular body protein 2A
DID4_1	CHMP2B	2	Gem	1-0-10	А, Н	-8.0	-12.3	14.5	8.2	[172,173]	charged multivesicular body protein 2B
FKH2	FOXG1	3	Cyt	2-0.2-1	A, L	-9.7	-2.1	19.7	5.1	[134]	forkhead box G1
FKH2	FOXH1	3	Gem	2-0.2-1	Н	-9.7	-2.1	19.7	5.1	[137]	forkhead box H1
FKH2	FOXJ1	3	Cyt	2-0.2-1	А, Н	-9.7	-2.1	19.7	5.1	[133]	forkhead box J1
FKH2	FOXJ3	3	Cyt	2-0.2-1	L	-9.7	-2.1	19.7	5.1	[135,136]	forkhead box J3
YNK1	NME3	2	Gem	2-0.2-1	Н	-9.3	1.0	20.0	-4.0		NME/NM23 nucleoside diphosphate kinase 3
YNK1	NME4	2	Cyt	2-0.2-1	A, L	-9.3	1.0	20.0	-4.0		NME/NM23 nucleoside diphosphate kinase 4
YNK1	NME5	2	Gem	2-0.2-1	А	-9.3	1.0	20.0	-4.0	[182]	NME/NM23 family member 5
YNK1	NME6	2	Cyt	2-0.2-1	L	-9.3	1.0	20.0	-4.0		NME/NM23 nucleoside diphosphate kinase 6
YNK1	NME7	2	Cyt	2-0.2-1	А, Н	-9.3	1.0	20.0	-4.0		NME/NM23 family member 7
ALD6	ALDH1A1	3	Cyt	1-0-7	L	1.3	1.7	-2.4	-3.5	[183-185]	aldehyde dehydrogenase 1 family member A1

yGene	hGene	н	Drug	Cluster	Tissue	Gem_K	Cyt_K	Gem_L	Cyt_L	Ref	description_Human
ALD6	ALDH1A2	3	Cyt	1-0-7	А, Н	1.3	1.7	-2.4	-3.5		aldehyde dehydrogenase 1 family member A2
ALD6	ALDH1B1	3	Gem	1-0-7	L	1.3	1.7	-2.4	-3.5	[185]	aldehyde dehydrogenase 1 family member B1
ALD6	ALDH7A1	3	Cyt	1-0-7	А	1.3	1.7	-2.4	-3.5	[185]	aldehyde dehydrogenase 7 family member A1
CKA2	CSNK2A1	2	Gem	1-0-7	А	1.2	-0.2	-2.5	-1.5	[186-193]	casein kinase 2 alpha 1
CKA2	CSNK2A2	2	Gem	1-0-7	A, L	1.2	-0.2	-2.5	-1.5	[186-193]	casein kinase 2 alpha 2
CLB2	CCNA2	3	Gem	1-0-7	L	2.0	0.4	-2.2	0.6	[194-197]	cyclin A2
CLB2	CCNB1	3	Gem	1-0-7	L	2.0	0.4	-2.2	0.6	[194-197]	cyclin B1
EFT2	EEF2	3	Gem	1-0-7	А	0.9	0.8	-2.4	-1.8	[198]	eukaryotic translation elongation factor 2
EFT2	EFTUD2	3	Gem	1-0-7	А	0.9	0.8	-2.4	-1.8	[199]	elongation factor Tu GTP binding domain containing 2
OLA1	OLA1	1	Gem	1-0-7	А	1.0	0.8	-2.6	-3.0	[200-202]	Obg like ATPase 1
OLA1	OLA1	1	Cyt	1-0-7	Н	1.0	0.8	-2.6	-3.0	[200-202]	Obg like ATPase 1
RPA49	POLR1E	1	Gem	1-0-7	A, L	1.8	-0.9	-2.6	0.6	[203-206]	RNA polymerase I subunit E
SKY1	SRPK1	2	Gem	1-0-7	A, L	0.8	-0.6	-2.1	-1.3	[207]	SRSF protein kinase 1
SNC2	VAMP8	3	Gem	1-0-7	L	1.4	0.1	-2.3	-0.6	[208,209]	vesicle associated membrane protein 8
TOP1	TOP1	2	Gem	1-0-7	A, L	1.3	0.3	-3.1	-3.9	[210]	DNA topoisomerase I
TOP1	TOP1MT	2	Both	1-0-7	A, H, L	1.3	0.3	-3.1	-3.9		DNA topoisomerase I mitochondrial
YPT6	RAB34	2	Gem	1-0-7	A, L	1.4	1.1	-2.1	1.7	[211-213]	RAB34, member RAS oncogene family
RPP2B	RPLP2	2	Gem	2-0.8-0	А	1.7	0.2	-5.3	-2.8	[214]	ribosomal protein lateral stalk subunit P2
YGR054W	EIF2A	1	Gem	2-0.8-0	А	1.8	0.2	-4.1	-1.0	[215]	eukaryotic translation initiation factor 2A

689 Data headers are the same as described above for Table 3. The REMc clusters 1-0-0, 1-0-0 and 2-0.2-1 are deletion enhancing,

690 while 1-0-7 and 2-0.8-0 are deletion suppressing (see **Fig. 6D-E**).

691 Autophagy related processes

Autophagy-related processes and complexes consisted of *intralumenal vesicle formation* (1-0-0; *BRO1*, *DOA4*, *DID4*, *VPS24*, *VPS4*), the GATOR/SEACIT/ImI1
complex (*NPR2*, *NPR3*), *autophagosome maturation* (*VAM3*, *CCZ1*), *negative regulation of macroautophagy* (*PHO85*, *PCL5*, *KSP1*, *SIC1*, *PHO80*), and the RAVE complex
(*RAV1*, *RAV2*) (**Fig. 6A**).

697 Of the autophagy-related complexes, Npr2 and Npr3 form an evolutionarily 698 conserved heterodimer involved in mediating induction of autophagy by inhibition of 699 TORC1 signaling in response to amino acid starvation [216], and also promoting non-700 nitrogen starvation induced autophagy [217] (Fig. 6A). The RAVE complex (RAV1/2) 701 promotes assembly of the vacuolar ATPase [218,219], which is required for vacuolar 702 acidification and efficient autophagy [220]. Gene deletion strains in the term negative 703 regulation of macroautophagy (PHO85, PHO80, and SIC1) [221], which seemed from the 704 automated assessment to suggest an opposing effect, were less compelling following 705 detailed visualization of the data, due to the associated high shift and cytarabine deletion 706 enhancing interaction (Fig. 6A).

Regarding the term *intralumenal vesicle formation*, Vps24 and Did4 are

components of the ESCRT-III complex (see Figs. 5E and 6A), which functions at

endosomes, and the ATPase Vps4 is required for disassembly of the complex [222].

710 Doa4 interacts with Vps20 of ESCRT-III to promote intralumenal vesicle formation, which

also requires *BRO1* [223]. Pharmacogenomics correlation revealed UES in cancer cell

712 lines for DID4/CHMP2A/CHMP2B (Fig. 6D; 1-0-10). During autophagy, CHMP2A

translocates to the phagophore to regulate separation of the inner and outer

autophagosomal membranes to form double-membrane autophagosomes [171].

715 CHMP2B is a member of the ESCRT-III complex required for efficient autophagy and

has reduced expression in melanoma [172,173], raising the hypothesis that gemcitabinecould have efficacy in that context.

718 Other genes involved in autophagy-related processes that had human homologs 719 UES in cancer cell lines included: (1) PEP12/STX12 (Fig. 6D; 1-0-10), a t-SNARE 720 required for mitophagy [180], for which underexpression is associated with risk of 721 recurrence [181]; and (2) VPS30/BECN1, knockdown of which enhances gemcitabine 722 cytotoxicity in pancreatic cancer stem cells [170]. Furthermore, gemcitabine treatment 723 has been found to upregulate autophagy in pancreatic or breast cancer, which buffers 724 drug cytotoxicity as inferred by the combination of gemcitabine with autophagy inhibitors 725 increased killing of cancer cells [224-226]. Thus, autophagy-related findings from the 726 yeast model appear consistent with and to build upon previous cancer cell models. 727 728 Histone modification and chromatin remodeling 729 GTF/REMc identified the Hda1 and Set1C/COMPASS (1-0-0) complexes as 730 gemcitabine-specific deletion enhancing, which was confirmed by term-specific 731 heatmaps (Fig. 6B). The Set1C complex has been characterized to have a role in cell 732 cycle coordination [227], which may be reflected by greater deletion enhancing 733 interaction for the K than for the L CPP. The Set1C/COMPASS complex catalyzes 734 mono-, di-, and tri- methylation of histone H3K4, which can differentially influence gene 735 transcription depending on the number of methyl groups added [228-231], and was 736 implicated by BRE2, SWD1, SWD3, SDC1, SPP1, and SHG1 (Fig. 6B). The SWD1 737 ortholog, RBBP5, which was UES with gemcitabine in lung tissue (Additional File 8, 738 File C; 1-0-4), is upregulated in self-renewing cancer stem cells in glioblastoma and 739 necessary for their self-renewal, is involved in the epithelial-mesenchymal transition in 740 prostate cancer cells via its role in H3K4 trimethylation, and is upregulated in

741 hepatocellular carcinoma [232-235]. Furthermore, gemcitabine sensitivity of pancreatic

cancer cell lines was enhanced by H3K4me3 inhibition with verticillin A [233].

743 Histone deacetylases also influence cell cycle regulation [236], and the three

genes that make up the yeast Hda1 deacetylase complex (homologous to mammalian

class II Hda1-like proteins [237,238]) were gemcitabine deletion enhancers (**Fig. 6B**).

- 546 Similar effects in cancer cells include HDAC6 knockdown in pediatric acute myeloid
- 747 leukemia cells, which enhances cytarabine-induced apoptosis [158-160] and the use of
- histone deacetylase inhibitors in combination with gemcitabine, which augments killing of

pancreatic cancer cell lines [161-165] and HeLa cells [99].

750

751 Peptidyl-tyrosine dephosphorylation

752 REMc/GTF identified peptidyl-tyrosine dephosphorylation (1-0-0), for which the 753 term specific heatmap (Additional File 7) revealed six genes previously characterized 754 for their requirement in oxidant-induced cell cycle arrest and RNA virus replication 755 [239,240], OCA1-6. Two additional tyrosine phosphatases, YMR1, and PTP1, had similar 756 interaction profiles (Fig. 6C). OCA1-3 deletions enhance growth defects associated with 757 reactive oxygen species or caffeine treatment [239,240], and OCA1-4 and OCA6 are 758 deletion suppressors of the cdc13-1 mutation [241]. Although it does not have a tyrosine 759 phosphatase motif, Oca5 deletion also displayed gemcitabine-specific enhancement, 760 consistent with the other genes annotated to this module (Fig. 6C). However, due to the 761 regulatory nature and limited evolutionary conservation of tyrosine phosphorylation, it is 762 not obvious how to predict functionally homologous genetic modules in cancer cells. 763 764 Elongator holoenzyme complex and protein urmylation

By GTA, K interactions revealed *protein urmylation* (*NCS6, NCS2, UBA4, ELP6, ELP2, URM1,* and *URE2*) and the Elongator holoenzyme complex (*IKI1, IKI3, ELP2,*

767	ELP3, ELP4, and ELP6) (Additional File 2, Fig. S4). Protein urmylation involves the
768	covalent modification of lysine residues with the ubiquitin-related modifier, Urm1 [242].
769	The Elongator holoenzyme complex has function in tRNA wobble position uridine
770	thiolation (Additional File 2, Fig. S4), which occurs using Ure1 as a sulfur carrier [243-
771	245]. The two processes share the ELP2 and ELP6 genes and may be distinct modules
772	buffering gemcitabine cytotoxicity. However, several genes involved in tRNA wobble
773	uridine modification have roles in cancer development and deficiency in this pathway
774	enhances targeted therapy in melanoma [246,247], implicating this module as potentially
775	important for personalized anti-cancer efficacy of gemcitabine.
776	
776 777	Gemcitabine-buffering by non-GO-enriched yeast-human homologs
	<i>Gemcitabine-buffering by non-GO-enriched yeast-human homologs</i> Homologs with correlated gemcitabine-specific yeast gene deletion enhancement
777	
777 778	Homologs with correlated gemcitabine-specific yeast gene deletion enhancement
777 778 779	Homologs with correlated gemcitabine-specific yeast gene deletion enhancement and cancer cell UES (clusters 2-0.2-1, 1-0-10, and 1-0-0) included the family of
777 778 779 780	Homologs with correlated gemcitabine-specific yeast gene deletion enhancement and cancer cell UES (clusters 2-0.2-1, 1-0-10, and 1-0-0) included the family of nucleoside diphosphate kinases (NDKs) (Fig. 6D; Table 4). A single member of the
777 778 779 780 781	Homologs with correlated gemcitabine-specific yeast gene deletion enhancement and cancer cell UES (clusters 2-0.2-1, 1-0-10, and 1-0-0) included the family of nucleoside diphosphate kinases (NDKs) (Fig. 6D; Table 4). A single member of the NDK family, <i>YNK1</i> , exists in yeast, while the human genome encodes several paralogs

785 modulate gemcitabine toxicity by differential activity for endogenous substrates vs.

786 nucleoside analog drugs. In yeast, deletion enhancement by YNK1 was selective for

787 gemcitabine, however the effects in cancer cells are potentially more complex due to

788 multiple NDK genes. In PharmacoDB, NME3 and 5 were UES for gemcitabine, while

NME4, 6, and 7 were OES for cytarabine, implicating differential specificity of NME

790 genes for natural and/or medicinal nucleosides as well as possibly influences of other

- kinases, which have, for example, been shown to act on gemcitabine diphosphate [250].
- 792 NME5 overexpression was previously associated with gemcitabine-resistant cancer, and

793 its knockdown can increase gemcitabine efficacy [182]. Thus, the anti-cancer efficacy of 794 gemcitabine could be influenced by differential expression and activity of NDK isoforms 795 across tissues [251], such that NME gene expression could be predictive of response to 796 nucleoside analogs, or perhaps targeted for synergistic anti-tumor activity. 797 KEX2 is the yeast member of the calcium-dependent proprotein convertase 798 subtilisin/kexin type serine proteases, which functions in the secretory pathway. Four of 799 the seven human homologs of KEX2 were UES in the pharmacogenomics analysis (Fig. 800 6D; 1-0-10), including: (1) PCSK1, which can be downregulated by pancreatic cancer 801 derived exosomes [176], (2) PCSK2, which has reduced expression in lung cancer [177], 802 (3) PCSK5, which is also reduced in lung cancer and, furthermore, when reduced in 803 triple negative breast cancer, leads to loss of the Gdf11 tumor suppressor [177,178], and 804 (4) PCSK7, which has been reported both to have reduced expression in lung cancer 805 and increased expression in gemcitabine resistant cells [177,179]. Thus, loss of this gene 806 family may create cancer-specific vulnerabilities to gemcitabine cytotoxicity. 807 NMA1 and its human homologs NMNAT1, NMNAT2, and NMNAT3 are nicotinic 808 acid mononucleotide adenylyltransferases involved in NAD biosynthesis and 809 homeostasis, which were found to be UES for both gemcitabine and cytarabine (Fig. 6D, 810 1-0-0). Loss of function mutations and underexpression of NMNAT1 are associated with 811 increased rRNA expression and sensitivity to DNA damage in lung cancer cell lines 812 [166], consistent with the hypothesis that they could have deletion enhancing therapeutic 813 benefit in cancers treated with gemcitabine or cytarabine. 814 *RAD54* is a DNA-dependent ATPase that stimulates strand exchange in 815 recombinational DNA repair, which is a known vulnerability of cancer [252]. The human 816 homolog of RAD54, ATRX, was UES by PharmacoDB analysis (Fig. 6D, 1-0-0), and loss 817 of ATRX has been associated with improved response to gemcitabine plus radiation

818 therapy in glioma patients with *IDH1* mutations [168].

- 819 SCS2/VAPB is an integral ER membrane protein that was deletion enhancing
- and UES for gemcitabine (Fig. 6D, 1-0-0). VAPB regulates phospholipid metabolism and
- 821 interacts with ACBD5 (also described above) to promote ER-peroxisome tethering [100]
- and promotes proliferation in breast cancer via AKT1 [169].
- 823 YPT32/RAB2A/RAB2B (Fig. 6D, 1-0-0) is a Rab family GTPase involved in the
- trans-Golgi exocytic pathway, which accumulates during replication stress in yeast [155].
- 825 RAB2A overexpression promotes breast cancer stem cell expansion and tumorigenesis
- 826 [174], and downregulation of *RAB2B* by miR-448 promotes cell cycle arrest and
- 827 apoptosis in pancreatic cancer cells [175].
- 828 CLB5, a B-type cyclin, is involved in initiation of DNA replication and G1-S
- 829 progression, for which promoter hypermethylation of the human homolog, CCNA1, is
- associated with multiple cancers [157], and which was found to be UES with gemcitabine
- 831 (**Fig. 6D, 1-0-0**).
- 832

833 Gemcitabine-specific gene deletion suppression

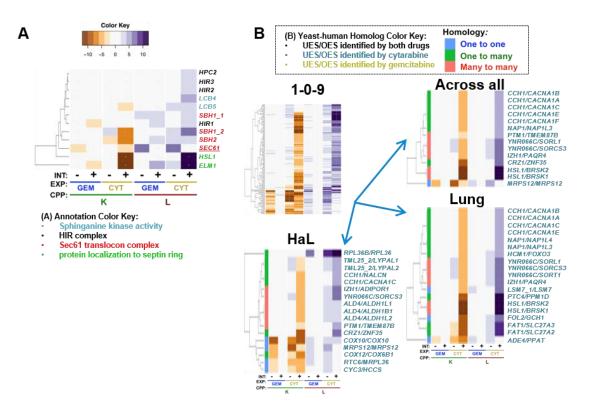
834 Representing this class of gene interaction, pharmacogenomics integration is 835 highlighted for clusters 2-0.8-0 and 1-0-7 (Fig. 6E). Although there was limited Gene 836 Ontology enrichment, the term *phosphatidylserine biosynthetic process* (UME6 and 837 CHO1), and the GARP (VPS51-54), and Lem3p-Dnf1p complexes were identified (Fig. 838 **6F, Table 2**). Ume6 is involved in both positive and negative regulation of the 839 phosphatidylserine synthase, Cho1 [253,254]. Phosphatidylserine exposure to the 840 plasma membrane is a marker of yeast and mammalian apoptosis [255], the latter of 841 which is induced by gemcitabine [256]. In pancreatic cancer cells, addition of the 842 sphingolipid, sphingomyelin, enhances gemcitabine cytotoxicity through increased 843 apoptosis [256,257]. Moreover, GARP complex deficiency leads to reduction of 844 sphingomyelin [258], and accumulation of sphingolipid intermediates, consistent with the 845 hypothesis that reduced sphingolipid metabolism alleviates gemcitabine-mediated 846 apoptosis. Lem3 complexes with Dnf1 or Dnf2 to form phospholipid flippases at the 847 plasma and early endosome/trans-Golgi network membranes and regulate 848 phosphatidylethanolamine and phosphatidylserine membrane content [259,260], 849 potentially further influencing the apoptotic response. The Lem3-Dnf1 and Lem3-Dnf2 850 flippases are regulated by the serine/threonine kinase Fpk1 [261], which is also a 851 gemcitabine-specific deletion suppressor (Fig. 6F). 852 853

Correlation of gemcitabine-specific gene deletion suppression with OES in cancer cells

854 Although yeast genes associated with GO-enriched terms from gemcitabine-855 specific deletion suppression (2-0.8-0 and 1-0-7) did not have human homologs that 856 were OES in GDSC, several homologs of 'non-GO-enriched' genes were OES (Fig. 6E; 857 **Table 4**). These included: (1) YGR054W/EIF2A, a eukaryotic initiation factor orthologous 858 between yeast and human that has been implicated in translation of upstream ORFs as 859 part of tumor initiation [215]. Thus, gemcitabine treatment in the context of EIF2A 860 overexpression may increase efficacy; (2) EFT2/EEF2/EFTUD2 (eukaryotic translation 861 elongation factor 2), which further implicates translational regulation as a gemcitabine-862 targetable cancer driver. *EEF2* is overexpressed in numerous cancer types [198] and 863 EFTUD2 knockdown induces apoptosis in breast cancer cells [199]; (3) RPP2B/RPLP2, 864 a component of the 60S ribosomal subunit stalk that is overexpressed in gynecologic 865 cancer [214], again suggesting dysregulated translation promotes gemcitabine toxicity; 866 (4) RPA49/POLR1E, a component of Pol1 [203-205] that has higher expression in 867 bladder cancer and has been recently proposed as a novel target for anti-cancer therapy 868 [206]; (5) OLA1/OLA1 is a GTPase that is conserved from human to bacteria [200]. It is 869 implicated in regulation of ribosomal translation [201] and has increased expression 870 associated with poorer survival in lung cancer patients [202]. The interactions described

871 above suggest gemcitabine may be more effective in the context of "oncogenic 872 ribosomes" [262]. (6) CKA2, the alpha catalytic subunit of casein kinase 2, has two 873 human homologs, CSNK2A1 and CSNK2A2, which were OES with gemcitabine. They 874 can be upregulated in cancer [186-191] and are considered targets for treatment [193]; (7) 875 CLB2/CCNA2/CCNB1, a B-type cyclin involved in cell cycle progression, of which both 876 CCNA2 and CCNB1 are overexpressed in breast and colorectal cancer [194-197]. 877 Moreover, the observation that CLB2 deletion (suppressing effect) opposes that of CLB5 878 (deletion enhancing; see above Fig. 6D, 1-0-0) has been previously described in the 879 context of loss of the S-phase checkpoint [263]; (8) SKY1/SRPK1 (serine-arginine rich 880 serine-threonine kinase), which is overexpressed in glioma, and prostate, breast, and 881 lung cancer [207]; (9) SNC2/VAMP8, which functions in fusion of Golgi-derived vesicles 882 with the plasma membrane and is overexpressed in glioma and breast cancer [208,209]; 883 (10) YPT6/RAB34, which functions in fusion of endosome-derived vesicles with the late 884 Golgi and is overexpressed in glioma, breast cancer, and hepatocellular carcinoma [211-885 213]; (11) TOP1/TOP1/TOP1MT, Topoisomerase I, which has increased copy number in 886 pancreatic and bile duct cancer [210]; (12) ALD6, which encodes cytosolic aldehyde 887 dehydrogenase, and was a deletion suppressor for both gemcitabine and cytarabine, 888 having multiple homologs that were OES (ALDH1A1, ALDH1A2, ALDH1B1, and 889 ALDH7A1. ALDH1B1). Overexpression of ALDH genes is observed in colorectal and 890 pancreatic cancer [183,184] and is a prognostic marker of cancer stem cells [185].

891


892 Cytarabine-specific gene interaction modules

893 Cytarabine-specific gene deletion enhancement

894 Cytarabine-specific deletion enhancement suggests functions that buffer cytotoxic

- 895 effects of cytarabine to a greater extent than gemcitabine, potentially informing on
- differential activities of the drugs. There was no notable GO enrichment by REMc/GTF,

897 but four functions of potential relevance were revealed by GTA (Fig. 7A. Table 2). Two 898 of them, the HIR complex (HIR1-3, HPC2) and sphinganine kinase activity (LCB4, LCB5) 899 were relatively weak, being deletion enhancing only for the L CPP (Fig. 7A). LCB4/5 900 homologs that were UES in PharmacoDB included: (1) CERKL (Additional File 8, Files 901 **B-C**; 1-0-6), a ceramide kinase like gene that regulates autophagy by stabilizing SIRT1 902 [264], a gene mentioned above for its inhibition being synergistic with cytarabine against 903 acute lymphoblastic leukemia cells [138], and (2) AGK, which is overexpressed in 904 hepatocellular carcinoma, glioma, breast, and cervical squamous cell cancers [265-268]. 905 Two stronger interaction modules, evidenced by deletion enhancement for both the K 906 and L CPPs, were protein localization to septin ring (HSL1 and ELM1) and the Sec61 907 translocon complex (SBH1, SBH2, and SEC61) (Fig. 7A, Table 2). In yeast, Hsl1 and 908 Elm1 are annotated as "bud sensors" to recruit HsI7 to the septin ring at the bud site to 909 degrade the mitotic inhibitor. Swe1 [269]. The HSL1 homologs. BRSK1 and BRSK2. 910 were UES in the cancer data. BRSK1 is mutated in gastric and colorectal carcinoma 911 [270] and its decreased expression is associated with breast cancer [271], but BRSK2 is 912 overexpressed in pancreatic cancer, where it is AKT-activating [272]. PharmacoDB also 913 identified the SEC61 homolog, SEC61A1, which is upregulated in colon adenocarcinoma 914 tissue [273].

- 915
- 916

917 Figure 7. Cytarabine-specific gene interaction. (A) GO terms identified by GTA that

- 918 revealed deletion enhancement to be greater for cytarabine than gemcitabine. (B)
- 919 Human homologs of cytarabine-specific yeast gene deletion enhancers found to exhibit
- 920 underexpression sensitivity for cytarabine in cancer cell lines.

921	Table 5. Yeast-human homologs predicted to buffer cytarabine to greater degree than gemcitabine.
922	

yGene	hGene	н	Drug	Cluster	Tissue	Gem_K	Cyt_K	Gem_L	Cyt_L	Ref	description_Human
CCH1	CACNA1A	2	Cyt	1-0-9	A, L	0.2	-4.5	0.5	5.5	[274]	calcium voltage-gated channel subunit alpha1 A
CCH1	CACNA1B	2	Cyt	1-0-9	A, L	0.2	-4.5	0.5	5.5	[274]	calcium voltage-gated channel subunit alpha1 B
CCH1	CACNA1C	2	Cyt	1-0-9	A, H, L	0.2	-4.5	0.5	5.5	[274]	calcium voltage-gated channel subunit alpha1 C
CCH1	CACNA1E	2	Cyt	1-0-9	A, L	0.2	-4.5	0.5	5.5	[274]	calcium voltage-gated channel subunit alpha1 E
CCH1	CACNA1F	2	Cyt	1-0-9	А	0.2	-4.5	0.5	5.5	[274]	calcium voltage-gated channel subunit alpha1 F
CCH1	NALCN	2	Cyt	1-0-9	Н	0.2	-4.5	0.5	5.5		sodium leak channel, non-selective
FAT1	SLC27A2	2	Cyt	1-0-9	L	0.7	-8.5	-0.9	8.9	[275]	solute carrier family 27 member 2
FAT1	SLC27A3	2	Cyt	1-0-9	L	0.7	-8.5	-0.9	8.9	[276]	solute carrier family 27 member 3
FOL2	GCH1	1	Cyt	1-0-9	L	-0.9	-9.4	0.7	7.1	[277]	GTP cyclohydrolase 1
HSL1	BRSK1	3	Cyt	1-0-9	A, L	0.9	-10.4	0.1	11.6	[270,271]	BR serine/threonine kinase 1
HSL1	BRSK2	3	Cyt	1-0-9	A, L	0.9	-10.4	0.1	11.6	[272]	BR serine/threonine kinase 2
IZH1	ADIPOR1	3	Cyt	1-0-9	Н	1.1	-5.8	-0.4	7.6	[278,279]	adiponectin receptor 1
IZH1	PAQR4	3	Cyt	1-0-9	A, L	1.1	-5.8	-0.4	7.6		progestin and adipoQ receptor family member 4
NAP1	NAP1L3	2	Cyt	1-0-9	A, L	1.0	-4.7	-1.5	5.6	[280]	nucleosome assembly protein 1 like 3
NAP1	NAP1L4	2	Cyt	1-0-9	L	1.0	-4.7	-1.5	5.6		nucleosome assembly protein 1 like 4
PTM1	TMEM87B	3	Cyt	1-0-9	А, Н	-0.7	-3.8	-0.2	5.7	[281]	transmembrane protein 87B

924 The data descriptions are the same as for Table 3.

925 Human genes that have deletion enhancing yeast homologs and confer cytarabine UES

- 926 We identified human genes that were UES to cytarabine and homologous to
- 927 yeast genes in REMc clusters (1-0-9 and 2-0.13-0) displaying a pattern of cytarabine-
- 928 specific deletion enhancement (Fig. 7B; Table 5). Cancer-relevant examples include:
- 929 (1) Ptm1, which is a protein of unknown function that copurifies with late Golgi vesicles
- 930 containing the v-SNARE, Tlg2p, but interestingly, its human homologs, *TMEM87A* and
- 931 *TMEM87B*, were UES for cytarabine and identified in a study focused on cytarabine
- 932 efficacy in acute myelogenous leukemia [281].
- 933 (2) NAP1/NAP1L3/NAP1L4, which is a nucleosome assembly protein involved in nuclear
- 934 transport and exchange of histones H2A and H2B and also interacts with Clb2, is
- 935 phosphorylated by CK2, and has protein abundance that increases in response to DNA

936 replication stress [155]. *NAP1L3* is overexpressed in breast cancer [280].

- 937 (3) *CCH1*, which is a voltage-gated high-affinity calcium channel with several homologs
- 938 that were UES, including: CACNA1A, underexpressed in breast, colorectal, esophageal,
- 939 gastric, and brain cancers; CACNA1B, underexpressed in breast and brain cancers;
- 940 CACNA1C, underexpressed in brain, bladder, lung, lymphoma, prostate, and renal
- 941 cancers; CACNA1E, underexpressed in breast, brain, gastric, leukemia, lung, and
- 942 prostate cancers; and CACNA1F, underexpressed in lymphoma [274];
- 943 (4) *IZH1*, a yeast membrane protein involved in zinc ion homeostasis, having a human
- homolog, *PAQR1/ADIPOR1* that encodes the adiponectin receptor protein 1, which is
- 945 differentially regulated in breast cancers [278,279];
- 946 (5) *FAT1*, a yeast fatty acid transporter and very long-chain fatty acyl-CoA synthetase
- 947 that corresponds to SLC27A2 (very long-chain acyl Co-A synthetase), which is
- 948 underexpressed in lung cancer [275], and SLC27A3 (long-chain fatty acid transport),
- 949 which is hypermethylated in melanoma [276];

950 (6) FOL2/GCH1, a GTP-cyclohydrolase that catalyzes the first step in folic acid

951 biosynthesis. Downregulation of GCH1 occurs in esophageal squamous cell carcinoma

- 952 [277].
- 953

954 **Discussion**:

955 Informative phenomic models have been developed for multiple human diseases. 956 including cystic fibrosis, neurodegenerative disorders, and cancer [30,282-284]. Molecular 957 models include mutations in conserved residues of yeast homologs of a disease gene 958 and introduction of human alleles into yeast. Complementation of gene functions by 959 human homologs, and vice versa, has demonstrated evolutionary conservation of gene 960 functions [285-287]. Like their basic functions, gene interactions are conserved [288,289] 961 and yeast is unique in its capability to address complex genetic interactions 962 experimentally [290]. Here, we model how yeast phenomic assessment of gene-drug 963 interaction could be employed as part of a precision oncology paradigm to predict 964 efficacy of cytotoxic chemotherapy based on the unique cancer genetic profiles of 965 individual patients.

966 To model the networks that buffer deoxyribonucleoside analogs, we humanized 967 veast by introducing deoxycytidine kinase into the YKO/KD strain collection, as yeast do 968 not encode dCK in their genomes, and thus cannot activate the unphosphorylated drugs. 969 We hypothesized that gemcitabine and cytarabine would have different buffering 970 profiles, despite their similar mechanisms of action, due to their distinct anti-cancer 971 efficacies. Results of the unbiased yeast phenomic experiments confirmed this 972 expectation, revealing distinct, though partially overlapping, gene interaction networks. 973 Differential interaction predominated despite the similarity of the molecules, illustrating 974 that distinct mechanisms for buffering anti-cancer cytotoxic drug responses can be

975 inferred from yeast phenomics and thus applied to predict how an individual's cancer

976 genome could influence responses to treatment [3,5].

977 Deletion enhancement of both gemcitabine and cytarabine suggested processes 978 that function to buffer nucleoside analog cytotoxicity in common (**Fig. 5**), in contrast to 979 buffering mechanisms that acted differentially in response to the drugs. Functionally 980 enriched processes that buffered both drugs to a similar extent included the intra-S DNA 981 damage checkpoint, positive regulation of DNA-dependent DNA replication initiation, 982 vesicle fusion with vacuole, and the Mre11, checkpoint clamp, RecQ helicase-Topo III, 983 CORVET, HOPS, ESCRT, GET, Ubp3-Bre5 deubiquitination complexes. 984 Among the drug-specific deletion enhancing interactions, autophagy, histone 985 modification, chromatin remodeling, and peptidyl-tyrosine dephosphorylation buffered 986 gemcitabine more so than cytarabine (Fig. 6). There were only a few cytarabine-specific 987 deletion enhancing GO-enriched terms, but there were many individual genes with 988 human homologs having cancer relevance that buffered cytarabine relatively specifically 989 (Fig. 7). On the other hand, genes that preferentially promote cytotoxicity were observed 990 primarily for gemcitabine, and enriched functions were related to apoptosis, including 991 phosphatidylserine biosynthesis, and the GARP and Lem2/3 complexes (Fig. 6). 992 The model we constructed incorporates the powerful pharmacogenomics 993 datasets and analysis tools from PharmacoDB, mining them by integration of yeast 994 phenomic drug-gene interaction experiments. We integrated yeast phenomic and 995 PharmacoDB data to identify, across the respective datasets, correlations between 996 deletion enhancement and underexpression sensitivity or deletion suppression and 997 overexpression sensitivity. Deletion enhancement indicates genes that are biomarkers 998 and synergistic targets to augment drug efficacy and expand the therapeutic window, 999 whereas deletion suppression identifies genes that promote drug cytotoxicity, and thus 1000 confer sensitivity when hyper-functional and resistance when deficient. A particularly

1001 attractive class of drug-gene interaction is overexpression sensitivity involving driver 1002 genes, however anti-cancer efficacy could be conferred by lethal drug-gene interactions 1003 involving passenger genes, tumor suppressor genes, or components of genetic buffering 1004 networks that become compromised due to genomic instability (Fig. 1A). The cancer 1005 literature revealed many deletion enhancing/UES and deletion suppressing/OES genes 1006 to have roles in cancer, suggesting that integration of yeast phenomic models and 1007 pharmacogenomics data could have clinical utility for choosing cytotoxic treatments 1008 based on gene expression profiles of individual cancers. While predictions sometimes 1009 involved GO-enriched processes, often the genes were identified individually. 1010 The utility of phenomic data (i.e., Q-HTCP of the YKO/KD library) to help predict 1011 causal associations between gene expression changes and cell sensitivity in response 1012 to drugs derives from prior work demonstrating that genes differentially expressed after 1013 drug treatment do not significantly overlap with those that influence sensitivity and 1014 resistance [52]. As far as we know, this work represents the first application of this 1015 fundamental observation from yeast to systems level experimental data from human 1016 cells. Literature-based validations of the yeast phenomic model of nucleoside analogs in 1017 human cancer cell lines and other cancer models are exemplified in **Table 6**. These 1018 examples illustrate that integrative, systems level drug-gene interaction modeling 1019 employing the experimental power of S. cerevisiae phenomics could be applicable to 1020 cancer genomic profiling for systems level, precision oncology.

1021 Table 6. Disease relevance of buffering interactions from the yeast phenomic 1022 model evidenced by the cancer biology literature.

1023

1024

Τ	υ	7	4

Gene (yeast/human)	Process/Complex	Description (human)	Ref	Nucleoside analog relevance
RAD24/RAD17	DNA damage checkpoint	RAD17 checkpoint clamp loader component	[74]	Depletion of RAD17 sensitizes pancreatic cancer cells to gemcitabine
RAD50/RAD50	Mre11 complex	RAD50 double strand break repair protein	[127]	Depletion of human Rad50 sensitizes Ataxia- telangiectasia (AT) fibroblasts to gemcitabine
HDA1/HDAC6	Hda1 complex; histone deacetylation	histone deacetylase 6	[160, 165]	HDAC inhibitors enhance sensitivity to gemcitabine in pancreatic cancer cells and are associated with reduction of HDAC6; HDAC6 inhibition induces apoptosis in cytarabine treated AML cells
RAD54/ATRX	Chromatin remodeling	ATRX, chromatin remodeler	[168]	Glioma patients with IDH1 mutations and loss of ATRX had improved response to gemcitabine plus radiation therapy
KEX2/PCSK7	serine-type endopeptidase activity	proprotein convertase subtilisin/kexin type 7	[179]	Overexpressed in gemcitabine resistant pancreatic cancer cell lines
YNK1/NME5	Nucleoside diphosphate phosphorylation	NME/NM23 family member 5	[182]	Depletion of NME5 sensitizes gemcitabine- resistant cancer cell lines to gemcitabine
VPS30/BECN1	Autophagy	beclin 1	[170]	Depletion of <i>BECN1</i> sensitizes pancreatic cancer stem cells to gemcitabine
LCB4/5/CERKL	sphinganine kinase activity	ceramide kinase like	[138, 264]	CERKL stabilizes SIRT1, SIRT1 chemical inhibition sensitizes acute myeloid leukemia cells to cytarabine

1025

1026 Deletion-enhancing/UES drug-gene interactions are highlighted; most exemplify loss of

1027

buffering functions that lead to increased drug sensitivity; however, there is one instance 1028 (KEX2/PCSK7) of overexpression of the buffering gene that increases drug resistance.

1029 In summary, the yeast phenomic model of nucleoside analog toxicity appears to 1030 serve as a valuable resource for interpreting cancer pharmacogenomics data regarding 1031 gene-drug interaction that could be predictive of patient-specific chemotherapeutic 1032 efficacy. Since it's not possible to collect comparable phenomic information from human 1033 populations or cancerous tissue alone [5], systems level yeast phenomic models can 1034 help expand and integrate relevant (i.e., evolutionarily conserved) aspects of the 1035 extensive cancer literature with regard to cancer-specific vulnerabilities to cytotoxic 1036 therapies. A deeper understanding of how genomic instability influences the genetic 1037 network that buffers chemotherapeutic agents like nucleoside analogs could guide future 1038 research to personalize anti-cancer therapies based on cancer genomic profiles unique 1039 to individual patients. Thus, a future direction for this work should include development 1040 of algorithms that prospectively predict chemotherapy response in individual patient 1041 cancer cells, which could be tested as part of a prognostic evaluation. Most cytotoxic 1042 chemotherapeutic agents are used in combination, so another direction for yeast 1043 phenomic analysis of anti-cancer agents would be to characterize clinically relevant drug 1044 combinations.

1045

1046 **Conclusions**:

1047 A humanized yeast phenomic model of deoxycytidine kinase was developed to 1048 map drug-gene interactions modulating anti-proliferative effects of nucleoside analogs in 1049 a eukaryotic cell and to investigate the relevance of the resulting networks for precision 1050 oncology by integration with cancer pharmacogenomics-derived associations between 1051 gene expression and cancer cell line drug sensitivity. The yeast phenomic model 1052 revealed gene-drug interaction for the two deoxycytidine analogs, gemcitabine and 1053 cytarabine, to be largely different, consistent with the distinct types of cancer for which 1054 they are used clinically. The model overall suggested evolutionary conservation of drug-

1055 gene interaction that could be used as a resource to predict anti-cancer therapeutic 1056 efficacy based on genetic information specific to individual patients' tumors. Yeast 1057 phenomics affords a scalable, high-resolution approach to model, at a systems level, the 1058 genetic requirements for sensitivity and resistance to cytotoxic agents and thus the 1059 potential to resolve complex influences of genetic variation on drug response to more 1060 accurately. Global and quantitative models of the distinct genetic buffering networks 1061 required to maintain cellular homeostasis after exposure to chemotherapeutic agents 1062 could aid precision oncology paradigms aimed at identifying composite genomic 1063 derangements that create enhanced cancer cell-specific vulnerabilities to particular anti-1064 cancer drugs. 1065 1066 1067 Supplementary Materials: 1068 Additional File 1. Supplemental tables: Tables S1-S6. Table S1. Primers used in 1069 strain construction (see Fig. S1). Table S2. YKO/KD strains with gemcitabine. Table S3. 1070 Reference cultures with gemcitabine. Table S4. YKO/KD strains with cytarabine. Table 1071 **S5.** Reference cultures with cytarabine. **Table S6.** Ranges of interaction z-scores for the 1072 YKO/YKD and Reference cultures from the phenomic analysis of gemcitabine and 1073 cytarabine drug-gene interaction. 1074 1075 Additional File 2. Supplemental figures. Figure S1. Construction of tet-inducible dCK 1076 allele. Figure S2. Reference r and AUC distributions with gemcitabine or cytarabine 1077 treatment. Figure S3. High shift or weak nucleoside analog gene deletion suppression

1078 modules. Figure S4. Elongator holoenzyme complex, protein urmylation, and tRNA

1079 wobble position uridine thiolation buffer gemcitabine cytotoxicity.

1080

1081	Additional File 3. Interaction plots for gemcitabine. Genome-wide analysis for (A)
1082	YKO, (B) KD, and (C) reference strains with gemcitabine. See also methods and
1083	Additional File 2.
1084	
1085	Additional File 4. Interaction plots for cytarabine. Genome-wide analysis for (A)
1086	YKO, (B) KD, and (C) reference strains with cytarabine. See also methods and
1087	Additional File 2.
1088	
1089	Additional File 5. REMc results, plotted as drug-gene interaction profile heatmaps
1090	and assessed for Gene Ontology enrichment using GTF. File A contains REMc
1091	results and associated gene interaction and shift data. File B is the heatmap
1092	representation of each REMc cluster after incorporating shift values and hierarchical
1093	clustering. File C contains the GTF results obtained for REMc clusters for the three
1094	ontologies – process, function, and component.
1095	
1096	Additional File 6. Gene Ontology Term Averaging (GTA) results and interactive
1097	plots. File A contains all GTA values, cross-referenced with REMc-enriched terms. File
1098	B displays GTA L values associated with above-threshold GTA scores (see note below)
1099	plotted for gemcitabine vs. cytarabine. File C displays GTA K values associated with
1100	above-threshold GTA scores (see note below) plotted for gemcitabine vs. cytarabine.
1101	Files B-C should be opened in an Internet web browser so that embedded information
1102	from Additional File 6A can be viewed by scrolling over points on the graphs. Subsets
1103	in each of the plots can be toggled off and on by clicking on the respective legend label.
1104	In the embedded information, X1 represents gemcitabine and X2 represents cytarabine
1105	information.
1106	

1107 Additional File 7. GO term-specific heatmaps for REMc/GTF-enriched modules. GO

- 1108 term-specific heatmaps for significant GO process terms were generated as described in
- 1109 methods and Figure 3. Any related child terms are presented in subsequent pages of
- 1110 the parent file name. GO terms with more than 100 children, with 2 or fewer genes
- annotated to the term, or a file size over 400KB are not shown. All heatmaps are
- 1112 generated with the same layout (see **Fig. 3**).
- 1113
- 1114 Additional File 8. Application of yeast phenomic drug-gene interaction data to
- 1115 predict, from cancer cell line pharmacogenomic data (gene expression and drug
- 1116 sensitivity correlations), human genes that modify gemcitabine or cytarabine
- 1117 toxicity. (A) Tables of UES and OES human genes and whether their yeast homologs
- 1118 were found to be deletion enhancing or deletion suppressing, respectively. (B-D) REMc
- 1119 heatmaps and tables of the yeast interaction scores corresponding to UES or OES
- 1120 human genes identified (B) across all tissue, (C) in lung, or (D) in hematopoietic and
- 1121 lymphoid tissue. See **Fig. 3** for description of tables and the color keys (note: a teal
- 1122 color, which represents cytarabine-specific UES/OES in the heatmaps in the main
- 1123 manuscript figures, is represented as darker blue in the supplemental heatmaps, while
- gold, representing gemcitabine-specific UES/OES in the main manuscript, is
- 1125 represented as a brighter yellow in the supplemental heatmaps).
- 1126

1127 List of abbreviations and glossary of terms

- 1128 AraC cytarabine; cytosine arabinoside
- 1129 **CPPs** Cell proliferation parameters: parameters of the logistic growth equation used to
- 1130 fit cell proliferation data obtained by Q-HTCP. The CPPs used to assess gene
- 1131 interaction in this study were K (carrying capacity) and L (time required to reach half of
- 1132 carrying capacity) [7-9,38].

- 1133 **DAmP** Decreased Abundance of mRNA Production: refers to a method of making
- 1134 YKD alleles, where the 3' UTR of essential genes is disrupted, reducing mRNA stability
- and gene dosage [291].
- 1136 **dCK** deoxycytidine kinase
- 1137 **dCMP** deoxycytidine monophosphate
- 1138 **DE** Deletion enhancer: gene loss of function (knockout or knockdown) that results in
- 1139 enhancement / increase of drug sensitivity [9].
- 1140 **dFdC** 2',2'-difluoro 2'-deoxycytidine, gemcitabine
- 1141 **dNTP** deoxyribonucleotide triphosphate
- 1142 **DS** Deletion suppressor: gene loss of function (knockout or knockdown) that results in
- 1143 suppression / reduction of drug sensitivity [9].
- 1144 **ESCRT** endosomal sorting complex required for transport
- 1145 **GARP complex** Golgi-associated retrograde protein complex.
- 1146 gCSI The Genentech Cell Line Screening Initiative: One of two pharmacogenomics
- 1147 datasets used in this study (<u>https://pharmacodb.pmgenomics.ca/datasets/4</u>).
- 1148 **GDSC1000** Genomics of Drug Sensitivity in Cancer: One of two pharmacogenomics
- 1149 datasets used in this study (<u>https://pharmacodb.pmgenomics.ca/datasets/5</u>)
- 1150 GO Gene ontology
- 1151 **GTF** Gene ontology term finder: an algorithm to assess GO term enrichment amongst
- a list of genes; applied to REMc (clustering) results [41].
- 1153 **GTA** Gene ontology term averaging: an assessment of GO term function obtained by
- averaging the gene interaction values for all genes of a GO term
- 1155 **GTA value** Gene ontology term average value
- 1156 gtaSD standard deviation of GTA value
- 1157 **GTA score** (GTA value gtaSD)
- 1158 **HaL** hematopoietic & lymphoid tissue

- 1159 **HDAC** Histone deacetylase complex
- 1160 **HLD** Human-like media with dextrose [8]: the yeast media used in this study.
- 1161 **INT** Interaction score
- 1162 **NDK** nucleoside diphosphate kinase
- 1163 **OES** Overexpression sensitivity: refers to association of increased gene expression
- 1164 with drug sensitivity in pharmacogenomics data [33].
- 1165 **PharmacoDB** The resource used for cancer pharmacogenomics analysis [33].
- 1166 **PPOD** Princeton protein orthology database
- 1167 **Q-HTCP** Quantitative high throughput cell array phenotyping: a method of imaging,
- image analysis, and growth curve fitting to obtain cell proliferation parameters [7,38].
- 1169 **Ref** Reference: the genetic background from which the YKO/KD library was derived
- 1170 **REMc** Recursive expectation maximization clustering: a probabilistic clustering
- algorithm that determines a discrete number of clusters from a data matrix [40].
- 1172 **RNR** ribonucleotide reductase
- 1173 **SD** Standard deviation
- 1174 SGA Synthetic genetic array
- 1175 SGD Saccharomyces genome database
- 1176 **UES** Underexpression sensitivity: refers to association of reduced gene expression
- 1177 with drug sensitivity in pharmacogenomics data [33].
- 1178 YKO Yeast knockout
- 1179 YKD Yeast knockdown: DAmP alleles
- 1180 YKO/KD Yeast knockout or knockdown
- 1181

1182 Acknowledgements:

- 1183 The authors thank the following funding agencies for their support: American Cancer
- 1184 Society (RSG-10-066-01-TBE), Howard Hughes Medical Institute (P/S ECA 57005927),

1185	NIH/NCI (P30 CA013148), NIH/NIA ((R01 AG043076)	, and Cys	stic Fibrosis Foundatior

- 1186 (HARTMA16G0). The authors also thank Amanda Stisher for assistance with
- 1187 constructing yDW1 and Bo Xu and William Parker for providing the deoxycytidine kinase
- 1188 cDNA cloned into a plasmid.
- 1189

1190 Author Contributions:

- 1191 Conceptualization, J.L.H.; Methodology and Software, B.A.M., J.G., J.L.H., and S.M.S.;
- 1192 Formal Analysis, J.L.H and S.M.S.; Investigation, D.W., I.P., and M.I.; Resources, J.L.H.
- and M.N.; Data Curation, J.W.R.; Writing Original Draft Preparation, J.L.H and S.M.S.;
- 1194 Writing, Review & Editing, J.L.H and S.M.S.
- 1195

1196 **Conflicts of Interest:**

- 1197 JLH has ownership in Spectrum PhenomX, LLC, a shell company that was formed to
- 1198 commercialize Q-HTCP technology. The authors declare no other competing interests.
- 1199

1200 References:

1201		Reference List
1202		
1203	1.	Torti, D.; Trusolino, L. Oncogene addiction as a foundational rationale for
1204		targeted anti-cancer therapy: promises and perils. EMBO Mol Med 2011, 3,
1205		623-636, doi:10.1002/emmm.201100176.
1206	2.	Masui, K.; Gini, B.; Wykosky, J.; Zanca, C.; Mischel, P.S.; Furnari, F.B.; Cavenee,
1207		W.K. A tale of two approaches: complementary mechanisms of cytotoxic and
1208		targeted therapy resistance may inform next-generation cancer treatments.
1209		Carcinogenesis 2013 , 34, 725-738, doi:10.1093/carcin/bgt086.
1210	3.	Hartwell, L.H.; Szankasi, P.; Roberts, C.J.; Murray, A.W.; Friend, S.H.
1211		Integrating genetic approaches into the discovery of anticancer drugs.
1212		<i>Science</i> 1997 , <i>278</i> , 1064-1068, doi:10.1126/science.278.5340.1064.
1213	4.	Srivas, R.; Shen, J.P.; Yang, C.C.; Sun, S.M.; Li, J.; Gross, A.M.; Jensen, J.; Licon, K.;
1214		Bojorquez-Gomez, A.; Klepper, K., et al. A Network of Conserved Synthetic
1215		Lethal Interactions for Exploration of Precision Cancer Therapy. Mol Cell
1216		2016 , <i>63</i> , 514-525, doi:10.1016/j.molcel.2016.06.022.

1217	5.	Hartman IV, J.L.; Garvik, B.; Hartwell, L. Principles for the buffering of genetic
1217	5.	variation. <i>Science</i> 2001 , <i>291</i> , 1001-1004.
1210	6.	Hartman IV, J.L.; Tippery, N.P. Systematic quantification of gene interactions
1220	0.	by phenotypic array analysis. <i>Genome Biol</i> 2004 , <i>5</i> , R49.
1220	7.	Shah, N.A.; Laws, R.J.; Wardman, B.; Zhao, L.P.; Hartman IV, J.L. Accurate,
1221	/.	precise modeling of cell proliferation kinetics from time-lapse imaging and
1222		automated image analysis of agar yeast culture arrays. <i>BMC Syst Biol</i> 2007 , 1,
1223		3.
	8.	
1225 1226	о.	Hartman IV, J.L.; Stisher, C.; Outlaw, D.A.; Guo, J.; Shah, N.A.; Tian, D.; Santos,
1220		S.M.; Rodgers, J.W.; White, R.A. Yeast Phenomics: An Experimental Approach
		for Modeling Gene Interaction Networks that Buffer Disease. <i>Genes</i> 2015 , <i>6</i> , 24, 45, doi:10.2200/genes6010024
1228	0	24-45, doi:10.3390/genes6010024.
1229	9.	Louie, R.J.; Guo, J.; Rodgers, J.W.; White, R.; Shah, N.; Pagant, S.; Kim, P.;
1230		Livstone, M.; Dolinski, K.; McKinney, B.A., et al. A yeast phenomic model for
1231		the gene interaction network modulating CFTR- Δ F508 protein biogenesis.
1232	10	<i>Genome Med</i> 2012 , <i>4</i> , 103, doi:10.1186/gm404.
1233	10.	Galmarini, C.M.; Mackey, J.R.; Dumontet, C. Nucleoside analogues and
1234	11	nucleobases in cancer treatment. <i>Lancet Oncol</i> 2002 , <i>3</i> , 415-424.
1235	11.	Parker, W.B. Enzymology of purine and pyrimidine antimetabolites used in
1236	10	the treatment of cancer. <i>Chem Rev</i> 2009 , <i>109</i> , 2880-2893.
1237	12.	de Sousa Cavalcante, L.; Monteiro, G. Gemcitabine: metabolism and molecular
1238		mechanisms of action, sensitivity and chemoresistance in pancreatic cancer.
1239	10	<i>Eur J Pharmacol</i> 2014 , <i>741</i> , 8-16, doi:10.1016/j.ejphar.2014.07.041.
1240	13.	Hayashi, H.; Kurata, T.; Nakagawa, K. Gemcitabine: efficacy in the treatment
1241		of advanced stage nonsquamous non-small cell lung cancer. <i>Clin Med Insights</i>
1242	14	<i>Oncol</i> 2011 , <i>5</i> , 177-184, doi:10.4137/CMO.S6252.
1243	14.	Raja, F.A.; Counsell, N.; Colombo, N.; Pfisterer, J.; du Bois, A.; Parmar, M.K.;
1244		Vergote, I.B.; Gonzalez-Martin, A.; Alberts, D.S.; Plante, M., et al. Platinum
1245		versus platinum-combination chemotherapy in platinum-sensitive recurrent
1246		ovarian cancer: a meta-analysis using individual patient data. <i>Ann Oncol</i>
1247	4 5	2013 , <i>24</i> , 3028-3034, doi:10.1093/annonc/mdt406.
1248	15.	Alli, E.; Sharma, V.B.; Hartman, A.R.; Lin, P.S.; McPherson, L.; Ford, J.M.
1249		Enhanced sensitivity to cisplatin and gemcitabine in Brca1-deficient murine
1250		mammary epithelial cells. <i>BMC Pharmacol</i> 2011 , <i>11</i> , 7, doi:10.1186/1471-
1251		2210-11-7.
1252	16.	Reese, N.D.; Schiller, G.J. High-dose cytarabine (HD araC) in the treatment of
1253		leukemias: a review. <i>Curr Hematol Malig Rep</i> 2013 , <i>8</i> , 141-148,
1254	. –	doi:10.1007/s11899-013-0156-3.
1255	17.	Giovannetti, E.; Del Tacca, M.; Mey, V.; Funel, N.; Nannizzi, S.; Ricci, S.;
1256		Orlandini, C.; Boggi, U.; Campani, D.; Del Chiaro, M., et al. Transcription
1257		analysis of human equilibrative nucleoside transporter-1 predicts survival in
1258		pancreas cancer patients treated with gemcitabine. <i>Cancer Res</i> 2006 , <i>66</i> ,
1259	4.5	3928-3935, doi:10.1158/0008-5472.CAN-05-4203.
1260	18.	Skrypek, N.; Duchene, B.; Hebbar, M.; Leteurtre, E.; van Seuningen, I.;
1261		Jonckheere, N. The MUC4 mucin mediates gemcitabine resistance of human

1262		pancreatic cancer cells via the Concentrative Nucleoside Transporter family.
1263		<i>Oncogene</i> 2013 , <i>32</i> , 1714-1723, doi:10.1038/onc.2012.179.
1264	19.	Song, J.H.; Kim, S.H.; Kweon, S.H.; Lee, T.H.; Kim, H.J.; Kim, H.J.; Kim, T.S.
1265		Defective expression of deoxycytidine kinase in cytarabine-resistant acute
1266		myeloid leukemia cells. <i>Int J Oncol</i> 2009 , <i>34</i> , 1165-1171.
1267	20.	Duxbury, M.S.; Ito, H.; Zinner, M.J.; Ashley, S.W.; Whang, E.E. RNA interference
1268		targeting the M2 subunit of ribonucleotide reductase enhances pancreatic
1269		adenocarcinoma chemosensitivity to gemcitabine. Oncogene 2004, 23, 1539-
1270		1548, doi:10.1038/sj.onc.1207272.
1271	21.	Davidson, J.D.; Ma, L.; Flagella, M.; Geeganage, S.; Gelbert, L.M.; Slapak, C.A. An
1272		increase in the expression of ribonucleotide reductase large subunit 1 is
1273		associated with gemcitabine resistance in non-small cell lung cancer cell
1274		lines. <i>Cancer Res</i> 2004 , <i>64</i> , 3761-3766, doi:10.1158/0008-5472.CAN-03-
1275		3363.
1276	22.	Li, L.; Fridley, B.L.; Kalari, K.; Jenkins, G.; Batzler, A.; Weinshilboum, R.M.;
1277		Wang, L. Gemcitabine and arabinosylcytosin pharmacogenomics: genome-
1278		wide association and drug response biomarkers. <i>PLoS One</i> 2009 , 4, e7765,
1279		doi:10.1371/journal.pone.0007765.
1280	23.	Innocenti, F.; Owzar, K.; Cox, N.L.; Evans, P.; Kubo, M.; Zembutsu, H.; Jiang, C.;
1281	-	Hollis, D.; Mushiroda, T.; Li, L., et al. A genome-wide association study of
1282		overall survival in pancreatic cancer patients treated with gemcitabine in
1283		CALGB 80303. <i>Clin Cancer Res</i> 2012 , <i>18</i> , 577-584, doi:10.1158/1078-
1284		0432.CCR-11-1387.
1285	24.	You, L.; Chang, D.; Du, H.Z.; Zhao, Y.P. Genome-wide screen identifies PVT1 as
1286		a regulator of Gemcitabine sensitivity in human pancreatic cancer cells.
1287		Biochem Biophys Res Commun 2011 , 407, 1-6,
1288		doi:10.1016/j.bbrc.2011.02.027.
1289	25.	Bargal, S.A.; Rafiee, R.; Crews, K.R.; Wu, H.; Cao, X.; Rubnitz, J.E.; Ribeiro, R.C.;
1290		Downing, J.R.; Pounds, S.B.; Lamba, J.K. Genome-wide association analysis
1291		identifies SNPs predictive of in vitro leukemic cell sensitivity to cytarabine in
1292		pediatric AML. <i>Oncotarget</i> 2018 , <i>9</i> , 34859-34875,
1293		doi:10.18632/oncotarget.26163.
1294	26.	Gamazon, E.R.; Lamba, J.K.; Pounds, S.; Stark, A.L.; Wheeler, H.E.; Cao, X.; Im,
1295		H.K.; Mitra, A.K.; Rubnitz, J.E.; Ribeiro, R.C., et al. Comprehensive genetic
1296		analysis of cytarabine sensitivity in a cell-based model identifies
1297		polymorphisms associated with outcome in AML patients. <i>Blood</i> 2013 , <i>121</i> ,
1298		4366-4376, doi:10.1182/blood-2012-10-464149.
1299	27.	Giaever, G.; Chu, A.M.; Ni, L.; Connelly, C.; Riles, L.; Veronneau, S.; Dow, S.;
1300	27.	Lucau-Danila, A.; Anderson, K.; Andre, B., et al. Functional profiling of the
1300		Saccharomyces cerevisiae genome. <i>Nature</i> 2002 , <i>418</i> , 387-391,
1301		doi:10.1038/nature00935.
1302	28.	Tong, A.H.; Boone, C. Synthetic genetic array analysis in Saccharomyces
1303	20.	cerevisiae. <i>Methods Mol Biol</i> 2006 , <i>313</i> , 171-192.
1304	29.	Singh, I.; Pass, R.; Togay, S.O.; Rodgers, J.W.; Hartman IV, J.L. Stringent Mating-
1305	<i>L</i>).	Type-Regulated Auxotrophy Increases the Accuracy of Systematic Genetic
1300		Type Regulated Maxon opily mercases the Accuracy of Systematic deficit

1307		Interaction Screens with Saccharomyces cerevisiae Mutant Arrays. Genetics
1308		2009 , <i>181</i> , 289-300.
1309	30.	Louie, R.J.; Guo, J.; Rodgers, J.W.; White, R.; Shah, N.; Pagant, S.; Kim, P.;
1310		Livstone, M.; Dolinski, K.; McKinney, B.A., et al. A yeast phenomic model for
1311		the gene interaction network modulating CFTR-DeltaF508 protein
1312		biogenesis. <i>Genome Med</i> 2012 , <i>4</i> , 103, doi:10.1186/gm404.
1313	31.	Yang, W.; Soares, J.; Greninger, P.; Edelman, E.J.; Lightfoot, H.; Forbes, S.;
1314		Bindal, N.; Beare, D.; Smith, J.A.; Thompson, I.R., et al. Genomics of Drug
1315		Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery
1316		in cancer cells. <i>Nucleic Acids Res</i> 2013 , <i>41</i> , D955-961,
1317		doi:10.1093/nar/gks1111.
1318	32.	Klijn, C.; Durinck, S.; Stawiski, E.W.; Haverty, P.M.; Jiang, Z.; Liu, H.;
1319		Degenhardt, J.; Mayba, O.; Gnad, F.; Liu, J., et al. A comprehensive
1320		transcriptional portrait of human cancer cell lines. <i>Nat Biotechnol</i> 2015 , <i>33</i> ,
1321		306-312, doi:10.1038/nbt.3080.
1322	33.	Smirnov, P.; Kofia, V.; Maru, A.; Freeman, M.; Ho, C.; El-Hachem, N.; Adam,
1323		G.A.; Ba-Alawi, W.; Safikhani, Z.; Haibe-Kains, B. PharmacoDB: an integrative
1324		database for mining in vitro anticancer drug screening studies. <i>Nucleic Acids</i>
1325		<i>Res</i> 2018 , <i>46</i> , D994-D1002, doi:10.1093/nar/gkx911.
1326	34.	Hartman IV, J.L. Buffering of deoxyribonucleotide pool homeostasis by
1327		threonine metabolism. Proceedings of the National Academy of Sciences of the
1328		United States of America 2007 , 104, 11700-11705,
1329		doi:10.1073/pnas.0705212104.
1330	35.	Belli, G.; Gari, E.; Piedrafita, L.; Aldea, M.; Herrero, E. An activator/repressor
1331		dual system allows tight tetracycline-regulated gene expression in budding
1332		yeast. <i>Nucleic Acids Res</i> 1998 , <i>26</i> , 942-947, doi:10.1093/nar/26.4.942.
1333	36.	William, D. Charakterisierung der C terminalen Domäne von Mycobacterium
1334		tuberculosis protein A. Friedrich-Alexander-Universität Erlangen-Nürnberg,
1335		Erlangen, Germany, 2012.
1336	37.	Goldstein, A.L.; McCusker, J.H. Three new dominant drug resistance cassettes
1337		for gene disruption in Saccharomyces cerevisiae. Yeast 1999 , 15, 1541-1553,
1338		doi:10.1002/(SICI)1097-0061(199910)15:14<1541::AID-YEA476>3.0.CO;2-
1339		K.
1340	38.	Rodgers, J.; Guo, J.; Hartman IV, J.L. Phenomic assessment of genetic buffering
1341		by kinetic analysis of cell arrays. <i>Methods Mol Biol</i> 2014 , <i>1205</i> , 187-208,
1342		doi:10.1007/978-1-4939-1363-3_12.
1343	39.	Santos, S.M.; Hartman IV, J.L. A yeast phenomic model for the influence of
1344		Warburg metabolism on genetic buffering of doxorubicin. <i>bioRxiv</i> 2019 ,
1345		10.1101/517490, 517490, doi:10.1101/517490.
1346	40.	Guo, J.; Tian, D.; McKinney, B.A.; Hartman IV, J.L. Recursive expectation-
1347		maximization clustering: a method for identifying buffering mechanisms
1348		composed of phenomic modules. <i>Chaos</i> 2010 , <i>20</i> , 026103,
1349	4.4	doi:10.1063/1.3455188.
1350	41.	Boyle, E.I.; Weng, S.; Gollub, J.; Jin, H.; Botstein, D.; Cherry, J.M.; Sherlock, G.
1351		GO::TermFinderopen source software for accessing Gene Ontology
1352		information and finding significantly enriched Gene Ontology terms

1050		
1353		associated with a list of genes. <i>Bioinformatics</i> 2004 , <i>20</i> , 3710-3715,
1354	40	doi:10.1093/bioinformatics/bth456.
1355	42.	Cherry, J.M.; Hong, E.L.; Amundsen, C.; Balakrishnan, R.; Binkley, G.; Chan,
1356		E.T.; Christie, K.R.; Costanzo, M.C.; Dwight, S.S.; Engel, S.R., et al.
1357		Saccharomyces Genome Database: the genomics resource of budding yeast.
1358	10	<i>Nucleic Acids Res</i> 2012 , <i>40</i> , D700-705, doi:10.1093/nar/gkr1029.
1359	43.	Smirnov, P.; Safikhani, Z.; El-Hachem, N.; Wang, D.; She, A.; Olsen, C.; Freeman,
1360		M.; Selby, H.; Gendoo, D.M.; Grossmann, P., et al. PharmacoGx: an R package
1361		for analysis of large pharmacogenomic datasets. <i>Bioinformatics</i> 2016 , <i>32</i> ,
1362		1244-1246, doi:10.1093/bioinformatics/btv723.
1363	44.	Durinck, S.; Moreau, Y.; Kasprzyk, A.; Davis, S.; De Moor, B.; Brazma, A.;
1364		Huber, W. BioMart and Bioconductor: a powerful link between biological
1365		databases and microarray data analysis. <i>Bioinformatics</i> 2005 , <i>21</i> , 3439-3440,
1366	. –	doi:10.1093/bioinformatics/bti525.
1367	45.	Durinck, S.; Spellman, P.T.; Birney, E.; Huber, W. Mapping identifiers for the
1368		integration of genomic datasets with the R/Bioconductor package biomaRt.
1369		<i>Nat Protoc</i> 2009 , <i>4</i> , 1184-1191, doi:10.1038/nprot.2009.97.
1370	46.	Zerbino, D.R.; Achuthan, P.; Akanni, W.; Amode, M.R.; Barrell, D.; Bhai, J.;
1371		Billis, K.; Cummins, C.; Gall, A.; Giron, C.G., et al. Ensembl 2018. <i>Nucleic Acids</i>
1372	. –	<i>Res</i> 2018 , <i>46</i> , D754-D761, doi:10.1093/nar/gkx1098.
1373	47.	Heinicke, S.; Livstone, M.S.; Lu, C.; Oughtred, R.; Kang, F.; Angiuoli, S.V.; White,
1374		O.; Botstein, D.; Dolinski, K. The Princeton Protein Orthology Database (P-
1375		POD): a comparative genomics analysis tool for biologists. <i>PLoS ONE</i> 2007 , <i>2</i> ,
1376	10	e766.
1377	48.	Tong, A.H.; Evangelista, M.; Parsons, A.B.; Xu, H.; Bader, G.D.; Page, N.;
1378		Robinson, M.; Raghibizadeh, S.; Hogue, C.W.; Bussey, H., et al. Systematic
1379		genetic analysis with ordered arrays of yeast deletion mutants. <i>Science</i> 2001 ,
1380	40	294, 2364-2368, doi:10.1126/science.1065810.
1381	49.	Garnett, M.J.; Edelman, E.J.; Heidorn, S.J.; Greenman, C.D.; Dastur, A.; Lau,
1382		K.W.; Greninger, P.; Thompson, I.R.; Luo, X.; Soares, J., et al. Systematic
1383		identification of genomic markers of drug sensitivity in cancer cells. <i>Nature</i>
1384	50	2012 , <i>483</i> , 570-575, doi:10.1038/nature11005.
1385	50.	Haverty, P.M.; Lin, E.; Tan, J.; Yu, Y.; Lam, B.; Lianoglou, S.; Neve, R.M.; Martin,
1386		S.; Settleman, J.; Yauch, R.L., et al. Reproducible pharmacogenomic profiling of
1387		cancer cell line panels. <i>Nature</i> 2016 , <i>533</i> , 333-337,
1388	F 1	doi:10.1038/nature17987.
1389	51.	Hartwell, L.H.; Hopfield, J.J.; Leibler, S.; Murray, A.W. From molecular to
1390	50	modular cell biology. <i>Nature</i> 1999 , <i>402</i> , C47-52, doi:10.1038/35011540.
1391	52.	Birrell, G.W.; Brown, J.A.; Wu, H.I.; Giaever, G.; Chu, A.M.; Davis, R.W.; Brown,
1392		J.M. Transcriptional response of Saccharomyces cerevisiae to DNA-damaging
1393		agents does not identify the genes that protect against these agents. <i>Proc Natl</i>
1394	50	<i>Acad Sci U S A</i> 2002 , 99, 8778-8783.
1395	53.	O'Neil, N.J.; Bailey, M.L.; Hieter, P. Synthetic lethality and cancer. <i>Nat Rev</i>
1396		<i>Genet</i> 2017 , <i>18</i> , 613-623, doi:10.1038/nrg.2017.47.
1397	54.	McGary, K.L.; Park, T.J.; Woods, J.O.; Cha, H.J.; Wallingford, J.B.; Marcotte, E.M.
1398		Systematic discovery of nonobvious human disease models through

1399		orthologous phenotypes. <i>Proc Natl Acad Sci U S A</i> 2010 , <i>107</i> , 6544-6549,
1399		doi:0910200107 [pii]
1400	10.10	073/pnas.0910200107.
1401	55.	Shen, J.P.; Ideker, T. Synthetic Lethal Networks for Precision Oncology:
1402	55.	Promises and Pitfalls. J Mol Biol 2018 , 430, 2900-2912,
1403		doi:10.1016/j.jmb.2018.06.026.
1404	56.	Shaheen, M.; Allen, C.; Nickoloff, J.A.; Hromas, R. Synthetic lethality: exploiting
1405	50.	the addiction of cancer to DNA repair. <i>Blood</i> 2011 , <i>117</i> , 6074-6082,
1400		doi:10.1182/blood-2011-01-313734.
1407	57.	Shin, S.H.; Bode, A.M.; Dong, Z. Precision medicine: the foundation of future
1408	57.	cancer therapeutics. <i>NPJ Precis Oncol</i> 2017 , <i>1</i> , 12, doi:10.1038/s41698-017-
1409		0016-z.
1410	58.	Shimomura, I.; Yamamoto, Y.; Ochiya, T. Synthetic Lethality in Lung Cancer-
1411	50.	From the Perspective of Cancer Genomics. <i>Medicines (Basel)</i> 2019 , <i>6</i> ,
1412		doi:10.3390/medicines6010038.
1413	59.	Chang, M.; Bellaoui, M.; Zhang, C.; Desai, R.; Morozov, P.; Delgado-Cruzata, L.;
1415	57.	Rothstein, R.; Freyer, G.A.; Boone, C.; Brown, G.W. RMI1/NCE4, a suppressor
1415		of genome instability, encodes a member of the RecQ helicase/Topo III
1417		complex. The EMBO journal 2005 , 24, 2024-2033,
1418		doi:10.1038/sj.emboj.7600684.
1419	60.	Cejka, P.; Plank, J.L.; Dombrowski, C.C.; Kowalczykowski, S.C. Decatenation of
1420	00.	DNA by the S. cerevisiae Sgs1-Top3-Rmi1 and RPA complex: a mechanism for
1421		disentangling chromosomes. <i>Molecular cell</i> 2012 , 47, 886-896,
1422		doi:10.1016/j.molcel.2012.06.032.
1423	61.	Nagai, H.; Yabe, A.; Mine, N.; Mikami, I.; Fujiwara, H.; Terada, Y.; Hirano, A.;
1424	01.	Tsuneizumi, M.; Yokota, T.; Emi, M. Down-regulation in human cancers of
1425		DRHC, a novel helicase-like gene from 17q25.1 that inhibits cell growth.
1426		Cancer Lett 2003 , 193, 41-47.
1427	62.	Hamamoto, R.; Furukawa, Y.; Morita, M.; Iimura, Y.; Silva, F.P.; Li, M.; Yagyu,
1428	02:	R.; Nakamura, Y. SMYD3 encodes a histone methyltransferase involved in the
1429		proliferation of cancer cells. <i>Nat Cell Biol</i> 2004 , 6, 731-740,
1430		doi:10.1038/ncb1151.
1431	63.	Hasgall, P.A.; Hoogewijs, D.; Faza, M.B.; Panse, V.G.; Wenger, R.H.; Camenisch,
1432		G. The putative RNA helicase HELZ promotes cell proliferation, translation
1433		initiation and ribosomal protein S6 phosphorylation. <i>PLoS One</i> 2011 , <i>6</i> ,
1434		e22107, doi:10.1371/journal.pone.0022107.
1435	64.	Schepeler, T.; Holm, A.; Halvey, P.; Nordentoft, I.; Lamy, P.; Riising, E.M.;
1436		Christensen, L.L.; Thorsen, K.; Liebler, D.C.; Helin, K., et al. Attenuation of the
1437		beta-catenin/TCF4 complex in colorectal cancer cells induces several
1438		growth-suppressive microRNAs that target cancer promoting genes.
1439		Oncogene 2012 , <i>31</i> , 2750-2760, doi:10.1038/onc.2011.453.
1440	65.	Li, L.; Geng, Y.; Feng, R.; Zhu, Q.; Miao, B.; Cao, J.; Fei, S. The Human RNA
1441		Surveillance Factor UPF1 Modulates Gastric Cancer Progression by Targeting
1442		Long Non-Coding RNA MALAT1. Cell Physiol Biochem 2017, 42, 2194-2206,
1443		doi:10.1159/000479994.

 human RNA surveillance factor UPF1 regulates tumorigenesis by targeting Smad7 in hepatocellular carcinoma. J Exp Clin Cancer Res 2016, 35, 8, doi:10.1186/s13046-016-0286-2. Liu, C.; Karam, R.; Zhou, Y.; Su, F.; Ji, Y.; Li, G.; Xu, G.; Lu, L.; Wang, C.; Song, M., et al. The UPF1 RNA surveillance gene is commonly mutated in pancreatic adenosquamous carcinoma. Nat Med 2014, 20, 596-598, doi:10.1038/nm.3548. Chen, M.B.; Liu, Y.Y.; Cheng, L.B.; Lu, J.W.; Zeng, P.; Lu, P.H. AMPKalpha phosphatase Ppm1E upregulation in human gastric cancer is required for cell proliferation. Oncotarget 2017, 8, 31288-31296, doi:10.18632/oncotarget.16126. Thean, I.F.; Loi, C.; Ho, K.S.; Koh, P.K.; Eu, K.W.; Cheah, P.Y. Genome-wide scan identifies a copy number variable region at 3q26 that regulates PPM1L in APC mutation-negative familial colorectal cancer patients. Genes <i>Chromosomes Cancer</i> 2010, 49, 99-106, doi:10.1002/gcc.20724. Kondo, T.; Matsumoto, K.; Sugimoto, K. Role of a complex containing Rad17, Mec3, and Ddc1 in the yeast DNA damage checkpoint pathway. Molecular and cellular biology 199, 19, 1136-1143. Paciotti, V.; Lucchini, G.; Plevani, P.; Longhese, M.P. Mec1p is essential for phosphorylation of the yeast DNA damage checkpoint protein Ddc1p, which physically interacts with Mec3, Dr. The EMBO journal 1998, 17, 4199-4209, doi:10.1093/emboj/17.14.4199. Navadgi-Patil, V.W.; Burgers, P.M. Yeast Rad17/Mec3/Ddc1: a sliding clamp for the DNA damage checkpoint. Proceedings of the National Academy of Sciences of the United States of America 2003, 100, 2249-2254, doi:10.1073/pnas.0437148100. Navadgi-Patil, V.M.; Burgers, P.M. The unstructured C-terminal tail of the 9-1- 1 clamp subunit Ddc1 activates Mec1/ATR via two distinct mechanisms. Molecular cell 2009, 36, 743-753, doi:10.1016/j.molecl.2009.10.014. Fredebohn, J.; Wolf, J.; Hoheisel, J.D.; Boettcher, M. Depletion of RAD17 sensitizes pancreatic cancer cells to gemc	1444	66.	Chang, L.; Li, C.; Guo, T.; Wang, H.; Ma, W.; Yuan, Y.; Liu, Q.; Ye, Q.; Liu, Z. The
 Smad7 in hepatocellular carcinoma. J Exp Clin Cancer Nes 2016, 35, 6, doi:10.1186/s13046-016-0286-2. Liu, C.; Karam, R.; Jonu, Y.; Su, F. Ji, Y.; Li, G.; Xu, G.; Lu, L.; Wang, C.; Song, M., et al. The UPF1 RNA surveillance gene is commonly mutated in pancreatic adenosquamous carcinoma. Nat Med 2014, 20, 596-598, doi:10.1038/nm.3548. Chen, M.B.; Liu, Y.; Cheng, L.B.; Lu, J.W.; Zeng, P.; Lu, P.H. AMPKalpha phosphatase Ppm1E upregulation in human gastric cancer is required for cell proliferation. Oncotarget 2017, 8, 31288-31296, doi:10.18632/oncotarget.16126. Chen, M.B.; Liu, Y.; Cheng, L.B.; Lu, J.W.; Zeng, P.; Lu, P.H. AMPKalpha phosphatase opy number variable region at 3q26 that regulates PPM1L in APC mutation-negative familial colorectal cancer patients. Genes Chromosomes Cancer 2010, 49, 99-106, doi:10.1002/gcc.20724. Kondo, T.; Matsumoto, K.; Sugimoto, K. Role of a complex containing Rad17, Mec3, and Ddc1 in the yeast DNA damage checkpoint pathway. Molecular and cellular biology 1999, 19, 1136-1143. Paciotti, V.; Lucchini, G.; Plevani, P.; Longhese, M.P. Mc1p is essential for phosphorylation of the yeast DNA damage checkpoint protein Ddc1p, which physically interacts with Mec3p. The EMBO journal 1998, 17, 4199-4209, doi:10.1093/emboj/17.14.4199. Majka, J.; Burgers, P.M. Yeast Rad17/Mec3/Ddc1: a sliding clamp for the DNA damage checkpoint. Proceedings of the National Academy of Sciences of the United States of America 2003, 100, 2249-2254, doi:10.1073/pnas.0437148100. Navadgi-Patil, V.M.; Burgers, P.M. The unstructured C-terminal tail of the 9-1-1 clamp subunit Ddc1 activates Mec1/ATR via two distinct mechanisms. Molecular cell 2009, 36, 743-753, doi:10.1016/j.molcel.2009.10.014. Fredebohm, J.; Wolf, J; Hoheisel, J.D.; Boettcher, M. Depletion of RAD17 sensitizes pancreatic cancer cells to gemcitabine. Journal of cell science 2013, 126, 3380-3389, doi:10.1242/jcs.1247068. Saponaro,		00.	• • • •
 doi:10.1186/s13046-016-0286-2. Liu, C.; Karam, R.; Zhou, Y.; Su, F.; Ji, Y.; Li, G.; Xu, G.; Lu, L.; Wang, C.; Song, M., et al. The UPF1 RNA surveillance gene is commonly mutated in pancreatic adenosquamous carcinoma. <i>Nat Med</i> 2014, <i>20</i>, 596-598, doi:10.1038/nm.3548. Chen, M. B.; Liu, Y.Y.; Cheng, L.B.; Lu, J.W.; Zeng, P.; Lu, P.H. AMPKalpha phosphatase Ppm1E upregulation in human gastric cancer is required for cell proliferation. <i>Oncotarget</i> 2017, <i>8</i>, 31288-31296, doi:10.16832/oncotarget.16126. Thean, L.F.; Loi, C.; Ho, K.S.; Koh, P.K.; Eu, K.W.; Cheah, P.Y. Genome-wide scan identifies a copy number variable region at 3q26 that regulates PPM1L in APC mutation-negative familial colorectal cancer patients. <i>Genes Chromosomes Cancer</i> 2010, <i>49</i>, 99-106, doi:10.1002/gcc.20724. Kondo, T.; Matsumoto, K.; Sugimoto, K. Role of a complex containing Rad17, Mec3, and Ddc1 in the yeast DNA damage checkpoint pathway. <i>Molecular and cellular biology</i> 1999, <i>19</i>, 1136-1143. Paciotti, V.; Lucchini, G.; Plevani, P.; Longhese, M.P. Mec1p is essential for phosphorylation of the yeast DNA damage checkpoint protein Ddc1p, which physically interacts with Mec3p. <i>The EMBO journal</i> 1998, <i>17</i>, 4199-4209, doi:10.1093/emboj/17.14.4199. Navadgi-Patli, V.M.; Burgers, P.M. The unstructured C-terminal tail of the 9-1-1 clamp subunit Ddc1 activates Mec1/ATR via two distinct mechanisms. <i>Molecular cell</i> 2009, <i>36</i>, 743-753, doi:10.1016/j.molcel.2009.100.14. Fredebohm, J.; Wolf, J.; Hoheisel, J.D.; Boettcher, M. Depletion of RAD17 sensitizes pancreatic cancer cells to gemcitabine. <i>Journal of cell science</i> 2013, <i>126</i>, 3380-3389, doi:10.1242/jcs.124768. Saponaro, M.; Kanitkais, T.; Mitter, R.; Kelly, G.P.; Heron, M.; Williams, H.; Soding, J.; Stewart, A.; Svejstrup, J.Q. RECQL5 controls transcript elongation and suppresses genome instability associated with transcription stress. <i>Cell</i> 2014, <i>157</i>, 1037-1049, doi:10.1016/j.cell.204,30.048. Hu, Y.; Ra			
 Liu, C.; Karam, R.; Zhou, Y.; Su, F.; Ji, Y.; Li, G.; Xu, G.; Lu, L.; Wang, C.; Song, M., et al. The UPF1 RNA surveillance gene is commonly mutated in pancreatic adenosquamous carcinoma. <i>Nat Med</i> 2014, <i>20</i>, 596-598, doi:10.1038/nm.3548. Chen, M.B.; Liu, Y.Y.; Cheng, L.B.; Lu, J.W.; Zeng, P.; Lu, P.H. AMPKalpha phosphatase Ppm1E upregulation in human gastric cancer is required for cell proliferation. <i>Oncotarget</i> 2017, <i>8</i>, 31288-31296, doi:10.18632/oncotarget.16126. Thean, L.F.; Loi, C.; Ho, K.S.; Koh, P.K.; Eu, K.W.; Cheah, P.Y. Genome-wide scan identifies a copy number variable region at 3q26 that regulates PPM1L in APC mutation-negative familial colorectal cancer patients. <i>Genes Chromosomes Cancer</i> 2010, <i>49</i>, 99-106, doi:10.1002/gcc.20724. Kondo, T.; Matsumoto, K.; Sugmoto, K. Role of a complex containing Rad17, Mec3, and Ddc1 in the yeast DNA damage checkpoint pathway. <i>Molecular and cellular biology</i> 1999, <i>19</i>, 1136-1143. Paciotti, V.; Lucchini, G.; Plevani, P.; Longhese, M.P. Mec1p is essential for phosphorylation of the yeast DNA damage checkpoint protein Ddc1p, which physically interacts with Mec3p. <i>The EMBO journal</i> 1998, <i>17</i>, 4199-4209, doi:10.1093/emboj/17.14.4199. Majka, J.; Burgers, P.M. Yeast Rad17/Mec3/Ddc1: a sliding clamp for the DNA damage checkpoint. <i>Proceedings of the National Academy of Sciences of the United States of America</i> 2003, <i>100</i>, 2249-2254, doi:10.1073/pnas.0437148100. Navadgi-Patil, V.M.; Burgers, P.M. The unstructured C-terminal tail of the 9-1-1 clamp subunit Ddc1 activates Mec1/ATR via two distinct mechanisms. <i>Molecular cell 2009</i>, <i>36</i>, 743-753, doi:10.1016/j.molcel.2009.10.014. Fredebohm, J.; Wolf, J.; Hoheisel, J.D.; Boettcher, M. Depletion of RAD17 sensitizes pancreatic cancer cells to gemcitabine. <i>Journal of cell science</i> 2013, <i>126</i>, 3380-3389, doi:10.1242/jcs.124768. Saponaro, M.; Kantidakis, T.; Mitter, R.; Kelly, G.P.; Heron, M.; Williams, H.			
 et al. The UPF1 RNA surveillance gene is commonly mutated in pancreatic adenosquamous carcinoma. <i>Nat Med</i> 2014, <i>20</i>, 596-598, doi:10.1038/nm.3548. Chen, M.B.; Liu, Y.Y.; Cheng, L.B.; Lu, J.W.; Zeng, P.; Lu, P.H. AMPKalpha phosphatase Ppm1E upregulation in human gastric cancer is required for cell proliferation. <i>Oncotarget</i> 2017, <i>8</i>, 31288-31296, doi:10.10632/oncotarget.16126. Thean, L.F.; Loi, C.; Ho, K.S.; Koh, P.K.; Eu, K.W.; Cheah, P.Y. Genome-wide scan identifies a copy number variable region at 3q26 that regulates PPM1L in APC mutation-negative familial colorectal cancer patients. <i>Genes Chromosomes Cancer</i> 2010, <i>49</i>, 99-106, doi:10.1002/gcc.20724. Kondo, T.; Matsumoto, K.; Sugimoto, K. Role of a complex containing Rad17, Mec3, and Ddc1 in the yeast DNA damage checkpoint pathway. <i>Molecular and cellular biology</i> 1999, <i>19</i>, 1136-1143. Paciotti, V.; Lucchini, G.; Plevani, P.; Longhese, M.P. Mec1p is essential for phosphorylation of the yeast DNA damage checkpoint protein Ddc1p, which physically interacts with Mec3p. <i>The EMBO journal</i> 1998, <i>17</i>, 4199-4209, doi:10.1093/emboj/17.14.4199. Majka, J.; Burgers, P.M. Yeast Rad17/Mec3/Ddc1: a sliding clamp for the DNA damage checkpoint. <i>Proceedings of the National Academy of Sciences of the United States of America</i> 2003, <i>100</i>, 2249-2254, doi:10.1073/pnas.0437148100. Navadgi-Patil, V.M.; Burgers, P.M. The unstructured C-terminal tail of the 9-1- 1 clamp subunit Ddc1 activates Mec1/ATR via two distinct mechanisms. <i>Molecular cell</i> 2009, <i>36</i>, 743-753, doi:10.1016/j.molcel.2009.10.014. Fredebohm, J.; Wolf, J.; Hoheisel, J.D.; Boettcher, M. Depletion of RAD17 sensitizes pancreatic cancer cells to gemcitabine. <i>Journal of cell science</i> 2013, <i>126</i>, 3380-3389, doi:10.1242/jcs.124768. To. Saponaro, M.; Kantidakis, T.; Mitter, R.; Kelly, G.P.; Heron, M.; Williams, H.; Soding, J.; Stewart, A.; Svejstrup, J.Q. RECQL5 controls transcript e		67	
 adenosquamous carcinoma. Nat Med 2014, 20, 596-598, doi:10.1038/nm.3548. Chen, M.B.; Liu, Y.Y.; Cheng, L.B.; Lu, J.W.; Zeng, P.; Lu, P.H. AMPKalpha phosphatase Ppm IE upregulation in human gastric cancer is required for cell proliferation. Oncotarget 2017, 8, 31288-31296, doi:10.18632/oncotarget.16126. Thean, L.F.; Loi, C.; Ho, K.S.; Koh, P.K.; Eu, K.W.; Cheah, P.Y. Genome-wide scan identifies a copy number variable region at 3q26 that regulates PPM1L in APC mutation-negative familial colorectal cancer patients. Genes Chromosomes Cancer 2010, 49, 99-106, doi:10.1002/gcc.20724. Kondo, T.; Matsumoto, K.; Sugimoto, K. Role of a complex containing Rad17, Mec3, and Ddc1 in the yeast DNA damage checkpoint pathway. Molecular and cellular biology 1999, 19, 1136-1143. Paciotti, V.; Lucchini, G.; Plevani, P.; Longhese, M.P. Mec1p is essential for phosphorylation of the yeast DNA damage checkpoint protein Ddc1p, which physically interacts with Mec3p. The EMBO journal 1998, 17, 4199-4209, doi:10.1093/emboj/17.14.4199. Majka, J.; Burgers, P.M. Yeast Rad17/Mec3/Ddc1: a sliding clamp for the DNA damage checkpoint. Proceedings of the National Academy of Sciences of the United States of America 2003, 100, 2249-2254, doi:10.1073/pnas.0437148100. Ta clamp subunit Ddc1 activates Mec1/ATR via two distinct mechanisms. Molecular cell 2009, 36, 743-753, doi:10.1016/j.molcel.2009.10.014. Fredebohm, J.; Wolf, J.; Hoheisel, J.D.; Boettcher, M. Depletion of RAD17 sensitizes pancreatic cancer cells to gemcitabine. Journal of cell science 2013, 126, 3380-3389, doi:10.1242/jcs.124768. Saponaro, M.; Kantidakis, T.; Mitter, R.; Kelly, G.P.; Heron, M.; Williams, H.; Soding, J.; Stewart, A.; Svejstrup, J.Q. RECQL5 controls transcription stress. Cell 2014, 157, 1037-1049, doi:10.1016/j.cell.2014.03.048. Hu, Y.; Raynard, S.; Sehorn, M.G.; Lu, X.; Bussen, W.; Zheng, L.; Stark, J.M.; Barnes, E.L.; Chi, P.; Janscak, P., et al. RECQL5/Recql5 helicase regulates ho		07.	
 doi:10.1038/nm.3548. doi:10.1038/nm.3548. Chen, M.B, Liu, Y.Y.; Cheng, L.B.; Lu, J.W.; Zeng, P.; Lu, P.H. AMPKalpha phosphatase Ppm1E upregulation in human gastric cancer is required for cell proliferation. Oncotarget 2017, 8, 31288-31296, doi:10.18632/oncotarget.16126. Thean, L.F.; Loi, C.; Ho, K.S.; Koh, P.K.; Eu, K.W.; Cheah, P.Y. Genome-wide scan identifies a copy number variable region at 3q26 that regulates PPM1L in APC mutation-negative familial colorectal cancer patients. Genes Chromosomes Cancer 2010, 49, 99-106, doi:10.1002/gcc.20724. Kondo, T.; Matsumoto, K.; Sugimoto, K. Role of a complex containing Rad17, Mec3, and Ddc1 in the yeast DNA damage checkpoint pathway. Molecular and cellular biology 1999, 19, 1136-1143. Paciotti, V.; Lucchini, G.; Plevani, P.; Longhese, M.P. Mec1p is essential for phosphorylation of the yeast DNA damage checkpoint protein Ddc1p, which physically interacts with Mec3p. The EMBO journal 1998, 17, 4199-4209, doi:10.1093/emboj/17.14.4199. Majka, J.; Burgers, P.M. Yeast Rad17/Mec3/Ddc1: a sliding clamp for the DNA damage checkpoint. Proceedings of the National Academy of Sciences of the United States of America 2003, 100, 2249-2254, doi:10.1073/pnas.0437148100. Navadgi-Patil, V.M.; Burgers, P.M. The unstructured C-terminal tail of the 9-1- 1 clamp subunit Ddc1 activates Mec1/ATR via two distinct mechanisms. Molecular cell 2009, 36, 743-753, doi:10.1016/j.molcel.2009.10.014. Fredebohm, J.; Wolf, J.; Hoheisel, J.D.; Boettcher, M. Depletion of RAD17 sensitizes pancreatic cancer cells to gemcitabine. Journal of cell science 2013, 126, 3380-3389, doi:10.1242/jcs.124768. Molecular cell 2004, 45, Seporn, M.G; Lu, X; Bussen, W; Zheng, L.; Stark, J.M.; Barnes, E.L; Chi, P.; Janscak, P., et al. RECQL5/Recql5 helicase regulates homologous recombination and suppresses tumor formation via disruption of Rad51 presynaptic filaments. Genes & development 2007, 21, 3073-3084, doi:10.1101/gad.16091			
 1452 68. Chen, M.B.; Liu, Y.Y.; Cheng, L.B.; Lu, J.W.; Zeng, P.; Lu, P.H. AMPKalpha phosphatase Ppm IE upregulation in human gastric cancer is required for cell proliferation. Oncotarget 2017, 8, 31288-31296, doi:10.18632/oncotarget.16126. 1455 69. Thean, L.F.; Loi, C.; Ho, K.S.; Koh, P.K.; Eu, K.W.; Cheah, P.Y. Genome-wide scan identifies a copy number variable region at 3q26 that regulates PPM1L in APC mutation-negative familial colorectal cancer patients. Genes Chromosomes Cancer 2010, 49, 99-106, doi:10.1002/gcc.20724. 70. Kondo, T.; Matsumoto, K.; Sugimoto, K. Role of a complex containing Rad17, Mec3, and Ddc1 in the yeast DNA damage checkpoint pathway. Molecular and cellular biology 1999, 19, 1136-1143. 71. Paciotti, V.; Lucchini, G.; Plevani, P.; Longhese, M.P. Mec1p is essential for phosphorylation of the yeast DNA damage checkpoint protein Ddc1p, which physically interacts with Mec3p. The EMB0 journal 1998, 17, 4199-4209, doi:10.1093/emboj/17.14.4199. 72. Majka, J.; Burgers, P.M. Yeast Rad17/Mec3/Ddc1: a sliding clamp for the DNA damage checkpoint. Proceedings of the National Academy of Sciences of the United States of America 2003, 100, 2249-2254, doi:10.1073/pnas.0437148100. 73. Navadgi-Patil, V.M.; Burgers, P.M. The unstructured C-terminal tail of the 9-1- 1 clamp subunit Ddc1 activates Mec1/ATR via two distinct mechanisms. Molecular cell 2009, 36, 743-753, doi:10.1016/j.molcel.2009.10.014. 74. Fredebohm, J.; Wolf, J.; Hoheisel, J.D.; Boettcher, M. Depletion of RAD17 sensitizes pancreatic cancer cells to gemcitabine. Journal of cell science 2013, 126, 3380-3389, doi:10.1242/jcs.124768. 75. Saponaro, M.; Kantidakis, T.; Mitler, R.; Kelly, G.P.; Heron, M.; Williams, H.; Soding, J.; Stewart, A.; Svejstrup, J.Q. RECQL5/Recql5 helicase regulates homologous recombination and suppresses tumor formation via disruption and suppresses genome instability associated with transcription stress. Cell 2014, 157, 1037-1049, doi			-
 phosphatase Ppm1E upregulation in human gastric cancer is required for cell proliferation. Oncotarget 2017, 8, 31288-31296, doi:10.18632/oncotarget.16126. Thean, L.F., Loi, C., Ho, K.S.; Koh, P.K.; Eu, K.W.; Cheah, P.Y. Genome-wide scan identifies a copy number variable region at 3q26 that regulates PPM1L in APC mutation-negative familial colorectal cancer patients. Genes Chromosomes Cancer 2010, 49, 99-106, doi:10.1002/gcc.20724. Kondo, T.; Matsumoto, K.; Sugimoto, K. Role of a complex containing Rad17, Mec3, and Ddc1 in the yeast DNA damage checkpoint pathway. Molecular and cellular biology 1999, 19, 1136-1143. Paciotti, V.; Lucchini, G.; Plevani, P.; Longhese, M.P. Mec1p is essential for phosphorylation of the yeast DNA damage checkpoint protein Ddc1p, which physically interacts with Mec3p. The EMB0 journal 1998, 17, 4199-4209, doi:10.1093/emb0j/17.14.4199. Majka, J.; Burgers, P.M. Yeast Rad17/Mec3/Ddc1: a sliding clamp for the DNA damage checkpoint. Proceedings of the National Academy of Sciences of the United States of America 2003, 100, 2249-2254, doi:10.1073/pnas.0437148100. Navadgi-Patil, V.M.; Burgers, P.M. The unstructured C-terminal tail of the 9-1-1 clamp subunit Ddc1 activates Mec1/ATR via two distinct mechanisms. Molecular cell 2009, 36, 743-753, doi:10.1016/j.moleel.2009.10.014. Fredebohm, J.; Wolf, J.; Hoheisel, J.D.; Boettcher, M. Depletion of RAD17 sensitizes pancreatic cancer cells to gemcitabine. Journal of cell science 2013, 126, 3380-3389, doi:10.1242/jcs.124768. Soding, J.; Stewart, A.; Svejstrup, J.Q. RECQL5 controls transcript elongation and suppresses genome instability associated with transcription stress. Cell 2014, 157, 1037-1049, doi:10.1016/j.cell.2014.03.048. Hu, Y; Raynard, S.; Sehorn, M.G.; Lu, X; Bussen, W; Zheng, L.; Stark, J.M.; Barnes, E.L.; Chi, P.; Janscak, P., et al. RECQL5/Recql5 helicase regulates homologous recombination and suppresses tumo		68	
 proliferation. Oncotarget 2017, 8, 31288-31296, doi:10.18632/oncotarget.16126. Thean, L.F.; Loi, C.; Ho, K.S.; Koh, P.K.; Eu, K.W.; Cheah, P.Y. Genome-wide scan identifies a copy number variable region at 3q26 that regulates PPM1L in APC mutation-negative familial colorectal cancer patients. Genes Chromosomes Cancer 2010, 49, 99-106, doi:10.1002/gcc.20724. Kondo, T.; Matsumoto, K.; Sugimoto, K. Role of a complex containing Rad17, Mec3, and Ddc1 in the yeast DNA damage checkpoint pathway. Molecular and cellular biology 1999, 19, 1136-1143. Paciotti, V.; Lucchini, G.; Plevani, P.; Longhese, M.P. Mec1p is essential for phosphorylation of the yeast DNA damage checkpoint protein Dd1p, which physically interacts with Mec3p. The EMBO journal 1998, 17, 4199-4209, doi:10.1093/emboj/17.14.4199. Majka, J.; Burgers, P.M. Yeast Rad17/Mec3/Ddc1: a sliding clamp for the DNA damage checkpoint. Proceedings of the National Academy of Sciences of the United States of America 2003, 100, 2249-2254, doi:10.1073/pnas.0437148100. Navadgi-Patil, V.M.; Burgers, P.M. The unstructured C-terminal tail of the 9-1-1 clamp subunit Ddc1 activates Mec1/ATR via two distinct mechanisms. Molecular call 2009, 36, 743-753, doi:10.1016/j.molcel.2009.10.014. Fredebohm, J.; Wolf, J.; Hoheisel, J.D.; Boettcher, M. Depletion of RAD17 sensitizes pancreatic cancer cells to gemcitabine. Journal of cell science 2013, 126, 3380-3389, doi:10.1242/jcs.124768. Soding, J.; Stewart, A.; Svejstrup, J.Q. RECQL5 controls transcript elongation and suppresses genome instability associated with transcription stress. Cell 2014, 157, 1037-1049, doi:10.1016/j.cell.2014.03.048. Hu, Y.; Raynard, S.; Sehorn, M.G.; Lu, X.; Bussen, W.; Zheng, L.; Stark, J.M.; Barres, E.L.; Chi, P.; Janscak, P., et al. RECQL5/Recql5 helicase regulates homologous recombination and suppresses turo formation via disruption of Rad51 presynaptic filaments. Genes & development 2007, 21, 3073-3084, doi:10.1101/gad		00.	
 doi:10.18632/oncotarget.16126. doi:10.18632/oncotarget.16126. Thean, L.F.; Loi, C.; Ho, K.S.; Koh, P.K.; Eu, K.W.; Cheah, P.Y. Genome-wide scan identifies a copy number variable region at 3q26 that regulates PPM1L in APC mutation-negative familial colorectal cancer patients. <i>Genes</i> <i>Chromosomes Cancer</i> 2010, 49, 99-106, doi:10.1002/gcc.20724. Kondo, T.; Matsumoto, K.; Sugimoto, K. Role of a complex containing Rad17, Mec3, and Ddc1 in the yeast DNA damage checkpoint pathway. <i>Molecular and</i> <i>cellular biology</i> 1999, <i>19</i>, 1136-1143. Paciotti, V.; Lucchini, G.; Plevani, P.; Longhese, M.P. Mec1p is essential for phosphorylation of the yeast DNA damage checkpoint protein Ddc1p, which physically interacts with Mec3p. <i>The EMBO journal</i> 1998, <i>17</i>, 4199-4209, doi:10.1093/emboj/17.14.4199. Majka, J.; Burgers, P.M. Yeast Rad17/Mec3/Ddc1: a sliding clamp for the DNA damage checkpoint. <i>Proceedings of the National Academy of Sciences of the</i> <i>United States of America</i> 2003, <i>100</i>, 2249-2254, doi:10.1073/pnas.0437148100. Navadgi-Patil, V.M.; Burgers, P.M. The unstructured C-terminal tail of the 9-1- 1 clamp subunit Ddc1 activates Mec1/ATR via two distinct mechanisms. <i>Molecular cell</i> 2009, <i>36</i>, 743-753, doi:10.1016/j.molcel.2009.10.014. Fredebohm, J.; Wolf, J.; Hoheisel, J.D.; Boettcher, M. Depletion of RAD17 sensitizes pancreatic cancer cells to gemcitabine. <i>Journal of cell science</i> 2013, <i>126</i>, 3380-3389, doi:10.1242/jcs.124768. Saponaro, M.; Kantidakis, T.; Mitter, R.; Kelly, G.P.; Heron, M.; Williams, H.; Soding, J.; Stewart, A.; Svejstrup, J.Q. RECQL5 controls transcript elongation and suppresses genome instability associated with transcription stress. <i>Cell</i> 2014, <i>157</i>, 1037-1049, doi:10.1016/j.cell.2014.03.048. Hu, Y.; Raynard, S.; Schorn, M.G.; Lu, X.; Bussen, W.; Zheng, L.; Stark, J.M.; Barnes, E.L.; Chi, P.; Janscak, P., et al. RECQL5/Recq15 helicase regulates homologous recombination and suppresses tumor formation via d			
 1456 69. Thean, L.F.; Loi, C.; Ho, K.S.; Koh, P.K.; Eu, K.W.; Cheah, P.Y. Genome-wide scan identifies a copy number variable region at 3q26 that regulates PPM1L in APC mutation-negative familial colorectal cancer patients. <i>Genes Chromosomes Cancer</i> 2010, <i>49</i>, 99-106, doi:10.1002/gcc.20724. 70. Kondo, T.; Matsumoto, K.; Sugimoto, K. Role of a complex containing Rad17, Mec3, and Ddc1 in the yeast DNA damage checkpoint pathway. <i>Molecular and cellular biology</i> 1999, <i>19</i>, 1136-1143. 71. Paciotti, V.; Lucchini, G.; Plevani, P.; Longhese, M.P. Mec1p is essential for phosphorylation of the yeast DNA damage checkpoint protein Ddc1p, which physically interacts with Mec3p. <i>The EMBO journal</i> 1998, <i>17</i>, 4199-4209, doi:10.1003/emboj/17.14.4199. 72. Majka, J.; Burgers, P.M. Yeast Rad17/Mec3/Ddc1: a sliding clamp for the DNA damage checkpoint. <i>Proceedings of the National Academy of Sciences of the United States of America</i> 2003, <i>100</i>, 2249-2254, doi:10.1073/pnas.0437148100. 73. Navadgi-Patil, V.M.; Burgers, P.M. The unstructured C-terminal tail of the 9-1-1 1 clamp subunit Ddc1 activates Mec1/ATR via two distinct mechanisms. <i>Molecular cell</i> 2009, <i>36</i>, 743-753, doi:10.1016/j.molcel.2009.10.014. 74. Fredebohm, J.; Wolf, J.; Hoheisel, J.D.; Boettcher, M. Depletion of RAD17 sensitizes pancreatic cancer cells to gemcitabine. <i>Journal of cell science</i> 2013, <i>126</i>, 3380-3389, doi:10.1016/j.cell.2014.03.048. 75. Saponaro, M.; Kantidakis, T.; Mitter, R.; Kelly, G.P.; Heron, M.; Williams, H.; Soding, J.; Stewart, A.; Svejstrup, J.Q. RECQL5 controls transcript elongation and suppresses genome instability associated with transcription stress. <i>Cell</i> 2014, <i>157</i>, 1037-1049, doi:10.1016/j.cell.2014.03.048. 76. Hu, Y.; Raynard, S.; Sehorn, M.G.; Lu, X.; Bussen, W.; Zheng, L.; Stark, J.M.; Barnes, E.L.; Chi, P.; Janscak, P., et al. RECQL5/Recq15 helicase regulates homologous recombination and suppresses tumor formation via disruption of Rad51 presynaptic filamen			
 identifies a copy number variable region at 3q26 that regulates PPM1L in APC mutation-negative familial colorectal cancer patients. <i>Genes</i> <i>Chromosomes Cancer</i> 2010, 49, 99-106, doi:10.1002/gcc.20724. Kondo, T.; Matsumoto, K.; Sugimoto, K. Role of a complex containing Rad17, Mec3, and Ddc1 in the yeast DNA damage checkpoint pathway. <i>Molecular and</i> <i>cellular biology</i> 1999, 19, 1136-1143. Paciotti, V.; Lucchini, G.; Plevani, P.; Longhese, M.P. Mec1p is essential for phosphorylation of the yeast DNA damage checkpoint protein Ddc1p, which physically interacts with Mec3p. <i>The EMBO journal</i> 1998, <i>17</i>, 4199-4209, doi:10.1093/emboj/17.14.4199. Mafa, J.; Burgers, P.M. Yeast Rad17/Mec3/Ddc1: a sliding clamp for the DNA damage checkpoint. <i>Proceedings of the National Academy of Sciences of the</i> <i>United States of America</i> 2003, <i>100</i>, 2249-2254, doi:10.1073/pnas.0437148100. Navadgi-Patil, V.M.; Burgers, P.M. The unstructured C-terminal tail of the 9-1- 1 clamp subunit Ddc1 activates Mec1/ATR via two distinct mechanisms. <i>Molecular cell</i> 2009, <i>36</i>, 743-753, doi:10.1016/j.molcel.2009.10.014. Fredebohm, J.; Wolf, J.; Hoheisel, J.D.; Boettcher, M. Depletion of RAD17 sensitizes pancreatic cancer cells to gemcitabine. <i>Journal of cell science</i> 2013, <i>126</i>, 3380-3389, doi:10.1242/jcs.124768. Matano, J.; Stewart, A.; Svejstrup, J.Q. RECQL5 controls transcript elongation and suppresses genome instability associated with transcription stress. <i>Cell</i> 2014, <i>157</i>, 1037-1049, doi:10.1016/j.cell.2014.03.048. Hu, Y.; Raynard, S.; Sehorn, M.G.; Lu, X.; Bussen, W.; Zheng, L.; Stark, J.M.; Barnes, E.L.; Chi, P.; Janscak, P., et al. RECQL5/Recql5 helicase regulates homologous recombination and suppresses tumor formation via disruption of Rad51 presynaptic filaments. <i>Genes & development</i> 2007, <i>21</i>, 3073-3084, doi:10.1101/gad.1609107. Liu, S.; Bachran, C.; Gupta, P.; Miller-Randolph, S.; Wang, H.; Crown, D.; Zhang, Y.; Wein, A.N.; Singh, R.; Fattah, R., et		69	
 APC mutation-negative familial colorectal cancer patients. <i>Genes</i> <i>Chromosomes Cancer</i> 2010, <i>49</i>, 99-106, doi:10.1002/gcc.20724. Kondo, T.; Matsumoto, K.; Sugimoto, K. Role of a complex containing Rad17, Mec3, and Ddc1 in the yeast DNA damage checkpoint pathway. <i>Molecular and</i> <i>cellular biology</i> 1999, <i>19</i>, 1136-1143. Paciotti, V.; Lucchini, G.; Plevani, P.; Longhese, M.P. Mec1p is essential for phosphorylation of the yeast DNA damage checkpoint protein Ddc1p, which physically interacts with Mec3p. <i>The EMBO journal</i> 1998, <i>17</i>, 4199-4209, doi:10.1093/emboj/17.14.4199. Majka, J.; Burgers, P.M. Yeast Rad17/Mec3/Ddc1: a sliding clamp for the DNA damage checkpoint. <i>Proceedings of the National Academy of Sciences of the</i> <i>United States of America</i> 2003, <i>100</i>, 2249-2254, doi:10.1073/pnas.0437148100. Navadgi-Patil, V.M.; Burgers, P.M. The unstructured C-terminal tail of the 9-1- 1 clamp subunit Ddc1 activates Mec1/ATR via two distinct mechanisms. <i>Molecular cell</i> 2009, <i>36</i>, 743-753, doi:10.1016/j.molcel.2009.10.014. Fredebohm, J.; Wolf, J.; Hoheisel, J.D.; Boettcher, M. Depletion of RAD17 sensitizes pancreatic cancer cells to genictabine. <i>Journal of cell science</i> 2013, <i>126</i>, 3380-3389, doi:10.1242/jcs.124768. Saponaro, M.; Kantidakis, T.; Mitter, R.; Kelly, G.P.; Heron, M.; Williams, H.; Soding, J.; Stewart, A.; Svejstrup, J.Q. RECQL5 controls transcript elongation and suppresses genome instability associated with transcription stress. <i>Cell</i> 2014, <i>157</i>, 1037-1049, doi:10.1016/j.cell.2014.03.048. Hu, Y.; Raynard, S.; Sehorn, M.G.; Lu, X.; Bussen, W.; Zheng, L.; Stark, J.M.; Barnes, E.L.; Chi, P.; Janscak, P., et al. RECQL5/Recql5 helicase regulates homologous recombination and suppresses tumor formation via disruption of Rad51 presynaptic filaments. <i>Genes & development</i> 2007, <i>21</i>, 3073-3084, doi:10.1101/gad.1609107. Liu, S.; Bachran, C.; Gupta, P.; Miller-Randolph, S.; Wang, H.; Crown, D.; Z		07.	
1459Chromosomes Cancer 2010, 49, 99-106, doi:10.1002/gcc.20724.146070.Kondo, T.; Matsumoto, K.; Sugimoto, K. Role of a complex containing Rad17,1461Mec3, and Ddc1 in the yeast DNA damage checkpoint pathway. Molecular and1462cellular biology 1999, 19, 1136-1143.146371.Paciotti, V.; Lucchini, G.; Plevani, P.; Longhese, M.P. Mec1p is essential for1464phosphorylation of the yeast DNA damage checkpoint protein Ddc1p, which1465physically interacts with Mec3p. The EMBO journal 1998, 17, 4199-4209,1466doi:10.1093/emboj/17.14.4199.146772.Majka, J.; Burgers, P.M. Yeast Rad17/Mec3/Ddc1: a sliding clamp for the DNA1468damage checkpoint. Proceedings of the National Academy of Sciences of the1469United States of America 2003, 100, 2249-2254,1470doi:10.1073/pnas.0437148100.147173.Navadgi-Patil, V.M.; Burgers, P.M. The unstructured C-terminal tail of the 9-1-14721 clamp subunit Ddc1 activates Mec1/ATR via two distinct mechanisms.1473Molecular cell 2009, 36, 743-753, doi:10.1016/j.molcel.2009.10.014.147474.Fredebohm, J.; Wolf, J.; Hoheisel, J.D.; Boettcher, M. Depletion of RAD17126, 3380-3389, doi:10.1242/jcs.124768.147775.Saponaro, M.; Kantidakis, T.; Mitter, R.; Kelly, G.P.; Heron, M.; Williams, H.;1478Soding, J.; Stewart, A.; Svejstrup, J.Q. RECQL5 controls transcript elongation1479and suppresses genome instability associated with transcription stress. Cell14802014, 157, 1037-1049, doi:10.1016/j.cell.2014.03.			
 1460 70. Kondo, T.; Matsumoto, K.; Sugimoto, K. Role of a complex containing Rad17, Mec3, and Ddc1 in the yeast DNA damage checkpoint pathway. <i>Molecular and</i> <i>cellular biology</i> 1999, <i>19</i>, 1136-1143. 1463 71. Paciotti, V.; Lucchini, G.; Plevani, P.; Longhese, M.P. Mec1p is essential for phosphorylation of the yeast DNA damage checkpoint protein Ddc1p, which physically interacts with Mec3p. <i>The EMBO journal</i> 1998, <i>17</i>, 4199-4209, doi:10.1093/emboj/17.14.4199. 1467 72. Majka, J.; Burgers, P.M. Yeast Rad17/Mec3/Ddc1: a sliding clamp for the DNA damage checkpoint. <i>Proceedings of the National Academy of Sciences of the</i> <i>United States of America</i> 2003, <i>100</i>, 2249-2254, doi:10.1073/pnas.0437148100. 1471 73. Navadgi-Patil, V.M.; Burgers, P.M. The unstructured C-terminal tail of the 9-1- 1 clamp subunit Ddc1 activates Mec1/ATR via two distinct mechanisms. <i>Molecular cell</i> 2009, <i>36</i>, 743-753, doi:10.1016/j.molcel.2009.10.014. 1474 74. Fredebohm, J.; Wolf, J.; Hoheisel, J.D.; Boettcher, M. Depletion of RAD17 sensitizes pancreatic cancer cells to gemcitabine. <i>Journal of cell science</i> 2013, <i>126</i>, 3380-3389, doi:10.1242/jcs.124768. 1477 75. Saponaro, M.; Kantidakis, T.; Mitter, R.; Kelly, G.P.; Heron, M.; Williams, H.; Soding, J.; Stewart, A.; Svejstrup, J.Q. RECQL5 controls transcript elongation and suppresses genome instability associated with transcription stress. <i>Cell</i> 2014, <i>157</i>, 1037-1049, doi:10.1016/j.cell.2014.03.048. 1481 76. Hu, Y.; Raynard, S.; Sehorn, M.G.; Lu, X.; Bussen, W.; Zheng, L.; Stark, J.M.; Barnes, E.L.; Chi, P.; Janscak, P., et al. RECQL5/Recql5 helicase regulates homologous recombination and suppresses tumor formation via disruption of Rad51 presynaptic filaments. <i>Genes & development</i> 2007, <i>21</i>, 3073-3084, doi:10.1101/gad.1609107. 1486 77. Liu, S.; Bachran, C.; Gupta, P.; Miller-Randolph, S.; Wang, H.; Crown, D.; Zhang, Y.; Wein, A.N.; Singh, R.;			
 Mec3, and Ddc1 in the yeast DNA damage checkpoint pathway. <i>Molecular and cellular biology</i> 1999, <i>19</i>, 1136-1143. 71. Paciotti, V.; Lucchini, G.; Plevani, P.; Longhese, M.P. Mec1p is essential for phosphorylation of the yeast DNA damage checkpoint protein Ddc1p, which physically interacts with Mec3p. <i>The EMBO journal</i> 1998, <i>17</i>, 4199-4209, doi:10.1093/emboj/17.14.4199. 72. Majka, J.; Burgers, P.M. Yeast Rad17/Mec3/Ddc1: a sliding clamp for the DNA damage checkpoint. <i>Proceedings of the National Academy of Sciences of the United States of America</i> 2003, <i>100</i>, 2249-2254, doi:10.1073/pnas.0437148100. 73. Navadgi-Patil, V.M.; Burgers, P.M. The unstructured C-terminal tail of the 9-1-1 clamp subunit Ddc1 activates Mec1/ATR via two distinct mechanisms. <i>Molecular cell</i> 2009, <i>36</i>, 743-753, doi:10.1016/j.molcel.2009.10.014. 74. Fredebohm, J.; Wolf, J.; Hoheisel, J.D.; Boettcher, M. Depletion of RAD17 sensitizes pancreatic cancer cells to gemcitabine. <i>Journal of cell science</i> 2013, <i>126</i>, 3380-3389, doi:10.1242/jcs.124768. 75. Saponaro, M.; Kantidakis, T.; Mitter, R.; Kelly, G.P.; Heron, M.; Williams, H.; Soding, J.; Stewart, A.; Svejstrup, J.Q. RECQL5 controls transcript elongation and suppresses genome instability associated with transcription stress. <i>Cell</i> 2014, <i>157</i>, 1037-1049, doi:10.1016/j.cell.2014.03.048. 76. Hu, Y.; Raynard, S.; Sehorn, M.G.; Lu, X.; Bussen, W.; Zheng, L.; Stark, J.M.; Barnes, E.L.; Chi, P.; Janscak, P., et al. RECQL5/Recql5 helicase regulates homologous recombination and suppresses tumor formation via disruption of Rad51 presynaptic filaments. <i>Gens & development</i> 2007, <i>21</i>, 3073-3084, doi:10.1016/j.cell.2014.03.048. 77. Liu, S.; Bachran, C.; Gupta, P.; Miller-Randolph, S.; Wang, H.; Crown, D.; Zhang, Y.; Wein, A.N.; Singh, R.; Fattah, R., et al. Diphthamide modification on 		70.	
1462cellular biology 1999, 19, 1136-1143.146371.Paciotti, V.; Lucchini, G.; Plevani, P.; Longhese, M.P. Mec1p is essential for1464phosphorylation of the yeast DNA damage checkpoint protein Ddc1p, which1465physically interacts with Mec3p. The EMBO journal 1998, 17, 4199-4209,1466doi:10.1093/emboj/17.14.4199.146772.Majka, J.; Burgers, P.M. Yeast Rad17/Mec3/Ddc1: a sliding clamp for the DNA1468damage checkpoint. Proceedings of the National Academy of Sciences of the1469United States of America 2003, 100, 2249-2254,1470doi:10.1073/pnas.0437148100.147173.Navadgi-Patil, V.M.; Burgers, P.M. The unstructured C-terminal tail of the 9-1-14721 clamp subunit Ddc1 activates Mec1/ATR via two distinct mechanisms.1473Molecular cell 2009, 36, 743-753, doi:10.1016/j.molcel.2009.10.014.147474.Fredebohm, J.; Wolf, J.; Hoheisel, J.D.; Boettcher, M. Depletion of RAD171475sensitizes pancreatic cancer cells to gemcitabine. Journal of cell science 2013,126, 3380-3389, doi:10.1242/jcs.124768.147775.75.Saponaro, M.; Kantidakis, T.; Mitter, R.; Kelly, G.P.; Heron, M.; Williams, H.;14802014, 157, 1037-1049, doi:10.1016/j.cell.2014.03.048.148176.Hu, Y.; Raynard, S.; Sehorn, M.G.; Lu, X.; Bussen, W.; Zheng, L.; Stark, J.M.;1482Barnes, E.L.; Chi, P.; Janscak, P., et al. RECQL5/Recql5 helicase regulates1483homologous recombination and suppresses tumor formation via disruption1484of Rad51 presynaptic filaments. Genes & developme		70.	
 Paciotti, V.; Lucchini, G.; Plevani, P.; Longhese, M.P. Mec1p is essential for phosphorylation of the yeast DNA damage checkpoint protein Ddc1p, which physically interacts with Mec3p. <i>The EMBO journal</i> 1998, <i>17</i>, 4199-4209, doi:10.1093/emboj/17.14.4199. Majka, J.; Burgers, P.M. Yeast Rad17/Mec3/Ddc1: a sliding clamp for the DNA damage checkpoint. <i>Proceedings of the National Academy of Sciences of the United States of America</i> 2003, <i>100</i>, 2249-2254, doi:10.1073/pnas.0437148100. Navadgi-Patil, V.M.; Burgers, P.M. The unstructured C-terminal tail of the 9-1- 1 clamp subunit Ddc1 activates Mec1/ATR via two distinct mechanisms. <i>Molecular cell</i> 2009, <i>36</i>, 743-753, doi:10.1016/j.molcel.2009.10.014. Fredebohm, J.; Wolf, J.; Hoheisel, J.D.; Boettcher, M. Depletion of RAD17 sensitizes pancreatic cancer cells to gemcitabine. <i>Journal of cell science</i> 2013, <i>126</i>, 3380-3389, doi:10.1242/jcs.124768. Soding, J.; Stewart, A.; Svejstrup, J.Q. RECQL5 controls transcript elongation and suppresses genome instability associated with transcription stress. <i>Cell</i> 2014, <i>157</i>, 1037-1049, doi:10.1016/j.cell.2014.03.048. Hu, Y.; Raynard, S.; Sehorn, M.G.; Lu, X.; Bussen, W.; Zheng, L.; Stark, J.M.; Barnes, E.L.; Chi, P., Janscak, P., et al. RECQL5/Recql5 helicase regulates homologous recombination and suppresses tumor formation via disruption of Rad51 presynaptic filaments. <i>Genes & development</i> 2007, <i>21</i>, 3073-3084, doi:10.1101/gad.1609107. T. Liu, S.; Bachran, C.; Gupta, P.; Miller-Randolph, S.; Wang, H.; Crown, D.; Zhang, Y.; Wein, A.N.; Singh, R.; Fattah, R., et al. Diphthamide modification on 			
 phosphorylation of the yeast DNA damage checkpoint protein Ddc1p, which physically interacts with Mec3p. <i>The EMBO journal</i> 1998, <i>17</i>, 4199-4209, doi:10.1093/emboj/17.14.4199. 72. Majka, J.; Burgers, P.M. Yeast Rad17/Mec3/Ddc1: a sliding clamp for the DNA damage checkpoint. <i>Proceedings of the National Academy of Sciences of the</i> <i>United States of America</i> 2003, <i>100</i>, 2249-2254, doi:10.1073/pnas.0437148100. 1471 73. Navadgi-Patil, V.M.; Burgers, P.M. The unstructured C-terminal tail of the 9-1- 1 clamp subunit Ddc1 activates Mec1/ATR via two distinct mechanisms. <i>Molecular cell</i> 2009, <i>36</i>, 743-753, doi:10.1016/j.molcel.2009.10.014. 1474 74. Fredebohm, J.; Wolf, J.; Hoheisel, J.D.; Boettcher, M. Depletion of RAD17 sensitizes pancreatic cancer cells to gemcitabine. <i>Journal of cell science</i> 2013, <i>126</i>, 3380-3389, doi:10.1242/jcs.124768. 1477 75. Saponaro, M.; Kantidakis, T.; Mitter, R.; Kelly, G.P.; Heron, M.; Williams, H.; Soding, J.; Stewart, A.; Svejstrup, J.Q. RECQL5 controls transcript elongation and suppresses genome instability associated with transcription stress. <i>Cell</i> 2014, <i>157</i>, 1037-1049, doi:10.1016/j.cell.2014.03.048. 1481 76. Hu, Y.; Raynard, S.; Sehorn, M.G.; Lu, X.; Bussen, W.; Zheng, L.; Stark, J.M.; Barnes, E.L.; Chi, P.; Janscak, P., et al. RECQL5/Recql5 helicase regulates homologous recombination and suppresses tumor formation via disruption of Rad51 presynaptic filaments. <i>Genes & development</i> 2007, <i>21</i>, 3073-3084, doi:10.1101/gad.1609107. 1486 77. Liu, S.; Bachran, C.; Gupta, P.; Miller-Randolph, S.; Wang, H.; Crown, D.; Zhang, Y.; Wein, A.N.; Singh, R.; Fattah, R., et al. Diphthamide modification on 		71.	
 physically interacts with Mec3p. <i>The EMBO journal</i> 1998, <i>17</i>, 4199-4209, doi:10.1093/emboj/17.14.4199. 72. Majka, J.; Burgers, P.M. Yeast Rad17/Mec3/Ddc1: a sliding clamp for the DNA damage checkpoint. <i>Proceedings of the National Academy of Sciences of the United States of America</i> 2003, <i>100</i>, 2249-2254, doi:10.1073/pnas.0437148100. 1471 73. Navadgi-Patil, V.M.; Burgers, P.M. The unstructured C-terminal tail of the 9-1-1 1 clamp subunit Ddc1 activates Mec1/ATR via two distinct mechanisms. <i>Molecular cell</i> 2009, <i>36</i>, 743-753, doi:10.1016/j.molcel.2009.10.014. 1474 74. Fredebohm, J.; Wolf, J.; Hoheisel, J.D.; Boettcher, M. Depletion of RAD17 sensitizes pancreatic cancer cells to gemcitabine. <i>Journal of cell science</i> 2013, <i>126</i>, 3380-3389, doi:10.1242/jcs.124768. 1477 75. Saponaro, M.; Kantidakis, T.; Mitter, R.; Kelly, G.P.; Heron, M.; Williams, H.; Soding, J.; Stewart, A.; Svejstrup, J.Q. RECQL5 controls transcript elongation and suppresses genome instability associated with transcription stress. <i>Cell</i> 2014, <i>157</i>, 1037-1049, doi:10.1016/j.cell.2014.03.048. 1481 76. Hu, Y.; Raynard, S.; Sehorn, M.G.; Lu, X.; Bussen, W.; Zheng, L.; Stark, J.M.; Barnes, E.L.; Chi, P.; Janscak, P., et al. RECQL5/Recql5 helicase regulates homologous recombination and suppresses tumor formation via disruption of Rad51 presynaptic filaments. <i>Genes & development</i> 2007, <i>21</i>, 3073-3084, doi:10.1101/gad.1609107. 1486 77. Liu, S.; Bachran, C.; Gupta, P.; Miller-Randolph, S.; Wang, H.; Crown, D.; Zhang, Y.; Wein, A.N.; Singh, R.; Fattah, R., et al. Diphthamide modification on 			
 doi:10.1093/emboj/17.14.4199. Majka, J.; Burgers, P.M. Yeast Rad17/Mec3/Ddc1: a sliding clamp for the DNA damage checkpoint. <i>Proceedings of the National Academy of Sciences of the United States of America</i> 2003, 100, 2249-2254, doi:10.1073/pnas.0437148100. Navadgi-Patil, V.M.; Burgers, P.M. The unstructured C-terminal tail of the 9-1-1 clamp subunit Ddc1 activates Mec1/ATR via two distinct mechanisms. <i>Molecular cell</i> 2009, 36, 743-753, doi:10.1016/j.molcel.2009.10.014. Fredebohm, J.; Wolf, J.; Hoheisel, J.D.; Boettcher, M. Depletion of RAD17 sensitizes pancreatic cancer cells to gemcitabine. <i>Journal of cell science</i> 2013, 126, 3380-3389, doi:10.1242/jcs.124768. Saponaro, M.; Kantidakis, T.; Mitter, R.; Kelly, G.P.; Heron, M.; Williams, H.; Soding, J.; Stewart, A.; Svejstrup, J.Q. RECQL5 controls transcript elongation and suppresses genome instability associated with transcription stress. <i>Cell</i> 2014, 157, 1037-1049, doi:10.1016/j.cell.2014.03.048. Hu, Y.; Raynard, S.; Sehorn, M.G.; Lu, X.; Bussen, W.; Zheng, L.; Stark, J.M.; Barnes, E.L.; Chi, P.; Janscak, P., et al. RECQL5/Recql5 helicase regulates homologous recombination and suppresses tumor formation via disruption of Rad51 presynaptic filaments. <i>Genes & development</i> 2007, 21, 3073-3084, doi:10.1101/gad.1609107. Liu, S.; Bachran, C.; Gupta, P.; Miller-Randolph, S.; Wang, H.; Crown, D.; Zhang, Y.; Wein, A.N.; Singh, R.; Fattah, R., et al. Diphthamide modification on 			
 1467 72. Majka, J.; Burgers, P.M. Yeast Rad17/Mec3/Ddc1: a sliding clamp for the DNA damage checkpoint. <i>Proceedings of the National Academy of Sciences of the</i> <i>United States of America</i> 2003, <i>100</i>, 2249-2254, doi:10.1073/pnas.0437148100. 1471 73. Navadgi-Patil, V.M.; Burgers, P.M. The unstructured C-terminal tail of the 9-1- 1 clamp subunit Ddc1 activates Mec1/ATR via two distinct mechanisms. <i>Molecular cell</i> 2009, <i>36</i>, 743-753, doi:10.1016/j.molcel.2009.10.014. 1474 74. Fredebohm, J.; Wolf, J.; Hoheisel, J.D.; Boettcher, M. Depletion of RAD17 sensitizes pancreatic cancer cells to gemcitabine. <i>Journal of cell science</i> 2013, <i>126</i>, 3380-3389, doi:10.1242/jcs.124768. 1477 75. Saponaro, M.; Kantidakis, T.; Mitter, R.; Kelly, G.P.; Heron, M.; Williams, H.; Soding, J.; Stewart, A.; Svejstrup, J.Q. RECQL5 controls transcript elongation and suppresses genome instability associated with transcription stress. <i>Cell</i> 2014, <i>157</i>, 1037-1049, doi:10.1016/j.cell.2014.03.048. 1481 76. Hu, Y.; Raynard, S.; Sehorn, M.G.; Lu, X.; Bussen, W.; Zheng, L.; Stark, J.M.; Barnes, E.L.; Chi, P.; Janscak, P., et al. RECQL5/Recql5 helicase regulates homologous recombination and suppresses tumor formation via disruption of Rad51 presynaptic filaments. <i>Genes & development</i> 2007, <i>21</i>, 3073-3084, doi:10.1101/gad.1609107. 1486 77. Liu, S.; Bachran, C.; Gupta, P.; Miller-Randolph, S.; Wang, H.; Crown, D.; Zhang, Y.; Wein, A.N.; Singh, R.; Fattah, R., et al. Diphthamide modification on 			
 damage checkpoint. Proceedings of the National Academy of Sciences of the United States of America 2003, 100, 2249-2254, doi:10.1073/pnas.0437148100. 1471 73. Navadgi-Patil, V.M.; Burgers, P.M. The unstructured C-terminal tail of the 9-1- 1 clamp subunit Ddc1 activates Mec1/ATR via two distinct mechanisms. Molecular cell 2009, 36, 743-753, doi:10.1016/j.molcel.2009.10.014. 1474 74. Fredebohm, J.; Wolf, J.; Hoheisel, J.D.; Boettcher, M. Depletion of RAD17 sensitizes pancreatic cancer cells to gemcitabine. Journal of cell science 2013, 126, 3380-3389, doi:10.1242/jcs.124768. 1477 75. Saponaro, M.; Kantidakis, T.; Mitter, R.; Kelly, G.P.; Heron, M.; Williams, H.; Soding, J.; Stewart, A.; Svejstrup, J.Q. RECQL5 controls transcript elongation and suppresses genome instability associated with transcription stress. Cell 2014, 157, 1037-1049, doi:10.1016/j.cell.2014.03.048. 1481 76. Hu, Y.; Raynard, S.; Sehorn, M.G.; Lu, X.; Bussen, W.; Zheng, L.; Stark, J.M.; Barnes, E.L.; Chi, P.; Janscak, P., et al. RECQL5/Recql5 helicase regulates homologous recombination and suppresses tumor formation via disruption of Rad51 presynaptic filaments. Genes & development 2007, 21, 3073-3084, doi:10.1101/gad.1609107. 1486 77. Liu, S.; Bachran, C.; Gupta, P.; Miller-Randolph, S.; Wang, H.; Crown, D.; Zhang, Y.; Wein, A.N.; Singh, R.; Fattah, R., et al. Diphthamide modification on 		72.	
 United States of America 2003, 100, 2249-2254, doi:10.1073/pnas.0437148100. 1471 73. Navadgi-Patil, V.M.; Burgers, P.M. The unstructured C-terminal tail of the 9-1- 1 clamp subunit Ddc1 activates Mec1/ATR via two distinct mechanisms. <i>Molecular cell</i> 2009, 36, 743-753, doi:10.1016/j.molcel.2009.10.014. 1474 74. Fredebohm, J.; Wolf, J.; Hoheisel, J.D.; Boettcher, M. Depletion of RAD17 sensitizes pancreatic cancer cells to gemcitabine. <i>Journal of cell science</i> 2013, <i>126</i>, 3380-3389, doi:10.1242/jcs.124768. 1477 75. Saponaro, M.; Kantidakis, T.; Mitter, R.; Kelly, G.P.; Heron, M.; Williams, H.; Soding, J.; Stewart, A.; Svejstrup, J.Q. RECQL5 controls transcript elongation and suppresses genome instability associated with transcription stress. <i>Cell</i> 2014, <i>157</i>, 1037-1049, doi:10.1016/j.cell.2014.03.048. 1481 76. Hu, Y.; Raynard, S.; Sehorn, M.G.; Lu, X.; Bussen, W.; Zheng, L.; Stark, J.M.; Barnes, E.L.; Chi, P.; Janscak, P., et al. RECQL5/Recql5 helicase regulates homologous recombination and suppresses tumor formation via disruption of Rad51 presynaptic filaments. <i>Genes & development</i> 2007, <i>21</i>, 3073-3084, doi:10.1101/gad.1609107. 1486 77. Liu, S.; Bachran, C.; Gupta, P.; Miller-Randolph, S.; Wang, H.; Crown, D.; Zhang, Y.; Wein, A.N.; Singh, R.; Fattah, R., et al. Diphthamide modification on 			
 doi:10.1073/pnas.0437148100. 1471 73. Navadgi-Patil, V.M.; Burgers, P.M. The unstructured C-terminal tail of the 9-1- 1 clamp subunit Ddc1 activates Mec1/ATR via two distinct mechanisms. <i>Molecular cell</i> 2009, <i>36</i>, 743-753, doi:10.1016/j.molcel.2009.10.014. 1474 74. Fredebohm, J.; Wolf, J.; Hoheisel, J.D.; Boettcher, M. Depletion of RAD17 sensitizes pancreatic cancer cells to gemcitabine. <i>Journal of cell science</i> 2013, <i>126</i>, 3380-3389, doi:10.1242/jcs.124768. 1477 75. Saponaro, M.; Kantidakis, T.; Mitter, R.; Kelly, G.P.; Heron, M.; Williams, H.; Soding, J.; Stewart, A.; Svejstrup, J.Q. RECQL5 controls transcript elongation and suppresses genome instability associated with transcription stress. <i>Cell</i> 2014, <i>157</i>, 1037-1049, doi:10.1016/j.cell.2014.03.048. 1481 76. Hu, Y.; Raynard, S.; Sehorn, M.G.; Lu, X.; Bussen, W.; Zheng, L.; Stark, J.M.; Barnes, E.L.; Chi, P.; Janscak, P., et al. RECQL5/Recql5 helicase regulates homologous recombination and suppresses tumor formation via disruption of Rad51 presynaptic filaments. <i>Genes & development</i> 2007, <i>21</i>, 3073-3084, doi:10.1101/gad.1609107. Liu, S.; Bachran, C.; Gupta, P.; Miller-Randolph, S.; Wang, H.; Crown, D.; Zhang, Y.; Wein, A.N.; Singh, R.; Fattah, R., et al. Diphthamide modification on 			
 1471 73. Navadgi-Patil, V.M.; Burgers, P.M. The unstructured C-terminal tail of the 9-1- 1 clamp subunit Ddc1 activates Mec1/ATR via two distinct mechanisms. <i>Molecular cell</i> 2009, <i>36</i>, 743-753, doi:10.1016/j.molcel.2009.10.014. 1474 74. Fredebohm, J.; Wolf, J.; Hoheisel, J.D.; Boettcher, M. Depletion of RAD17 sensitizes pancreatic cancer cells to gemcitabine. <i>Journal of cell science</i> 2013, <i>126</i>, 3380-3389, doi:10.1242/jcs.124768. 1477 75. Saponaro, M.; Kantidakis, T.; Mitter, R.; Kelly, G.P.; Heron, M.; Williams, H.; Soding, J.; Stewart, A.; Svejstrup, J.Q. RECQL5 controls transcript elongation and suppresses genome instability associated with transcription stress. <i>Cell</i> 2014, <i>157</i>, 1037-1049, doi:10.1016/j.cell.2014.03.048. 1481 76. Hu, Y.; Raynard, S.; Sehorn, M.G.; Lu, X.; Bussen, W.; Zheng, L.; Stark, J.M.; Barnes, E.L.; Chi, P.; Janscak, P., et al. RECQL5/Recql5 helicase regulates homologous recombination and suppresses tumor formation via disruption of Rad51 presynaptic filaments. <i>Genes & development</i> 2007, <i>21</i>, 3073-3084, doi:10.1101/gad.1609107. 1486 77. Liu, S.; Bachran, C.; Gupta, P.; Miller-Randolph, S.; Wang, H.; Crown, D.; Zhang, Y.; Wein, A.N.; Singh, R.; Fattah, R., et al. Diphthamide modification on 			
 1472 1 clamp subunit Ddc1 activates Mec1/ATR via two distinct mechanisms. Molecular cell 2009, 36, 743-753, doi:10.1016/j.molcel.2009.10.014. 1474 74. Fredebohm, J.; Wolf, J.; Hoheisel, J.D.; Boettcher, M. Depletion of RAD17 sensitizes pancreatic cancer cells to gemcitabine. Journal of cell science 2013, 126, 3380-3389, doi:10.1242/jcs.124768. 1477 75. Saponaro, M.; Kantidakis, T.; Mitter, R.; Kelly, G.P.; Heron, M.; Williams, H.; Soding, J.; Stewart, A.; Svejstrup, J.Q. RECQL5 controls transcript elongation and suppresses genome instability associated with transcription stress. Cell 2014, 157, 1037-1049, doi:10.1016/j.cell.2014.03.048. 1481 76. Hu, Y.; Raynard, S.; Sehorn, M.G.; Lu, X.; Bussen, W.; Zheng, L.; Stark, J.M.; Barnes, E.L.; Chi, P.; Janscak, P., et al. RECQL5/Recql5 helicase regulates homologous recombination and suppresses tumor formation via disruption of Rad51 presynaptic filaments. Genes & development 2007, 21, 3073-3084, doi:10.1101/gad.1609107. 1486 77. Liu, S.; Bachran, C.; Gupta, P.; Miller-Randolph, S.; Wang, H.; Crown, D.; Zhang, Y.; Wein, A.N.; Singh, R.; Fattah, R., et al. Diphthamide modification on 		73.	
 Molecular cell 2009, 36, 743-753, doi:10.1016/j.molcel.2009.10.014. Fredebohm, J.; Wolf, J.; Hoheisel, J.D.; Boettcher, M. Depletion of RAD17 sensitizes pancreatic cancer cells to gemcitabine. Journal of cell science 2013, 126, 3380-3389, doi:10.1242/jcs.124768. 75. Saponaro, M.; Kantidakis, T.; Mitter, R.; Kelly, G.P.; Heron, M.; Williams, H.; Soding, J.; Stewart, A.; Svejstrup, J.Q. RECQL5 controls transcript elongation and suppresses genome instability associated with transcription stress. Cell 2014, 157, 1037-1049, doi:10.1016/j.cell.2014.03.048. Hu, Y.; Raynard, S.; Sehorn, M.G.; Lu, X.; Bussen, W.; Zheng, L.; Stark, J.M.; Barnes, E.L.; Chi, P.; Janscak, P., et al. RECQL5/Recql5 helicase regulates homologous recombination and suppresses tumor formation via disruption of Rad51 presynaptic filaments. Genes & development 2007, 21, 3073-3084, doi:10.1101/gad.1609107. Liu, S.; Bachran, C.; Gupta, P.; Miller-Randolph, S.; Wang, H.; Crown, D.; Zhang, Y.; Wein, A.N.; Singh, R.; Fattah, R., et al. Diphthamide modification on 	1472		
 1474 74. Fredebohm, J.; Wolf, J.; Hoheisel, J.D.; Boettcher, M. Depletion of RAD17 1475 sensitizes pancreatic cancer cells to gemcitabine. <i>Journal of cell science</i> 2013, <i>126</i>, 3380-3389, doi:10.1242/jcs.124768. 1477 75. Saponaro, M.; Kantidakis, T.; Mitter, R.; Kelly, G.P.; Heron, M.; Williams, H.; 1478 Soding, J.; Stewart, A.; Svejstrup, J.Q. RECQL5 controls transcript elongation 1479 and suppresses genome instability associated with transcription stress. <i>Cell</i> 1480 2014, <i>157</i>, 1037-1049, doi:10.1016/j.cell.2014.03.048. 1481 76. Hu, Y.; Raynard, S.; Sehorn, M.G.; Lu, X.; Bussen, W.; Zheng, L.; Stark, J.M.; 1482 Barnes, E.L.; Chi, P.; Janscak, P., et al. RECQL5/Recql5 helicase regulates 1483 homologous recombination and suppresses tumor formation via disruption 1484 of Rad51 presynaptic filaments. <i>Genes & development</i> 2007, <i>21</i>, 3073-3084, 1485 doi:10.1101/gad.1609107. 1486 77. Liu, S.; Bachran, C.; Gupta, P.; Miller-Randolph, S.; Wang, H.; Crown, D.; Zhang, 1487 Y.; Wein, A.N.; Singh, R.; Fattah, R., et al. Diphthamide modification on 	1473		
 <i>126</i>, 3380-3389, doi:10.1242/jcs.124768. <i>1477</i> <i>75.</i> Saponaro, M.; Kantidakis, T.; Mitter, R.; Kelly, G.P.; Heron, M.; Williams, H.; <i>Soding, J.</i>; Stewart, A.; Svejstrup, J.Q. RECQL5 controls transcript elongation <i>and</i> suppresses genome instability associated with transcription stress. <i>Cell</i> <i>2014</i>, <i>157</i>, 1037-1049, doi:10.1016/j.cell.2014.03.048. <i>1481</i> <i>76.</i> Hu, Y.; Raynard, S.; Sehorn, M.G.; Lu, X.; Bussen, W.; Zheng, L.; Stark, J.M.; <i>Barnes, E.L.</i>; Chi, P.; Janscak, P., et al. RECQL5/Recql5 helicase regulates <i>homologous</i> recombination and suppresses tumor formation via disruption <i>of</i> Rad51 presynaptic filaments. <i>Genes & development 2007</i>, <i>21</i>, 3073-3084, <i>doi:10.1101/gad.1609107</i>. <i>1486</i> <i>T7.</i> Liu, S.; Bachran, C.; Gupta, P.; Miller-Randolph, S.; Wang, H.; Crown, D.; Zhang, <i>Y.;</i> Wein, A.N.; Singh, R.; Fattah, R., et al. Diphthamide modification on 	1474	74.	
 <i>126</i>, 3380-3389, doi:10.1242/jcs.124768. <i>1477</i> <i>75.</i> Saponaro, M.; Kantidakis, T.; Mitter, R.; Kelly, G.P.; Heron, M.; Williams, H.; <i>Soding, J.</i>; Stewart, A.; Svejstrup, J.Q. RECQL5 controls transcript elongation <i>and</i> suppresses genome instability associated with transcription stress. <i>Cell</i> <i>2014</i>, <i>157</i>, 1037-1049, doi:10.1016/j.cell.2014.03.048. <i>1481</i> <i>76.</i> Hu, Y.; Raynard, S.; Sehorn, M.G.; Lu, X.; Bussen, W.; Zheng, L.; Stark, J.M.; <i>Barnes, E.L.</i>; Chi, P.; Janscak, P., et al. RECQL5/Recql5 helicase regulates <i>homologous</i> recombination and suppresses tumor formation via disruption <i>of</i> Rad51 presynaptic filaments. <i>Genes & development 2007</i>, <i>21</i>, 3073-3084, <i>doi:10.1101/gad.1609107</i>. <i>1486</i> <i>T7.</i> Liu, S.; Bachran, C.; Gupta, P.; Miller-Randolph, S.; Wang, H.; Crown, D.; Zhang, <i>Y.;</i> Wein, A.N.; Singh, R.; Fattah, R., et al. Diphthamide modification on 	1475		sensitizes pancreatic cancer cells to gemcitabine. <i>Journal of cell science</i> 2013 ,
1478Soding, J.; Stewart, A.; Svejstrup, J.Q. RECQL5 controls transcript elongation1479and suppresses genome instability associated with transcription stress. <i>Cell</i> 1480 2014 , <i>157</i> , 1037-1049, doi:10.1016/j.cell.2014.03.048.148176.Hu, Y.; Raynard, S.; Sehorn, M.G.; Lu, X.; Bussen, W.; Zheng, L.; Stark, J.M.;1482Barnes, E.L.; Chi, P.; Janscak, P., et al. RECQL5/Recql5 helicase regulates1483homologous recombination and suppresses tumor formation via disruption1484of Rad51 presynaptic filaments. <i>Genes & development</i> 2007 , <i>21</i> , 3073-3084,1485doi:10.1101/gad.1609107.148677.1487Y.; Wein, A.N.; Singh, R.; Fattah, R., et al. Diphthamide modification on	1476		
1479and suppresses genome instability associated with transcription stress. Cell14802014, 157, 1037-1049, doi:10.1016/j.cell.2014.03.048.148176.1482Hu, Y.; Raynard, S.; Sehorn, M.G.; Lu, X.; Bussen, W.; Zheng, L.; Stark, J.M.;1482Barnes, E.L.; Chi, P.; Janscak, P., et al. RECQL5/Recql5 helicase regulates1483homologous recombination and suppresses tumor formation via disruption1484of Rad51 presynaptic filaments. Genes & development 2007, 21, 3073-3084,1485doi:10.1101/gad.1609107.148677.1487Y.; Wein, A.N.; Singh, R.; Fattah, R., et al. Diphthamide modification on	1477	75.	Saponaro, M.; Kantidakis, T.; Mitter, R.; Kelly, G.P.; Heron, M.; Williams, H.;
1480 2014 , <i>157</i> , 1037-1049, doi:10.1016/j.cell.2014.03.048.148176.Hu, Y.; Raynard, S.; Sehorn, M.G.; Lu, X.; Bussen, W.; Zheng, L.; Stark, J.M.;1482Barnes, E.L.; Chi, P.; Janscak, P., et al. RECQL5/Recql5 helicase regulates1483homologous recombination and suppresses tumor formation via disruption1484of Rad51 presynaptic filaments. <i>Genes & development</i> 2007 , <i>21</i> , 3073-3084,1485doi:10.1101/gad.1609107.148677.1487Y.; Wein, A.N.; Singh, R.; Fattah, R., et al. Diphthamide modification on	1478		Soding, J.; Stewart, A.; Svejstrup, J.Q. RECQL5 controls transcript elongation
 Hu, Y.; Raynard, S.; Sehorn, M.G.; Lu, X.; Bussen, W.; Zheng, L.; Stark, J.M.; Barnes, E.L.; Chi, P.; Janscak, P., et al. RECQL5/Recql5 helicase regulates homologous recombination and suppresses tumor formation via disruption of Rad51 presynaptic filaments. <i>Genes & development</i> 2007, <i>21</i>, 3073-3084, doi:10.1101/gad.1609107. Liu, S.; Bachran, C.; Gupta, P.; Miller-Randolph, S.; Wang, H.; Crown, D.; Zhang, Y.; Wein, A.N.; Singh, R.; Fattah, R., et al. Diphthamide modification on 	1479		and suppresses genome instability associated with transcription stress. <i>Cell</i>
1482Barnes, E.L.; Chi, P.; Janscak, P., et al. RECQL5/Recql5 helicase regulates1483homologous recombination and suppresses tumor formation via disruption1484of Rad51 presynaptic filaments. <i>Genes & development</i> 2007, 21, 3073-3084,1485doi:10.1101/gad.1609107.148677.1487Liu, S.; Bachran, C.; Gupta, P.; Miller-Randolph, S.; Wang, H.; Crown, D.; Zhang,1487Y.; Wein, A.N.; Singh, R.; Fattah, R., et al. Diphthamide modification on	1480		2014 , <i>157</i> , 1037-1049, doi:10.1016/j.cell.2014.03.048.
 homologous recombination and suppresses tumor formation via disruption of Rad51 presynaptic filaments. <i>Genes & development</i> 2007, <i>21</i>, 3073-3084, doi:10.1101/gad.1609107. Liu, S.; Bachran, C.; Gupta, P.; Miller-Randolph, S.; Wang, H.; Crown, D.; Zhang, Y.; Wein, A.N.; Singh, R.; Fattah, R., et al. Diphthamide modification on 	1481	76.	Hu, Y.; Raynard, S.; Sehorn, M.G.; Lu, X.; Bussen, W.; Zheng, L.; Stark, J.M.;
1484of Rad51 presynaptic filaments. Genes & development 2007, 21, 3073-3084,1485doi:10.1101/gad.1609107.148677.1487Liu, S.; Bachran, C.; Gupta, P.; Miller-Randolph, S.; Wang, H.; Crown, D.; Zhang,1487Y.; Wein, A.N.; Singh, R.; Fattah, R., et al. Diphthamide modification on	1482		Barnes, E.L.; Chi, P.; Janscak, P., et al. RECQL5/Recql5 helicase regulates
1485doi:10.1101/gad.1609107.148677.1487Y.; Wein, A.N.; Singh, R.; Fattah, R., et al. Diphthamide modification on	1483		homologous recombination and suppresses tumor formation via disruption
148677.Liu, S.; Bachran, C.; Gupta, P.; Miller-Randolph, S.; Wang, H.; Crown, D.; Zhang,1487Y.; Wein, A.N.; Singh, R.; Fattah, R., et al. Diphthamide modification on	1484		of Rad51 presynaptic filaments. <i>Genes & development</i> 2007 , <i>21</i> , 3073-3084,
1487 Y.; Wein, A.N.; Singh, R.; Fattah, R., et al. Diphthamide modification on			, .
		77.	
eukaryotic elongation factor 2 is needed to assure fidelity of mRNA	1488		eukaryotic elongation factor 2 is needed to assure fidelity of mRNA

1400		translation and manage development. Due o Natl Acad Cai U.C.A. 2012, 100
1489		translation and mouse development. <i>Proc Natl Acad Sci U S A</i> 2012 , <i>109</i> , 12017, 12022, doi:10.1072 (press.120(022100)
1490 1491	70	13817-13822, doi:10.1073/pnas.1206933109. Villahermosa, D.; Fleck, O. Elp3 and Dph3 of Schizosaccharomyces pombe
1491 1492	78.	mediate cellular stress responses through tRNA(Lys)UUU modifications. <i>Sci</i>
1492 1493		
	70	<i>Rep</i> 2017 , <i>7</i> , 7225, doi:10.1038/s41598-017-07647-1.
1494 1405	79.	Denisova, E.; Heidenreich, B.; Nagore, E.; Rachakonda, P.S.; Hosen, I.; Akrap, I.;
1495 1496		Traves, V.; Garcia-Casado, Z.; Lopez-Guerrero, J.A.; Requena, C., et al. Frequent
1496 1497		DPH3 promoter mutations in skin cancers. <i>Oncotarget</i> 2015 , <i>6</i> , 35922-35930, doi:10.18632/oncotarget.5771.
1497	80.	Abiatari, I.; Gillen, S.; DeOliveira, T.; Klose, T.; Bo, K.; Giese, N.A.; Friess, H.;
1498	<u>0</u> 0.	Kleeff, J. The microtubule-associated protein MAPRE2 is involved in
1499		perineural invasion of pancreatic cancer cells. <i>Int J Oncol</i> 2009 , <i>35</i> , 1111-
1500		1116.
1501	81.	Kim, Y.R.; Kim, H.S.; An, C.H.; Kim, S.S.; Yoo, N.J.; Lee, S.H. Frameshift mutation
1502	01.	of MAPRE3, a microtubule-related gene, in gastric and colorectal cancers
1503		with microsatellite instability. <i>Pathology</i> 2010 , <i>42</i> , 493-496,
1504		doi:10.3109/00313025.2010.494285.
1505	82.	Shah, M.A.; Denton, E.L.; Arrowsmith, C.H.; Lupien, M.; Schapira, M. A global
1500	02.	assessment of cancer genomic alterations in epigenetic mechanisms.
1508		<i>Epigenetics Chromatin</i> 2014 , 7, 29, doi:10.1186/1756-8935-7-29.
1509	83.	Harsay, E.; Schekman, R. Avl9p, a member of a novel protein superfamily,
1510		functions in the late secretory pathway. <i>Mol Biol Cell</i> 2007 , <i>18</i> , 1203-1219,
1511		doi:10.1091/mbc.e06-11-1035.
1512	84.	Li, Y.; Xu, J.; Xiong, H.; Ma, Z.; Wang, Z.; Kipreos, E.T.; Dalton, S.; Zhao, S.
1513		Cancer driver candidate genes AVL9, DENND5A and NUPL1 contribute to
1514		MDCK cystogenesis. Oncoscience 2014 , 1, 854-865.
1515	85.	Zhang, W.; Wang, J.; Chai, R.; Zhong, G.; Zhang, C.; Cao, W.; Yan, L.; Zhang, X.;
1516		Xu, Z. Hypoxia-regulated lncRNA CRPAT4 promotes cell migration via
1517		regulating AVL9 in clear cell renal cell carcinomas. Onco Targets Ther 2018 ,
1518		<i>11</i> , 4537-4545, doi:10.2147/OTT.S169155.
1519	86.	Zhang, D.; Zhang, P.; Yang, P.; He, Y.; Wang, X.; Yang, Y.; Zhu, H.; Xu, N.; Liang,
1520		S. Downregulation of ATP1A1 promotes cancer development in renal cell
1521		carcinoma. <i>Clin Proteomics</i> 2017 , <i>14</i> , 15, doi:10.1186/s12014-017-9150-4.
1522	87.	Bogdanov, A.; Moiseenko, F.; Dubina, M. Abnormal expression of ATP1A1 and
1523		ATP1A2 in breast cancer. <i>F1000Res</i> 2017 , <i>6</i> , 10,
1524		doi:10.12688/f1000research.10481.1.
1525	88.	Cialfi, S.; Le Pera, L.; De Blasio, C.; Mariano, G.; Palermo, R.; Zonfrilli, A.;
1526		Uccelletti, D.; Palleschi, C.; Biolcati, G.; Barbieri, L., et al. The loss of ATP2C1
1527		impairs the DNA damage response and induces altered skin homeostasis:
1528		Consequences for epidermal biology in Hailey-Hailey disease. <i>Sci Rep</i> 2016 ,
1529	00	6, 31567, doi:10.1038/srep31567.
1530	89.	Okunade, G.W.; Miller, M.L.; Azhar, M.; Andringa, A.; Sanford, L.P.;
1531		Doetschman, T.; Prasad, V.; Shull, G.E. Loss of the Atp2c1 secretory pathway
1532		Ca(2+)-ATPase (SPCA1) in mice causes Golgi stress, apoptosis, and
1533		midgestational death in homozygous embryos and squamous cell tumors in

1534		adult heterozygotes. J Biol Chem 2007 , 282, 26517-26527,
1535		doi:10.1074/jbc.M703029200.
1536	90.	Martin, C.A.; Sarlos, K.; Logan, C.V.; Thakur, R.S.; Parry, D.A.; Bizard, A.H.;
1537		Leitch, A.; Cleal, L.; Ali, N.S.; Al-Owain, M.A., et al. Mutations in TOP3A Cause a
1538		Bloom Syndrome-like Disorder. Am J Hum Genet 2018 , 103, 221-231,
1539		doi:10.1016/j.ajhg.2018.07.001.
1540	91.	Bai, Y.; Li, L.D.; Li, J.; Lu, X. Targeting of topoisomerases for prognosis and
1541		drug resistance in ovarian cancer. J Ovarian Res 2016 , 9, 35,
1542		doi:10.1186/s13048-016-0244-9.
1543	92.	Broberg, K.; Huynh, E.; Schlawicke Engstrom, K.; Bjork, J.; Albin, M.; Ingvar, C.;
1544		Olsson, H.; Hoglund, M. Association between polymorphisms in RMI1, TOP3A,
1545		and BLM and risk of cancer, a case-control study. <i>BMC Cancer</i> 2009 , <i>9</i> , 140,
1546		doi:10.1186/1471-2407-9-140.
1547	93.	Ge, J.; Chen, Q.; Liu, B.; Wang, L.; Zhang, S.; Ji, B. Knockdown of Rab21 inhibits
1548	201	proliferation and induces apoptosis in human glioma cells. <i>Cell Mol Biol Lett</i>
1549		2017 , <i>22</i> , 30, doi:10.1186/s11658-017-0062-0.
1550	94.	Hooper, S.; Gaggioli, C.; Sahai, E. A chemical biology screen reveals a role for
1550	<i>J</i> 1.	Rab21-mediated control of actomyosin contractility in fibroblast-driven
1551		cancer invasion. <i>Br J Cancer</i> 2010 , <i>102</i> , 392-402, doi:10.1038/sj.bjc.6605469.
1552	95.	Zhou, Y.; Wu, B.; Li, J.H.; Nan, G.; Jiang, J.L.; Chen, Z.N. Rab22a enhances CD147
1555	<i>.</i>	recycling and is required for lung cancer cell migration and invasion. <i>Exp Cell</i>
1555		<i>Res</i> 2017 , <i>357</i> , 9-16, doi:10.1016/j.yexcr.2017.04.020.
1556	96.	Wang, T.; Gilkes, D.M.; Takano, N.; Xiang, L.; Luo, W.; Bishop, C.J.; Chaturvedi,
1550	<i>y</i> 0.	P.; Green, J.J.; Semenza, G.L. Hypoxia-inducible factors and RAB22A mediate
1558		formation of microvesicles that stimulate breast cancer invasion and
1550		metastasis. <i>Proc Natl Acad Sci U S A</i> 2014 , <i>111</i> , E3234-3242,
1560		doi:10.1073/pnas.1410041111.
1560	97.	Zhang, Y.; Zhao, F.J.; Chen, L.L.; Wang, L.Q.; Nephew, K.P.; Wu, Y.L.; Zhang, S.
1561	<i>)</i> /.	MiR-373 targeting of the Rab22a oncogene suppresses tumor invasion and
1562		metastasis in ovarian cancer. Oncotarget 2014 , 5, 12291-12303,
1564		doi:10.18632/oncotarget.2577.
1565	98.	Costello, J.L.; Castro, I.G.; Schrader, T.A.; Islinger, M.; Schrader, M. Peroxisomal
1566	90.	ACBD4 interacts with VAPB and promotes ER-peroxisome associations. <i>Cell</i>
1567		<i>Cycle</i> 2017 , <i>16</i> , 1039-1045, doi:10.1080/15384101.2017.1314422.
1568	99.	Chavez-Blanco, A.; Perez-Plasencia, C.; Perez-Cardenas, E.; Carrasco-Legleu,
1569	<u>,</u> ,	C.; Rangel-Lopez, E.; Segura-Pacheco, B.; Taja-Chayeb, L.; Trejo-Becerril, C.;
1570 1571		Gonzalez-Fierro, A.; Candelaria, M., et al. Antineoplastic effects of the DNA
1571		methylation inhibitor hydralazine and the histone deacetylase inhibitor
1572		valproic acid in cancer cell lines. <i>Cancer Cell Int</i> 2006 , <i>6</i> , 2,
1573	100	doi:10.1186/1475-2867-6-2.
1574	100.	Hua, R.; Cheng, D.; Coyaud, E.; Freeman, S.; Di Pietro, E.; Wang, Y.; Vissa, A.;
1575		Yip, C.M.; Fairn, G.D.; Braverman, N., et al. VAPs and ACBD5 tether
1576		peroxisomes to the ER for peroxisome maintenance and lipid homeostasis. <i>J</i>
1577	104	<i>Cell Biol</i> 2017 , <i>216</i> , 367-377, doi:10.1083/jcb.201608128.
1578	101.	Shen, K.; Rice, S.D.; Gingrich, D.A.; Wang, D.; Mi, Z.; Tian, C.; Ding, Z.; Brower,
1579		S.L.; Ervin, P.R., Jr.; Gabrin, M.J., et al. Distinct genes related to drug response

1500		
1580		identified in ER positive and ER negative breast cancer cell lines. <i>PLoS One</i>
1581	100	2012 , <i>7</i> , e40900, doi:10.1371/journal.pone.0040900.
1582	102.	Venturini, I.; Zeneroli, M.L.; Corsi, L.; Avallone, R.; Farina, F.; Alho, H.; Baraldi,
1583		C.; Ferrarese, C.; Pecora, N.; Frigo, M., et al. Up-regulation of peripheral
1584		benzodiazepine receptor system in hepatocellular carcinoma. <i>Life Sci</i> 1998 ,
1585		<i>63</i> , 1269-1280.
1586	103.	Harris, F.T.; Rahman, S.M.; Hassanein, M.; Qian, J.; Hoeksema, M.D.; Chen, H.;
1587		Eisenberg, R.; Chaurand, P.; Caprioli, R.M.; Shiota, M., et al. Acyl-coenzyme A-
1588		binding protein regulates Beta-oxidation required for growth and survival of
1589		non-small cell lung cancer. Cancer Prev Res (Phila) 2014 , 7, 748-757,
1590		doi:10.1158/1940-6207.CAPR-14-0057.
1591	104.	Yang, H.; Chen, J.; Yang, J.; Qiao, S.; Zhao, S.; Yu, L. Cyclophilin A is upregulated
1592		in small cell lung cancer and activates ERK1/2 signal. <i>Biochem Biophys Res</i>
1593		<i>Commun</i> 2007 , <i>361</i> , 763-767, doi:10.1016/j.bbrc.2007.07.085.
1594	105.	Qi, Y.J.; He, Q.Y.; Ma, Y.F.; Du, Y.W.; Liu, G.C.; Li, Y.J.; Tsao, G.S.; Ngai, S.M.; Chiu,
1595		J.F. Proteomic identification of malignant transformation-related proteins in
1596		esophageal squamous cell carcinoma. J Cell Biochem 2008, 104, 1625-1635,
1597		doi:10.1002/jcb.21727.
1598	106.	Li, M.; Zhai, Q.; Bharadwaj, U.; Wang, H.; Li, F.; Fisher, W.E.; Chen, C.; Yao, Q.
1599		Cyclophilin A is overexpressed in human pancreatic cancer cells and
1600		stimulates cell proliferation through CD147. Cancer 2006, 106, 2284-2294,
1601		doi:10.1002/cncr.21862.
1602	107.	Yamashita, Y.; Nishiumi, S.; Kono, S.; Takao, S.; Azuma, T.; Yoshida, M.
1603		Differences in elongation of very long chain fatty acids and fatty acid
1604		metabolism between triple-negative and hormone receptor-positive breast
1605		cancer. <i>BMC Cancer</i> 2017 , <i>17</i> , 589, doi:10.1186/s12885-017-3554-4.
1606	108.	Mika, A.; Kobiela, J.; Czumaj, A.; Chmielewski, M.; Stepnowski, P.; Sledzinski,
1607		T. Hyper-Elongation in Colorectal Cancer Tissue - Cerotic Acid is a Potential
1608		Novel Serum Metabolic Marker of Colorectal Malignancies. Cell Physiol
1609		<i>Biochem</i> 2017 , <i>41</i> , 722-730, doi:10.1159/000458431.
1610	109.	Zekri, A.R.; Hassan, Z.K.; Bahnassy, A.A.; Sherif, G.M.; D, E.L.; Abouelhoda, M.;
1611		Ali, A.; Hafez, M.M. Molecular prognostic profile of Egyptian HCC cases
1612		infected with hepatitis C virus. Asian Pac J Cancer Prev 2012, 13, 5433-5438.
1613	110.	Su, Y.C.; Feng, Y.H.; Wu, H.T.; Huang, Y.S.; Tung, C.L.; Wu, P.; Chang, C.J.; Shiau,
1614		A.L.; Wu, C.L. Elovl6 is a negative clinical predictor for liver cancer and
1615		knockdown of Elovl6 reduces murine liver cancer progression. <i>Sci Rep</i> 2018 ,
1616		8, 6586, doi:10.1038/s41598-018-24633-3.
1617	111.	Feng, Y.H.; Chen, W.Y.; Kuo, Y.H.; Tung, C.L.; Tsao, C.J.; Shiau, A.L.; Wu, C.L.
1618		Elovl6 is a poor prognostic predictor in breast cancer. Oncol Lett 2016 , 12,
1619		207-212, doi:10.3892/ol.2016.4587.
1620	112.	Liang, H.F.; Zhang, X.Z.; Liu, B.G.; Jia, G.T.; Li, W.L. Circular RNA circ-ABCB10
1621		promotes breast cancer proliferation and progression through sponging miR-
1622		1271. Am J Cancer Res 2017 , 7, 1566-1576.
1623	113.	Gagou, M.E.; Ganesh, A.; Phear, G.; Robinson, D.; Petermann, E.; Cox, A.; Meuth,
1624		M. Human PIF1 helicase supports DNA replication and cell growth under

1625		oncogenic-stress. <i>Oncotarget</i> 2014 , <i>5</i> , 11381-11398,
1626		doi:10.18632/oncotarget.2501.
1627	114.	Lim, K.H.; Kim, K.H.; Choi, S.I.; Park, E.S.; Park, S.H.; Ryu, K.; Park, Y.K.; Kwon,
1628		S.Y.; Yang, S.I.; Lee, H.C., et al. RPS3a over-expressed in HBV-associated
1629		hepatocellular carcinoma enhances the HBx-induced NF-kappaB signaling via
1630		its novel chaperoning function. <i>PLoS One</i> 2011 , <i>6</i> , e22258,
1631		doi:10.1371/journal.pone.0022258.
1632	115.	Slizhikova, D.K.; Vinogradova, T.V.; Sverdlov, E.D. [The NOLA2 and RPS3A
1633		genes as highly informative markers for human squamous cell lung cancer].
1634		Bioorg Khim 2005 , 31, 195-199.
1635	116.	Yang, C.; Zheng, J.; Xue, Y.; Yu, H.; Liu, X.; Ma, J.; Liu, L.; Wang, P.; Li, Z.; Cai, H.,
1636		et al. The Effect of MCM3AP-AS1/miR-211/KLF5/AGGF1 Axis Regulating
1637		Glioblastoma Angiogenesis. Front Mol Neurosci 2017, 10, 437,
1638		doi:10.3389/fnmol.2017.00437.
1639	117.	Tang, X.; Xu, Y.; Lu, L.; Jiao, Y.; Liu, J.; Wang, L.; Zhao, H. Identification of key
1640		candidate genes and small molecule drugs in cervical cancer by
1641		bioinformatics strategy. Cancer Manag Res 2018 , 10, 3533-3549,
1642		doi:10.2147/CMAR.S171661.
1643	118.	Han, M.E.; Kim, J.Y.; Kim, G.H.; Park, S.Y.; Kim, Y.H.; Oh, S.O. SAC3D1: a novel
1644		prognostic marker in hepatocellular carcinoma. <i>Sci Rep</i> 2018 , <i>8</i> , 15608,
1645		doi:10.1038/s41598-018-34129-9.
1646	119.	Zhang, M.; Zhang, C.; Du, W.; Yang, X.; Chen, Z. ATAD2 is overexpressed in
1647		gastric cancer and serves as an independent poor prognostic biomarker. <i>Clin</i>
1648		<i>Transl Oncol</i> 2016 , <i>18</i> , 776-781, doi:10.1007/s12094-015-1430-8.
1649	120.	Kalashnikova, E.V.; Revenko, A.S.; Gemo, A.T.; Andrews, N.P.; Tepper, C.G.;
1650		Zou, J.X.; Cardiff, R.D.; Borowsky, A.D.; Chen, H.W. ANCCA/ATAD2
1651		overexpression identifies breast cancer patients with poor prognosis, acting
1652		to drive proliferation and survival of triple-negative cells through control of
1653		B-Myb and EZH2. Cancer Res 2010 , 70, 9402-9412, doi:10.1158/0008-
1654		5472.CAN-10-1199.
1655	121.	Zhang, Y.; Sun, Y.; Li, Y.; Fang, Z.; Wang, R.; Pan, Y.; Hu, H.; Luo, X.; Ye, T.; Li, H.,
1656		et al. ANCCA protein expression is a novel independent poor prognostic
1657		marker in surgically resected lung adenocarcinoma. Ann Surg Oncol 2013 , 20
1658		<i>Suppl 3</i> , S577-582, doi:10.1245/s10434-013-3027-1.
1659	122.	Luo, Y.; Ye, G.Y.; Qin, S.L.; Yu, M.H.; Mu, Y.F.; Zhong, M. ATAD2 Overexpression
1660		Identifies Colorectal Cancer Patients with Poor Prognosis and Drives
1661		Proliferation of Cancer Cells. <i>Gastroenterol Res Pract</i> 2015 , 2015, 936564,
1662		doi:10.1155/2015/936564.
1663	123.	Hou, M.; Huang, R.; Song, Y.; Feng, D.; Jiang, Y.; Liu, M. ATAD2 overexpression
1664		is associated with progression and prognosis in colorectal cancer. <i>Jpn J Clin</i>
1665		<i>Oncol</i> 2016 , <i>46</i> , 222-227, doi:10.1093/jjco/hyv195.
1666	124.	Zheng, L.; Li, T.; Zhang, Y.; Guo, Y.; Yao, J.; Dou, L.; Guo, K. Oncogene ATAD2
1667		promotes cell proliferation, invasion and migration in cervical cancer. <i>Oncol</i>
1668		<i>Rep</i> 2015 , <i>33</i> , 2337-2344, doi:10.3892/or.2015.3867.

1669 1670	125.	Hwang, H.W.; Ha, S.Y.; Bang, H.; Park, C.K. ATAD2 as a Poor Prognostic Marker for Hepatocellular Carcinoma after Curative Resection. <i>Cancer Res</i>
1670		<i>Treat</i> 2015 , <i>47</i> , 853-861, doi:10.4143/crt.2014.177.
1672	126.	Usui, T.; Ohta, T.; Oshiumi, H.; Tomizawa, J.; Ogawa, H.; Ogawa, T. Complex
1672	120.	formation and functional versatility of Mre11 of budding yeast in
1673		recombination. <i>Cell</i> 1998 , <i>95</i> , 705-716.
	107	
1675	127.	Ewald, B.; Sampath, D.; Plunkett, W. ATM and the Mre11-Rad50-Nbs1
1676		complex respond to nucleoside analogue-induced stalled replication forks
1677		and contribute to drug resistance. <i>Cancer Res</i> 2008 , <i>68</i> , 7947-7955,
1678 1670	120	doi:10.1158/0008-5472.CAN-08-0971.
1679	128.	Karnitz, L.M.; Flatten, K.S.; Wagner, J.M.; Loegering, D.; Hackbarth, J.S.;
1680		Arlander, S.J.; Vroman, B.T.; Thomas, M.B.; Baek, Y.U.; Hopkins, K.M., et al.
1681		Gemcitabine-induced activation of checkpoint signaling pathways that affect
1682		tumor cell survival. <i>Mol Pharmacol</i> 2005 , <i>68</i> , 1636-1644,
1683	120	doi:10.1124/mol.105.012716.
1684	129.	Okazaki, T.; Jiao, L.; Chang, P.; Evans, D.B.; Abbruzzese, J.L.; Li, D. Single-
1685		nucleotide polymorphisms of DNA damage response genes are associated
1686		with overall survival in patients with pancreatic cancer. <i>Clin Cancer Res</i>
1687	120	2008 , <i>14</i> , 2042-2048, doi:10.1158/1078-0432.CCR-07-1520.
1688	130.	Irlbacher, H.; Franke, J.; Manke, T.; Vingron, M.; Ehrenhofer-Murray, A.E.
1689 1690		Control of replication initiation and heterochromatin formation in
1690		Saccharomyces cerevisiae by a regulator of meiotic gene expression. <i>Genes &</i>
1691	131.	<i>development</i> 2005 , <i>19</i> , 1811-1822, doi:10.1101/gad.334805. Weber, J.M.; Irlbacher, H.; Ehrenhofer-Murray, A.E. Control of replication
1692	151.	initiation by the Sum1/Rfm1/Hst1 histone deacetylase. <i>BMC Mol Biol</i> 2008 ,
1693 1694		9, 100, doi:10.1186/1471-2199-9-100.
1694	132.	Knott, S.R.; Peace, J.M.; Ostrow, A.Z.; Gan, Y.; Rex, A.E.; Viggiani, C.J.; Tavare, S.;
1695	132.	Aparicio, O.M. Forkhead transcription factors establish origin timing and
1690		long-range clustering in S. cerevisiae. <i>Cell</i> 2012 , <i>148</i> , 99-111,
1698		doi:10.1016/j.cell.2011.12.012.
1699	133.	Wang, J.; Cai, X.; Xia, L.; Zhou, J.; Xin, J.; Liu, M.; Shang, X.; Liu, J.; Li, X.; Chen, Z.,
1700	155.	et al. Decreased expression of FOXJ1 is a potential prognostic predictor for
1700		progression and poor survival of gastric cancer. Ann Surg Oncol 2015 , 22,
1701		685-692, doi:10.1245/s10434-014-3742-2.
1702	134.	Li, J.V.; Chien, C.D.; Garee, J.P.; Xu, J.; Wellstein, A.; Riegel, A.T. Transcriptional
1703	151.	repression of AIB1 by FoxG1 leads to apoptosis in breast cancer cells. <i>Mol</i>
1705		<i>Endocrinol</i> 2013 , <i>27</i> , 1113-1127, doi:10.1210/me.2012-1353.
1706	135.	Jin, J.; Zhou, S.; Li, C.; Xu, R.; Zu, L.; You, J.; Zhang, B. MiR-517a-3p accelerates
1707	100.	lung cancer cell proliferation and invasion through inhibiting FOXJ3
1708		expression. <i>Life Sci</i> 2014 , <i>108</i> , 48-53, doi:10.1016/j.lfs.2014.05.006.
1709	136.	Ma, W.; Yu, Q.; Jiang, J.; Du, X.; Huang, L.; Zhao, L.; Zhou, Q.I. miR-517a is an
1710	2001	independent prognostic marker and contributes to cell migration and
1711		invasion in human colorectal cancer. <i>Oncol Lett</i> 2016 , <i>11</i> , 2583-2589,
1712		doi:10.3892/ol.2016.4269.

1710	107	I' V 77 have I Marca V II and I Day literation and a shift in hards
1713	137.	Liu, Y.; Zhang, L.; Meng, Y.; Huang, L. Benzyl isothiocyanate inhibits breast
1714		cancer cell tumorigenesis via repression of the FoxH1-Mediated Wnt/beta-
1715	400	catenin pathway. <i>Int J Clin Exp Med</i> 2015 , <i>8</i> , 17601-17611.
1716	138.	Jin, Y.; Cao, Q.; Chen, C.; Du, X.; Jin, B.; Pan, J. Tenovin-6-mediated inhibition of
1717		SIRT1/2 induces apoptosis in acute lymphoblastic leukemia (ALL) cells and
1718		eliminates ALL stem/progenitor cells. <i>BMC Cancer</i> 2015 , <i>15</i> , 226,
1719		doi:10.1186/s12885-015-1282-1.
1720	139.	Gong, D.J.; Zhang, J.M.; Yu, M.; Zhuang, B.; Guo, Q.Q. Inhibition of SIRT1
1721		combined with gemcitabine therapy for pancreatic carcinoma. <i>Clin Interv</i>
1722		<i>Aging</i> 2013 , <i>8</i> , 889-897, doi:10.2147/CIA.S45064.
1723	140.	Balderhaar, H.J.; Ungermann, C. CORVET and HOPS tethering complexes -
1724		coordinators of endosome and lysosome fusion. J Cell Sci 2013 , 126, 1307-
1725		1316, doi:10.1242/jcs.107805.
1726	141.	Solinger, J.A.; Spang, A. Tethering complexes in the endocytic pathway:
1727		CORVET and HOPS. <i>FEBS J</i> 2013 , <i>280</i> , 2743-2757, doi:10.1111/febs.12151.
1728	142.	Laidlaw, K.M.E.; MacDonald, C. Endosomal trafficking of yeast membrane
1729		proteins. <i>Biochemical Society transactions</i> 2018 , 46, 1551-1558,
1730		doi:10.1042/BST20180258.
1731	143.	Henne, W.M.; Buchkovich, N.J.; Emr, S.D. The ESCRT pathway. <i>Dev Cell</i> 2011 ,
1732		<i>21</i> , 77-91, doi:10.1016/j.devcel.2011.05.015.
1733	144.	Cohen, M.; Stutz, F.; Belgareh, N.; Haguenauer-Tsapis, R.; Dargemont, C. Ubp3
1734		requires a cofactor, Bre5, to specifically de-ubiquitinate the COPII protein,
1735		Sec23. <i>Nat Cell Biol</i> 2003 , 5, 661-667, doi:10.1038/ncb1003.
1736	145.	Schuldiner, M.; Collins, S.R.; Thompson, N.J.; Denic, V.; Bhamidipati, A.; Punna,
1737		T.; Ihmels, J.; Andrews, B.; Boone, C.; Greenblatt, J.F., et al. Exploration of the
1738		function and organization of the yeast early secretory pathway through an
1739		epistatic miniarray profile. Cell 2005 , 123, 507-519,
1740		doi:10.1016/j.cell.2005.08.031.
1741	146.	Schuldiner, M.; Metz, J.; Schmid, V.; Denic, V.; Rakwalska, M.; Schmitt, H.D.;
1742		Schwappach, B.; Weissman, J.S. The GET complex mediates insertion of tail-
1743		anchored proteins into the ER membrane. <i>Cell</i> 2008 , <i>134</i> , 634-645,
1744		doi:10.1016/j.cell.2008.06.025.
1745	147.	Beilharz, T.; Egan, B.; Silver, P.A.; Hofmann, K.; Lithgow, T. Bipartite signals
1746		mediate subcellular targeting of tail-anchored membrane proteins in
1747		Saccharomyces cerevisiae. The Journal of biological chemistry 2003 , 278,
1748		8219-8223, doi:10.1074/jbc.M212725200.
1749	148.	Ibarrola-Villava, M.; Kumar, R.; Nagore, E.; Benfodda, M.; Guedj, M.; Gazal, S.;
1750		Hu, H.H.; Guan, J.; Rachkonda, P.S.; Descamps, V., et al. Genes involved in the
1751		WNT and vesicular trafficking pathways are associated with melanoma
1752		predisposition. Int J Cancer 2015 , 136, 2109-2119, doi:10.1002/ijc.29257.
1753	149.	Dutta, S.; Roy, S.; Polavaram, N.S.; Baretton, G.B.; Muders, M.H.; Batra, S.;
1754		Datta, K. NRP2 transcriptionally regulates its downstream effector WDFY1.
1755		<i>Sci Rep</i> 2016 , <i>6</i> , 23588, doi:10.1038/srep23588.
1756	150.	Dutta, S.; Roy, S.; Polavaram, N.S.; Stanton, M.J.; Zhang, H.; Bhola, T.;
1757	2001	Honscheid, P.; Donohue, T.M., Jr.; Band, H.; Batra, S.K., et al. Neuropilin-2
1758		Regulates Endosome Maturation and EGFR Trafficking to Support Cancer Cell
1,00		Auguated Endosome Flataration and Edit & Francishing to Support Galicer Gen

1759		Pathobiology. <i>Cancer Res</i> 2016 , <i>76</i> , 418-428, doi:10.1158/0008-5472.CAN-
1760		15-1488.
1761	151.	Girirajan, S.; Hauck, P.M.; Williams, S.; Vlangos, C.N.; Szomju, B.B.; Solaymani-
1762		Kohal, S.; Mosier, P.D.; White, K.L., Jr.; McCoy, K.; Elsea, S.H. Tom112
1763		hypomorphic mice exhibit increased incidence of infections and tumors and
1764		abnormal immunologic response. <i>Mamm Genome</i> 2008 , 19, 246-262,
1765		doi:10.1007/s00335-008-9100-6.
1766	152.	Lachmann, J.; Glaubke, E.; Moore, P.S.; Ungermann, C. The Vps39-like TRAP1
1767		is an effector of Rab5 and likely the missing Vps3 subunit of human CORVET.
1768		<i>Cell Logist</i> 2014 , <i>4</i> , e970840, doi:10.4161/21592780.2014.970840.
1769	153.	Chabes, A.; Georgieva, B.; Domkin, V.; Zhao, X.; Rothstein, R.; Thelander, L.
1770		Survival of DNA damage in yeast directly depends on increased dNTP levels
1771		allowed by relaxed feedback inhibition of ribonucleotide reductase. <i>Cell</i>
1772		2003 , <i>112</i> , 391-401.
1773	154.	Wu, Y.; Li, X.; Yu, J.; Bjorkholm, M.; Xu, D. ASF1a inhibition induces p53-
1774		dependent growth arrest and senescence of cancer cells. <i>Cell Death Dis</i> 2019 ,
1775	4 5 5	<i>10</i> , 76, doi:10.1038/s41419-019-1357-z.
1776	155.	Tkach, J.M.; Yimit, A.; Lee, A.Y.; Riffle, M.; Costanzo, M.; Jaschob, D.; Hendry,
1777		J.A.; Ou, J.; Moffat, J.; Boone, C., et al. Dissecting DNA damage response
1778		pathways by analysing protein localization and abundance changes during
1779 1780		DNA replication stress. <i>Nat Cell Biol</i> 2012 , <i>14</i> , 966-976, doi:10.1038/ncb2549.
1780	156.	Chong, P.S.; Zhou, J.; Cheong, L.L.; Liu, S.C.; Qian, J.; Guo, T.; Sze, S.K.; Zeng, Q.;
1781	150.	Chng, W.J. LEO1 is regulated by PRL-3 and mediates its oncogenic properties
1783		in acute myelogenous leukemia. <i>Cancer Res</i> 2014 , 74, 3043-3053,
1784		doi:10.1158/0008-5472.CAN-13-2321.
1785	157.	Yang, B.; Miao, S.; Zhang, L.N.; Sun, H.B.; Xu, Z.N.; Han, C.S. Correlation of
1786	1071	CCNA1 promoter methylation with malignant tumors: a meta-analysis
1787		introduction. <i>Biomed Res Int</i> 2015 , <i>2015</i> , 134027,
1788		doi:10.1155/2015/134027.
1789	158.	Hendrick, E.; Peixoto, P.; Blomme, A.; Polese, C.; Matheus, N.; Cimino, J.; Frere,
1790		A.; Mouithys-Mickalad, A.; Serteyn, D.; Bettendorff, L., et al. Metabolic
1791		inhibitors accentuate the anti-tumoral effect of HDAC5 inhibition. Oncogene
1792		2017 , <i>36</i> , 4859-4874, doi:10.1038/onc.2017.103.
1793	159.	Wang, X.X.; Wan, R.Z.; Liu, Z.P. Recent advances in the discovery of potent and
1794		selective HDAC6 inhibitors. <i>Eur J Med Chem</i> 2018 , <i>143</i> , 1406-1418,
1795		doi:10.1016/j.ejmech.2017.10.040.
1796	160.	Xu, X.; Xie, C.; Edwards, H.; Zhou, H.; Buck, S.A.; Ge, Y. Inhibition of histone
1797		deacetylases 1 and 6 enhances cytarabine-induced apoptosis in pediatric
1798		acute myeloid leukemia cells. <i>PLoS One</i> 2011 , <i>6</i> , e17138,
1799	4.64	doi:10.1371/journal.pone.0017138.
1800	161.	Iwahashi, S.; Shimada, M.; Utsunomiya, T.; Morine, Y.; Imura, S.; Ikemoto, T.;
1801		Mori, H.; Hanaoka, J.; Sugimoto, K.; Saito, Y. Histone deacetylase inhibitor
1802 1803		augments anti-tumor effect of gemcitabine and pegylated interferon-alpha on
1803 1804		pancreatic cancer cells. <i>Int J Clin Oncol</i> 2011 , <i>16</i> , 671-678, doi:10.1007/s10147-011-0246-w
1004		doi:10.1007/s10147-011-0246-y.

1805	162.	Arnold, N.B.; Arkus, N.; Gunn, J.; Korc, M. The histone deacetylase inhibitor
1806		suberoylanilide hydroxamic acid induces growth inhibition and enhances
1807		gemcitabine-induced cell death in pancreatic cancer. <i>Clin Cancer Res</i> 2007 ,
1808		13, 18-26, doi:10.1158/1078-0432.CCR-06-0914.
1809	163.	Cai, M.H.; Xu, X.G.; Yan, S.L.; Sun, Z.; Ying, Y.; Wang, B.K.; Tu, Y.X. Depletion of
1810		HDAC1, 7 and 8 by Histone Deacetylase Inhibition Confers Elimination of
1811		Pancreatic Cancer Stem Cells in Combination with Gemcitabine. <i>Sci Rep</i> 2018 ,
1812		8, 1621, doi:10.1038/s41598-018-20004-0.
1813	164.	Sung, V.; Richard, N.; Brady, H.; Maier, A.; Kelter, G.; Heise, C. Histone
1814	101.	deacetylase inhibitor MGCD0103 synergizes with gemcitabine in human
1815		pancreatic cells. <i>Cancer Sci</i> 2011 , <i>102</i> , 1201-1207, doi:10.1111/j.1349-
1816		7006.2011.01921.x.
1810	165.	Ji, M.; Li, Z.; Lin, Z.; Chen, L. Antitumor activity of the novel HDAC inhibitor
1817	105.	CUDC-101 combined with gemcitabine in pancreatic cancer. <i>Am J Cancer Res</i>
1819	1((2018 , <i>8</i> , 2402-2418.
1820	166.	Song, T.; Yang, L.; Kabra, N.; Chen, L.; Koomen, J.; Haura, E.B.; Chen, J. The
1821		NAD+ synthesis enzyme nicotinamide mononucleotide adenylyltransferase
1822		(NMNAT1) regulates ribosomal RNA transcription. <i>The Journal of biological</i>
1823	107	<i>chemistry</i> 2013 , <i>288</i> , 20908-20917, doi:10.1074/jbc.M113.470302.
1824	167.	Li, H.; Feng, Z.; Wu, W.; Li, J.; Zhang, J.; Xia, T. SIRT3 regulates cell
1825		proliferation and apoptosis related to energy metabolism in non-small cell
1826		lung cancer cells through deacetylation of NMNAT2. <i>Int J Oncol</i> 2013 , <i>43</i> ,
1827		1420-1430, doi:10.3892/ijo.2013.2103.
1828	168.	Kim, M.M.; Camelo-Piragua, S.; Schipper, M.; Tao, Y.; Normolle, D.; Junck, L.;
1829		Mammoser, A.; Betz, B.L.; Cao, Y.; Kim, C.J., et al. Gemcitabine Plus Radiation
1830		Therapy for High-Grade Glioma: Long-Term Results of a Phase 1 Dose-
1831		Escalation Study. Int J Radiat Oncol Biol Phys 2016 , 94, 305-311,
1832		doi:10.1016/j.ijrobp.2015.10.032.
1833	169.	Rao, M.; Song, W.; Jiang, A.; Shyr, Y.; Lev, S.; Greenstein, D.; Brantley-Sieders,
1834		D.; Chen, J. VAMP-associated protein B (VAPB) promotes breast tumor
1835		growth by modulation of Akt activity. <i>PLoS One</i> 2012 , <i>7</i> , e46281,
1836		doi:10.1371/journal.pone.0046281.
1837	170.	Yang, M.C.; Wang, H.C.; Hou, Y.C.; Tung, H.L.; Chiu, T.J.; Shan, Y.S. Blockade of
1838		autophagy reduces pancreatic cancer stem cell activity and potentiates the
1839		tumoricidal effect of gemcitabine. <i>Mol Cancer</i> 2015 , <i>14</i> , 179,
1840		doi:10.1186/s12943-015-0449-3.
1841	171.	Takahashi, Y.; He, H.; Tang, Z.; Hattori, T.; Liu, Y.; Young, M.M.; Serfass, J.M.;
1842		Chen, L.; Gebru, M.; Chen, C., et al. An autophagy assay reveals the ESCRT-III
1843		component CHMP2A as a regulator of phagophore closure. <i>Nat Commun</i>
1844		2018 , <i>9</i> , 2855, doi:10.1038/s41467-018-05254-w.
1845	172.	D'Arcangelo, D.; Giampietri, C.; Muscio, M.; Scatozza, F.; Facchiano, F.;
1846		Facchiano, A. WIPI1, BAG1, and PEX3 Autophagy-Related Genes Are Relevant
1847		Melanoma Markers. Oxid Med Cell Longev 2018 , 2018, 1471682,
1848		doi:10.1155/2018/1471682.
1849	173.	Filimonenko, M.; Stuffers, S.; Raiborg, C.; Yamamoto, A.; Malerod, L.; Fisher,
1850	2701	E.M.; Isaacs, A.; Brech, A.; Stenmark, H.; Simonsen, A. Functional
1000		anni iouuco, mi biceni, mi oceninaris, mi onnonoch, mi uncuonar

1851		multivesicular bodies are required for autophagic clearance of protein
1852		aggregates associated with neurodegenerative disease. J Cell Biol 2007 , 179,
1853		485-500, doi:10.1083/jcb.200702115.
1854	174.	Luo, M.L.; Gong, C.; Chen, C.H.; Hu, H.; Huang, P.; Zheng, M.; Yao, Y.; Wei, S.;
1855	17 11	Wulf, G.; Lieberman, J., et al. The Rab2A GTPase promotes breast cancer stem
1856		cells and tumorigenesis via Erk signaling activation. <i>Cell Rep</i> 2015 , <i>11</i> , 111-
1857		124, doi:10.1016/j.celrep.2015.03.002.
1858	175.	Jin, J.; Wu, Y.; Zhou, D.; Sun, Q.; Wang, W. miR448 targets Rab2B and is pivotal
1859	_	in the suppression of pancreatic cancer. <i>Oncol Rep</i> 2018 , <i>40</i> , 1379-1389,
1860		doi:10.3892/or.2018.6562.
1861	176.	Zhang, Y.; Huang, S.; Li, P.; Chen, Q.; Li, Y.; Zhou, Y.; Wang, L.; Kang, M.; Zhang,
1862		B.; Yang, B., et al. Pancreatic cancer-derived exosomes suppress the
1863		production of GIP and GLP-1 from STC-1cells in vitro by down-regulating the
1864		PCSK1/3. <i>Cancer Lett</i> 2018 , <i>431</i> , 190-200, doi:10.1016/j.canlet.2018.05.027.
1865	177.	Demidyuk, I.V.; Shubin, A.V.; Gasanov, E.V.; Kurinov, A.M.; Demkin, V.V.;
1866		Vinogradova, T.V.; Zinovyeva, M.V.; Sass, A.V.; Zborovskaya, I.B.; Kostrov, S.V.
1867		Alterations in gene expression of proprotein convertases in human lung
1868		cancer have a limited number of scenarios. <i>PLoS One</i> 2013 , <i>8</i> , e55752,
1869		doi:10.1371/journal.pone.0055752.
1870	178.	Bajikar, S.S.; Wang, C.C.; Borten, M.A.; Pereira, E.J.; Atkins, K.A.; Janes, K.A.
1871		Tumor-Suppressor Inactivation of GDF11 Occurs by Precursor Sequestration
1872		in Triple-Negative Breast Cancer. Dev Cell 2017, 43, 418-435 e413,
1873		doi:10.1016/j.devcel.2017.10.027.
1874	179.	Akada, M.; Crnogorac-Jurcevic, T.; Lattimore, S.; Mahon, P.; Lopes, R.;
1875		Sunamura, M.; Matsuno, S.; Lemoine, N.R. Intrinsic chemoresistance to
1876		gemcitabine is associated with decreased expression of BNIP3 in pancreatic
1877		cancer. <i>Clin Cancer Res</i> 2005 , <i>11</i> , 3094-3101, doi:10.1158/1078-0432.CCR-
1878	100	04-1785. Karla T. Marza K. Baka M. Barthalaman C.B. Jarah Dan M.A. Du Z.
1879	180.	Kanki, T.; Wang, K.; Baba, M.; Bartholomew, C.R.; Lynch-Day, M.A.; Du, Z.;
1880 1881		Geng, J.; Mao, K.; Yang, Z.; Yen, W.L., et al. A genomic screen for yeast mutants
1881		defective in selective mitochondria autophagy. <i>Molecular biology of the cell</i> 2009 , <i>20</i> , 4730-4738, doi:10.1091/mbc.E09-03-0225.
1883	181.	Johnson, I.R.; Parkinson-Lawrence, E.J.; Keegan, H.; Spillane, C.D.; Barry-
1884	101.	O'Crowley, J.; Watson, W.R.; Selemidis, S.; Butler, L.M.; O'Leary, J.J.; Brooks,
1885		D.A. Endosomal gene expression: a new indicator for prostate cancer patient
1886		prognosis? Oncotarget 2015 , 6, 37919-37929,
1887		doi:10.18632/oncotarget.6114.
1888	182.	Li, F.; Hu, G.; Jiang, Z.; Guo, J.; Wang, K.; Ouyang, K.; Wen, D.; Zhu, M.; Liang, J.;
1889	101	Qin, X., et al. Identification of NME5 as a contributor to innate resistance to
1890		gemcitabine in pancreatic cancer cells. <i>FEBS</i> J 2012 , <i>279</i> , 1261-1273,
1891		doi:10.1111/j.1742-4658.2012.08521.x.
1892	183.	Matsumoto, A.; Arcaroli, J.; Chen, Y.; Gasparetto, M.; Neumeister, V.;
1893		Thompson, D.C.; Singh, S.; Smith, C.; Messersmith, W.; Vasiliou, V. Aldehyde
1894		dehydrogenase 1B1: a novel immunohistological marker for colorectal
1895		cancer. Br J Cancer 2017 , 117, 1537-1543, doi:10.1038/bjc.2017.304.

1006	101	
1896	184.	Singh, S.; Arcaroli, J.J.; Orlicky, D.J.; Chen, Y.; Messersmith, W.A.; Bagby, S.;
1897		Purkey, A.; Quackenbush, K.S.; Thompson, D.C.; Vasiliou, V. Aldehyde
1898		Dehydrogenase 1B1 as a Modulator of Pancreatic Adenocarcinoma. <i>Pancreas</i>
1899		2016 , <i>45</i> , 117-122, doi:10.1097/MPA.00000000000542.
1900	185.	Xu, X.; Chai, S.; Wang, P.; Zhang, C.; Yang, Y.; Yang, Y.; Wang, K. Aldehyde
1901		dehydrogenases and cancer stem cells. <i>Cancer Lett</i> 2015 , <i>369</i> , 50-57,
1902		doi:10.1016/j.canlet.2015.08.018.
1903	186.	Bae, J.S.; Park, S.H.; Jamiyandorj, U.; Kim, K.M.; Noh, S.J.; Kim, J.R.; Park, H.J.;
1904		Kwon, K.S.; Jung, S.H.; Park, H.S., et al. CK2alpha/CSNK2A1 Phosphorylates
1905		SIRT6 and Is Involved in the Progression of Breast Carcinoma and Predicts
1906		Shorter Survival of Diagnosed Patients. Am J Pathol 2016 , 186, 3297-3315,
1907		doi:10.1016/j.ajpath.2016.08.007.
1908	187.	Xie, Z.C.; Tang, R.X.; Gao, X.; Xie, Q.N.; Lin, J.Y.; Chen, G.; Li, Z.Y. A meta-analysis
1909		and bioinformatics exploration of the diagnostic value and molecular
1910		mechanism of miR-193a-5p in lung cancer. Oncol Lett 2018 , 16, 4114-4128,
1911		doi:10.3892/ol.2018.9174.
1912	188.	Laramas, M.; Pasquier, D.; Filhol, O.; Ringeisen, F.; Descotes, J.L.; Cochet, C.
1913		Nuclear localization of protein kinase CK2 catalytic subunit (CK2alpha) is
1914		associated with poor prognostic factors in human prostate cancer. Eur J
1915		<i>Cancer</i> 2007 , <i>43</i> , 928-934, doi:10.1016/j.ejca.2006.11.021.
1916	189.	Zou, J.; Luo, H.; Zeng, Q.; Dong, Z.; Wu, D.; Liu, L. Protein kinase CK2alpha is
1917		overexpressed in colorectal cancer and modulates cell proliferation and
1918		invasion via regulating EMT-related genes. <i>J Transl Med</i> 2011 , <i>9</i> , 97,
1919		doi:10.1186/1479-5876-9-97.
1920	190.	Bae, J.S.; Park, S.H.; Kim, K.M.; Kwon, K.S.; Kim, C.Y.; Lee, H.K.; Park, B.H.; Park,
1921		H.S.; Lee, H.; Moon, W.S., et al. CK2alpha phosphorylates DBC1 and is involved
1922		in the progression of gastric carcinoma and predicts poor survival of gastric
1923		carcinoma patients. <i>Int J Cancer</i> 2015 , <i>136</i> , 797-809, doi:10.1002/ijc.29043.
1924	191.	Trembley, J.H.; Wang, G.; Unger, G.; Slaton, J.; Ahmed, K. Protein kinase CK2 in
1925		health and disease: CK2: a key player in cancer biology. <i>Cell Mol Life Sci</i> 2009 ,
1926		66, 1858-1867, doi:10.1007/s00018-009-9154-y.
1927	192.	Wang, F.; Chang, J.T.; Kao, C.J.; Huang, R.S. High Expression of miR-532-5p, a
1928		Tumor Suppressor, Leads to Better Prognosis in Ovarian Cancer Both In Vivo
1929		and In Vitro. <i>Mol Cancer Ther</i> 2016 , <i>15</i> , 1123-1131, doi:10.1158/1535-
1930		7163.MCT-15-0943.
1931	193.	Hanif, I.M.; Hanif, I.M.; Shazib, M.A.; Ahmad, K.A.; Pervaiz, S. Casein Kinase II:
1932		an attractive target for anti-cancer drug design. <i>Int J Biochem Cell Biol</i> 2010 ,
1933		<i>42</i> , 1602-1605, doi:10.1016/j.biocel.2010.06.010.
1934	194.	Gan, Y.; Li, Y.; Li, T.; Shu, G.; Yin, G. CCNA2 acts as a novel biomarker in
1935		regulating the growth and apoptosis of colorectal cancer. <i>Cancer Manag Res</i>
1936		2018 , <i>10</i> , 5113-5124, doi:10.2147/CMAR.S176833.
1937	195.	Gao, T.; Han, Y.; Yu, L.; Ao, S.; Li, Z.; Ji, J. CCNA2 is a prognostic biomarker for
1938	_,	ER+ breast cancer and tamoxifen resistance. <i>PLoS One</i> 2014 , <i>9</i> , e91771,
1939		doi:10.1371/journal.pone.0091771.

1940	196.	Ding, K.; Li, W.; Zou, Z.; Zou, X.; Wang, C. CCNB1 is a prognostic biomarker for
1941	270.	ER+ breast cancer. <i>Med Hypotheses</i> 2014 , <i>83</i> , 359-364,
1942		doi:10.1016/j.mehy.2014.06.013.
1943	197.	Fang, Y.; Yu, H.; Liang, X.; Xu, J.; Cai, X. Chk1-induced CCNB1 overexpression
1944		promotes cell proliferation and tumor growth in human colorectal cancer.
1945		<i>Cancer Biol Ther</i> 2014 , <i>15</i> , 1268-1279, doi:10.4161/cbt.29691.
1946	198.	Oji, Y.; Tatsumi, N.; Fukuda, M.; Nakatsuka, S.; Aoyagi, S.; Hirata, E.; Nanchi, I.;
1947		Fujiki, F.; Nakajima, H.; Yamamoto, Y., et al. The translation elongation factor
1948		eEF2 is a novel tumorassociated antigen overexpressed in various types of
1949		cancers. Int J Oncol 2014 , 44, 1461-1469, doi:10.3892/ijo.2014.2318.
1950	199.	Sato, N.; Maeda, M.; Sugiyama, M.; Ito, S.; Hyodo, T.; Masuda, A.; Tsunoda, N.;
1951		Kokuryo, T.; Hamaguchi, M.; Nagino, M., et al. Inhibition of SNW1 association
1952		with spliceosomal proteins promotes apoptosis in breast cancer cells. Cancer
1953		<i>Med</i> 2015 , <i>4</i> , 268-277, doi:10.1002/cam4.366.
1954	200.	Koller-Eichhorn, R.; Marquardt, T.; Gail, R.; Wittinghofer, A.; Kostrewa, D.;
1955		Kutay, U.; Kambach, C. Human OLA1 defines an ATPase subfamily in the Obg
1956		family of GTP-binding proteins. <i>The Journal of biological chemistry</i> 2007 , 282,
1957		19928-19937, doi:10.1074/jbc.M700541200.
1958	201.	Becker, M.; Gzyl, K.E.; Altamirano, A.M.; Vuong, A.; Urban, K.; Wieden, H.J. The
1959		70S ribosome modulates the ATPase activity of Escherichia coli YchF. <i>RNA</i>
1960	202	<i>Biol</i> 2012 , <i>9</i> , 1288-1301, doi:10.4161/rna.22131.
1961	202.	Bai, L.; Yu, Z.; Zhang, J.; Yuan, S.; Liao, C.; Jeyabal, P.V.; Rubio, V.; Chen, H.; Li,
1962		Y.; Shi, Z.Z. OLA1 contributes to epithelial-mesenchymal transition in lung
1963		cancer by modulating the GSK3beta/snail/E-cadherin signaling. <i>Oncotarget</i>
1964	202	2016 , 7, 10402-10413, doi:10.18632/oncotarget.7224.
1965 1966	203.	Cornelison, R.; Dobbin, Z.C.; Katre, A.A.; Jeong, D.H.; Zhang, Y.; Chen, D.;
1966 1967		Petrova, Y.; Llaneza, D.C.; Steg, A.D.; Parsons, L., et al. Targeting RNA- Polymerase I in Both Chemosensitive and Chemoresistant Populations in
1967		Epithelial Ovarian Cancer. <i>Clin Cancer Res</i> 2017 , <i>23</i> , 6529-6540,
1968		doi:10.1158/1078-0432.CCR-17-0282.
1970	204.	Lee, H.C.; Wang, H.; Baladandayuthapani, V.; Lin, H.; He, J.; Jones, R.J.; Kuiatse,
1971	201.	I.; Gu, D.; Wang, Z.; Ma, W., et al. RNA Polymerase I Inhibition with CX-5461 as
1972		a Novel Therapeutic Strategy to Target MYC in Multiple Myeloma. Br J
1973		<i>Haematol</i> 2017 , <i>177</i> , 80-94, doi:10.1111/bjh.14525.
1974	205.	Rossetti, S.; Wierzbicki, A.J.; Sacchi, N. Undermining ribosomal RNA
1975		transcription in both the nucleolus and mitochondrion: an offbeat approach
1976		to target MYC-driven cancer. <i>Oncotarget</i> 2018 , <i>9</i> , 5016-5031,
1977		doi:10.18632/oncotarget.23579.
1978	206.	Linden, M.; Segersten, U.; Runeson, M.; Wester, K.; Busch, C.; Pettersson, U.;
1979		Lind, S.B.; Malmstrom, P.U. Tumour expression of bladder cancer-associated
1980		urinary proteins. <i>BJU Int</i> 2013 , <i>112</i> , 407-415, doi:10.1111/j.1464-
1981		410X.2012.11653.x.
1982	207.	Bullock, N.; Oltean, S. The many faces of SRPK1. J Pathol 2017 , 241, 437-440,
1983		doi:10.1002/path.4846.
1984	208.	Chen, Y.; Meng, D.; Wang, H.; Sun, R.; Wang, D.; Wang, S.; Fan, J.; Zhao, Y.;
1985		Wang, J.; Yang, S., et al. VAMP8 facilitates cellular proliferation and

1000		tomorolomido registor co in human glieme colla Neuro Oncol 2015 17 407
1986		temozolomide resistance in human glioma cells. <i>Neuro Oncol</i> 2015 , <i>17</i> , 407-
1987	200	418, doi:10.1093/neuonc/nou219.
1988	209.	Yuan, M.; Liao, J.; Luo, J.; Cui, M.; Jin, F. Significance of Vesicle-Associated
1989		Membrane Protein 8 Expression in Predicting Survival in Breast Cancer. J
1990	210	Breast Cancer 2018 , <i>21</i> , 399-405, doi:10.4048/jbc.2018.21.e57.
1991	210.	Grunnet, M.; Calatayud, D.; Schultz, N.A.; Hasselby, J.P.; Mau-Sorensen, M.;
1992		Brunner, N.; Stenvang, J. TOP1 gene copy numbers are increased in cancers of
1993		the bile duct and pancreas. <i>Scand J Gastroenterol</i> 2015 , <i>50</i> , 485-494,
1994	244	doi:10.3109/00365521.2014.980318.
1995	211.	Sun, L.; Xu, X.; Chen, Y.; Zhou, Y.; Tan, R.; Qiu, H.; Jin, L.; Zhang, W.; Fan, R.;
1996		Hong, W., et al. Rab34 regulates adhesion, migration, and invasion of breast
1997		cancer cells. <i>Oncogene</i> 2018 , <i>37</i> , 3698-3714, doi:10.1038/s41388-018-0202-
1998		7.
1999	212.	Wu, J.; Lu, Y.; Qin, A.; Qiao, Z.; Jiang, X. Overexpression of RAB34 correlates
2000		with poor prognosis and tumor progression in hepatocellular carcinoma.
2001		<i>Oncol Rep</i> 2017 , <i>38</i> , 2967-2974, doi:10.3892/or.2017.5957.
2002	213.	Wang, H.J.; Gao, Y.; Chen, L.; Li, Y.L.; Jiang, C.L. RAB34 was a progression- and
2003		prognosis-associated biomarker in gliomas. <i>Tumour Biol</i> 2015 , <i>36</i> , 1573-
2004		1578, doi:10.1007/s13277-014-2732-0.
2005	214.	Artero-Castro, A.; Castellvi, J.; Garcia, A.; Hernandez, J.; Ramon y Cajal, S.;
2006		Lleonart, M.E. Expression of the ribosomal proteins Rplp0, Rplp1, and Rplp2
2007		in gynecologic tumors. <i>Hum Pathol</i> 2011 , <i>42</i> , 194-203,
2008		doi:10.1016/j.humpath.2010.04.020.
2009	215.	Sendoel, A.; Dunn, J.G.; Rodriguez, E.H.; Naik, S.; Gomez, N.C.; Hurwitz, B.;
2010		Levorse, J.; Dill, B.D.; Schramek, D.; Molina, H., et al. Translation from
2011		unconventional 5' start sites drives tumour initiation. <i>Nature</i> 2017 , <i>541</i> , 494-
2012		499, doi:10.1038/nature21036.
2013	216.	Neklesa, T.K.; Davis, R.W. A genome-wide screen for regulators of TORC1 in
2014		response to amino acid starvation reveals a conserved Npr2/3 complex. <i>PLoS</i>
2015		<i>Genet</i> 2009 , <i>5</i> , e1000515, doi:10.1371/journal.pgen.1000515.
2016	217.	Wu, X.; Tu, B.P. Selective regulation of autophagy by the Iml1-Npr2-Npr3
2017		complex in the absence of nitrogen starvation. <i>Molecular biology of the cell</i>
2018		2011 , <i>22</i> , 4124-4133, doi:10.1091/mbc.E11-06-0525.
2019	218.	Smardon, A.M.; Tarsio, M.; Kane, P.M. The RAVE complex is essential for
2020		stable assembly of the yeast V-ATPase. <i>The Journal of biological chemistry</i>
2021		2002 , <i>277</i> , 13831-13839, doi:10.1074/jbc.M200682200.
2022	219.	Seol, J.H.; Shevchenko, A.; Shevchenko, A.; Deshaies, R.J. Skp1 forms multiple
2023		protein complexes, including RAVE, a regulator of V-ATPase assembly.
2024		Nature cell biology 2001 , 3, 384-391, doi:10.1038/35070067.
2025	220.	Nakamura, N.; Matsuura, A.; Wada, Y.; Ohsumi, Y. Acidification of vacuoles is
2026		required for autophagic degradation in the yeast, Saccharomyces cerevisiae. J
2027		Biochem 1997 , 121, 338-344.
2028	221.	Yang, Z.; Geng, J.; Yen, W.L.; Wang, K.; Klionsky, D.J. Positive or negative roles
2029		of different cyclin-dependent kinase Pho85-cyclin complexes orchestrate
2030		induction of autophagy in Saccharomyces cerevisiae. <i>Molecular cell</i> 2010 , <i>38</i> ,
2031		250-264, doi:10.1016/j.molcel.2010.02.033.

 scission by the ESCRT-III complex. <i>Nature</i> 2009, 458, 172-177, doi:10.1038/nature07836. Richter, C.M.; West, M.; Odorizzi, G. Doa4 function in ILV budding is restricted through its interaction with the VpS20 subunit of ESCRT-III. <i>Journal of cell</i> <i>science</i> 2013, 126, 1881-1890, doi:10.1242/jcs.122499. Mukubou, H.; Tsujimura, T.; Sasaki, R.; Ku, Y. The role of autophagy in the treatment of pancreatic cancer with gemcitabine and ionizing radiation. <i>Int J</i> <i>Oncol</i> 2010, 37, 821-828. Hashimoto, D.; Blauer, M.; Hirota, M.; Ikonen, N.H.; Sand, J.; Laukkarinen, J. Autophagy is needed for the growth of pancreatic adenocarcinoma and has a cytoprotective effect against anticancer drugs. <i>Eur J Cancer</i> 2014, <i>50</i>, 1382- 1390, doi:10.1016/j.ejca.2014.01.011. Chen, M.; He, M.; Song, Y.; Chen, L.; Xiao, P.; Wan, X.; Dai, F.; Shen, P. The cytoprotective of gemcitabine-induced autophagy associated with apoptosis inhibition in triple-negative MDA-MB-231 breast cancer cells. <i>Int J Mol Med</i> 2014, <i>34</i>, 276-282, doi:10.3892/ijmm.2014.1772. Beilharz, T.H.; Harrison, P.F.; Miles, D.M.; See, M.M.; Le, U.M.; Kalanon, M.; Curtis, M.J.; Hasan, Q.; Saksouk, J.; Margaritis, T., et al. Coordination of Cell Cycle Progression and Mitotic Spindle Assembly Involves Histone H3 Lysine 4 Methylation by Sci1/COMPASS. <i>Canetics</i> 2017, 205, 185-199, doi:10.1534/genetics.116.194852. Miller, T.; Krogan, N.J.; Dover, J.; Erdjument-Bromage, H.; Tempst, P.; Johnston, M.; Greenblatt, J.F.; Shilatifard, A. COMPASS: a complex of proteins associated with a trithorax-related SET domain protein. <i>Proceedings of the</i> <i>National Academy of Sciences of the United States of America</i> 2001, <i>98</i>, 12902- 12907, doi:10.1073/pnas.231473398. Shilatifard, A. The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. <i>Annu Rev Biochem</i> 2012, <i>81</i>, 65-95, doi:10.1146/annurev-biochem-051710-134100. Gree	 scission by the ESCRT-III complex. <i>Nature</i> 2009, <i>458</i>, 172-177, doi:10.1038/nature07836. Richter, C.M.; West, M.; Odorizzi, G. Doa4 function in ILV budding is restricted through its interaction with the Vps20 subunit of ESCRT-III. <i>Journal of cell science</i> 2013, <i>126</i>, 1881-1890, doi:10.1242/jcs.122499. Mukubou, H.; Tsujimura, T.; Sasaki, R.; Ku, Y. The role of autophagy in the treatment of pancreatic cancer with gemcitabine and ionizing radiation. <i>Int J Oncol</i> 2010, <i>37</i>, 821-828. Hashimoto, D.; Blauer, M.; Hirota, M.; Ikonen, N.H.; Sand, J.; Laukkarinen, J. Autophagy is needed for the growth of pancreatic adenocarcinoma and has a cytoprotective effect against anticancer drugs. <i>Eur J Cancer</i> 2014, <i>50</i>, 1382-1390, doi:10.1016/j.ejca.2014.01011. Chen, M.; He, M.; Song, Y.; Chen, L.; Xiao, P.; Wan, X.; Dai, F.; Shen, P. The cytoprotective role of gemcitabine-induced autophagy associated with apoptosis inhibition in triple-negative MDA-MB-231 breast cancer cells. <i>Int J Mol Med</i> 2014, <i>34</i>, 276-282, doi:10.3892/jimm.2014.1772. Beilharz, T.H.; Harrison, P.F.; Miles, D.M.; See, M.M.; Le, U.M.; Kalanon, M.; Curtis, M.J.; Hasan, Q.; Saksouk, J.; Margaritis, T., et al. Coordination of Cell Cycle Progression and Mitotic Spindle Assembly Involves Histone H3 Lysine 4 Methylation by Set1/COMPASS. <i>cenetics</i> 2017, <i>205</i>, 185-199, doi:10.1534/genetics.116.194852. Silatifard, A. The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. <i>Annu Rev Biochem</i> 2012, <i>81</i>, 65-95, doi:10.1146/annurev-biochem-051710-134100. Greer, E.L.; Shi, Y. Histone methylation: a dynamic mark in health, disease and inheritance. <i>Nat Rev Genet</i> 2012, <i>13</i>, 343-357, doi:10.1038/nrg3173. Dehe, P.M.; Dichtl, B.; Schaft, D.; Roguey, A.; Pamblanco, M.; Lebrun, R.; Rodriguez-Gil, A.; Mkandawire, M.; Landsberg, K., Shevchenko, A., et al. Protein interactions within the Set1 complex	2022	222	Mallast T. Munday C. Linging att Calculate I. Hunday I.H. Marsherer a
 doi:10.1038/nature07836. Richter, C.M.; West, M.; Odorizzi, G. Doa4 function in ILV budding is restricted through its interaction with the Vps20 subunit of ESCRT-III. <i>Journal of cell science</i> 2013, <i>126</i>, 1881-1890, doi:10.1242/jcs.122499. Mukubou, H.; Tsujimura, T.; Sasaki, R.; Ku, Y. The role of autophagy in the treatment of pancreatic cancer with gemcitabine and ionizing radiation. <i>Int J Oncol</i> 2010, <i>37</i>, 821-828. Hashimoto, D.; Blauer, M.; Hirota, M.; Ikonen, N.H.; Sand, J.; Laukkarinen, J. Autophagy is needed for the growth of pancreatic adenocarcinoma and has a cytoprotective effect against anticancer drugs. <i>Eur J Cancer</i> 2014, <i>50</i>, 1382-1390, doi:10.1016/j.ejca.2014.01.011. Chen, M.; He, M.; Song, Y.; Chen, L.; Xiao, P.; Wan, X.; Dai, F.; Shen, P. The cytoprotective role of gemcitabine-induced autophagy associated with apoptosis inhibition in triple-negative MDA-MB-231 breast cancer cells. <i>Int J Mol Med</i> 2014, <i>34</i>, 276-282, doi:10.3892/ijmm.2014.1772. Beilharz, T.H.; Harrison, P.F.; Miles, D.M.; See, M.M.; Le, U.M.; Kalanon, M.; Curtis, M.J.; Hasan, Q.; Saksouk, J.; Margaritis, T., et al. Coordination of Cell Cycle Progression and Mitotic Spindle Assembly Involves Histone H3 Lysine 4 Methylation by Set1/COMPASS. <i>Genetics</i> 2017, <i>205</i>, 185-199, doi:10.1534/genetics.116.194852. Miller, T.; Krogan, N.J.; Dover, J.; Erdjument-Bromage, H.; Tempst, P.; Johnston, M.; Greenblatt, J.F.; Shilatifard, A. COMPASS a complex of proteins associated with a trithorax-related SET domain protein. <i>Proceedings of the National Academy of Sciences of the United States of America</i> 2001, <i>98</i>, 12902-12907, doi:10.1073/pnas.231473398. Shilatifard, A. The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. <i>Annu Rev Biochem</i> 2012, <i>81</i>, 65-95, doi:10.1146/annurev-biochem-051710-133100. Greer, E.L.; Shi, Y. Histone methylation: a dynamic mark in health	 doi:10.1038/nature07836. 223. Richter, C.M.; West, M.; Odorizzi, G. Doa4 function in ILV budding is restricted through its interaction with the Vps20 subunit of ESCRT-III. <i>Journal of cell science</i> 2013, <i>126</i>, 1881-1890, doi:10.1242/jcs.122499. 224. Mukubou, H.; Tsujimura, T.; Sasaki, R.; Ku, Y. The role of autophagy in the treatment of pancreatic cancer with gemcitabine and ionizing radiation. <i>Int J Oncol</i> 2010, <i>37</i>, 821-828. 224. Hashimoto, D.; Blauer, M.; Hirota, M.; Ikonen, N.H.; Sand, J.; Laukkarinen, J. Autophagy is needed for the growth of pancreatic adenocarcinoma and has a cytoprotective effect against anticancer drugs. <i>Eur J Cancer</i> 2014, <i>50</i>, 1382-1390, doi:10.1016/j.ejca.2014.01.011. 224. Chen, M.; He, M.; Song, Y.; Chen, L.; Xiao, P.; Wan, X.; Dai, F.; Shen, P. The cytoprotective role of gemcitabine-induced autophagy associated with apoptosis inhibition in triple-negative MDA-MB-231 breast cancer cells. <i>Int J Mol Med</i> 2014, <i>34</i>, 276-282, doi:10.3892/jimm.2014.1772. 227. Beilharz, T.H.; Harrison, P.F.; Miles, D.M.; See, M.M.; Le, U.M.; Kalanon, M.; Curtis, M.J.; Hasan, Q.; Saksouk, J.; Margaritis, T., et al. Coordination of Cell Cycle Progression and Mitotic Spinlel Assembly Involves Histone H3 Lysine 4 Methylation by Set1/COMPASS. <i>Genetics</i> 2017, <i>205</i>, 185-199, doi:10.1534/genetics.116.194652. 228. Miller, T.; Krogan, N.J.; Dover, J.; Erdjument-Bromage, H.; Tempst, P.; Johnston, M.; Greenblatt, J.F.; Shilatifard, A. COMPASS: a complex of proteins associated with a trithorax-related SET domain protein. <i>Proceedings of the National Academy of Sciences of the United States of America</i> 2001, <i>98</i>, 12902-12907, doi:10.1073/pnas.231473398. 229. Shilatifard, A. The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. <i>Annu Rev Biochem</i> 2012, <i>81</i>, 65-95, doi:10.1146/annurev-biochem-051710-134100. 230. Greer, E.L.; Shi, Y. Hist	2032	222.	Wollert, T.; Wunder, C.; Lippincott-Schwartz, J.; Hurley, J.H. Membrane
 223. Richter, C.M.; West, M.; Odorizzi, G. Doa4 function in ILV budding is restricted through its interaction with the Vps20 subunit of ESCRT-III. <i>Journal of cell</i> <i>science</i> 2013, <i>126</i>, 1881-1890, doi:10.1242/jcs.122499. 224. Mukubou, H.; Tsujimura, T.; Sasaki, R.; Ku, Y. The role of autophagy in the treatment of pancreatic cancer with gemcitabine and ionizing radiation. <i>Int J</i> <i>Oncol</i> 2010, <i>37</i>, 821-828. 225. Hashimoto, D.; Blauer, M.; Hirota, M.; Ikonen, N.H.; Sand, J.; Laukkarinen, J. Autophagy is needed for the growth of pancreatic adenocarcinoma and has a cytoprotective effect against anticancer drugs. <i>Eur J Cancer</i> 2014, <i>50</i>, 1382- 1390, doi:10.1016/j.ejca.2014.01.011. 226. Chen, M.; He, M.; Song, Y.; Chen, L.; Xiao, P.; Wan, X.; Dai, F.; Shen, P. The cytoprotective role of gemcitabine-induced autophagy associated with apoptosis inhibition in triple-negative MDA-ME-231 breast cancer cells. <i>Int J Mol Med</i> 2014, <i>34</i>, 276-282, doi:10.3892/ijmm.2014.1772. 227. Beilharz, T.H.; Harrison, P.F.; Miles, D.M.; See, M.M.; Le, U.M.; Kalanon, M.; Curtis, M.J.; Hasan, Q.; Saksouk, J.; Margaritis, T., et al. Coordination of Cell Cycle Progression and Mitotic Spindle Assembly Involves Histone H3 Lysine 4 Methylation by Set1/COMPASS. <i>Genetics</i> 2017, <i>205</i>, 185-199, doi:10.1534/genetics.116.194852. 228. Miller, T.; Krogan, N.J.; Dover, J.; Erdjument-Bromage, H.; Tempst, P.; Johnston, M.; Greenblatt, J.F.; Shilatifard, A. COMPASS: a complex of proteins associated with a trithorax-related SET domain protein. <i>Proceedings of the</i> <i>National Academy of Sciences of the United States of America</i> 2001, <i>98</i>, 12902- 12907, doi:10.1073/pnas.231473398. 229. Shilatifard, A. The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. <i>Annu Rev Biochem</i> 2012, <i>81</i>, 65-95, doi:10.1146/annurev-biochem-051710-134100. 230. Greer, E.L.; Shi, Y. Histone methylation: a dynamic mar	 223. Richter, C.M.; West, M.; Odorizzi, G. Doa4 function in ILV budding is restricted through its interaction with the Vps20 subunit of ESCRT-III. <i>Journal of cell science</i> 2013, <i>126</i>, 1881-1890, doi:10.1242/jcs.122499. 224. Mukubou, H.; Tsujimura, T.; Sasaki, R.; Ku, Y. The role of autophagy in the treatment of pancreatic cancer with gemcitabine and ionizing radiation. <i>Int J Oncol</i> 2010, <i>37</i>, 821-828. 225. Hashimoto, D.; Blauer, M.; Hirota, M.; Ikonen, N.H.; Sand, J.; Laukkarinen, J. Autophagy is needed for the growth of pancreatic adenocarcinoma and has a cytoprotective effect against anticancer drugs. <i>Eur J Cancer</i> 2014, <i>50</i>, 1382-1390, doi:10.1016/j.ejca.2014.01.011. 226. Chen, M.; He, M.; Song, Y.; Chen, L.; Xiao, P.; Wan, X.; Dai, F.; Shen, P. The cytoprotective role of gencitabine-induced autophagy associated with apoptosis inhibition in triple-negative MDA-MB-231 breast cancer cells. <i>Int J Mol Med</i> 2014, <i>34</i>, 276-282, doi:10.3992/ijmm.2014.1772. 227. Beilharz, T.H.; Harrison, P.F.; Miles, D.M.; See, M.M.; Le, U.M.; Kalanon, M.; Curtis, M.; Hasan, G.; Saksouk, J.; Margaritis, T., et al. Coordination of Cell Cycle Progression and Mitotic Spindle Assembly Involves Histone H3 Lysine 4 Methylation by Set1/COMPASS. <i>Genetics</i> 2017, <i>205</i>, 185-199, doi:10.1034/genetics.116.194852. 228. Miller, T.; Krogan, N.J.; Dover, J.; Erdjument-Bromage, H.; Tempst, P.; Johnston, M.; Greenblatt, J.F.; Shilatifard, A. COMPASS: a complex of proteins associated with a trithorax-related SET domain protein. <i>Proceedings of the National Academy of Sciences of the United States of America</i> 2001, <i>98</i>, 12902-12907, doi:10.1073/pnas.231473398. 229. Shilatifard, A. The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. <i>Annu Rev Biochem</i> 2012, <i>81</i>, 65-95, doi:10.1146/annurev-biochem-051710-134100. 230. Greer, E.L; Shi, Y. Histone methylation: a dynamic mark in health			
 through its interaction with the Vps20 subunit of ESCRT-III. Journal of cell science 2013, 126, 1881-1890, doi:10.1242/jcs.122499. Mukubou, H.; Tsujimura, T.; Sasaki, R.; Ku, Y. The role of autophagy in the treatment of pancreatic cancer with gemcitabine and ionizing radiation. Int J Oncol 2010, 37, 821-828. 225. Hashimoto, D.; Blauer, M.; Hirota, M.; Ikonen, N.H.; Sand, J.; Laukkarinen, J. Autophagy is needed for the growth of pancreatic adenocarcinoma and has a cytoprotective effect against anticancer drugs. Eur J Cancer 2014, 50, 1382-1390, doi:10.1016/j.ejca.2014.01.011. 226. Chen, M.; He, M.; Song, Y.; Chen, L.; Xiao, P.; Wan, X.; Dai, F.; Shen, P. The cytoprotective role of gemcitabine-induced autophagy associated with apoptosis inhibition in triple-negative MDA-MB-231 breast cancer cells. Int J Mol Med 2014, 34, 276-282, doi:10.3892/ijmm.2014.1772. 227. Beilharz, T.H.; Harrison, P.F.; Miles, D.M.; See, M.M.; Le, U.M.; Kalanon, M.; Curtis, M.J.; Hasan, Q.; Saksouk, J.; Margaritis, T., et al. Coordination of Cell Cycle Progression and Mitotic Spindle Assembly Involves Histone H3 Lysine 4 Methylation by Set1/COMPASS. Genetics 2017, 205, 185-199, doi:10.1534/genetics.116.194852. 228. Miller, T.; Krogan, N.J.; Dover, J.; Erdjument-Bromage, H.; Tempst, P.; Johnston, M.; Greenblatt, J.F.; Shilatifard, A. COMPASS: a complex of proteins associated with a trithorax-related SET domain protein. Proceedings of the National Academy of Sciences of the United States of America 2001, 98, 12902-12907, doi:10.1073/pnas.231473398. 229. Shilatifard, A. The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. Annu Rev Biochem 2012, 81, 65-95, doi:10.1146/annurev-biochem-051710-134100. 230. Greer, E.L.; Shi, Y. Histone methylation: a dynamic carki in health, disease and inheritance. Nat Rev Genet 2012, 13, 343-357, doi:10.1038/nrg3173. 231. Dehe, P.M.; Dich	 through its interaction with the Vps20 subunit of ESCRT-III. Journal of cell science 2013, 126, 1881-1890, doi:10.1242/jcs.122499. Wukubou, H., Tsujimura, T., Saaki, R.; Ku, Y. The role of autophagy in the treatment of pancreatic cancer with gemcitabine and ionizing radiation. Int J Oncol 2010, 37, 821-828. Hashimoto, D.; Blauer, M.; Hirota, M.; Ikonen, N.H.; Sand, J.; Laukkarinen, J. Autophagy is needed for the growth of pancreatic adenocarcinoma and has a cytoprotective effect against anticancer drugs. Eur J Cancer 2014, 50, 1382-1390, doi:10.1016/j.jeca.2014.01.011. Chen, M.; He, M.; Song, Y.; Chen, L.; Xiao, P.; Wan, X.; Dai, F.; Shen, P. The cytoprotective role of gemcitabine-induced autophagy associated with apoptosis inhibition in triple-negative MDA-MB-231 breast cancer cells. Int J Mol Med 2014, 34, 276-282, doi:10.3892/ijmm.2014.1772. Beilharz, T.H.; Harrison, P.F.; Miles, D.M.; See, M.M.; Le, U.M.; Kalanon, M.; Curtis, M.J.; Hasan, Q.; Saksouk, J.; Margaritis, T., et al. Coordination of Cell Cycle Progression and Mitotic Spindle Assembly Involves Histone H3 Lysine 4 Methylation by Set1/COMPASS. Genetics 2017, 205, 185-199, doi:10.1534/genetics.116.194852. Miller, T.; Krogan, N.J.; Dover, J.; Erdjument-Bromage, H.; Tempst, P.; Johnston, M.; Greenblatt, J.F.; Shilatifard, A. COMPASS: a complex of proteins associated with a trithorax-related SET domain protein. Proceedings of the National Academy of Sciences of the United States of America 2001, 98, 12902-12907, doi:10.1073/pnas.231473398. Shilatifard, A. The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. Annu Rev Biochem 2012, 81, 65-95, doi:10.1146/annurev-biochem-051710-134100. Greer, E.L.; Shi, Y. Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet 2012, 13, 343-357, doi:10.1038/nrg3173. Dehe, P.M.; Dichtl, B.; Schaft, D.; Roguev, A.; Pambl		222	
 science 2013, 126, 1881-1890, doi:10.1242/jcs.122499. science 2013, 126, 1881-1890, doi:10.1242/jcs.122499. 224. Mukubou, H.; Tsujimura, T.; Sasaki, R.; Ku, Y. The role of autophagy in the treatment of pancreatic cancer with gemcitabine and ionizing radiation. Int J Oncol 2010, 37, 821-828. 225. Hashimoto, D.; Blauer, M.; Hirota, M.; Ikonen, N.H.; Sand, J.; Laukkarinen, J. Autophagy is needed for the growth of pancreatic adenocarcinoma and has a cytoprotective effect against anticancer drugs. Eur J Cancer 2014, 50, 1382-1390, doi:10.1016/j.ejca.2014.01.011. 226. Chen, M.; He, M.; Song, Y.; Chen, L.; Xiao, P.; Wan, X.; Dai, F.; Shen, P. The cytoprotective role of gemcitabine-induced autophagy associated with apoptosis inhibition in triple-negative MDA-MB-231 breast cancer cells. Int J Mol Med 2014, 34, 276-282, doi:10.3892/ijmm.2014.1772. 227. Beilharz, T.H.; Harrison, P.F.; Miles, D.M.; See, M.M.; Le, U.M.; Kalanon, M.; Curtis, M.J.; Hasan, Q.; Saksouk, J.; Margaritis, T., et al. Coordination of Cell Cycle Progression and Mitotic Spindle Assembly Involves Histone H3 Lysine 4 Methylation by Set1/COMPASS. Genetics 2017, 205, 185-199, doi:10.1534/genetics.116.194852. 228. Miller, T.; Krogan, N.J.; Dover, J.; Erdjument-Bromage, H.; Tempst, P.; Johnston, M.; Greenblatt, J.F.; Shilatifard, A. COMPASS: a complex of proteins associated with a trithorax-related SET domain protein. Proceedings of the National Academy of Sciences of the United States of America 2001, 98, 12902-12907, doi:10.1073/pnas.231473398. 229. Shilatifard, A. The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. Annu Rev Biochem 2012, 21, 21, 65-95, doi:10.1146/annurev-biochem-051710-134100. 230. Greer, E.L.; Shi, Y. Histone methylation: A dynamic mark in health, disease and inheritance. Nat Rev Genet 2012, 13, 343-357, doi:10.1038/nrg3173. 244. Shiatifard, A. The	 science 2013, 126, 1881-1890, doi:10.1242/jcs.122499. science 2013, 126, 1881-1890, doi:10.1242/jcs.122499. 224. Mukubou, H.; Tsujimura, T.; Sasaki, R.; Ku, Y. The role of autophagy in the treatment of pancreatic cancer with gemcitabine and ionizing radiation. Int J Oncol 2010, 37, 821-828. 225. Hashimoto, D.; Blauer, M.; Hirota, M.; Ikonen, N.H.; Sand, J.; Laukkarinen, J. Autophagy is needed for the growth of pancreatic adenocarcinoma and has a cytoprotective effect against anticancer drugs. Eur J Cancer 2014, 50, 1382-1390, doi:10.1016/j.ejca.2014.01.011. 226. Chen, M.; He, M.; Song, Y.; Chen, L.; Xiao, P.; Wan, X.; Dai, F.; Shen, P. The cytoprotective role of gemcitabine-induced autophagy associated with apoptosis inhibition in triple-negative MDA-MB-231 breast cancer cells. Int J Mol Med 2014, 34, 276-282, doi:10.3892/jijmm.2014.1772. 227. Beilharz, T.H.; Harrison, P.F.; Miles, D.M.; See, M.M.; Le, U.M.; Kalanon, M.; Curtis, M.J.; Hasan, Q.; Saksouk, J.; Margaritis, T., et al. Coordination of Cell Cycle Progression and Mitotic Spindle Assembly Involves Histone H3 Lysine 4 Methylation by Set1/COMPASS. Genetics 2017, 205, 185-199, doi:10.1534/genetics.116.194852. 228. Miller, T.; Krogan, N.J.; Dover, J.; Erdjument-Bromage, H.; Tempst, P.; Johnston, M.; Greenblatt, J.F.; Shilatifard, A. COMPASS: a complex of proteins associated with a trithorax-related SET domain protein. Proceedings of the National Academy of Sciences of the United States of America 2001, 98, 12902-12907, doi:10.1073/pnas.231473398. 229. Shilatifard, A. The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. Annu Rev Biochem 2061 2012, 81, 65-95, doi:10.1146/annurev-biochem-051710-134100. 230. Greer, E.L.; Shi, Y. Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet 2012, 13, 343-357, doi:10.1038/nrg3173. 244. 241. Dehe, P.M.;		223.	S S S S S S S S S S S S S S S S S S S
 224. Mukubou, H.; Tsujimura, T.; Sasaki, R.; Ku, Y. The role of autophagy in the treatment of pancreatic cancer with gemcitabine and ionizing radiation. <i>Int J Oncol</i> 2010, <i>37</i>, 821-828. 225. Hashimoto, D.; Blauer, M.; Hirota, M.; Ikonen, N.H.; Sand, J.; Laukkarinen, J. Autophagy is needed for the growth of pancreatic adenocarcinoma and has a cytoprotective effect against anticancer drugs. <i>Eur J Cancer</i> 2014, <i>50</i>, 1382-1390, doi:10.1016/j.ejca.2014.01.011 226. Chen, M.; He, M.; Song, Y.; Chen, L.; Xiao, P.; Wan, X.; Dai, F.; Shen, P. The cytoprotective role of gemcitabine-induced autophagy associated with apoptosis inhibition in triple-negative MDA-MB-231 breast cancer cells. <i>Int J Mol Med</i> 2014, <i>34</i>, 276-282, doi:10.3892/ijmm.2014.1772. 227. Beilharz, T.H.; Harrison, P.F.; Miles, D.M.; See, M.M.; Le, U.M.; Kalanon, M.; Curtis, M.J.; Hasan, Q.; Saksouk, J.; Margaritis, T., et al. Coordination of Cell Cycle Progression and Mitotic Spindle Assembly Involves Histone H3 Lysine 4 Methylation by Set1/COMPASS. <i>Genetics</i> 2017, <i>205</i>, 185-199, doi:10.1534/genetics.116.194852. 228. Miller, T.; Krogan, N.J.; Dover, J.; Erdjument-Bromage, H.; Tempst, P.; Johnston, M.; Greenblatt, J.F.; Shilatifard, A. COMPASS: a complex of proteins associated with a trithorax-related SET domain protein. <i>Proceedings of the National Academy of Sciences of the United States of America</i> 2001, <i>98</i>, 12902-12907, doi:10.1073/pnas.231473398. 229. Shilatifard, A. The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. <i>Annu Rev Biochem</i> 2012, <i>81</i>, 65-95, doi:10.1146/annurev-biochem-051710-134100. 230. Greer, E.L.; Shi, Y. Histone methylation: a dynamic mark in health, disease and inheritance. <i>Nat Rev Genet</i> 2012, <i>13</i>, 343-357, doi:10.1038/nrg3173. 244. Shi Atting A. The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. <i>Annu Rev Biochem</i> 2012, <i>81</i>, 6	 224. Mukubou, H.; Tsujimura, T.; Sasaki, R.; Ku, Y. The role of autophagy in the treatment of pancreatic cancer with gemcitabine and ionizing radiation. <i>Int J Oncol</i> 2010, <i>37</i>, 821-828. 225. Hashimoto, D.; Blauer, M.; Hirota, M.; Ikonen, N.H.; Sand, J.; Laukkarinen, J. Autophagy is needed for the growth of pancreatic adenocarcinoma and has a cytoprotective effect against anticancer drugs. <i>Eur J Cancer</i> 2014, <i>50</i>, 1382-1390, doi:10.1016/j.ejca.2014.01.011. 226. Chen, M.; He, M.; Song, Y.; Chen, L.; Xiao, P.; Wan, X.; Dai, F.; Shen, P. The cytoprotective role of gemcitabine-induced autophagy associated with apoptosis inhibition in triple-negative MDA-MB-231 breast cancer cells. <i>Int J Mol Med</i> 2014, <i>34</i>, 276-282, doi:10.3892/jimm.2014.1772. 227. Beilharz, T.H.; Harrison, P.F.; Miles, D.M.; See, M.M.; Le, U.M.; Kalanon, M.; Curtis, M.J.; Hasan, Q.; Saksouk, J.; Margaritis, T., et al. Coordination of Cell Cycle Progression and Mitotic Spindle Assembly Involves Histone H3 Lysine 4 Methylation by Set1/COMPASS. <i>Genetics</i> 2017, <i>205</i>, 185-199, doi:10.1534/genetics.116.194852. 228. Miller, T.; Krogan, N.J.; Dover, J.; Erdjument-Bromage, H.; Tempst, P.; Johnston, M.; Greenblatt, J.F.; Shilatifard, A. COMPASS: a complex of proteins associated with a trithorax-related SET domain protein. <i>Proceedings of the National Academy of Sciences of the United States of America</i> 2001, <i>98</i>, 12902-12907, doi:10.1073/pnas.231473398. 229. Shilatifard, A. The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. <i>Annu Rev Biochem</i> 2012, <i>81</i>, 65-95, doi:10.1146/annurev-biochem-051710-134100. 230. Greer, E.L; Shi, Y. Histone methylation: a dynamic mark in health, disease and inheritance. <i>Nat Rev Genet</i> 2012, <i>81</i>, 343-357, doi:10.1038/nrg3173. 231. Dehe, P.M.; Dichtl, B.; Schaft, D.; Roguev, A.; Pamblanco, M.; Lebrun, R.; Rodriguez-Gil, A.; Mkandawire, M.; LandSherg, K.; Shev			
 treatment of pancreatic cancer with gemcitabine and ionizing radiation. Int J Oncol 2010, 37, 821-828. 225. Hashimoto, D.; Blauer, M.; Hirota, M.; Ikonen, N.H.; Sand, J.; Laukkarinen, J. Autophagy is needed for the growth of pancreatic adenocarcinoma and has a cytoprotective effect against anticancer drugs. Eur J Cancer 2014, 50, 1382- 1390, doi:10.1016/j.ejca.2014.01.011. 226. Chen, M.; He, M.; Song, Y.; Chen, L.; Xiao, P.; Wan, X.; Dai, F.; Shen, P. The cytoprotective role of gemcitabine-induced autophagy associated with apoptosis inhibition in triple-negative MDA-MB-231 breast cancer cells. Int J Mol Med 2014, 34, 276-282, doi:10.3892/ijmm.2014.1772. 227. Beilharz, T.H.; Harrison, P.F.; Miles, D.M.; See, M.M.; Le, U.M.; Kalanon, M.; Curtis, M.J.; Hasan, Q.; Saksouk, J.; Margaritis, T., et al. Coordination of Cell Cycle Progression and Mitotic Spindle Assembly Involves Histone H3 Lysine 4 Methylation by Set1/COMPASS. Genetics 2017, 205, 185-199, doi:10.1534/genetics.116.194852. 228. Miller, T.; Krogan, N.J; Dover, J.; Erdjument-Bromage, H.; Tempst, P.; Johnston, M.; Greenblatt, J.F.; Shilatifard, A. COMPASS: a complex of proteins associated with a trithorax-related SET domain protein. Proceedings of the National Academy of Sciences of the United States of America 2001, 98, 12902- 12907, doi:10.1073/pnas.231473398. 229. Shilatifard, A. The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. Annu Rev Biochem 2012, 81, 65-95, doi:10.1146/annurev-biochem-051710-134100. 230. Greer, E.L.; Shi, Y. Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet 2012, 13, 343-357, doi:10.1038/nrg3173. 231. Dehe, P.M.; Dichtl, B.; Schaft, D.; Reguev, A.; Pamblanco, M.; Lebrun, R.; Rodriguez-Gil, A.; Mkandawire, M.; Landsberg, K.; Shevchenko, A., et al. Protein interactions within the Set1 complex and their roles in the regulation of histone 3 lysine 4 methylation. J Biol	 treatment of pancreatic cancer with gemcitabine and ionizing radiation. Int J Oncol 2010, 37, 821-828. Hashimoto, D.; Blauer, M.; Hirota, M.; Ikonen, N.H.; Sand, J.; Laukkarinen, J. Autophagy is needed for the growth of pancreatic adenocarcinoma and has a cytoprotective effect against anticancer drugs. Eur J Cancer 2014, 50, 1382- 1390, doi:10.1016/j.ejca.2014.01.011. Chen, M.; He, M.; Song, Y.; Chen, L.; Xiao, P.; Wan, X.; Dai, F.; Shen, P. The cytoprotective role of gemcitabine-induced autophagy associated with apoptosis inhibition in triple-negative MDA-MB-231 breast cancer cells. Int J Mol Med 2014, 34, 276-282, doi:10.3892/jimm.2014.1772. Beilharz, T.H.; Harrison, P.F.; Miles, D.M.; See, M.M.; Le, U.M.; Kalanon, M.; Curtis, M.J.; Hasan, Q.; Saksouk, J.; Margaritis, T., et al. Coordination of Cell Cycle Progression and Mitotic Spindle Assembly Involves Histone H3 Lysine 4 Methylation by Set1/COMPASS. Genetics 2017, 205, 185-199, doi:10.1534/genetics.116.194852. Killer, T.; Krogan, N.J.; Dover, J.; Erdjument-Bromage, H.; Tempst, P.; Johnston, M.; Greenblatt, J.F.; Shilatifard, A. COMPASS: a complex of proteins associated with a trithorax-related SET domain protein. Proceedings of the National Academy of Sciences of the United States of America 2001, 98, 12902- 12907, doi:10.1073/pnas.231473398. Shilatifard, A. The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. Annu Rev Biochem 2012, 81, 65-95, doi:10.1146/annurev-biochem-051710-134100. Greer, E.L.; Shi, Y. Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet 2012, 13, 343-357, doi:10.1038/nrg3173. Dehe, P.M.; Dichtl, B.; Schaft, D.; Roguey, A.; Pamblanco, M.; Lebrun, R.; Rodriguez-Gil, A.; Mkandawire, M.; Landsberg, K.; Shevchenko, A., et al. Protein interactions within the Set1 complex and their roles in the regulation of histone 3 lysine 4 methylat		224	
 Oncol 2010, 37, 821-828. Hashimoto, D.; Blauer, M.; Hirota, M.; Ikonen, N.H.; Sand, J.; Laukkarinen, J. Autophagy is needed for the growth of pancreatic adenocarcinoma and has a cytoprotective effect against anticancer drugs. <i>Eur J Cancer</i> 2014, <i>50</i>, 1382-1390, doi:10.1016/j.ejca.2014.01.011. Chen, M.; He, M.; Song, Y.; Chen, L.; Xiao, P.; Wan, X.; Dai, F.; Shen, P. The cytoprotective role of gemcitabine-induced autophagy associated with apoptosis inhibition in triple-negative MDA-MB-231 breast cancer cells. <i>Int J Mol Med</i> 2014, <i>34</i>, 276-282, doi:10.3892/jimm.2014.1772. Beilharz, T.H.; Harrison, P.F.; Miles, D.M.; See, M.M.; Le, U.M.; Kalanon, M.; Curtis, M.J; Hasan, Q.; Saksouk, J.; Margaritis, T., et al. Coordination of Cell Cycle Progression and Mitoti Spindle Assembly Involves Histone H3 Lysine 4 Methylation by Set1/COMPASS. <i>Genetics</i> 2017, <i>205</i>, 185-199, doi:10.1534/genetics.116.194852. Killer, T.; Krogan, N.J.; Dover, J.; Erdjument-Bromage, H.; Tempst, P.; Johnston, M.; Greenblatt, J.F.; Shilatifard, A. COMPASS: a complex of proteins associated with a trithorax-related SET domain protein. <i>Proceedings of the National Academy of Sciences of the United States of America</i> 2001, <i>98</i>, 12902-12907, doi:10.1073/pnas.231473398. Shilatifard, A. The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. <i>Annu Rev Biochem</i> 2012, <i>81</i>, 65-95, doi:10.1146/annurev-biochem-051710-134100. Greer, E.L.; Shi, Y. Histone methylation: a dynamic mark in health, disease and inheritance. <i>Nat Rev Genet</i> 2012, <i>13</i>, 343-357, doi:10.1038/nrg3173. Dehe, P.M.; Dichtl, B.; Schaft, D.; Roguev, A.; Pamblanco, M.; Lebrun, R.; Rodriguez-Gil, A.; Mkandawire, M.; Landsberg, K.; Shevchenko, A., et al. Protein interactions within the Set1 complex and their roles in the regulation of histone 3 lysine 4 methylation. <i>J Biol Chem</i> 2006, <i>281</i>, 35404-35412, doi:10.1074/j	 Oncol 2010, 37, 821-828. 2041 225. Hashimoto, D.; Blauer, M.; Hirota, M.; Ikonen, N.H.; Sand, J.; Laukkarinen, J. Autophagy is needed for the growth of pancreatic adenocarcinoma and has a cytoprotective effect against anticancer drugs. <i>Eur J Cancer</i> 2014, <i>50</i>, 1382- 1390, doi:10.1016/j.ejca.2014.01.011. 226. Chen, M.; He, M.; Song, Y.; Chen, L.; Xiao, P.; Wan, X.; Dai, F.; Shen, P. The cytoprotective role of gemcitabine-induced autophagy associated with apoptosis inhibition in triple-negative MDA-MB-231 breast cancer cells. <i>Int J Mol Med</i> 2014, <i>34</i>, 276-282, doi:10.3892/ijmm.2014.1772. 227. Beilharz, T.H.; Harrison, P.F.; Miles, D.M.; See, M.M.; Le, U.M.; Kalanon, M.; Curtis, M.J.; Hasan, Q.; Saksouk, J.; Margaritis, T., et al. Coordination of Cell Cycle Progression and Mitotic Spindle Assembly Involves Histone H3 Lysine 4 Methylation by Set1/COMPASS. <i>Genetics</i> 2017, <i>205</i>, 185-199, doi:10.1534/genetics.116.194852. 228. Miller, T.; Krogan, N.J.; Dover, J.; Erdjument-Bromage, H.; Tempst, P.; Johnston, M.; Greenblatt, J.F.; Shilatifard, A. COMPASS: a complex of proteins associated with a trithorax-related SET domain protein. <i>Proceedings of the</i> <i>National Academy of Sciences of the United States of America</i> 2001, <i>98</i>, 12902- 12907, doi:10.1073/pnas.231473398. 229. Shilatifard, A. The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. <i>Annu Rev Biochem</i> 2012, <i>81</i>, 65-95, doi:10.1146/annurev-biochem-051710-134100. 230. Greer, E.L.; Shi, Y. Histone methylation: a dynamic mark in health, disease and inheritance. <i>Nat Rev Genet</i> 2012, <i>13</i>, 343-357, doi:10.1038/ng3173. 241. Dehe, P.M.; Dichtl, B.; Schaft, D.; Roguey, A.; Pamblanco, M.; Lebrun, R.; Rodriguez-Gil, A.; Mkandawire, M.; Landsberg, K.; Shevchenko, A., et al. Protein interactions within the Set1 complex and their roles in the regulation of histone 3 lysine 4 methylation. <i>J Biol </i>		224.	
 2041 225. Hashimoto, D.; Blauer, M.; Hirota, M.; Ikonen, N.H.; Sand, J.; Laukkarinen, J. Autophagy is needed for the growth of pancreatic adenocarcinoma and has a cytoprotective effect against anticancer drugs. <i>Eur J Cancer</i> 2014, <i>50</i>, 1382- 1390, doi:10.1016/j.ejca.2014.01.011. 226. Chen, M.; He, M.; Song, Y.; Chen, L.; Xiao, P.; Wan, X.; Dai, F.; Shen, P. The cytoprotective role of gemcitabine-induced autophagy associated with apoptosis inhibition in triple-negative MDA-MB-231 breast cancer cells. <i>Int J Mol Med</i> 2014, <i>34</i>, 276-282, doi:10.3892/ijmm.2014.1772. 227. Beilharz, T.H.; Harrison, P.F.; Miles, D.M.; See, M.M.; Le, U.M.; Kalanon, M.; Curtis, M.J.; Hasan, Q.; Saksouk, J.; Margaritis, T., et al. Coordination of Cell Cycle Progression and Mitotic Spindle Assembly Involves Histone H3 Lysine 4 Methylation by Set1/COMPASS. <i>Genetics</i> 2017, <i>205</i>, 185-199, doi:10.1534/genetics.116.194852. 228. Miller, T.; Krogan, N.J.; Dover, J.; Erdjument-Bromage, H.; Tempst, P.; Johnston, M.; Greenblatt, J.F.; Shilatifard, A. COMPASS: a complex of proteins associated with a trithorax-related SET domain protein. <i>Proceedings of the</i> <i>National Academy of Sciences of the United States of America</i> 2001, <i>98</i>, 12902- 12907, doi:10.1073/pnas.231473398. 229. Shilatifard, A. The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. <i>Annu Rev Biochem</i> 2012, <i>81</i>, 65-95, doi:10.1146/annurev-biochem-051710-134100. 230. Greer, E.L.; Shi, Y. Histone methylation: a dynamic mark in health, disease and inheritance. <i>Nat Rev Genet</i> 2012, <i>13</i>, 343-357, doi:10.1038/nrg3173. 241. Dehe, P.M.; Dichtl, B.; Schaft, D.; Roguev, A.; Pamblanco, M.; Lebrun, R.; Rodriguez-Gil, A.; Mkandawire, M.; Landsberg, K.; Shevchenko, A., et al. 255. Johnston a Jysine 4 methylation. <i>J Biol Chem</i> 2006, <i>281</i>, 35404-35412, doi:10.1074/jbc.M60309200. 232. Alvarado, A.G.; Thiagarajan, P.S.; Mulkearns-Hubert, E.E.; Silver, D.J.;	 2041 225. Hashimoto, D.; Blauer, M.; Hirota, M.; Ikonen, N.H.; Sand, J.; Laukkarinen, J. Autophagy is needed for the growth of pancreatic adenocarcinoma and has a cytoprotective effect against anticancer drugs. <i>Eur J Cancer</i> 2014, <i>50</i>, 1382- 1390, doi:10.1016/j.ejca.2014.01.011. 2045 226. Chen, M.; He, M.; Song, Y.; Chen, L.; Xiao, P.; Wan, X.; Dai, F.; Shen, P. The cytoprotective role of gemcitabine-induced autophagy associated with apoptosis inhibition in triple-negative MDA-MB-231 breast cancer cells. <i>Int J Mol Med</i> 2014, <i>34</i>, 276-282, doi:10.3892/ijnm.2014.1772. 2049 227. Beilharz, T.H.; Harrison, P.F.; Miles, D.M.; See, M.M.; Le, U.M.; Kalanon, M.; Curtis, M.J.; Hasan, Q.; Saksouk, J.; Margaritis, T., et al. Coordination of Cell Cycle Progression and Mitotic Spindle Assembly Involves Histone H3 Lysine 4 Methylation by Set1/COMPASS. <i>Genetics</i> 2017, <i>205</i>, 185-199, doi:10.1534/genetics.116.194852. 228. Miller, T.; Krogan, N.J. Dover, J.; Erdjument-Bromage, H.; Tempst, P.; Johnston, M.; Greenblatt, J.F.; Shilatifard, A. COMPASS: a complex of proteins associated with a trithorax-related SET domain protein. <i>Proceedings of the</i> <i>National Academy of Sciences of the United States of America</i> 2001, <i>98</i>, 12902- 12907, doi:10.1073/pnas.231473398. 229. Shilatifard, A. The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. <i>Annu Rev Biochem</i> 2012, <i>81</i>, 65-95, doi:10.1146/annurev-biochem-051710-134100. 230. Greer, E.L.; Shi, Y. Histone methylation: a dynamic mark in health, disease and inheritance. <i>Nat Rev Genet</i> 2012, <i>13</i>, 343-357, doi:10.1038/nrg3173. 2064 231. Dehe, P.M.; Dichtl, B.; Schaft, D.; Roguev, A.; Pamblanco, M.; Lebrun, R.; Rodriguez-Gil, A.; Mkandawire, M.; Landsberg, K.; Shevchenko, A., et al. 232. Alvarado, A.G.; Thiagarajan, P.S.; Mulkearns-Hubert, E.E.; Silver, D.J.; Hale, J.S.; Alb			
 Autophagy is needed for the growth of pancreatic adenocarcinoma and has a cytoprotective effect against anticancer drugs. <i>Eur J Cancer</i> 2014, <i>50</i>, 1382-1390, doi:10.1016/j.ejca.2014.01.011. Chen, M.; He, M.; Song, Y.; Chen, L.; Xiao, P.; Wan, X.; Dai, F.; Shen, P. The cytoprotective role of gemcitabine-induced autophagy associated with apoptosis inhibition in triple-negative MDA-MB-231 breast cancer cells. <i>Int J Mol Med</i> 2014, <i>34</i>, 276-282, doi:10.3892/ijmm.2014.1772. Beilharz, T.H.; Harrison, P.F.; Miles, D.M.; See, M.M.; Le, U.M.; Kalanon, M.; Curtis, M.j.; Hasan, Q.; Saksouk, J.; Margaritis, T., et al. Coordination of Cell Cycle Progression and Mitotic Spindle Assembly Involves Histone H3 Lysine 4 Methylation by Set1/COMPASS. <i>Coentics</i> 2017, <i>205</i>, 185-199, doi:10.1534/genetics.116.194852. Miller, T.; Krogan, N.J.; Dover, J.; Erdjument-Bromage, H.; Tempst, P.; Johnston, M.; Greenblatt, J.F.; Shilatifard, A. COMPASS: a complex of proteins associated with a trithorax-related SET domain protein. <i>Proceedings of the National Academy of Sciences of the United States of America</i> 2001, <i>98</i>, 12902-12907, doi:10.1073/pnas.231473398. Shilatifard, A. The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. <i>Annu Rev Biochem</i> 2012, <i>81</i>, 65-95, doi:10.1146/annurev-biochem-051710-134100. Greer, E.L.; Shi, Y. Histone methylation: a dynamic mark in health, disease and inheritance. <i>Nat Rev Genet</i> 2012, <i>13</i>, 343-357, doi:10.1038/nrg3173. Dehe, P.M.; Dichtl, B.; Schaft, D.; Roguey, A.; Pamblanco, M.; Lebrun, R.; Rodriguez-Gil, A.; Mkandawire, M.; Landsberg, K.; Shevchenko, A., et al. Protein interactions within the Set1 complex and their roles in the regulation of histone 3 lysine 4 methylation. <i>J Biol Chem</i> 2006, <i>281</i>, 35404-35412, doi:10.1074/jbc.M603099200. Alvarado, A.G.; Thiagarajan, P.S.; Mulkearns-Hubert, E.E.; Silver, D.J.; Hale, J.S.; Alban, T.J.; Tu	 Autophagy is needed for the growth of pancreatic adenocarcinoma and has a cytoprotective effect against anticancer drugs. <i>Eur J Cancer</i> 2014, <i>50</i>, 1382-1390, doi:10.1016/j.ejca.2014.01.011. Chen, M.; He, M.; Song, Y.; Chen, L.; Xiao, P.; Wan, X.; Dai, F.; Shen, P. The cytoprotective role of gemcitabine-induced autophagy associated with apoptosis inhibition in triple-negative MDA-MB-231 breast cancer cells. <i>Int J Mol Med</i> 2014, <i>34</i>, 276-282, doi:10.3892/ijmm.2014.1772. Beilharz, T.H.; Harrison, P.F.; Miles, D.M.; See, M.M.; Le, U.M.; Kalanon, M.; Curtis, M.J.; Haarn, Q.; Saksouk, J.; Margaritis, T., et al. Coordination of Cell Cycle Progression and Mitotic Spindle Assembly Involves Histone H3 Lysine 4 Methylation by Set1/COMPASS. <i>Genetics</i> 2017, <i>205</i>, 185-199, doi:10.1534/genetics.116.194852. Willer, T.; Krogan, N.J.; Dover, J.; Erdjument-Bromage, H.; Tempst, P.; Johnston, M.; Greenblatt, J.F.; Shilatifard, A. COMPASS: a complex of proteins associated with a trithorax-related SET domain protein. <i>Proceedings of the National Academy of Sciences of the United States of America</i> 2001, <i>98</i>, 12902-12907, doi:10.1073/pnas.231473398. Shilatifard, A. The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. <i>Annu Rev Biochem</i> 2012, <i>81</i>, 65-95, doi:10.1146/annurev-biochem-051710-134100. Greer, E.L.; Shi, Y. Histone methylation: a dynamic mark in health, disease and inheritance. <i>Nat Rev Genet</i> 2012, <i>13</i>, 343-357, doi:10.1038/nrg3173. Dehe, P.M.; Dichtl, B.; Schaft, D.; Roguey, A.; Pamblanco, M.; Lebrun, R.; Rodriguez-Gil, A.; Mkandawire, M.; Landsberg, K.; Shevchenko, A., et al. Protein interactions within the Set1 complex and their roles in the regulation of histone 3 lysine 4 methylation. <i>J Biol Chem</i> 2006, <i>281</i>, 35404-35412, doi:10.1074/jbc.M603099200. Alvarado, A.G.; Thiagarajan, P.S.; Mulkearns-Hubert, E.E.; Silver, D.J.; Hale, J.S.; Al		205	
 2043 cytoprotective effect against anticancer drugs. <i>Eur J Cancer</i> 2014, <i>50</i>, 1382- 1390, doi:10.1016/j.ejca.2014.01.011. 2045 226. Chen, M.; He, M.; Song, Y.; Chen, L.; Xiao, P.; Wan, X.; Dai, F.; Shen, P. The cytoprotective role of gemcitabine-induced autophagy associated with apoptosis inhibition in triple-negative MDA-MB-231 breast cancer cells. <i>Int J Mol Med</i> 2014, <i>34</i>, 276-282, doi:10.3892/ijmm.2014.1772. 2049 227. Beilharz, T.H.; Harrison, P.F.; Miles, D.M.; See, M.M.; Le, U.M.; Kalanon, M.; Curtis, M.J.; Hasan, Q.; Saksouk, J.; Margaritis, T., et al. Coordination of Cell Cycle Progression and Mitotic Spindle Assembly Involves Histone H3 Lysine 4 Methylation by Set1/COMPASS. <i>Genetics</i> 2017, <i>205</i>, 185-199, doi:10.1534/genetics.116.194852. 2054 228. Miller, T.; Krogan, N.J.; Dover, J.; Erdjument-Bromage, H.; Tempst, P.; Johnston, M.; Greenblatt, J.F.; Shilatifard, A. COMPASS: a complex of proteins associated with a trithorax-related SET domain protein. <i>Proceedings of the</i> <i>National Academy of Sciences of the United States of America</i> 2001, <i>98</i>, 12902- 12907, doi:10.1073/pnas.231473398. 2059 229. Shilatifard, A. The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. <i>Annu Rev Biochem</i> 2012, <i>81</i>, 65-95, doi:10.1146/annurev-biochem-051710-134100. 2052 2053 231. Dehe, P.M.; Dichtl, B.; Schaft, D.; Roguev, A.; Pamblanco, M.; Lebrun, R.; Rodriguez-Gil, A.; Mkandawire, M.; Landsberg, K.; Shevchenko, A., et al. Protein interactions within the Set1 complex and their roles in the regulation of histone 3 lysine 4 methylation. <i>J Biol Chem</i> 2006, <i>281</i>, 35404-35412, doi:10.1074/jbc.M603099200. 232. Alvarado, A.G.; Thiagarajan, P.S.; Mulkearns-Hubert, E.E.; Silver, D.J.; Hale, J.S.; Alban, T.J.; Turaga, S.M.; Jarrar, A.; Reizes, O.; Longworth, M.S., et al. 234. Gioblastoma Cancer Stem Cells Evade Innate Immune Suppression of Self- 	 cytoprotective effect against anticancer drugs. <i>Eur J Cancer</i> 2014, <i>50</i>, 1382- 1390, doi:10.1016/j.jejca.2014.01.011. Chen, M.; He, M.; Song, Y.; Chen, L.; Xiao, P.; Wan, X.; Dai, F.; Shen, P. The cytoprotective role of gemcitabine-induced autophagy associated with apoptosis inhibition in triple-negative MDA-MB-231 breast cancer cells. <i>Int J</i> <i>Mol Med</i> 2014, <i>34</i>, 276-282, doi:10.3892/ijmm.2014.1772. Beilharz, T.H.; Harrison, P.F.; Miles, D.M.; See, M.M.; Le, U.M.; Kalanon, M.; Curtis, M.J.; Hasan, Q.; Saksouk, J.; Margaritis, T., et al. Coordination of Cell Cycle Progression and Mitotic Spindle Assembly Involves Histone H3 Lysine 4 Methylation by Set1/COMPASS. <i>Genetics</i> 2017, <i>205</i>, 185-199, doi:10.1534/genetics.116.194852. 228. Miller, T.; Krogan, N.J.; Dover, J.; Erdjument-Bromage, H.; Tempst, P.; Johnston, M.; Greenblatt, J.F.; Shilatifard, A. COMPASS: a complex of proteins associated with a trithorax-related SET domain protein. <i>Proceedings of the</i> <i>National Academy of Sciences of the United States of America</i> 2001, <i>98</i>, 12902- 12907, doi:10.1073/pnas.231473398. Shilatifard, A. The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. <i>Annu Rev Biochem</i> 2061 2012, <i>81</i>, 65-95, doi:10.1146/annurev-biochem-051710-134100. Greer, E.L.; Shi, Y. Histone methylation: a dynamic mark in health, disease and inheritance. <i>Nat Rev Genet</i> 2012, <i>13</i>, 343-357, doi:10.1038/nrg3173. Dehe, P.M.; Dichtl, B.; Schaft, D.; Roguev, A.; Pamblanco, M.; Lebrun, R.; Rodriguez-Gil, A.; Mkandawire, M.; Landsberg, K.; Shevchenko, A., et al. Protein interactions within the Set1 complex and their roles in the regulation of histone 3 lysine 4 methylation. <i>J B</i>		225.	
 2044 1390, doi:10.1016/j.ejca.2014.01.011. 2045 226. Chen, M.; He, M.; Song, Y.; Chen, L.; Xiao, P.; Wan, X.; Dai, F.; Shen, P. The cytoprotective role of gemcitabine-induced autophagy associated with apoptosis inhibition in triple-negative MDA-MB-231 breast cancer cells. <i>Int J Mol Med</i> 2014, <i>34</i>, 276-282, doi:10.3892/ijmm.2014.1772. 2049 227. Beilharz, T.H.; Harrison, P.F.; Miles, D.M.; See, M.M.; Le, U.M.; Kalanon, M.; Curtis, M.J.; Hasan, Q.; Saksouk, J.; Margaritis, T., et al. Coordination of Cell Cycle Progression and Mitotic Spindle Assembly Involves Histone H3 Lysine 4 Methylation by Set1/COMPASS. <i>Genetics</i> 2017, <i>205</i>, 185-199, doi:10.1534/genetics.116.194852. 2054 228. Miller, T.; Krogan, N.J.; Dover, J.; Erdjument-Bromage, H.; Tempst, P.; Johnston, M.; Greenblatt, J.F.; Shilatifard, A. COMPASS: a complex of proteins associated with a trithorax-related SET domain protein. <i>Proceedings of the National Academy of Sciences of the United States of America</i> 2001, <i>98</i>, 12902-12907, doi:10.1073/pnas.231473398. 2059 229. Shilatifard, A. The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. <i>Annu Rev Biochem</i> 2012, <i>81</i>, 65-95, doi:10.1146/annurev-biochem-051710-134100. 230. Greer, E.L.; Shi, Y. Histone methylation: a dynamic mark in health, disease and inheritance. <i>Nat Rev Genet</i> 2012, <i>13</i>, 343-357, doi:10.1038/nrg3173. 2064 231. Dehe, P.M.; Dichtl, B.; Schaft, D.; Roguev, A.; Pamblanco, M.; Lebrun, R.; Rodriguez-Gil, A.; Mkandawire, M.; Landsberg, K.; Shevchenko, A., et al. Protein interactions within the Set1 complex and their roles in the regulation of histone 3 lysine 4 methylation. <i>J Biol Chem</i> 2006, <i>281</i>, 35404-35412, doi:10.1074/jbc.M603099200. 232. Alvarado, A.G.; Thiagarajan, P.S.; Mulkearns-Hubert, E.E.; Silver, D.J.; Hale, J.S.; Alban, T.J.; Turaga, S.M.; Jarrar, A.; Reizes, O.; Longworth, M.S., et al. Glioblastoma Cancer Stem Cells Evade Innate Immune Suppressio	 1390, doi:10.1016/j.ejca.2014.01.011. 226. Chen, M.; He, M.; Song, Y.; Chen, L.; Xiao, P.; Wan, X.; Dai, F.; Shen, P. The cytoprotective role of gemcitabine-induced autophagy associated with apoptosis inhibition in triple-negative MDA-MB-231 breast cancer cells. <i>Int J Mol Med</i> 2014, <i>34</i>, 276-282, doi:10.3892/ijmm.2014.1772. 227. Beilharz, T.H.; Harrison, P.F.; Miles, D.M.; See, M.M.; Le, U.M.; Kalanon, M.; Curtis, M.j.; Hasan, Q.; Saksouk, J.; Margaritis, T., et al. Coordination of Cell Cycle Progression and Mitotic Spindle Assembly Involves Histone H3 Lysine 4 Methylation by Set1/COMPASS. <i>Genetics</i> 2017, <i>205</i>, 185-199, doi:10.1534/genetics.116.194852. 228. Miller, T.; Krogan, N.J.; Dover, J.; Erdjument-Bromage, H.; Tempst, P.; Johnston, M.; Greenblatt, J.F.; Shilatifard, A. COMPASS: a complex of proteins associated with a trithorax-related SET domain protein. <i>Proceedings of the National Academy of Sciences of the United States of America</i> 2001, <i>98</i>, 12902-12907, doi:10.1073/pnas.231473398. 229. Shilatifard, A. The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. <i>Annu Rev Biochem</i> 2012, <i>81</i>, 65-95, doi:10.1146/annurev-biochem-051710-134100. 230. Greer, E.L.; Shi, Y. Histone methylation: a dynamic mark in health, disease and inheritance. <i>Nat Rev Genet</i> 2012, <i>13</i>, 343-357, doi:10.1038/nrg3173. 231. Dehe, P.M.; Dichtl, B.; Schaft, D.; Roguev, A.; Pamblanco, M.; Lebrun, R.; Rodriguez-Gil, A.; Mkandawire, M.; Landsberg, K.; Shevchenko, A., et al. Protein interactions within the Set1 complex and their roles in the regulation of histone 3 lysine 4 methylation. <i>J Biol Chem</i> 2006, <i>281</i>, 35404-35412, doi:10.1074/jbc.M603099200. 232. Alvarado, A.G.; Thiagarajan, P.S.; Mulkearns-Hubert, E.E.; Silver, D.J.; Hale, J.S.; Alban, T.J.; Turaga, S.M.; Jarrar, A.; Reizes, O.; Longworth, M.S., et al. Glioblastoma Cancer Stem Cells Evade Innate Immune Suppression of Self-Renewal through Redu			
 2045 226. Chen, M.; He, M.; Song, Y.; Chen, L.; Xiao, P.; Wan, X.; Dai, F.; Shen, P. The cytoprotective role of gemcitabine-induced autophagy associated with apoptosis inhibition in triple-negative MDA-MB-231 breast cancer cells. <i>Int J</i> <i>Mol Med</i> 2014, <i>34</i>, 276-282, doi:10.3892/ijmm.2014.1772. 2049 227. Beilharz, T.H.; Harrison, P.F.; Miles, D.M.; See, M.M.; Le, U.M.; Kalanon, M.; Curtis, M.J.; Hasan, Q.; Saksouk, J.; Margaritis, T., et al. Coordination of Cell 2050 2051 2052 4 Methylation by Set1/COMPASS. <i>Genetics</i> 2017, <i>205</i>, 185-199, doi:10.1534/genetics.116.194852. 2054 228. Miller, T.; Krogan, N.J.; Dover, J.; Erdjument-Bromage, H.; Tempst, P.; Johnston, M.; Greenblatt, J.F.; Shilatifard, A. COMPASS: a complex of proteins associated with a trithorax-related SET domain protein. <i>Proceedings of the</i> <i>National Academy of Sciences of the United States of America</i> 2001, <i>98</i>, 12902- 12907, doi:10.1073/pnas.231473398. 2059 229. Shilatifard, A. The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. <i>Annu Rev Biochem</i> 2012, <i>81</i>, 65-95, doi:10.1146/annurev-biochem-051710-134100. 230. Greer, E.L.; Shi, Y. Histone methylation: a dynamic mark in health, disease and inheritance. <i>Nat Rev Genet</i> 2012, <i>13</i>, 343-357, doi:10.1038/nrg3173. 2064 231. Dehe, P.M.; Dichtl, B.; Schaft, D.; Roguev, A.; Pamblanco, M.; Lebrun, R.; Rodriguez-Gil, A.; Mkandawire, M.; Landsberg, K.; Shevchenko, A., et al. Protein interactions within the Set1 complex and their roles in the regulation of histone 3 lysine 4 methylation. <i>J Biol Chem</i> 2006, <i>281</i>, 35404-35412, doi:10.1074/jbc.M603099200. 232. Alvarado, A.G.; Thiagarajan, P.S.; Mulkearns-Hubert, E.E.; Silver, D.J.; Hale, J.S.; Alban, T.J.; Turaga, S.M.; Jarrar, A.; Reizes, O.; Longworth, M.S., et al. Glioblastoma Cancer Stem Cells Evade Innate Immune Suppression of Self- 	 2045 226. Chen, M.; He, M.; Song, Y.; Chen, L.; Xiao, P.; Wan, X.; Dai, F.; Shen, P. The cytoprotective role of gemcitabine-induced autophagy associated with apoptosis inhibition in triple-negative MDA-MB-231 breast cancer cells. <i>Int J Mol Med</i> 2014, <i>34</i>, 276-282, doi:10.3892/ijmm.2014.1772. 2049 227. Beilharz, T.H.; Harrison, P.F.; Miles, D.M.; See, M.M.; Le, U.M.; Kalanon, M.; Curtis, M.J.; Hasan, Q.; Saksouk, J.; Margaritis, T., et al. Coordination of Cell Cycle Progression and Mitotic Spindle Assembly Involves Histone H3 Lysine 4 Methylation by Set1/COMPASS. <i>Genetics</i> 2017, <i>205</i>, 185-199, doi:10.1534/genetics.116.194852. 2054 228. Miller, T.; Krogan, N.J.; Dover, J.; Erdjument-Bromage, H.; Tempst, P.; Johnston, M.; Greenblatt, J.F.; Shilatifard, A. COMPASS: a complex of proteins associated with a trithorax-related SET domain protein. <i>Proceedings of the National Academy of Sciences of the United States of America</i> 2001, <i>98</i>, 12902-12907, doi:10.1073/pnas.231473398. 2059 229. Shilatifard, A. The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. <i>Annu Rev Biochem</i> 2012, <i>81</i>, 65-95, doi:10.1146/annurev-biochem-051710-134100. 2062 Creer, E.L.; Shi, Y. Histone methylation: a dynamic mark in health, disease and inheritance. <i>Nat Rev Genet</i> 2012, <i>13</i>, 343-357, doi:10.1038/nrg3173. 2064 231. Dehe, P.M.; Dichtl, B.; Schaft, D.; Roguey, A.; Pamblanco, M.; Lebrun, R.; Rodriguez-Gil, A.; Mkandawire, M.; Landsberg, K.; Shevchenko, A., et al. Proterin interactions within the Set1 complex and their roles in the regulation of histone 3 lysine 4 methylation. <i>J Biol Chem</i> 2006, <i>281</i>, 35404-35412, doi:10.1074/jbc.M603099200. 232. Alvarado, A.G.; Thiagarajan, P.S.; Mulkearns-Hubert, E.E.; Silver, D.J.; Hale, J.S.; Allban, T.J.; Turaga, S.M.; Jarrar, A.; Reizes, O.; Longworth, M.S., et al. Clioblastoma Cancer Stem Cells Evade Innate Immune Suppression of Self-Renewal through Reduced TLR4 Expression.			
 2046 cytoprotective role of gemcitabine-induced autophagy associated with apoptosis inhibition in triple-negative MDA-MB-231 breast cancer cells. Int J Mol Med 2014, 34, 276-282, doi:10.3892/jimm.2014.1772. 2049 227. Beilharz, T.H.; Harrison, P.F.; Miles, D.M.; See, M.M.; Le, U.M.; Kalanon, M.; Curtis, M.J.; Hasan, Q.; Saksouk, J.; Margaritis, T., et al. Coordination of Cell Cycle Progression and Mitotic Spindle Assembly Involves Histone H3 Lysine 4 Methylation by Set1/COMPASS. Genetics 2017, 205, 185-199, doi:10.1534/genetics.116.194852. 2054 228. Miller, T.; Krogan, N.J.; Dover, J.; Erdjument-Bromage, H.; Tempst, P.; Johnston, M.; Greenblatt, J.F.; Shilatifard, A. COMPASS: a complex of proteins associated with a trithorax-related SET domain protein. Proceedings of the National Academy of Sciences of the United States of America 2001, 98, 12902- 12907, doi:10.1073/pnas.231473398. 2059 229. Shilatifard, A. The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. Annu Rev Biochem 2012, 81, 65-95, doi:10.1146/annurev-biochem-051710-134100. 2062 230. Greer, E.L.; Shi, Y. Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet 2012, 13, 343-357, doi:10.1038/nrg3173. 2064 231. Dehe, P.M.; Dichtl, B.; Schaft, D.; Roguev, A.; Pamblanco, M.; Lebrun, R.; Rodriguez-Gil, A.; Mkandawire, M.; Landsberg, K.; Shevchenko, A., et al. 2066 Protein interactions within the Set1 complex and their roles in the regulation of histone 3 lysine 4 methylation. J Biol Chem 2006, 281, 35404-35412, doi:10.1074/jbc.M603099200. 232. Alvarado, A.G.; Thiagarajan, P.S.; Mulkearns-Hubert, E.E.; Silver, D.J.; Hale, J.S.; Alban, T.J.; Turaga, S.M.; Jarrar, A.; Reizes, O.; Longworth, M.S., et al. 2070 Gioblastoma Cancer Stem Cells Evade Innate Immune Suppression of Self- 	 cytoprotective role of gemcitabine-induced autophagy associated with apoptosis inhibition in triple-negative MDA-MB-231 breast cancer cells. Int J Mol Med 2014, 34, 276-282, doi:10.3892/ijmm.2014.1772. 227. Beilharz, T.H.; Harrison, P.F.; Miles, D.M.; See, M.M.; Le, U.M.; Kalanon, M.; Curtis, M.J.; Hasan, Q.; Saksouk, J.; Margaritis, T., et al. Coordination of Cell Cycle Progression and Mitotic Spindle Assembly Involves Histone H3 Lysine 4 Methylation by Set1/COMPASS. Genetics 2017, 205, 185-199, doi:10.1534/genetics.116.194852. 228. Miller, T.; Krogan, N.J.; Dover, J.; Erdjument-Bromage, H.; Tempst, P.; Johnston, M.; Greenblatt, J.F.; Shilatifard, A. COMPASS: a complex of proteins associated with a trithorax-related SET domain protein. Proceedings of the National Academy of Sciences of the United States of America 2001, 98, 12902- 12907, doi:10.1073/pnas.231473398. 229. Shilatifard, A. The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. Annu Rev Biochem 2012, 81, 65-95, doi:10.1146/annurev-biochem-051710-134100. 230. Greer, E.L.; Shi, Y. Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet 2012, 13, 343-357, doi:10.1038/nrg3173. 231. Dehe, P.M.; Dichtl, B.; Schaft, D.; Roguev, A.; Pamblanco, M.; Lebrun, R.; Rodriguez-Gil, A.; Mkandawire, M.; Landsberg, K.; Shevchenko, A., et al. Protein interactions within the Set1 complex and their roles in the regulation of histone 3 lysine 4 methylation. J Biol Chem 2006, 281, 35404-35412, doi:10.1074/jbc.M603099200. 232. Alvarado, A.G.; Thiagarajan, P.S.; Mulkearns-Hubert, E.E.; Silver, D.J.; Hale, J.S.; Alban, T.J.; Turaga, S.M.; Jarrar, A.; Reizes, O.; Longworth, M.S., et al. 2071 Glioblastoma Cancer Stem Cells Evade Innate Immune Suppression of Self- Renewal through Reduced TLR4 Expression. Cell Stem Cell 2017, 20, 450-461 e454, doi:10.1016/j.stem.2016.12.001.<td></td><td>224</td><td></td>		224	
 apoptosis inhibition in triple-negative MDA-MB-231 breast cancer cells. Int J Mol Med 2014, 34, 276-282, doi:10.3892/ijmm.2014.1772. 227. Beilharz, T.H.; Harrison, P.F.; Miles, D.M.; See, M.M.; Le, U.M.; Kalanon, M.; Curtis, M.J.; Hasan, Q.; Saksouk, J.; Margaritis, T., et al. Coordination of Cell Cycle Progression and Mitotic Spindle Assembly Involves Histone H3 Lysine 4 Methylation by Set1/COMPASS. Genetics 2017, 205, 185-199, doi:10.1534/genetics.116.194852. 228. Miller, T.; Krogan, N.J.; Dover, J.; Erdjument-Bromage, H.; Tempst, P.; Johnston, M.; Greenblatt, J.F.; Shilatifard, A. COMPASS: a complex of proteins associated with a trithorax-related SET domain protein. Proceedings of the National Academy of Sciences of the United States of America 2001, 98, 12902- 12907, doi:10.1073/pnas.231473398. 229. Shilatifard, A. The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. Annu Rev Biochem 2012, 81, 65-95, doi:10.1146/annurev-biochem-051710-134100. 230. Greer, E.L.; Shi, Y. Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet 2012, 13, 343-357, doi:10.1038/nrg3173. 2064 231. Dehe, P.M.; Dichtl, B.; Schaft, D.; Roguev, A.; Pamblanco, M.; Lebrun, R.; Rodriguez-Gil, A.; Mkandawire, M.; Landsberg, K.; Shevchenko, A., et al. Protein interactions within the Set1 complex and their roles in the regulation of histone 3 lysine 4 methylation. J Biol Chem 2006, 281, 35404-35412, doi:10.1074/jbc.M603099200. 232. Alvarado, A.G.; Thiagarajan, P.S.; Mulkearns-Hubert, E.E.; Silver, D.J.; Hale, J.S.; Alban, T.J.; Turaga, S.M.; Jarrar, A.; Reizes, O.; Longworth, M.S., et al. 2070 Glioblastoma Cancer Stem Cells Evade Innate Immune Suppression of Self- 	 apoptosis inhibition in triple-negative MDA-MB-231 breast cancer cells. Int J Mol Med 2014, 34, 276-282, doi:10.3892/ijmm.2014.1772. 227. Beilharz, T.H.; Harrison, P.F.; Miles, D.M.; See, M.M.; Le, U.M.; Kalanon, M.; Curtis, M.J.; Hasan, Q.; Saksouk, J.; Margaritis, T., et al. Coordination of Cell Cycle Progression and Mitotic Spindle Assembly Involves Histone H3 Lysine 4 Methylation by Set1/COMPASS. Genetics 2017, 205, 185-199, doi:10.1534/genetics.116.194852. 228. Miller, T.; Krogan, N.J.; Dover, J.; Erdjument-Bromage, H.; Tempst, P.; Johnston, M.; Greenblatt, J.F.; Shilatifard, A. COMPASS: a complex of proteins associated with a trithorax-related SET domain protein. Proceedings of the National Academy of Sciences of the United States of America 2001, 98, 12902- 12907, doi:10.1073/pnas.231473398. 229. Shilatifard, A. The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. Annu Rev Biochem 2012, 81, 65-95, doi:10.1146/annurev-biochem-051710-134100. 230. Greer, E.L.; Shi, Y. Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet 2012, 13, 343-357, doi:10.1038/nrg3173. 231. Dehe, P.M.; Dichtl, B.; Schaft, D.; Roguev, A.; Pamblaco, M.; Lebrun, R.; Rodriguez-Gil, A.; Mkandawire, M.; Landsberg, K.; Shevchenko, A., et al. Protein interactions within the Set1 complex and their roles in the regulation of histone 3 lysine 4 methylation. J Biol Chem 2006, 281, 35404-35412, doi:10.1074/jbc.M603099200. 232. Alvarado, A.G.; Thiagarajan, P.S.; Mulkearns-Hubert, E.E.; Silver, D.J.; Hale, J.S.; Alban, T.J.; Turaga, S.M.; Jarrar, A.; Reizes, O.; Longworth, M.S., et al. Glioblastoma Cancer Stem Cells Evade Innate Immune Suppression of Self- Renewal through Reduced TLR4 Expression. Cell Stem Cell 2017, 20, 450-461 e454, doi:10.1016/j.stem.2016.12.001. 233. Lu, C.; Yang, D.; Sabbatini, M.E.; Colby, A.H.; Grinstaff, M.W.; Oberlies, N.H.; Pear		226.	
 Mol Med 2014, 34, 276-282, doi:10.3892/ijmm.2014.1772. 227. Beilharz, T.H.; Harrison, P.F.; Miles, D.M.; See, M.M.; Le, U.M.; Kalanon, M.; 2050 Curtis, M.J.; Hasan, Q.; Saksouk, J.; Margaritis, T., et al. Coordination of Cell 2051 Cycle Progression and Mitotic Spindle Assembly Involves Histone H3 Lysine 4 Methylation by Set1/COMPASS. <i>Genetics</i> 2017, 205, 185-199, 2053 doi:10.1534/genetics.116.194852. 2054 228. Miller, T.; Krogan, N.J.; Dover, J.; Erdjument-Bromage, H.; Tempst, P.; 2055 Johnston, M.; Greenblatt, J.F.; Shilatifard, A. COMPASS: a complex of proteins 2056 associated with a trithorax-related SET domain protein. <i>Proceedings of the</i> 2057 National Academy of Sciences of the United States of America 2001, 98, 12902- 2058 12907, doi:10.1073/pnas.231473398. 2059 229. Shilatifard, A. The COMPASS family of histone H3K4 methylases: mechanisms 2060 of regulation in development and disease pathogenesis. Annu Rev Biochem 2061 2012, 81, 65-95, doi:10.1146/annurev-biochem-051710-134100. 2062 230. Greer, E.L.; Shi, Y. Histone methylation: a dynamic mark in health, disease and 2063 inheritance. Nat Rev Genet 2012, 13, 343-357, doi:10.1038/nrg3173. 2064 231. Dehe, P.M.; Dichtl, B.; Schaft, D.; Roguev, A.; Pamblanco, M.; Lebrun, R.; 2065 Rodriguez-Gil, A.; Mkandawire, M.; Landsberg, K.; Shevchenko, A., et al. 2066 Protein interactions within the Set1 complex and their roles in the regulation 2067 of histone 3 lysine 4 methylation. J Biol Chem 2006, 281, 35404-35412, 2068 doi:10.1074/jbc.M603092200. 232. Alvarado, A.G.; Thiagarajan, P.S.; Mulkearns-Hubert, E.E.; Silver, D.J.; Hale, J.S.; 2070 Alban, T.J.; Turaga, S.M.; Jarrar, A.; Reizes, O.; Longworth, M.S., et al. 2071 Glioblastoma Cancer Stem Cells Evade Innate Immune Suppression of Self- 	 Mol Med 2014, 34, 276-282, doi:10.3892/ijmm.2014.1772. 227. Beilharz, T.H.; Harrison, P.F.; Miles, D.M.; See, M.M.; Le, U.M.; Kalanon, M.; 2050 Curtis, M.J.; Hasan, Q.; Saksouk, J.; Margaritis, T., et al. Coordination of Cell 2051 Cycle Progression and Mitotic Spindle Assembly Involves Histone H3 Lysine 4 Methylation by Set1/COMPASS. Genetics 2017, 205, 185-199, 2053 doi:10.1534/genetics.116.194852. 2054 228. Miller, T.; Krogan, N.J.; Dover, J.; Erdjument-Bromage, H.; Tempst, P.; 2055 Johnston, M.; Greenblatt, J.F.; Shilatifard, A. COMPASS: a complex of proteins 2056 associated with a trithorax-related SET domain protein. Proceedings of the 2057 National Academy of Sciences of the United States of America 2001, 98, 12902- 2059 229. Shilatifard, A. The COMPASS family of histone H3K4 methylases: mechanisms 2060 of regulation in development and disease pathogenesis. Annu Rev Biochem 2061 2012, 81, 65-95, doi:10.1146/annurev-biochem-051710-134100. 2062 230. Greer, E.L.; Shi, Y. Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet 2012, 13, 343-357, doi:10.1038/nrg3173. 2064 231. Dehe, P.M.; Dichtl, B.; Schaft, D.; Roguev, A.; Pamblanco, M.; Lebrun, R.; 2065 Rodriguez-Gil, A.; Mkandawire, M.; Landsberg, K.; Shevchenko, A., et al. 2066 Protein interactions within the Set1 complex and their roles in the regulation 2067 of histone 3 lysine 4 methylation. J Biol Chem 2006, 281, 35404-35412, 2068 doi:10.1074/jbc.M603099200. 232. Alvarado, A.G.; Thiagarajan, P.S.; Mulkearns-Hubert, E.E.; Silver, D.J.; Hale, J.S.; 2070 Alvarado, A.G.; Thiagarajan, P.S.; Mulkearns-Hubert, E.E.; Silver, D.J.; Hale, J.S.; 2071 Glioblastoma Cancer Stem Cells Evade Innate Immune Suppression of Self- 2072 R			
 2049 227. Beilharz, T.H.; Harrison, P.F.; Miles, D.M.; See, M.M.; Le, U.M.; Kalanon, M.; 2050 Curtis, M.J.; Hasan, Q.; Saksouk, J.; Margaritis, T., et al. Coordination of Cell 2051 Cycle Progression and Mitotic Spindle Assembly Involves Histone H3 Lysine 2052 4 Methylation by Set1/COMPASS. <i>Genetics</i> 2017, 205, 185-199, 2053 doi:10.1534/genetics.116.194852. 2054 228. Miller, T.; Krogan, N.J.; Dover, J.; Erdjument-Bromage, H.; Tempst, P.; 2056 Johnston, M.; Greenblatt, J.F.; Shilatifard, A. COMPASS: a complex of proteins 2056 associated with a trithorax-related SET domain protein. <i>Proceedings of the</i> 2057 National Academy of Sciences of the United States of America 2001, 98, 12902- 2058 12907, doi:10.1073/pnas.231473398. 2059 229. Shilatifard, A. The COMPASS family of histone H3K4 methylases: mechanisms 2060 of regulation in development and disease pathogenesis. <i>Annu Rev Biochem</i> 2012, 81, 65-95, doi:10.1146/annurev-biochem-051710-134100. 2062 230. Greer, E.L.; Shi, Y. Histone methylation: a dynamic mark in health, disease and 2063 inheritance. <i>Nat Rev Genet</i> 2012, <i>13</i>, 343-357, doi:10.1038/nrg3173. 2064 231. Dehe, P.M.; Dichtl, B.; Schaft, D.; Roguev, A.; Pamblanco, M.; Lebrun, R.; 2065 Rodriguez-Gil, A.; Mkandawire, M.; Landsberg, K.; Shevchenko, A., et al. 2066 Protein interactions within the Set1 complex and their roles in the regulation 2067 of histone 3 lysine 4 methylation. <i>J Biol Chem</i> 2006, <i>281</i>, 35404-35412, doi:10.1074/jbc.M603099200. 232. Alvarado, A.G.; Thiagarajan, P.S.; Mulkearns-Hubert, E.E.; Silver, D.J.; Hale, J.S.; 2070 Alban, T.J.; Turaga, S.M.; Jarrar, A.; Reizes, O.; Longworth, M.S., et al. 2071 Glioblastoma Cancer Stem Cells Evade Innate Immune Suppression of Self- 	 2049 227. Beilharz, T.H.; Harrison, P.F.; Miles, D.M.; See, M.M.; Le, U.M.; Kalanon, M.; Curtis, M.J.; Hasan, Q.; Saksouk, J.; Margaritis, T., et al. Coordination of Cell Cycle Progression and Mitotic Spindle Assembly Involves Histone H3 Lysine 4 Methylation by Set1/COMPASS. <i>Genetics</i> 2017, 205, 185-199, doi:10.1534/genetics.116.194852. 228. Miller, T.; Krogan, N.J.; Dover, J.; Erdjument-Bromage, H.; Tempst, P.; Johnston, M.; Greenblatt, J.F.; Shilatifard, A. COMPASS: a complex of proteins associated with a trithorax-related SET domain protein. <i>Proceedings of the</i> <i>National Academy of Sciences of the United States of America</i> 2001, 98, 12902- 12907, doi:10.1073/pnas.231473398. 229. Shilatifard, A. The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. <i>Annu Rev Biochem</i> 2012, 81, 65-95, doi:10.1146/annurev-biochem-051710-134100. 230. Greer, E.L.; Shi, Y. Histone methylation: a dynamic mark in health, disease and inheritance. <i>Nat Rev Genet</i> 2012, <i>13</i>, 343-357, doi:10.1038/nrg3173. 2064 231. Dehe, P.M.; Dichtl, B.; Schaft, D.; Roguev, A.; Pamblanco, M.; Lebrun, R.; Rodriguez-Gil, A.; Mkandawire, M.; Landsberg, K.; Shevchenko, A., et al. Protein interactions within the Set1 complex and their roles in the regulation of histone 3 lysine 4 methylation. <i>J Biol Chem</i> 2006, 281, 35404-35412, doi:10.1074/jbc.M603099200. 232. Alvarado, A.G.; Thiagarajan, P.S.; Mulkearns-Hubert, E.E.; Silver, D.J.; Hale, J.S.; Alban, T.J.; Turaga, S.M.; Jarrar, A.; Reizes, O.; Longworth, M.S., et al. Glioblastoma Cancer Stem Cells Evade Innate Immune Suppression of Self- Renewal through Reduced TLR4 Expression. Cell Stem Cell 2017, 20, 450-461 e454, doi:10.1016/j.stem.2016.12.001. 233. Lu, C.; Yang, D.; Sabbatini, M.E.; Colby, A.H.; Grinstaff, M.W.; Oberlies, N.H.; Pearce, C.; Liu, K. Contrasting roles of H3K4me3 and H3K9me3 in regulation of apoptosis and gemcitabine resistance in human p			
 Curtis, M.J.; Hasan, Q.; Saksouk, J.; Margaritis, T., et al. Coordination of Cell Cycle Progression and Mitotic Spindle Assembly Involves Histone H3 Lysine 4 Methylation by Set1/COMPASS. <i>Genetics</i> 2017, 205, 185-199, doi:10.1534/genetics.116.194852. 228. Miller, T.; Krogan, N.J.; Dover, J.; Erdjument-Bromage, H.; Tempst, P.; Johnston, M.; Greenblatt, J.F.; Shilatifard, A. COMPASS: a complex of proteins associated with a trithorax-related SET domain protein. <i>Proceedings of the</i> <i>National Academy of Sciences of the United States of America</i> 2001, 98, 12902- 12907, doi:10.1073/pnas.231473398. 229. Shilatifard, A. The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. <i>Annu Rev Biochem</i> 2012, 81, 65-95, doi:10.1146/annurev-biochem-051710-134100. 230. Greer, E.L.; Shi, Y. Histone methylation: a dynamic mark in health, disease and inheritance. <i>Nat Rev Genet</i> 2012, <i>13</i>, 343-357, doi:10.1038/nrg3173. 2064 231. Dehe, P.M.; Dichtl, B.; Schaft, D.; Roguey, A.; Pamblanco, M.; Lebrun, R.; Rodriguez-Gil, A.; Mkandawire, M.; Landsberg, K.; Shevchenko, A., et al. Protein interactions within the Set1 complex and their roles in the regulation of histone 3 lysine 4 methylation. <i>J Biol Chem</i> 2006, 281, 35404-35412, doi:10.1074/jbc.M603099200. 232. Alvarado, A.G.; Thiagarajan, P.S.; Mulkearns-Hubert, E.E.; Silver, D.J.; Hale, J.S.; Alban, T.J.; Turaga, S.M.; Jarrar, A.; Reizes, O.; Longworth, M.S., et al. 2071 	 Curtis, M.J.; Hasan, Q.; Saksouk, J.; Margaritis, T., et al. Coordination of Cell Cycle Progression and Mitotic Spindle Assembly Involves Histone H3 Lysine 4 Methylation by Set1/COMPASS. <i>Genetics</i> 2017, 205, 185-199, doi:10.1534/genetics.116.194852. Miller, T.; Krogan, N.J.; Dover, J.; Erdjument-Bromage, H.; Tempst, P.; Johnston, M.; Greenblatt, J.F.; Shilatifard, A. COMPASS: a complex of proteins associated with a trithorax-related SET domain protein. <i>Proceedings of the</i> <i>National Academy of Sciences of the United States of America</i> 2001, 98, 12902- 12907, doi:10.1073/pnas.231473398. Shilatifard, A. The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. <i>Annu Rev Biochem</i> 2012, 81, 65-95, doi:10.1146/annurev-biochem-051710-134100. Greer, E.L.; Shi, Y. Histone methylation: a dynamic mark in health, disease and inheritance. <i>Nat Rev Genet</i> 2012, 13, 343-357, doi:10.1038/nrg3173. Dehe, P.M.; Dichtl, B.; Schaft, D.; Roguev, A.; Pamblanco, M.; Lebrun, R.; Rodriguez-Gil, A.; Mkandawire, M.; Landsberg, K.; Shevchenko, A., et al. Protein interactions within the Set1 complex and their roles in the regulation of histone 3 lysine 4 methylation. J Biol Chem 2006, 281, 35404-35412, doi:10.1074/jbc.M603099200. Alvarado, A.G.; Thiagarajan, P.S.; Mulkearns-Hubert, E.E.; Silver, D.J.; Hale, J.S.; Alban, T.J.; Turaga, S.M.; Jarrar, A.; Reizes, O.; Longworth, M.S., et al. Glioblastoma Cancer Stem Cells Evade Innate Immune Suppression of Self-Renewal through Reduced TLR4 Expression. <i>Cell Stem Cell</i> 2017, 20, 450-461 e454, doi:10.1016/j.stem.2016.12.001. Lu, C.; Yang, D.; Sabbatini, M.E.; Colby, A.H.; Grinstaff, M.W.; Oberlies, N.H.; Pearce, C.; Liu, K		~~~	
 Cycle Progression and Mitotic Spindle Assembly Involves Histone H3 Lysine 4 Methylation by Set1/COMPASS. <i>Genetics</i> 2017, 205, 185-199, doi:10.1534/genetics.116.194852. 228. Miller, T.; Krogan, N.J.; Dover, J.; Erdjument-Bromage, H.; Tempst, P.; Johnston, M.; Greenblatt, J.F.; Shilatifard, A. COMPASS: a complex of proteins associated with a trithorax-related SET domain protein. <i>Proceedings of the</i> <i>National Academy of Sciences of the United States of America</i> 2001, 98, 12902- 12907, doi:10.1073/pnas.231473398. 229. Shilatifard, A. The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. <i>Annu Rev Biochem</i> 2012, 81, 65-95, doi:10.1146/annurev-biochem-051710-134100. 230. Greer, E.L.; Shi, Y. Histone methylation: a dynamic mark in health, disease and inheritance. <i>Nat Rev Genet</i> 2012, 13, 343-357, doi:10.1038/nrg3173. 2064 231. Dehe, P.M.; Dichtl, B.; Schaft, D.; Roguev, A.; Pamblanco, M.; Lebrun, R.; Rodriguez-Gil, A.; Mkandawire, M.; Landsberg, K.; Shevchenko, A., et al. Protein interactions within the Set1 complex and their roles in the regulation of histone 3 lysine 4 methylation. <i>J Biol Chem</i> 2006, 281, 35404-35412, doi:10.1074/jbc.M603099200. 232. Alvarado, A.G.; Thiagarajan, P.S.; Mulkearns-Hubert, E.E.; Silver, D.J.; Hale, J.S.; Alban, T.J.; Turaga, S.M.; Jarrar, A.; Reizes, O.; Longworth, M.S., et al. 2071 	 2051 Cycle Progression and Mitotic Spindle Assembly Involves Histone H3 Lysine 2052 4 Methylation by Set1/COMPASS. <i>Genetics</i> 2017, 205, 185-199, 2053 doi:10.1534/genetics.116.194852. 2054 228. Miller, T.; Krogan, N.J.; Dover, J.; Erdjument-Bromage, H.; Tempst, P.; 2056 Johnston, M.; Greenblatt, J.F.; Shilatifard, A. COMPASS: a complex of proteins 2056 associated with a trithorax-related SET domain protein. <i>Proceedings of the</i> 2057 National Academy of Sciences of the United States of America 2001, 98, 12902- 2058 12907, doi:10.1073/pnas.231473398. 2059 229. Shilatifard, A. The COMPASS family of histone H3K4 methylases: mechanisms 2060 of regulation in development and disease pathogenesis. <i>Annu Rev Biochem</i> 2061 2012, 81, 65-95, doi:10.1146/annurev-biochem-051710-134100. 2062 230. Greer, E.L.; Shi, Y. Histone methylation: a dynamic mark in health, disease and 2063 inheritance. Nat Rev Genet 2012, 13, 343-357, doi:10.1038/nrg3173. 2064 231. Dehe, P.M.; Dichtl, B.; Schaft, D.; Roguev, A.; Pamblanco, M.; Lebrun, R.; 2065 Rodriguez-Gil, A.; Mkandawire, M.; Landsberg, K.; Shevchenko, A., et al. 2067 Protein interactions within the Set1 complex and their roles in the regulation 2068 doi:10.1074/jbc.M603099200. 232. Alvarado, A.G.; Thiagarajan, P.S.; Mulkearns-Hubert, E.E.; Silver, D.J.; Hale, J.S.; 2070 Alban, T.J.; Turaga, S.M.; Jarrar, A.; Reizes, O.; Longworth, M.S., et al. 2071 Glioblastoma Cancer Stem Cells Evade Innate Immune Suppression of Self- 2072 Renewal through Reduced TLR4 Expression. <i>Cell Stem Cell</i> 2017, 20, 450-461 2073 e454, doi:10.1016/j.stem.2016.12.001. 2074 233. Lu, C.; Yang, D.; Sabbatini, M.E.; Colby, A.H.; Grinstaff, M.W.; Oberlies, N.H.; 2075 Pearce, C.; Liu, K. Contrasting roles of H3K4me3 and H3K9me3 in regulation 2076 of apoptosis and gemcitabine resistance in human		227.	
 4 Methylation by Set1/COMPASS. <i>Genetics</i> 2017, 205, 185-199, doi:10.1534/genetics.116.194852. 228. Miller, T.; Krogan, N.J.; Dover, J.; Erdjument-Bromage, H.; Tempst, P.; Johnston, M.; Greenblatt, J.F.; Shilatifard, A. COMPASS: a complex of proteins associated with a trithorax-related SET domain protein. <i>Proceedings of the</i> <i>National Academy of Sciences of the United States of America</i> 2001, 98, 12902- 12907, doi:10.1073/pnas.231473398. 229. Shilatifard, A. The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. <i>Annu Rev Biochem</i> 2012, 81, 65-95, doi:10.1146/annurev-biochem-051710-134100. 230. Greer, E.L.; Shi, Y. Histone methylation: a dynamic mark in health, disease and inheritance. <i>Nat Rev Genet</i> 2012, 13, 343-357, doi:10.1038/nrg3173. 2064 231. Dehe, P.M.; Dichtl, B.; Schaft, D.; Roguev, A.; Pamblanco, M.; Lebrun, R.; Rodriguez-Gil, A.; Mkandawire, M.; Landsberg, K.; Shevchenko, A., et al. Protein interactions within the Set1 complex and their roles in the regulation of histone 3 lysine 4 methylation. <i>J Biol Chem</i> 2006, 281, 35404-35412, doi:10.1074/jbc.M603099200. 232. Alvarado, A.G.; Thiagarajan, P.S.; Mulkearns-Hubert, E.E.; Silver, D.J.; Hale, J.S.; Alban, T.J.; Turaga, S.M.; Jarrar, A.; Reizes, O.; Longworth, M.S., et al. 2071 Glioblastoma Cancer Stem Cells Evade Innate Immune Suppression of Self- 	 4 Methylation by Set1/COMPASS. Genetics 2017, 205, 185-199, doi:10.1534/genetics.116.194852. 228. Miller, T.; Krogan, N.J.; Dover, J.; Erdjument-Bromage, H.; Tempst, P.; Johnston, M.; Greenblatt, J.F.; Shilatifard, A. COMPASS: a complex of proteins associated with a trithorax-related SET domain protein. Proceedings of the National Academy of Sciences of the United States of America 2001, 98, 12902- 12907, doi:10.1073/pnas.231473398. 229. Shilatifard, A. The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. Annu Rev Biochem 2061 2012, 81, 65-95, doi:10.1146/annurev-biochem-051710-134100. 230. Greer, E.L.; Shi, Y. Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet 2012, 13, 343-357, doi:10.1038/nrg3173. 2064 231. Dehe, P.M.; Dichtl, B.; Schaft, D.; Roguev, A.; Pamblanco, M.; Lebrun, R.; Rodriguez-Gil, A.; Mkandawire, M.; Landsberg, K.; Shevchenko, A., et al. Protein interactions within the Set1 complex and their roles in the regulation of histone 3 lysine 4 methylation. J Biol Chem 2006, 281, 35404-35412, doi:10.1074/jbc.M603099200. 232. Alvarado, A.G.; Thiagarajan, P.S.; Mulkearns-Hubert, E.E.; Silver, D.J.; Hale, J.S.; Alban, T.J.; Turaga, S.M.; Jarrar, A.; Reizes, O.; Longworth, M.S., et al. Glioblastoma Cancer Stem Cells Evade Innate Immune Suppression of Self- Renewal through Reduced TLR4 Expression. Cell Stem Cell 2017, 20, 450-461 e454, doi:10.1016/j.stem.2016.12.001. 233. Lu, C.; Yang, D.; Sabbatini, M.E.; Colby, A.H.; Grinstaff, M.W.; Oberlies, N.H.; Pearce, C.; Liu, K. Contrasting roles of H3K4me3 and H3K9me3 in regulation of apoptosis and gemcitabine resistance in human pancreatic cancer cells. 			
 doi:10.1534/genetics.116.194852. 228. Miller, T.; Krogan, N.J.; Dover, J.; Erdjument-Bromage, H.; Tempst, P.; Johnston, M.; Greenblatt, J.F.; Shilatifard, A. COMPASS: a complex of proteins associated with a trithorax-related SET domain protein. <i>Proceedings of the</i> <i>National Academy of Sciences of the United States of America</i> 2001, <i>98</i>, 12902- 12907, doi:10.1073/pnas.231473398. 229. Shilatifard, A. The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. <i>Annu Rev Biochem</i> 2012, <i>81</i>, 65-95, doi:10.1146/annurev-biochem-051710-134100. 230. Greer, E.L.; Shi, Y. Histone methylation: a dynamic mark in health, disease and inheritance. <i>Nat Rev Genet</i> 2012, <i>13</i>, 343-357, doi:10.1038/nrg3173. 231. Dehe, P.M.; Dichtl, B.; Schaft, D.; Roguev, A.; Pamblanco, M.; Lebrun, R.; Rodriguez-Gil, A.; Mkandawire, M.; Landsberg, K.; Shevchenko, A., et al. Protein interactions within the Set1 complex and their roles in the regulation of histone 3 lysine 4 methylation. <i>J Biol Chem</i> 2006, <i>281</i>, 35404-35412, doi:10.1074/jbc.M603099200. 232. Alvarado, A.G.; Thiagarajan, P.S.; Mulkearns-Hubert, E.E.; Silver, D.J.; Hale, J.S.; Alban, T.J.; Turaga, S.M.; Jarrar, A.; Reizes, O.; Longworth, M.S., et al. 2071 Glioblastoma Cancer Stem Cells Evade Innate Immune Suppression of Self- 	 doi:10.1534/genetics.116.194852. 228. Miller, T.; Krogan, N.J.; Dover, J.; Erdjument-Bromage, H.; Tempst, P.; Johnston, M.; Greenblatt, J.F.; Shilatifard, A. COMPASS: a complex of proteins associated with a trithorax-related SET domain protein. <i>Proceedings of the</i> <i>National Academy of Sciences of the United States of America</i> 2001, <i>98</i>, 12902- 12907, doi:10.1073/pnas.231473398. 229. Shilatifard, A. The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. <i>Annu Rev Biochem</i> 2012, <i>81</i>, 65-95, doi:10.1146/annurev-biochem-051710-134100. 230. Greer, E.L.; Shi, Y. Histone methylation: a dynamic mark in health, disease and inheritance. <i>Nat Rev Genet</i> 2012, <i>13</i>, 343-357, doi:10.1038/nrg3173. 2064 231. Dehe, P.M.; Dichtl, B.; Schaft, D.; Roguev, A.; Pamblanco, M.; Lebrun, R.; Rodriguez-Gil, A.; Mkandawire, M.; Landsberg, K.; Shevchenko, A., et al. Protein interactions within the Set1 complex and their roles in the regulation of histone 3 lysine 4 methylation. <i>J Biol Chem</i> 2006, <i>281</i>, 35404-35412, doi:10.1074/jbc.M603099200. 232. Alvarado, A.G.; Thiagarajan, P.S.; Mulkearns-Hubert, E.E.; Silver, D.J.; Hale, J.S.; Alban, T.J.; Turaga, S.M.; Jarrar, A.; Reizes, O.; Longworth, M.S., et al. Glioblastoma Cancer Stem Cells Evade Innate Immune Suppression of Self- Renewal through Reduced TLR4 Expression. <i>Cell Stem Cell</i> 2017, <i>20</i>, 450-461 e454, doi:10.1016/j.stem.2016.12.001. 233. Lu, C.; Yang, D.; Sabbatini, M.E.; Colby, A.H.; Grinstaff, M.W.; Oberlies, N.H.; Pearce, C.; Liu, K. Contrasting roles of H3K4me3 and H3K9me3 in regulation of apoptosis and gemcitabine resistance in human pancreatic cancer cells. 			
 2054 228. Miller, T.; Krogan, N.J.; Dover, J.; Erdjument-Bromage, H.; Tempst, P.; 2055 Johnston, M.; Greenblatt, J.F.; Shilatifard, A. COMPASS: a complex of proteins 2056 associated with a trithorax-related SET domain protein. <i>Proceedings of the</i> 2057 <i>National Academy of Sciences of the United States of America</i> 2001, <i>98</i>, 12902- 2058 12907, doi:10.1073/pnas.231473398. 2059 229. Shilatifard, A. The COMPASS family of histone H3K4 methylases: mechanisms 2060 of regulation in development and disease pathogenesis. <i>Annu Rev Biochem</i> 2061 2012, <i>81</i>, 65-95, doi:10.1146/annurev-biochem-051710-134100. 2062 230. Greer, E.L.; Shi, Y. Histone methylation: a dynamic mark in health, disease and 2063 inheritance. <i>Nat Rev Genet</i> 2012, <i>13</i>, 343-357, doi:10.1038/nrg3173. 2064 231. Dehe, P.M.; Dichtl, B.; Schaft, D.; Roguev, A.; Pamblanco, M.; Lebrun, R.; 2065 Rodriguez-Gil, A.; Mkandawire, M.; Landsberg, K.; Shevchenko, A., et al. 2066 Protein interactions within the Set1 complex and their roles in the regulation 2067 of histone 3 lysine 4 methylation. <i>J Biol Chem</i> 2006, <i>281</i>, 35404-35412, 2068 232. Alvarado, A.G.; Thiagarajan, P.S.; Mulkearns-Hubert, E.E.; Silver, D.J.; Hale, J.S.; 2069 232. Alvarado, A.G.; Thiagarajan, P.S.; Mulkearns-Hubert, E.E.; Silver, D.J.; Hale, J.S.; 2070 Alban, T.J.; Turaga, S.M.; Jarrar, A.; Reizes, O.; Longworth, M.S., et al. 2071 Gioblastoma Cancer Stem Cells Evade Innate Immune Suppression of Self- 	 2054 228. Miller, T.; Krogan, N.J.; Dover, J.; Erdjument-Bromage, H.; Tempst, P.; 2055 Johnston, M.; Greenblatt, J.F.; Shilatifard, A. COMPASS: a complex of proteins 2056 associated with a trithorax-related SET domain protein. <i>Proceedings of the</i> 2057 <i>National Academy of Sciences of the United States of America</i> 2001, <i>98</i>, 12902- 2058 12907, doi:10.1073/pnas.231473398. 2059 229. Shilatifard, A. The COMPASS family of histone H3K4 methylases: mechanisms 2060 of regulation in development and disease pathogenesis. <i>Annu Rev Biochem</i> 2061 2012, <i>81</i>, 65-95, doi:10.1146/annurev-biochem-051710-134100. 2062 230. Greer, E.L.; Shi, Y. Histone methylation: a dynamic mark in health, disease and 2063 inheritance. <i>Nat Rev Genet</i> 2012, <i>13</i>, 343-357, doi:10.1038/nrg3173. 2064 231. Dehe, P.M.; Dichtl, B.; Schaft, D.; Roguev, A.; Pamblanco, M.; Lebrun, R.; 2065 Rodriguez-Gil, A.; Mkandawire, M.; Landsberg, K.; Shevchenko, A., et al. 2066 Protein interactions within the Set1 complex and their roles in the regulation 2067 of histone 3 lysine 4 methylation. <i>J Biol Chem</i> 2006, <i>281</i>, 35404-35412, 2068 doi:10.1074/jbc.M603099200. 2069 232. Alvarado, A.G.; Thiagarajan, P.S.; Mulkearns-Hubert, E.E.; Silver, D.J.; Hale, J.S.; 2070 Alban, T.J.; Turaga, S.M.; Jarrar, A.; Reizes, O.; Longworth, M.S., et al. 2071 Glioblastoma Cancer Stem Cells Evade Innate Immune Suppression of Self- 2072 Renewal through Reduced TLR4 Expression. <i>Cell Stem Cell</i> 2017, <i>20</i>, 450-461 2074 233. Lu, C.; Yang, D.; Sabbatini, M.E.; Colby, A.H.; Grinstaff, M.W.; Oberlies, N.H.; 2075 Pearce, C.; Liu, K. Contrasting roles of H3K4me3 and H3K9me3 in regulation 2076 of apoptosis and gemcitabine resistance in human pancreatic cancer cells. 			
 Johnston, M.; Greenblatt, J.F.; Shilatifard, A. COMPASS: a complex of proteins associated with a trithorax-related SET domain protein. <i>Proceedings of the</i> <i>National Academy of Sciences of the United States of America</i> 2001, <i>98</i>, 12902- 12907, doi:10.1073/pnas.231473398. Shilatifard, A. The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. <i>Annu Rev Biochem</i> 2061 2012, <i>81</i>, 65-95, doi:10.1146/annurev-biochem-051710-134100. Greer, E.L.; Shi, Y. Histone methylation: a dynamic mark in health, disease and inheritance. <i>Nat Rev Genet</i> 2012, <i>13</i>, 343-357, doi:10.1038/nrg3173. Dehe, P.M.; Dichtl, B.; Schaft, D.; Roguev, A.; Pamblanco, M.; Lebrun, R.; Rodriguez-Gil, A.; Mkandawire, M.; Landsberg, K.; Shevchenko, A., et al. Protein interactions within the Set1 complex and their roles in the regulation of histone 3 lysine 4 methylation. <i>J Biol Chem</i> 2006, <i>281</i>, 35404-35412, doi:10.1074/jbc.M603099200. 232. Alvarado, A.G.; Thiagarajan, P.S.; Mulkearns-Hubert, E.E.; Silver, D.J.; Hale, J.S.; Alban, T.J.; Turaga, S.M.; Jarrar, A.; Reizes, O.; Longworth, M.S., et al. Glioblastoma Cancer Stem Cells Evade Innate Immune Suppression of Self- 	 Johnston, M.; Greenblatt, J.F.; Shilatifard, A. COMPASS: a complex of proteins associated with a trithorax-related SET domain protein. <i>Proceedings of the</i> <i>National Academy of Sciences of the United States of America</i> 2001, 98, 12902- 12907, doi:10.1073/pnas.231473398. 2059 229. Shilatifard, A. The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. <i>Annu Rev Biochem</i> 2012, 81, 65-95, doi:10.1146/annurev-biochem-051710-134100. 230. Greer, E.L.; Shi, Y. Histone methylation: a dynamic mark in health, disease and inheritance. <i>Nat Rev Genet</i> 2012, <i>13</i>, 343-357, doi:10.1038/nrg3173. 2064 231. Dehe, P.M.; Dichtl, B.; Schaft, D.; Roguev, A.; Pamblanco, M.; Lebrun, R.; Rodriguez-Gil, A.; Mkandawire, M.; Landsberg, K.; Shevchenko, A., et al. 2066 Protein interactions within the Set1 complex and their roles in the regulation of histone 3 lysine 4 methylation. <i>J Biol Chem</i> 2006, <i>281</i>, 35404-35412, doi:10.1074/jbc.M603099200. 232. Alvarado, A.G.; Thiagarajan, P.S.; Mulkearns-Hubert, E.E.; Silver, D.J.; Hale, J.S.; Alban, T.J.; Turaga, S.M.; Jarrar, A.; Reizes, O.; Longworth, M.S., et al. 2071 Glioblastoma Cancer Stem Cells Evade Innate Immune Suppression of Self- Renewal through Reduced TLR4 Expression. <i>Cell Stem Cell</i> 2017, <i>20</i>, 450-461 2073 e454, doi:10.1016/j.stem.2016.12.001. 2074 233. Lu, C.; Yang, D.; Sabbatini, M.E.; Colby, A.H.; Grinstaff, M.W.; Oberlies, N.H.; Pearce, C.; Liu, K. Contrasting roles of H3K4me3 and H3K9me3 in regulation of apoptosis and gemcitabine resistance in human pancreatic cancer cells. 			
 associated with a trithorax-related SET domain protein. <i>Proceedings of the</i> <i>National Academy of Sciences of the United States of America</i> 2001, 98, 12902- 12907, doi:10.1073/pnas.231473398. 229. Shilatifard, A. The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. <i>Annu Rev Biochem</i> 2012, 81, 65-95, doi:10.1146/annurev-biochem-051710-134100. 230. Greer, E.L.; Shi, Y. Histone methylation: a dynamic mark in health, disease and inheritance. <i>Nat Rev Genet</i> 2012, 13, 343-357, doi:10.1038/nrg3173. 2064 231. Dehe, P.M.; Dichtl, B.; Schaft, D.; Roguev, A.; Pamblanco, M.; Lebrun, R.; Rodriguez-Gil, A.; Mkandawire, M.; Landsberg, K.; Shevchenko, A., et al. Protein interactions within the Set1 complex and their roles in the regulation of histone 3 lysine 4 methylation. <i>J Biol Chem</i> 2006, 281, 35404-35412, doi:10.1074/jbc.M603099200. 232. Alvarado, A.G.; Thiagarajan, P.S.; Mulkearns-Hubert, E.E.; Silver, D.J.; Hale, J.S.; Alban, T.J.; Turaga, S.M.; Jarrar, A.; Reizes, O.; Longworth, M.S., et al. 2071 	 associated with a trithorax-related SET domain protein. <i>Proceedings of the</i> <i>National Academy of Sciences of the United States of America</i> 2001, 98, 12902- 12907, doi:10.1073/pnas.231473398. 229. Shilatifard, A. The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. <i>Annu Rev Biochem</i> 2012, 81, 65-95, doi:10.1146/annurev-biochem-051710-134100. 2062 230. Greer, E.L.; Shi, Y. Histone methylation: a dynamic mark in health, disease and inheritance. <i>Nat Rev Genet</i> 2012, 13, 343-357, doi:10.1038/nrg3173. 2064 231. Dehe, P.M.; Dichtl, B.; Schaft, D.; Roguev, A.; Pamblanco, M.; Lebrun, R.; 2065 Rodriguez-Gil, A.; Mkandawire, M.; Landsberg, K.; Shevchenko, A., et al. 2066 Protein interactions within the Set1 complex and their roles in the regulation of histone 3 lysine 4 methylation. <i>J Biol Chem</i> 2006, 281, 35404-35412, 2069 232. Alvarado, A.G.; Thiagarajan, P.S.; Mulkearns-Hubert, E.E.; Silver, D.J.; Hale, J.S.; 2070 Alban, T.J.; Turaga, S.M.; Jarrar, A.; Reizes, O.; Longworth, M.S., et al. 2071 Glioblastoma Cancer Stem Cells Evade Innate Immune Suppression of Self- 2072 Renewal through Reduced TLR4 Expression. <i>Cell Stem Cell</i> 2017, 20, 450-461 2073 e454, doi:10.1016/j.stem.2016.12.001. 2074 233. Lu, C.; Yang, D.; Sabbatini, M.E.; Colby, A.H.; Grinstaff, M.W.; Oberlies, N.H.; 2075 Pearce, C.; Liu, K. Contrasting roles of H3K4me3 and H3K9me3 in regulation 2076 of apoptosis and gemcitabine resistance in human pancreatic cancer cells. 		228.	
 National Academy of Sciences of the United States of America 2001, 98, 12902- 12907, doi:10.1073/pnas.231473398. 229. Shilatifard, A. The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. Annu Rev Biochem 2012, 81, 65-95, doi:10.1146/annurev-biochem-051710-134100. 230. Greer, E.L.; Shi, Y. Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet 2012, 13, 343-357, doi:10.1038/nrg3173. 2064 231. Dehe, P.M.; Dichtl, B.; Schaft, D.; Roguev, A.; Pamblanco, M.; Lebrun, R.; Rodriguez-Gil, A.; Mkandawire, M.; Landsberg, K.; Shevchenko, A., et al. Protein interactions within the Set1 complex and their roles in the regulation of histone 3 lysine 4 methylation. J Biol Chem 2006, 281, 35404-35412, doi:10.1074/jbc.M603099200. 232. Alvarado, A.G.; Thiagarajan, P.S.; Mulkearns-Hubert, E.E.; Silver, D.J.; Hale, J.S.; Alban, T.J.; Turaga, S.M.; Jarrar, A.; Reizes, O.; Longworth, M.S., et al. 2071 Glioblastoma Cancer Stem Cells Evade Innate Immune Suppression of Self- 	 National Academy of Sciences of the United States of America 2001, 98, 12902- 12907, doi:10.1073/pnas.231473398. 2059 229. Shilatifard, A. The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. Annu Rev Biochem 2061 2012, 81, 65-95, doi:10.1146/annurev-biochem-051710-134100. 2062 230. Greer, E.L.; Shi, Y. Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet 2012, 13, 343-357, doi:10.1038/nrg3173. 2064 231. Dehe, P.M.; Dichtl, B.; Schaft, D.; Roguev, A.; Pamblanco, M.; Lebrun, R.; 2065 Rodriguez-Gil, A.; Mkandawire, M.; Landsberg, K.; Shevchenko, A., et al. 2066 Protein interactions within the Set1 complex and their roles in the regulation of histone 3 lysine 4 methylation. J Biol Chem 2006, 281, 35404-35412, doi:10.1074/jbc.M603099200. 2069 232. Alvarado, A.G.; Thiagarajan, P.S.; Mulkearns-Hubert, E.E.; Silver, D.J.; Hale, J.S.; Alban, T.J.; Turaga, S.M.; Jarrar, A.; Reizes, O.; Longworth, M.S., et al. 2071 Glioblastoma Cancer Stem Cells Evade Innate Immune Suppression of Self- Renewal through Reduced TLR4 Expression. Cell Stem Cell 2017, 20, 450-461 e454, doi:10.1016/j.stem.2016.12.001. 2074 233. Lu, C.; Yang, D.; Sabbatini, M.E.; Colby, A.H.; Grinstaff, M.W.; Oberlies, N.H.; Pearce, C.; Liu, K. Contrasting roles of H3K4me3 and H3K9me3 in regulation of apoptosis and gemcitabine resistance in human pancreatic cancer cells. 			
 2058 12907, doi:10.1073/pnas.231473398. 2059 229. Shilatifard, A. The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. <i>Annu Rev Biochem</i> 2061 2012, <i>81</i>, 65-95, doi:10.1146/annurev-biochem-051710-134100. 2062 230. Greer, E.L.; Shi, Y. Histone methylation: a dynamic mark in health, disease and inheritance. <i>Nat Rev Genet</i> 2012, <i>13</i>, 343-357, doi:10.1038/nrg3173. 2064 231. Dehe, P.M.; Dichtl, B.; Schaft, D.; Roguev, A.; Pamblanco, M.; Lebrun, R.; 2065 Rodriguez-Gil, A.; Mkandawire, M.; Landsberg, K.; Shevchenko, A., et al. 2066 Protein interactions within the Set1 complex and their roles in the regulation of histone 3 lysine 4 methylation. <i>J Biol Chem</i> 2006, <i>281</i>, 35404-35412, doi:10.1074/jbc.M603099200. 232. Alvarado, A.G.; Thiagarajan, P.S.; Mulkearns-Hubert, E.E.; Silver, D.J.; Hale, J.S.; 2070 Alvarado, A.G.; Thiagarajan, P.S.; Mulkearns-Hubert, S.; Silver, D.J.; Hale, J.S.; 2071 Gioblastoma Cancer Stem Cells Evade Innate Immune Suppression of Self- 	 2058 12907, doi:10.1073/pnas.231473398. 2059 229. Shilatifard, A. The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. <i>Annu Rev Biochem</i> 2061 2012, <i>81</i>, 65-95, doi:10.1146/annurev-biochem-051710-134100. 2062 230. Greer, E.L.; Shi, Y. Histone methylation: a dynamic mark in health, disease and inheritance. <i>Nat Rev Genet</i> 2012, <i>13</i>, 343-357, doi:10.1038/nrg3173. 2064 231. Dehe, P.M.; Dichtl, B.; Schaft, D.; Roguev, A.; Pamblanco, M.; Lebrun, R.; 2065 Rodriguez-Gil, A.; Mkandawire, M.; Landsberg, K.; Shevchenko, A., et al. 2066 Protein interactions within the Set1 complex and their roles in the regulation of histone 3 lysine 4 methylation. <i>J Biol Chem</i> 2006, <i>281</i>, 35404-35412, doi:10.1074/jbc.M603099200. 2069 232. Alvarado, A.G.; Thiagarajan, P.S.; Mulkearns-Hubert, E.E.; Silver, D.J.; Hale, J.S.; Alban, T.J.; Turaga, S.M.; Jarrar, A.; Reizes, O.; Longworth, M.S., et al. 2071 Glioblastoma Cancer Stem Cells Evade Innate Immune Suppression of Self- 2072 Renewal through Reduced TLR4 Expression. <i>Cell Stem Cell</i> 2017, <i>20</i>, 450-461 2073 e454, doi:10.1016/j.stem.2016.12.001. 2074 233. Lu, C.; Yang, D.; Sabbatini, M.E.; Colby, A.H.; Grinstaff, M.W.; Oberlies, N.H.; 2075 Pearce, C.; Liu, K. Contrasting roles of H3K4me3 and H3K9me3 in regulation 2076 of apoptosis and gemcitabine resistance in human pancreatic cancer cells. 			
 2059 229. Shilatifard, A. The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. <i>Annu Rev Biochem</i> 2061 2012, <i>81</i>, 65-95, doi:10.1146/annurev-biochem-051710-134100. 2062 230. Greer, E.L.; Shi, Y. Histone methylation: a dynamic mark in health, disease and inheritance. <i>Nat Rev Genet</i> 2012, <i>13</i>, 343-357, doi:10.1038/nrg3173. 2064 231. Dehe, P.M.; Dichtl, B.; Schaft, D.; Roguev, A.; Pamblanco, M.; Lebrun, R.; 2065 Rodriguez-Gil, A.; Mkandawire, M.; Landsberg, K.; Shevchenko, A., et al. 2066 Protein interactions within the Set1 complex and their roles in the regulation of histone 3 lysine 4 methylation. <i>J Biol Chem</i> 2006, <i>281</i>, 35404-35412, doi:10.1074/jbc.M603099200. 2069 232. Alvarado, A.G.; Thiagarajan, P.S.; Mulkearns-Hubert, E.E.; Silver, D.J.; Hale, J.S.; 2070 Alvarado, A.G.; Thiagarajan, P.S.; Mulkearns-Hubert, S., et al. 2071 Glioblastoma Cancer Stem Cells Evade Innate Immune Suppression of Self- 	 2059 229. Shilatifard, A. The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. <i>Annu Rev Biochem</i> 2061 2012, <i>81</i>, 65-95, doi:10.1146/annurev-biochem-051710-134100. 2062 230. Greer, E.L.; Shi, Y. Histone methylation: a dynamic mark in health, disease and inheritance. <i>Nat Rev Genet</i> 2012, <i>13</i>, 343-357, doi:10.1038/nrg3173. 2064 231. Dehe, P.M.; Dichtl, B.; Schaft, D.; Roguev, A.; Pamblanco, M.; Lebrun, R.; 2065 Rodriguez-Gil, A.; Mkandawire, M.; Landsberg, K.; Shevchenko, A., et al. 2066 Protein interactions within the Set1 complex and their roles in the regulation of histone 3 lysine 4 methylation. <i>J Biol Chem</i> 2006, <i>281</i>, 35404-35412, doi:10.1074/jbc.M603099200. 2069 232. Alvarado, A.G.; Thiagarajan, P.S.; Mulkearns-Hubert, E.E.; Silver, D.J.; Hale, J.S.; Alban, T.J.; Turaga, S.M.; Jarrar, A.; Reizes, O.; Longworth, M.S., et al. 2071 Glioblastoma Cancer Stem Cells Evade Innate Immune Suppression of Self- 2072 Renewal through Reduced TLR4 Expression. <i>Cell Stem Cell</i> 2017, <i>20</i>, 450-461 2073 e454, doi:10.1016/j.stem.2016.12.001. 2074 233. Lu, C.; Yang, D.; Sabbatini, M.E.; Colby, A.H.; Grinstaff, M.W.; Oberlies, N.H.; 2075 Pearce, C.; Liu, K. Contrasting roles of H3K4me3 and H3K9me3 in regulation 2076 of apoptosis and gemcitabine resistance in human pancreatic cancer cells. 			
 of regulation in development and disease pathogenesis. Annu Rev Biochem 2061 2012, 81, 65-95, doi:10.1146/annurev-biochem-051710-134100. 230. 230. 230. 231. 231. 231. 233. 233. 234. 234. 235. 235. 236. 237. 238. 239. 239. 239. 230. 230. 231. 231. 231. 232. 233. 233. 234. 235. 235. 236. 236. 237. 237. 238. 239. 239. 239. 230. 231. 231. 232. 234. <	2060of regulation in development and disease pathogenesis. Annu Rev Biochem20612012, 81, 65-95, doi:10.1146/annurev-biochem-051710-134100.2062230.Greer, E.L.; Shi, Y. Histone methylation: a dynamic mark in health, disease and2063inheritance. Nat Rev Genet 2012, 13, 343-357, doi:10.1038/nrg3173.2064231.Dehe, P.M.; Dichtl, B.; Schaft, D.; Roguev, A.; Pamblanco, M.; Lebrun, R.;2065Rodriguez-Gil, A.; Mkandawire, M.; Landsberg, K.; Shevchenko, A., et al.2066Protein interactions within the Set1 complex and their roles in the regulation2067of histone 3 lysine 4 methylation. J Biol Chem 2006, 281, 35404-35412,2068doi:10.1074/jbc.M603099200.2069232.2070Alvarado, A.G.; Thiagarajan, P.S.; Mulkearns-Hubert, E.E.; Silver, D.J.; Hale, J.S.;2071Glioblastoma Cancer Stem Cells Evade Innate Immune Suppression of Self-2072Renewal through Reduced TLR4 Expression. Cell Stem Cell 2017, 20, 450-4612073e454, doi:10.1016/j.stem.2016.12.001.2074233.233.Lu, C.; Yang, D.; Sabbatini, M.E.; Colby, A.H.; Grinstaff, M.W.; Oberlies, N.H.;2075Pearce, C.; Liu, K. Contrasting roles of H3K4me3 and H3K9me3 in regulation2076of apoptosis and gemcitabine resistance in human pancreatic cancer cells.			
 2061 2012, <i>81</i>, 65-95, doi:10.1146/annurev-biochem-051710-134100. 2062 230. Greer, E.L.; Shi, Y. Histone methylation: a dynamic mark in health, disease and inheritance. <i>Nat Rev Genet</i> 2012, <i>13</i>, 343-357, doi:10.1038/nrg3173. 2064 231. Dehe, P.M.; Dichtl, B.; Schaft, D.; Roguev, A.; Pamblanco, M.; Lebrun, R.; 2065 Rodriguez-Gil, A.; Mkandawire, M.; Landsberg, K.; Shevchenko, A., et al. 2066 Protein interactions within the Set1 complex and their roles in the regulation of histone 3 lysine 4 methylation. <i>J Biol Chem</i> 2006, <i>281</i>, 35404-35412, doi:10.1074/jbc.M603099200. 2069 232. Alvarado, A.G.; Thiagarajan, P.S.; Mulkearns-Hubert, E.E.; Silver, D.J.; Hale, J.S.; 2070 Alban, T.J.; Turaga, S.M.; Jarrar, A.; Reizes, O.; Longworth, M.S., et al. 2071 Glioblastoma Cancer Stem Cells Evade Innate Immune Suppression of Self- 	 2061 2012, 81, 65-95, doi:10.1146/annurev-biochem-051710-134100. 2062 230. Greer, E.L.; Shi, Y. Histone methylation: a dynamic mark in health, disease and inheritance. <i>Nat Rev Genet</i> 2012, 13, 343-357, doi:10.1038/nrg3173. 2064 231. Dehe, P.M.; Dichtl, B.; Schaft, D.; Roguev, A.; Pamblanco, M.; Lebrun, R.; 2065 Rodriguez-Gil, A.; Mkandawire, M.; Landsberg, K.; Shevchenko, A., et al. 2066 Protein interactions within the Set1 complex and their roles in the regulation of histone 3 lysine 4 methylation. <i>J Biol Chem</i> 2006, 281, 35404-35412, doi:10.1074/jbc.M603099200. 2069 232. Alvarado, A.G.; Thiagarajan, P.S.; Mulkearns-Hubert, E.E.; Silver, D.J.; Hale, J.S.; Alban, T.J.; Turaga, S.M.; Jarrar, A.; Reizes, O.; Longworth, M.S., et al. 2071 Glioblastoma Cancer Stem Cells Evade Innate Immune Suppression of Self- Renewal through Reduced TLR4 Expression. <i>Cell Stem Cell</i> 2017, 20, 450-461 2073 e454, doi:10.1016/j.stem.2016.12.001. 2074 233. Lu, C.; Yang, D.; Sabbatini, M.E.; Colby, A.H.; Grinstaff, M.W.; Oberlies, N.H.; Pearce, C.; Liu, K. Contrasting roles of H3K4me3 and H3K9me3 in regulation of apoptosis and gemcitabine resistance in human pancreatic cancer cells. 		229.	
 2062 230. Greer, E.L.; Shi, Y. Histone methylation: a dynamic mark in health, disease and inheritance. <i>Nat Rev Genet</i> 2012, <i>13</i>, 343-357, doi:10.1038/nrg3173. 2064 231. Dehe, P.M.; Dichtl, B.; Schaft, D.; Roguev, A.; Pamblanco, M.; Lebrun, R.; 2065 Rodriguez-Gil, A.; Mkandawire, M.; Landsberg, K.; Shevchenko, A., et al. 2066 Protein interactions within the Set1 complex and their roles in the regulation of histone 3 lysine 4 methylation. <i>J Biol Chem</i> 2006, <i>281</i>, 35404-35412, doi:10.1074/jbc.M603099200. 2069 232. Alvarado, A.G.; Thiagarajan, P.S.; Mulkearns-Hubert, E.E.; Silver, D.J.; Hale, J.S.; Alban, T.J.; Turaga, S.M.; Jarrar, A.; Reizes, O.; Longworth, M.S., et al. 2071 Glioblastoma Cancer Stem Cells Evade Innate Immune Suppression of Self- 	 2062 230. Greer, E.L.; Shi, Y. Histone methylation: a dynamic mark in health, disease and inheritance. <i>Nat Rev Genet</i> 2012, <i>13</i>, 343-357, doi:10.1038/nrg3173. 2064 231. Dehe, P.M.; Dichtl, B.; Schaft, D.; Roguev, A.; Pamblanco, M.; Lebrun, R.; 2065 Rodriguez-Gil, A.; Mkandawire, M.; Landsberg, K.; Shevchenko, A., et al. 2066 Protein interactions within the Set1 complex and their roles in the regulation of histone 3 lysine 4 methylation. <i>J Biol Chem</i> 2006, <i>281</i>, 35404-35412, doi:10.1074/jbc.M603099200. 2069 232. Alvarado, A.G.; Thiagarajan, P.S.; Mulkearns-Hubert, E.E.; Silver, D.J.; Hale, J.S.; 2070 Alvarado, A.G.; Thiagarajan, P.S.; Mulkearns-Hubert, E.E.; Silver, D.J.; Hale, J.S.; 2071 Glioblastoma Cancer Stem Cells Evade Innate Immune Suppression of Self- 2072 Renewal through Reduced TLR4 Expression. <i>Cell Stem Cell</i> 2017, <i>20</i>, 450-461 2073 e454, doi:10.1016/j.stem.2016.12.001. 2074 233. Lu, C.; Yang, D.; Sabbatini, M.E.; Colby, A.H.; Grinstaff, M.W.; Oberlies, N.H.; 2075 Pearce, C.; Liu, K. Contrasting roles of H3K4me3 and H3K9me3 in regulation of apoptosis and gemcitabine resistance in human pancreatic cancer cells. 			
 inheritance. <i>Nat Rev Genet</i> 2012, <i>13</i>, 343-357, doi:10.1038/nrg3173. 2064 231. Dehe, P.M.; Dichtl, B.; Schaft, D.; Roguev, A.; Pamblanco, M.; Lebrun, R.; Rodriguez-Gil, A.; Mkandawire, M.; Landsberg, K.; Shevchenko, A., et al. Protein interactions within the Set1 complex and their roles in the regulation of histone 3 lysine 4 methylation. <i>J Biol Chem</i> 2006, <i>281</i>, 35404-35412, doi:10.1074/jbc.M603099200. 2069 232. Alvarado, A.G.; Thiagarajan, P.S.; Mulkearns-Hubert, E.E.; Silver, D.J.; Hale, J.S.; Alban, T.J.; Turaga, S.M.; Jarrar, A.; Reizes, O.; Longworth, M.S., et al. 2071 Glioblastoma Cancer Stem Cells Evade Innate Immune Suppression of Self- 	 inheritance. <i>Nat Rev Genet</i> 2012, <i>13</i>, 343-357, doi:10.1038/nrg3173. Dehe, P.M.; Dichtl, B.; Schaft, D.; Roguev, A.; Pamblanco, M.; Lebrun, R.; Rodriguez-Gil, A.; Mkandawire, M.; Landsberg, K.; Shevchenko, A., et al. Protein interactions within the Set1 complex and their roles in the regulation of histone 3 lysine 4 methylation. <i>J Biol Chem</i> 2006, <i>281</i>, 35404-35412, doi:10.1074/jbc.M603099200. 232. Alvarado, A.G.; Thiagarajan, P.S.; Mulkearns-Hubert, E.E.; Silver, D.J.; Hale, J.S.; Alban, T.J.; Turaga, S.M.; Jarrar, A.; Reizes, O.; Longworth, M.S., et al. Glioblastoma Cancer Stem Cells Evade Innate Immune Suppression of Self- Renewal through Reduced TLR4 Expression. <i>Cell Stem Cell</i> 2017, <i>20</i>, 450-461 e454, doi:10.1016/j.stem.2016.12.001. 233. Lu, C.; Yang, D.; Sabbatini, M.E.; Colby, A.H.; Grinstaff, M.W.; Oberlies, N.H.; Pearce, C.; Liu, K. Contrasting roles of H3K4me3 and H3K9me3 in regulation of apoptosis and gemcitabine resistance in human pancreatic cancer cells. 			
 2064 231. Dehe, P.M.; Dichtl, B.; Schaft, D.; Roguev, A.; Pamblanco, M.; Lebrun, R.; 2065 Rodriguez-Gil, A.; Mkandawire, M.; Landsberg, K.; Shevchenko, A., et al. 2066 Protein interactions within the Set1 complex and their roles in the regulation 2067 of histone 3 lysine 4 methylation. <i>J Biol Chem</i> 2006, <i>281</i>, 35404-35412, 2068 doi:10.1074/jbc.M603099200. 2069 232. Alvarado, A.G.; Thiagarajan, P.S.; Mulkearns-Hubert, E.E.; Silver, D.J.; Hale, J.S.; 2070 Alban, T.J.; Turaga, S.M.; Jarrar, A.; Reizes, O.; Longworth, M.S., et al. 2071 Glioblastoma Cancer Stem Cells Evade Innate Immune Suppression of Self- 	 2064 231. Dehe, P.M.; Dichtl, B.; Schaft, D.; Roguev, A.; Pamblanco, M.; Lebrun, R.; 2065 Rodriguez-Gil, A.; Mkandawire, M.; Landsberg, K.; Shevchenko, A., et al. 2066 Protein interactions within the Set1 complex and their roles in the regulation 2067 of histone 3 lysine 4 methylation. <i>J Biol Chem</i> 2006, <i>281</i>, 35404-35412, 2068 doi:10.1074/jbc.M603099200. 2069 232. Alvarado, A.G.; Thiagarajan, P.S.; Mulkearns-Hubert, E.E.; Silver, D.J.; Hale, J.S.; 2070 Alban, T.J.; Turaga, S.M.; Jarrar, A.; Reizes, O.; Longworth, M.S., et al. 2071 Glioblastoma Cancer Stem Cells Evade Innate Immune Suppression of Self- 2073 e454, doi:10.1016/j.stem.2016.12.001. 2074 233. Lu, C.; Yang, D.; Sabbatini, M.E.; Colby, A.H.; Grinstaff, M.W.; Oberlies, N.H.; 2075 Pearce, C.; Liu, K. Contrasting roles of H3K4me3 and H3K9me3 in regulation 2076 of apoptosis and gemcitabine resistance in human pancreatic cancer cells. 		230.	
 Rodriguez-Gil, A.; Mkandawire, M.; Landsberg, K.; Shevchenko, A., et al. Protein interactions within the Set1 complex and their roles in the regulation of histone 3 lysine 4 methylation. <i>J Biol Chem</i> 2006, <i>281</i>, 35404-35412, doi:10.1074/jbc.M603099200. 232. Alvarado, A.G.; Thiagarajan, P.S.; Mulkearns-Hubert, E.E.; Silver, D.J.; Hale, J.S.; Alban, T.J.; Turaga, S.M.; Jarrar, A.; Reizes, O.; Longworth, M.S., et al. Glioblastoma Cancer Stem Cells Evade Innate Immune Suppression of Self- 	 Rodriguez-Gil, A.; Mkandawire, M.; Landsberg, K.; Shevchenko, A., et al. Protein interactions within the Set1 complex and their roles in the regulation of histone 3 lysine 4 methylation. <i>J Biol Chem</i> 2006, 281, 35404-35412, doi:10.1074/jbc.M603099200. 232. Alvarado, A.G.; Thiagarajan, P.S.; Mulkearns-Hubert, E.E.; Silver, D.J.; Hale, J.S.; Alban, T.J.; Turaga, S.M.; Jarrar, A.; Reizes, O.; Longworth, M.S., et al. Glioblastoma Cancer Stem Cells Evade Innate Immune Suppression of Self- Renewal through Reduced TLR4 Expression. <i>Cell Stem Cell</i> 2017, 20, 450-461 e454, doi:10.1016/j.stem.2016.12.001. 2074 233. Lu, C.; Yang, D.; Sabbatini, M.E.; Colby, A.H.; Grinstaff, M.W.; Oberlies, N.H.; Pearce, C.; Liu, K. Contrasting roles of H3K4me3 and H3K9me3 in regulation of apoptosis and gemcitabine resistance in human pancreatic cancer cells. 			
 Protein interactions within the Set1 complex and their roles in the regulation of histone 3 lysine 4 methylation. <i>J Biol Chem</i> 2006, 281, 35404-35412, doi:10.1074/jbc.M603099200. 232. Alvarado, A.G.; Thiagarajan, P.S.; Mulkearns-Hubert, E.E.; Silver, D.J.; Hale, J.S.; Alban, T.J.; Turaga, S.M.; Jarrar, A.; Reizes, O.; Longworth, M.S., et al. Glioblastoma Cancer Stem Cells Evade Innate Immune Suppression of Self- 	 Protein interactions within the Set1 complex and their roles in the regulation of histone 3 lysine 4 methylation. <i>J Biol Chem</i> 2006, <i>281</i>, 35404-35412, doi:10.1074/jbc.M603099200. 232. Alvarado, A.G.; Thiagarajan, P.S.; Mulkearns-Hubert, E.E.; Silver, D.J.; Hale, J.S.; Alban, T.J.; Turaga, S.M.; Jarrar, A.; Reizes, O.; Longworth, M.S., et al. 2071 Glioblastoma Cancer Stem Cells Evade Innate Immune Suppression of Self- Renewal through Reduced TLR4 Expression. <i>Cell Stem Cell</i> 2017, <i>20</i>, 450-461 e454, doi:10.1016/j.stem.2016.12.001. 2074 233. Lu, C.; Yang, D.; Sabbatini, M.E.; Colby, A.H.; Grinstaff, M.W.; Oberlies, N.H.; Pearce, C.; Liu, K. Contrasting roles of H3K4me3 and H3K9me3 in regulation of apoptosis and gemcitabine resistance in human pancreatic cancer cells. 		231.	
 2067 of histone 3 lysine 4 methylation. <i>J Biol Chem</i> 2006, <i>281</i>, 35404-35412, 2068 doi:10.1074/jbc.M603099200. 2069 232. Alvarado, A.G.; Thiagarajan, P.S.; Mulkearns-Hubert, E.E.; Silver, D.J.; Hale, J.S.; 2070 Alban, T.J.; Turaga, S.M.; Jarrar, A.; Reizes, O.; Longworth, M.S., et al. 2071 Glioblastoma Cancer Stem Cells Evade Innate Immune Suppression of Self- 	 of histone 3 lysine 4 methylation. <i>J Biol Chem</i> 2006, 281, 35404-35412, doi:10.1074/jbc.M603099200. 232. Alvarado, A.G.; Thiagarajan, P.S.; Mulkearns-Hubert, E.E.; Silver, D.J.; Hale, J.S.; Alban, T.J.; Turaga, S.M.; Jarrar, A.; Reizes, O.; Longworth, M.S., et al. Glioblastoma Cancer Stem Cells Evade Innate Immune Suppression of Self- Renewal through Reduced TLR4 Expression. <i>Cell Stem Cell</i> 2017, 20, 450-461 e454, doi:10.1016/j.stem.2016.12.001. Lu, C.; Yang, D.; Sabbatini, M.E.; Colby, A.H.; Grinstaff, M.W.; Oberlies, N.H.; Pearce, C.; Liu, K. Contrasting roles of H3K4me3 and H3K9me3 in regulation of apoptosis and gemcitabine resistance in human pancreatic cancer cells. 			
 doi:10.1074/jbc.M603099200. 2069 232. Alvarado, A.G.; Thiagarajan, P.S.; Mulkearns-Hubert, E.E.; Silver, D.J.; Hale, J.S.; 2070 Alban, T.J.; Turaga, S.M.; Jarrar, A.; Reizes, O.; Longworth, M.S., et al. 2071 Glioblastoma Cancer Stem Cells Evade Innate Immune Suppression of Self- 	 doi:10.1074/jbc.M603099200. 232. Alvarado, A.G.; Thiagarajan, P.S.; Mulkearns-Hubert, E.E.; Silver, D.J.; Hale, J.S.; Alban, T.J.; Turaga, S.M.; Jarrar, A.; Reizes, O.; Longworth, M.S., et al. Glioblastoma Cancer Stem Cells Evade Innate Immune Suppression of Self- Renewal through Reduced TLR4 Expression. <i>Cell Stem Cell</i> 2017, <i>20</i>, 450-461 e454, doi:10.1016/j.stem.2016.12.001. Lu, C.; Yang, D.; Sabbatini, M.E.; Colby, A.H.; Grinstaff, M.W.; Oberlies, N.H.; Pearce, C.; Liu, K. Contrasting roles of H3K4me3 and H3K9me3 in regulation of apoptosis and gemcitabine resistance in human pancreatic cancer cells. 			
 2069 232. Alvarado, A.G.; Thiagarajan, P.S.; Mulkearns-Hubert, E.E.; Silver, D.J.; Hale, J.S.; 2070 Alban, T.J.; Turaga, S.M.; Jarrar, A.; Reizes, O.; Longworth, M.S., et al. 2071 Glioblastoma Cancer Stem Cells Evade Innate Immune Suppression of Self- 	 2069 232. Alvarado, A.G.; Thiagarajan, P.S.; Mulkearns-Hubert, E.E.; Silver, D.J.; Hale, J.S.; 2070 Alban, T.J.; Turaga, S.M.; Jarrar, A.; Reizes, O.; Longworth, M.S., et al. 2071 Glioblastoma Cancer Stem Cells Evade Innate Immune Suppression of Self- 2072 Renewal through Reduced TLR4 Expression. <i>Cell Stem Cell</i> 2017, <i>20</i>, 450-461 2073 e454, doi:10.1016/j.stem.2016.12.001. 2074 233. Lu, C.; Yang, D.; Sabbatini, M.E.; Colby, A.H.; Grinstaff, M.W.; Oberlies, N.H.; 2075 Pearce, C.; Liu, K. Contrasting roles of H3K4me3 and H3K9me3 in regulation 2076 of apoptosis and gemcitabine resistance in human pancreatic cancer cells. 			
 Alban, T.J.; Turaga, S.M.; Jarrar, A.; Reizes, O.; Longworth, M.S., et al. Glioblastoma Cancer Stem Cells Evade Innate Immune Suppression of Self- 	 Alban, T.J.; Turaga, S.M.; Jarrar, A.; Reizes, O.; Longworth, M.S., et al. Glioblastoma Cancer Stem Cells Evade Innate Immune Suppression of Self- Renewal through Reduced TLR4 Expression. <i>Cell Stem Cell</i> 2017, 20, 450-461 e454, doi:10.1016/j.stem.2016.12.001. Lu, C.; Yang, D.; Sabbatini, M.E.; Colby, A.H.; Grinstaff, M.W.; Oberlies, N.H.; Pearce, C.; Liu, K. Contrasting roles of H3K4me3 and H3K9me3 in regulation of apoptosis and gemcitabine resistance in human pancreatic cancer cells. 			
2071 Glioblastoma Cancer Stem Cells Evade Innate Immune Suppression of Self-	 2071 Glioblastoma Cancer Stem Cells Evade Innate Immune Suppression of Self- 2072 Renewal through Reduced TLR4 Expression. <i>Cell Stem Cell</i> 2017, 20, 450-461 2073 e454, doi:10.1016/j.stem.2016.12.001. 2074 233. Lu, C.; Yang, D.; Sabbatini, M.E.; Colby, A.H.; Grinstaff, M.W.; Oberlies, N.H.; 2075 Pearce, C.; Liu, K. Contrasting roles of H3K4me3 and H3K9me3 in regulation 2076 of apoptosis and gemcitabine resistance in human pancreatic cancer cells. 		232.	
	2072Renewal through Reduced TLR4 Expression. Cell Stem Cell 2017, 20, 450-4612073e454, doi:10.1016/j.stem.2016.12.001.2074233.Lu, C.; Yang, D.; Sabbatini, M.E.; Colby, A.H.; Grinstaff, M.W.; Oberlies, N.H.;2075Pearce, C.; Liu, K. Contrasting roles of H3K4me3 and H3K9me3 in regulation2076of apoptosis and gemcitabine resistance in human pancreatic cancer cells.			
	 2073 e454, doi:10.1016/j.stem.2016.12.001. 2074 233. Lu, C.; Yang, D.; Sabbatini, M.E.; Colby, A.H.; Grinstaff, M.W.; Oberlies, N.H.; 2075 Pearce, C.; Liu, K. Contrasting roles of H3K4me3 and H3K9me3 in regulation 2076 of apoptosis and gemcitabine resistance in human pancreatic cancer cells. 			
	 2074 233. Lu, C.; Yang, D.; Sabbatini, M.E.; Colby, A.H.; Grinstaff, M.W.; Oberlies, N.H.; 2075 Pearce, C.; Liu, K. Contrasting roles of H3K4me3 and H3K9me3 in regulation 2076 of apoptosis and gemcitabine resistance in human pancreatic cancer cells. 			
	 2075 Pearce, C.; Liu, K. Contrasting roles of H3K4me3 and H3K9me3 in regulation 2076 of apoptosis and gemcitabine resistance in human pancreatic cancer cells. 		000	
	2076 of apoptosis and gemcitabine resistance in human pancreatic cancer cells.		233.	
	20// BMC Cancer 2018 , 18, 149, doi:10.1186/s12885-018-4061-y.			
<i>ZU// BML Lancer</i> ZU18 , 18, 149, doi:10.1186/s12885-018-4061-v.		2077		вмс сапсег 2018 , 18, 149, дол:10.1186/s12885-018-4061-у.

2078	234.	Li, D.; Sun, H.; Sun, W.J.; Bao, H.B.; Si, S.H.; Fan, J.L.; Lin, P.; Cui, R.J.; Pan, Y.J.;
2079		Wen, S.M., et al. Role of RbBP5 and H3K4me3 in the vicinity of Snail
2080		transcription start site during epithelial-mesenchymal transition in prostate
2081		cancer cell. <i>Oncotarget</i> 2016 , <i>7</i> , 65553-65567,
2082		doi:10.18632/oncotarget.11549.
2083	235.	Zhou, H.; Bao, J.; Zhu, X.; Dai, G.; Jiang, X.; Jiao, X.; Sheng, H.; Huang, J.; Yu, H.
2084		Retinoblastoma Binding Protein 5 Correlates with the Progression in
2085		Hepatocellular Carcinoma. <i>Biomed Res Int</i> 2018 , <i>2018</i> , 1073432,
2086		doi:10.1155/2018/1073432.
2087	236.	Telles, E.; Seto, E. Modulation of cell cycle regulators by HDACs. Front Biosci
2088		(Schol Ed) 2012 , 4, 831-839.
2089	237.	Seto, E.; Yoshida, M. Erasers of histone acetylation: the histone deacetylase
2090		enzymes. <i>Cold Spring Harb Perspect Biol</i> 2014 , 6, a018713,
2091		doi:10.1101/cshperspect.a018713.
2092	238.	Wu, J.; Carmen, A.A.; Kobayashi, R.; Suka, N.; Grunstein, M. HDA2 and HDA3
2093		are related proteins that interact with and are essential for the activity of the
2094		yeast histone deacetylase HDA1. Proceedings of the National Academy of
2095		Sciences of the United States of America 2001 , 98, 4391-4396,
2096		doi:10.1073/pnas.081560698.
2097	239.	Alic, N.; Higgins, V.J.; Dawes, I.W. Identification of a Saccharomyces cerevisiae
2098		gene that is required for G1 arrest in response to the lipid oxidation product
2099		linoleic acid hydroperoxide. <i>Mol Biol Cell</i> 2001 , <i>12</i> , 1801-1810,
2100		doi:10.1091/mbc.12.6.1801.
2101	240.	Alic, N.; Higgins, V.J.; Pichova, A.; Breitenbach, M.; Dawes, I.W. Lipid
2102		hydroperoxides activate the mitogen-activated protein kinase Mpk1p in
2103		Saccharomyces cerevisiae. J Biol Chem 2003 , 278, 41849-41855,
2104		doi:10.1074/jbc.M307760200.
2105	241.	Addinall, S.G.; Downey, M.; Yu, M.; Zubko, M.K.; Dewar, J.; Leake, A.; Hallinan,
2106		J.; Shaw, O.; James, K.; Wilkinson, D.J., et al. A genomewide suppressor and
2107		enhancer analysis of cdc13-1 reveals varied cellular processes influencing
2108		telomere capping in Saccharomyces cerevisiae. <i>Genetics</i> 2008 , <i>180</i> , 2251-
2109		2266, doi:genetics.108.092577 [pii]
2110		34/genetics.108.092577.
2111	242.	van der Veen, A.G.; Ploegh, H.L. Ubiquitin-like proteins. <i>Annu Rev Biochem</i>
2112		2012 , <i>81</i> , 323-357, doi:10.1146/annurev-biochem-093010-153308.
2113	243.	Judes, A.; Bruch, A.; Klassen, R.; Helm, M.; Schaffrath, R. Sulfur transfer and
2114		activation by ubiquitin-like modifier system Uba4*Urm1 link protein
2115		urmylation and tRNA thiolation in yeast. <i>Microb Cell</i> 2016 , <i>3</i> , 554-564,
2116		doi:10.15698/mic2016.11.539.
2117	244.	Nakai, Y.; Nakai, M.; Hayashi, H. Thio-modification of yeast cytosolic tRNA
2118		requires a ubiquitin-related system that resembles bacterial sulfur transfer
2119		systems. <i>The Journal of biological chemistry</i> 2008 , <i>283</i> , 27469-27476,
2120	245	doi:10.1074/jbc.M804043200.
2121	245.	Noma, A.; Sakaguchi, Y.; Suzuki, T. Mechanistic characterization of the sulfur-
2122		relay system for eukaryotic 2-thiouridine biogenesis at tRNA wobble
2123		positions. <i>Nucleic Acids Res</i> 2009 , <i>37</i> , 1335-1352, doi:10.1093/nar/gkn1023.

2124	246.	Hawer, H.; Hammermeister, A.; Ravichandran, K.E.; Glatt, S.; Schaffrath, R.;
2125		Klassen, R. Roles of Elongator Dependent tRNA Modification Pathways in
2126		Neurodegeneration and Cancer. <i>Genes (Basel)</i> 2018 , <i>10</i> ,
2127		doi:10.3390/genes10010019.
2128	247.	Rapino, F.; Delaunay, S.; Rambow, F.; Zhou, Z.; Tharun, L.; De Tullio, P.; Sin, O.;
2129		Shostak, K.; Schmitz, S.; Piepers, J., et al. Codon-specific translation
2130		reprogramming promotes resistance to targeted therapy. <i>Nature</i> 2018 , <i>558</i> ,
2131		605-609, doi:10.1038/s41586-018-0243-7.
2132	248.	Plunkett, W.; Huang, P.; Searcy, C.E.; Gandhi, V. Gemcitabine: preclinical
2133		pharmacology and mechanisms of action. <i>Semin Oncol</i> 1996 , <i>23</i> , 3-15.
2134	249.	Wong, A.; Soo, R.A.; Yong, W.P.; Innocenti, F. Clinical pharmacology and
2135		pharmacogenetics of gemcitabine. Drug Metab Rev 2009, 41, 77-88,
2136		doi:10.1080/03602530902741828.
2137	250.	Krishnan, P.; Fu, Q.; Lam, W.; Liou, J.Y.; Dutschman, G.; Cheng, Y.C.
2138		Phosphorylation of pyrimidine deoxynucleoside analog diphosphates:
2139		selective phosphorylation of L-nucleoside analog diphosphates by 3-
2140		phosphoglycerate kinase. J Biol Chem 2002 , 277, 5453-5459,
2141		doi:10.1074/jbc.M109025200.
2142	251.	Flentie, K.; Gonzalez, C.; Kocher, B.; Wang, Y.; Zhu, H.; Marasa, J.; Piwnica-
2143		Worms, D. Nucleoside Diphosphate Kinase-3 (NME3) Enhances TLR5-
2144		Induced NFkappaB Activation. <i>Mol Cancer Res</i> 2018 , <i>16</i> , 986-999,
2145		doi:10.1158/1541-7786.MCR-17-0603.
2146	252.	O'Kane, G.M.; Connor, A.A.; Gallinger, S. Characterization, Detection, and
2147		Treatment Approaches for Homologous Recombination Deficiency in Cancer.
2148		<i>Trends Mol Med</i> 2017 , <i>23</i> , 1121-1137, doi:10.1016/j.molmed.2017.10.007.
2149	253.	Jackson, J.C.; Lopes, J.M. The yeast UME6 gene is required for both negative
2150		and positive transcriptional regulation of phospholipid biosynthetic gene
2151		expression. Nucleic Acids Res 1996, 24, 1322-1329.
2152	254.	Bae-Lee, M.S.; Carman, G.M. Phosphatidylserine synthesis in Saccharomyces
2153		cerevisiae. Purification and characterization of membrane-associated
2154		phosphatidylserine synthase. <i>The Journal of biological chemistry</i> 1984 , 259,
2155		10857-10862.
2156	255.	Madeo, F.; Frohlich, E.; Frohlich, K.U. A yeast mutant showing diagnostic
2157		markers of early and late apoptosis. J Cell Biol 1997 , 139, 729-734.
2158	256.	Modrak, D.E.; Cardillo, T.M.; Newsome, G.A.; Goldenberg, D.M.; Gold, D.V.
2159		Synergistic interaction between sphingomyelin and gemcitabine potentiates
2160		ceramide-mediated apoptosis in pancreatic cancer. <i>Cancer Res</i> 2004 , <i>64</i> ,
2161		8405-8410, doi:10.1158/0008-5472.CAN-04-2988.
2162	257.	Modrak, D.E.; Leon, E.; Goldenberg, D.M.; Gold, D.V. Ceramide regulates
2163		gemcitabine-induced senescence and apoptosis in human pancreatic cancer
2164		cell lines. <i>Mol Cancer Res</i> 2009 , <i>7</i> , 890-896, doi:10.1158/1541-7786.MCR-08-
2165		0457.
2166	258.	Frohlich, F.; Petit, C.; Kory, N.; Christiano, R.; Hannibal-Bach, H.K.; Graham, M.;
2167		Liu, X.; Ejsing, C.S.; Farese, R.V.; Walther, T.C. The GARP complex is required
2168		for cellular sphingolipid homeostasis. <i>Elife</i> 2015 , <i>4</i> , doi:10.7554/eLife.08712.

 2169 259. Hua, Z.; Fatheddin, P.; Graham, T.R. An essential subfamily of Dr32p-related P-type ArPases is required for protein trafficking between Golgi complex and endosomal/vacuolar system. <i>Molecular biology of the cell</i> 2002, <i>13</i>, 3162- 3177, doi:10.1091/mbc.02-03-0172. 260. Pomorski, T.; Lombardi, R.; Riezman, H.; Devaux, P.F.; van Meer, G.; Holthuis, J.C. Dr32p-related P-type ATPases Dnf1p and Dnf2p are required for phospholipid translocation across the yeast plasma membrane and serve a role in endocytosis. <i>Molecular biology of the cell</i> 2003, <i>14</i>, 1240-1254, doi:10.1091/mbc.02-08-0501. 261. Nakano, K.; Yamamoto, T.; Kishimoto, T.; Noji, T.; Tanaka, K. Protein kinases Fpk1p and Fpk2p are novel regulators of phospholipid saymmetry. <i>Molecular biology of the cell</i> 2008, <i>19</i>, 1783-1797, doi:10.1091/mbc.07-07-0646. 262. Bastide, A.; David, A. The ribosome, (slow) beating heart of cancer (stem) cell. <i>Oncogenesis</i> 2018, <i>7</i>, 34, doi:10.1038/s41389-018-004-48. 263. Manfrini, N.; Gobbini, E.; Baldo, V.; Trovesi, C.; Lucchini, G.; Longhese, M.P. G(1)/S and G(2)/M cyclin-dependent kinase activities commit cells to death in the absence of the S-phase checkpoint. <i>Mol Cell Biol</i> 2012, <i>32</i>, 4971-4985, doi:10.1128/MCB.00956-12. 264. Hu, X.; Lu, Z.; Yu, S.; Reilly, J.; Liu, F.; Jia, D.; Qin, Y.; Han, S.; Liu, X.; Qu, Z., et al. CERKL regulates autophagy via the NAD-dependent deactylase SIRT1. <i>Autophagy</i> 2019, <i>15</i>, 453-465, doi:10.1080/15548627.2018.1520548. 265. Sun, F.; Xiong, Y.; Zhou, X.H.; Li, Q.; Xiao, L.; Long, P.; Li, L.J.; Cai, M.Y.; Wei, Y.X.; Ma, Y.L., et al. Acylglycerol kinase is over-expressed in early-stage cervical squamous cell cancer and predicts poor prognosis. <i>Tumour Biol</i> 2016, <i>37</i>, 6729-6736, doi:10.1007/s13277-015-4498-4. 266. Liu, N.; Wang, Z.; Cheng, Y.; Zhang, P.; Wang, X.; Yang, H.; Liu, H.; Zhang, Y.; Tu, Y. Acylglycerol kinase functions as an oncogene and an unfavorabl			
 endosomal/vacuolar system. <i>Molecular biology of the cell</i> 2002, <i>13</i>, 3162-3177, doi:10.1091/mbc.e02-03-0172. Pomorski, T.; Lombardi, R.; Riezman, H.; Devaux, P.F.; van Meer, G.; Holthuis, J.C. DrS2p-related P-type ATPases Dnf1p and Dnf2p are required for phospholipid translocation across the yeast plasma membrane and serve a role in endocytosis. <i>Molecular biology of the cell</i> 2003, <i>14</i>, 1240-1254, doi:10.1091/mbc.e02-08-0501. Nakano, K.; Yamamoto, T.; Kishimoto, T.; Noji, T.; Tanaka, K. Protein kinases Fpk1p and Fpk2p are novel regulators of phospholipid asymmetry. <i>Molecular biology of the cell</i> 2008, <i>19</i>, 1783-1797, doi:10.1091/mbc.E07-07-0646. Bastide, A.; David, A. The ribosome, (slow) beating heart of cancer (stem) cell. <i>Oncogenesis</i> 2018, <i>7</i>, 34, doi:10.1038/s41389-018-0044-8. Manfrini, N.; Gobbini, E.; Baldo, V.; Trovesi, C.; Lucchini, G.; Longhese, M.P. G(1)/S and G(2)/M cyclin-dependent kinase activities commit cells to death in the absence of the S-phase checkpoint. <i>Mol Cell Biol</i> 2012, <i>32</i>, 4971-4985, doi:10.1128/MCB.00956-12. Hu, X.; Lu, Z.; Yu, S; Reilly, J.; Liu, F.; Jia, D.; Qin, Y.; Han, S.; Liu, X.; Qu, Z. et al. CERKL regulates autophagy via the NAD-dependent deacetylase SIRT1. <i>Autophagy</i> 2019, <i>15</i>, 453-465, doi:10.1080/15548627.2018.1520548. Sun, F.; Xiong, Y.; Chang, Y.; Zhang, P.; Wang, X.; Yang, H.; Liu, H.; Zhang, Y.; Tu, Y. A. cylglycerol kinase is over-expressed in early-stage cervical squamous cell cancer and predicts poor prognosis. <i>Tumour Biol</i> 2016, <i>37</i>, 6729-6736, doi:10.107/s13277-015-4498-4. Liu, N.; Wang, Z.; Cheng, Y.; Zhang, P.; Wang, X.; Yang, H.; Liu, H.; Zhang, Y.; Tu, Y. A. cylglycerol kinase functions as an oncogene and an unfavorable prognostic marker of human gliomas. <i>Hum Pathol</i> 2016, <i>58</i>, 105-112, doi:10.1016/j.humpath.2016.07.034. Cui, Y.; Lin, C.; Wua, Z.; Liu, A.; Zhang, Y.; Tuu, S.; Song, L. Acylglycerol kinase promotes cell prolifera	2169	259.	Hua, Z.; Fatheddin, P.; Graham, T.R. An essential subfamily of Drs2p-related
 2172 3177, doi:10.1091/mbc.e02-03-0172. 260. Pomorski, T.; Lombardi, R.; Riezman, H.; Devaux, P.F.; van Meer, G.; Holthuis, J.C. Drs2p-related P-type ATPases Dnf1p and Dnf2p are required for phospholipid translocation across the yeast plasma membrane and serve a role in endocytosis. <i>Molecular biology of the cell</i> 2003, <i>14</i>, 1240-1254, doi:10.1091/mbc.e02-08-0501. 261. Nakano, K.; Yamamoto, T.; Kishimoto, T.; Noji, T.; Tanaka, K. Protein kinases Fpk1p and Fpk2p are novel regulators of phospholipid asymmetry. <i>Molecular biology of the cell</i> 2008, <i>19</i>, 1783-1797, doi:10.1091/mbc.E07-07-0646. 262. Bastide, A.; David, A. The ribosome, (slow) beating heart of cancer (stem) cell. <i>Oncogenesis</i> 2018, <i>7</i>, 34, doi:10.1038/s41389-018-0044-8. 263. Manfrini, N.; Gobbini, E.; Baldo, V.; Trovesi, C.; Lucchini, G.; Longhese, M.P. G(1)/S and G(2)/M cyclin-dependent kinase activities commit cells to death in the absence of the S-phase checkpoint. <i>Mol Cell Biol</i> 2012, <i>32</i>, 4971-4985, doi:10.1128/MCB.00956-12. 264. Hu, X.; Lu, Z.; Yu, S.; Reilly, J.; Liu, F.; Jia, D.; Qin, Y.; Han, S.; Liu, X.; Qu, Z., et al. CERKL regulates autophagy via the NAD-dependent deacetylase SIRT1. <i>Autophagy</i> 2019, <i>15</i>, 453-465, doi:10.1080/15548627.2018.1520548. 265. Sun, F.; Xiong, Y.; Zhou, X.H.; Li, Q.; Xiao, L.; Long, P.; Li, L.J.; Cai, M.Y.; Wei, Y.X.; Ma, Y.L., et al. Acylglycerol kinase is over-expressed in early-stage cervical squamous cell cancer and predicts poor prognosis. <i>Tumour Biol</i> 2016, <i>37</i>, 6729-6736, doi:10.1007/s13277-015-44984. 266. Liu, N.; Wang, Z.; Cheng, Y.; Zhang, P.; Wang, X.; Yang, H.; Liu, H.; Zhang, Y.; Tu, Y. Acylglycerol kinase functions as an oncogene and an unfavorable prognostic marker of human gliomas. <i>Hum Pathol</i> 2016, <i>58</i>, 105-112, doi:10.1016/j.humpath.2016.07.034. 267. Cui, Y.; Lin, C.; Wu, Z.; Liu, A.; Zhang, X.; Zhu, J.; Wu, G.; Wu, J.; Li, J., et al. AGK enhances angiogenesis and inhibits apoptosis via activation of the			
 260. Pomorski, T.; Lombardi, R.; Riezman, H.; Devaux, P.F.; van Meer, G.; Holthuis, J.C. Drs2p-related P-type ATPases Dn1p and Dn2p are required for phospholipid translocation across the yeast plasma membrane and serve a role in endocytosis. <i>Molecular biology of the cell</i> 2003, <i>14</i>, 1240-1254, doi:10.1091/mbc.e02-08-0501. 261. Nakano, K.; Yamamoto, T.; Kishimoto, T.; Noji, T.; Tanaka, K. Protein kinases FpkIp and Fpk2p are novel regulators of phospholipid asymmetry. <i>Molecular biology of the cell</i> 2008, <i>19</i>, 1783-1797, doi:10.1091/mbc.E07-07-0646. 262. Bastide, A.; David, A. The ribosome, (slow) beating heart of cancer (stem) cell. <i>Oncogenesis</i> 2018, <i>7</i>, 34, doi:10.1038/s41389-018-0044-8. 263. Manfrini, N.; Gobbini, E.; Baldo, V.; Trovesi, C.; Lucchini, G.; Longhese, M.P. G(1)/S and G(2)/M cyclin-dependent kinase activities commit cells to death in the absence of the S-phase checkpoint. <i>Mol Cell Biol</i> 2012, <i>32</i>, 4971-4985, doi:10.1128/MCB.00956-12. 264. Hu, X.; Lu, Z.; Yu, S.; Reilly, J.; Liu, F.; Jia, D.; Qin, Y.; Han, S.; Liu, X.; Qu, Z., et al. CERKI, regulates autophagy via the NAD-dependent deacetylaes SIRT1. <i>Autophagy</i> 2019, <i>15</i>, 453-465, doi:10.1080/15548627.2018.1520548. 265. Sun, F.; Xiong, Y.; Zhou, X.H; Li, Q.; Xiao, L.; Long, P.; Li, L.J.; Cai, M.Y.; Wei, Y.X.; Ma, Y.L., et al. Acylglycerol kinase is over-expressed in early-stage cervical squamous cell cancer and predicts poor prognosis. <i>Tumour Biol</i> 2016, <i>37</i>, 6729-6736, doi:10.1007/s13277-015-4498-4. 266. Liu, N.; Wang, Z.; Cheng, Y.; Zhang, P.; Wang, X.; Yang, H.; Liu, H.; Zhang, Y.; Tu, Y. Acylglycerol kinase functions as an oncogene and an unfavorable prognostic marker of human gliomas. <i>Hum Pathol</i> 2016, <i>58</i>, 105-112, doi:10.1016/j.humpath.2016.07.034. 267. Cui, Y.; Lin, C.; Wu, Z.; Liu, A.; Zhang, X.; Zhu, J.; Wu, G.; Wu, J.; Li, M.; Li, J., et al. AGK enhances angiogenesis and hinbits apoptosis via acutario of the FF-kappaB sig			
 J.C. Drs2p-related P-type ATPases Dnf1p and Dnf2p are required for phospholipid translocation across the yeast plasma membrane and serve a role in endocytosis. <i>Molecular biology of the cell</i> 2003, <i>14</i>, 1240-1254, doi:10.1091/mbc.e02-08-0501. Nakano, K, Yamamoto, T., Kishimoto, T.; Noji, T.; Tanaka, K. Protein kinases Fpk1p and Fpk2p are novel regulators of phospholipid asymmetry. <i>Molecular biology of the cell</i> 2008, <i>19</i>, 1783-1797, doi:10.1091/mbc.E07-07-0646. Bastide, A.; David, A. The ribosome, (slow) heating heart of cancer (stem) cell. <i>Oncogenesis</i> 2018, <i>7</i>, 34, doi:10.1038/s41389-018-0044-8. Manfrini, N.; Gobbini, E.; Baldo, V.; Trovesi, C.; Lucchini, G.; Longhese, M.P. G(1)/S and G(2)/M cyclin-dependent kinase activities commit cells to death in the absence of the S-phase checkpoint. <i>Mol Cell Biol</i> 2012, <i>32</i>, 4971-4985, doi:10.1128/MCB.00956-12. Hu, X.; Lu, Z.; Yu, S.; Reilly, J.; Liu, F.; Jia, D.; Qin, Y.; Han, S.; Liu, X.; Qu, Z., et al. CERKL regulates autophagy via the NAD-dependent deacetylase SIRT1. <i>Autophagy</i> 2019, <i>15</i>, 453-465, doi:10.1080/15548627.2018.1520548. Sun, F.; Xiong, Y.; Zhou, X.H.; Li, Q.; Xiao, L.; Long, P.; Li, L.J.; Cai, M.Y.; Wei, Y.X.; Ma, Y.L., et al. Acylglycerol kinase is over-expressed in early-stage cervical squamous cell cancer and predicts poor prognosis. <i>Tumour Biol</i> 2016, <i>37</i>, 6729-6736, doi:10.1007/s13277-015-4498-4. Liu, N.; Wang, Z.; Cheng, Y.; Zhang, P.; Wang, X.; Yang, H.; Liu, H.; Zhang, Y.; Tu, Y. Acylglycerol kinase functions as an oncogene and an unfavorable prognostic marker of human gliomas. <i>Hum Pathol</i> 2016, 58, 105-112, doi:10.1016/j.humpath.2016.07.034. Cui, Y.; Lin, C.; Wu, Z.; Liu, A.; Zhang, X.; Zhu, J.; Wu, G.; Wu, J.; Li, M.; Li, J., et al. AGK enhances angiogenesis and inhibits apoptosis via activation of the NF- kappaB signaling pathway in hepatocellular carcinoma. <i>Oncotarget</i> 2014, <i>5</i>, 12057-12069, doi:10.18632/oncotarget.2666.	2172		
 phospholipid translocation across the yeast plasma membrane and serve a role in endocytosis. <i>Molecular biology of the cell</i> 2003, <i>14</i>, 1240-1254, doi:10.1091/mbc.e02-08-0501. Nakano, K.; Yamamoto, T.; Kishimoto, T.; Noji, T.; Tanaka, K. Protein kinases Fpk1p and Fpk2p are novel regulators of phospholipid asymmetry. <i>Molecular biology of the cell</i> 2008, <i>19</i>, 1783-1797, doi:10.1091/mbc.E07-07-0646. Bastide, A.; David, A. The ribosome, (slow) beating heart of cancer (stem) cell. <i>Oncogenesis</i> 2018, <i>7</i>, 34, doi:10.1038/s41389-018-0044-8. Ca. Bastide, A.; David, A. The ribosome, (slow) beating heart of cancer (stem) cell. <i>Oncogenesis</i> 2018, <i>7</i>, 34, doi:10.1038/s41389-018-0044-8. Ga. Gardi, Y.; Gobbini, E.; Baldo, V.; Trovesi, C.; Lucchini, G.; Longhese, M.P. G(1)/S and G(2)/M cyclin-dependent kinase activities commit cells to death in the absence of the S-phase checkpoint. <i>Mol Cell Biol</i> 2012, <i>32</i>, 4971-4985, doi:10.1128/MCB.00956-12. Hu, X.; Lu, Z.; Yu, S.; Reilly, J.; Liu, F.; Jia, D.; Qin, Y.; Han, S.; Liu, X.; Qu, Z., et al. CERKL regulates autophagy via the NAD-dependent deacetylase SIRT1. <i>Autophagy</i> 2019, <i>15</i>, 453-465, doi:10.1080/15548627.2018.1520548. Sun, F.; Xiong, Y.; Zhou, X.H.; Li, Q.; Xiao, L.; Long, P.; Li, L.J.; Cai, M.Y.; Wei, Y.X.; Ma, Y.L., et al. Acylglycerol kinase is over-expressed in early-stage cervical squamous cell cancer and predicts poor prognosis. <i>Tumour Biol</i> 2016, <i>37</i>, 6729-6736, doi:10.1007/s13277-015-4498-4. Cai. Y.; Lin, C.; Wu, Z.; Liua, A.; Zhang, X.; Yang, H.; Liu, H.; Zhang, Y.; Tu, Y. Acylglycerol kinase functions as an oncogene and an unfavorable prognostic marker of human gliomas. <i>Hum Pathol</i> 2016, <i>58</i>, 105-112, doi:10.1016/j.humpath.2016.07.034. Cai. Y.; Lin, C.; Wan, Z.; Liu, A.; Zhang, X.; Zhu, J.; Wu, G.; Wu, J.; Li, M.; Li, J., et al. AGK enhances angiogenesis and inhibits apoptosis via activation of the FF-kappaB signaling pathway in hepatocellular carcinoma. <i>Oncotarget</i> 2014	2173	260.	Pomorski, T.; Lombardi, R.; Riezman, H.; Devaux, P.F.; van Meer, G.; Holthuis,
 role in endocytosis. <i>Molecular biology of the cell</i> 2003, <i>14</i>, 1240-1254, doi:10.1091/mbc.e02-08-0501. Nakano, K.; Yamamoto, T.; Kishimoto, T.; Noji, T.; Tanaka, K. Protein kinases FpkIp and Fpk2p are novel regulators of phospholipid asymmetry. <i>Molecular biology of the cell</i> 2008, <i>19</i>, 1783-1797, doi:10.1091/mbc.E07-07-0646. Bastide, A.; David, A. The ribosome, (slow) beating heart of cancer (stem) cell. <i>Oncogenesis</i> 2018, <i>7</i>, 34, doi:10.1038/s41389-018-0044-8. Manfrini, N.; Gobbini, E.; Baldo, V.; Trovesi, C.; Lucchini, G.; Longhese, M.P. G(1)/S and G(2)/M cyclin-dependent kinase activities commit cells to death in the absence of the S-phase checkpoint. <i>Mol Cell Biol</i> 2012, <i>32</i>, 4971-4985, doi:10.1128/MCB.00956-12. Hu, X.; Lu, Z.; Yu, S.; Reilly, J.; Liu, F.; Jia, D.; Qin, Y.; Han, S.; Liu, X.; Qu, Z., et al. CERKL regulates autophagy via the NAD-dependent deacetylase SIRT1. <i>Autophagy</i> 2019, <i>15</i>, 453-465, doi:10.1080/15548627.2018.1520548. Sun, F.; Xiong, Y.; Zhou, X.H.; Li, Q.; Xiao, L.; Long, P.; Li, L.J.; Cai, M.Y.; Wei, Y.X.; Ma, Y.L., et al. Acylglycerol kinase is over-expressed in early-stage cervical squamous cell cancer and predicts poor prognosis. <i>Tumour Biol</i> 2016, <i>37</i>, 6729-6736, doi:10.1007/s13277-015-4498-4. Liu, N.; Wang, Z.; Cheng, Y.; Zhang, P.; Wang, X.; Yang, H.; Liu, H.; Zhang, Y.; Tu, Y. Acylglycerol kinase functions as an oncogene and an unfavorable prognostic marker of human gliomas. <i>Hum Pathol</i> 2016, <i>58</i>, 105-112, doi:10.1016/j.humpath.2016.07.034. Cui, Y.; Lin, C.; Wu, Z.; Liu, A.; Zhang, X.; Zhu, J.; Wu, G.; Wu, J.; Li, M.; Li, J., et al. AGK enhances angiogenesis and inhibits apoptosis via activation of the NF-kappaB signaling pathway in hepatocellular carcinoma. <i>Oncotarget</i> 2014, <i>5</i>, 12057-12069, doi:10.18632/oncotarget.2666. Wang, X.; Lin, C.; Wu, Z.; Liu, A.; Zhang, X.; Zhu, J.; Song, L. Acylglycerol kinase promotes cell proliferation and tumorigenici	2174		J.C. Drs2p-related P-type ATPases Dnf1p and Dnf2p are required for
 doi:10.1091/mbc.e02-08-0501. 2177 doi:10.1091/mbc.e02-08-0501. 2180 Fpk1p and Fpk2p are novel regulators of phospholipid asymmetry. <i>Molecular biology of the cell</i> 2008, <i>19</i>, 1783-1797, doi:10.1091/mbc.E07-07-0646. 2181 262. Bastide, A.; David, A. The ribosome, (slow) beating heart of cancer (stem) cell. <i>Oncogenesis</i> 2018, <i>7</i>, 34, doi:10.1038/s41389-018-0044-8. 263. Manfrini, N.; Gobbini, E.; Baldo, V.; Trovesi, C.; Lucchini, G.; Longhese, M.P. G(1)//S and G(2)/M cyclin-dependent kinase activities commit cells to death in the absence of the S-phase checkpoint. <i>Mol Cell Biol</i> 2012, <i>32</i>, 4971-4985, doi:10.1128/MCB.00956-12. 264. Hu, X.; Lu, Z.; Yu, S.; Reilly, J.; Liu, F.; Jia, D.; Qin, Y.; Han, S.; Liu, X.; Qu, Z., et al. CERKL regulates autophagy via the NAD-dependent deacetylase SIRT1. <i>Autophagy</i> 2019, <i>15</i>, 453-465, doi:10.1080/15548627.2018.1520548. 265. Sun, F.; Xiong, Y.; Zhou, X.H.; Li, Q.; Xiao, L.; Long, P.; Li, L.J.; Cai, M.Y.; Wei, Y.X.; Ma, Y.L., et al. Acylglycerol kinase is over-expressed in early-stage cervical squamous cell cancer and predicts poor prognosis. <i>Tumour Biol</i> 2016, <i>37</i>, 6729-6736, doi:10.1007/s13277-015-4498-4. 266. Liu, N.; Wang, Z.; Cheng, Y.; Zhang, P.; Wang, X.; Yang, H.; Liu, H.; Zhang, Y.; Tu, Y. Acylglycerol kinase functions as an oncogene and an unfavorable prognostic marker of human gliomas. <i>Hum Pathol</i> 2016, <i>58</i>, 105-112, doi:10.1016/j.humpath.2016.07.034. 267. Cui, Y.; Lin, C.; Wu, Z.; Liu, A.; Zhang, X.; Zhu, J.; Wu, G.; Wu, J.; Li, M.; Li, J., et al. AGK enhances angiogenesis and inhibits apoptosis via activation of the NF-kappaB signaling pathway in hepatocellular carcinoma. <i>Oncotarget</i> 2014, <i>5</i>, 12057-12069, doi:10.118632/oncotarget.2666. 268. Wang, X.; Lin, C.; Wu, Z.; Liu, A.; Zhang, X.; Du, J.; M.; G.; Mu, J.; Li, J., 106, doi:10.1186/1476-4598-13-106. 269. Kang, H.; Tsygankov, D.; Lew, D.J. Sensing a bud in the yeast morphogenesis checkpoint: arole for Elm	2175		phospholipid translocation across the yeast plasma membrane and serve a
 2178 261. Nakano, K.; Yamamoto, T.; Kishimoto, T.; Noji, T.; Tanaka, K. Protein kinases Fpk1 p and Fpk2p are novel regulators of phospholipid asymmetry. <i>Molecular</i> <i>biology of the cell</i> 2008, <i>19</i>, 1783-1797, doi:10.1091/mbc.E07-07-0646. 2181 262. Bastide, A.; David, A. The ribosome, (slow) beating heart of cancer (stem) cell. <i>Oncogenesis</i> 2018, <i>7</i>, 34, doi:10.1038/s41389-018-0044-8. 2183 263. Manfrini, N.; Gobbini, E.; Baldo, V.; Trovesi, C.; Lucchini, G.; Longhese, M.P. 2184 G(1)/S and G(2)/M cyclin-dependent kinase activities commit cells to death in the absence of the S-phase checkpoint. <i>Mol Cell Biol</i> 2012, <i>32</i>, 4971-4985, doi:10.1128/MCB.00956-12. 2187 264. Hu, X.; Lu, Z.; Yu, S.; Reilly, J.; Liu, F.; Jia, D.; Qin, Y.; Han, S.; Liu, X.; Qu, Z., et al. CERKL regulates autophagy via the NAD-dependent deacetylase SIRT1. <i>Autophagy</i> 2019, <i>15</i>, 453-465, doi:10.1080/15548627.2018.1520548. 2190 265. Sun, F.; Xiong, Y.; Zhou, X.H.; Li, Q.; Xiao, L.; Long, P.; Li, L.J.; Cai, M.Y.; Wei, Y.X.; Ma, Y.L., et al. Acylglycerol kinase is over-expressed in early-stage cervical squamous cell cancer and predicts poor prognosis. <i>Tumour Biol</i> 2016, <i>37</i>, 6729-6736, doi:10.1007/s13277-015-4498-4. 2194 266. Liu, N.; Wang, Z.; Cheng, Y.; Zhang, P.; Wang, X.; Yang, H.; Liu, H.; Zhang, Y.; Tu, Y. Acylglycerol kinase functions as an oncogene and an unfavorable prognostic marker of human gliomas. <i>Hum Pathol</i> 2016, <i>58</i>, 105-112, doi:10.1016/j.humpath.2016.07.034. 267. Cui, Y.; Lin, C.; Wu, Z.; Liu, A.; Zhang, X.; Zhu, J.; Wu, G.; Wu, J.; Li, M.; Li, J., et al. AGK enhances angiogenesis and inhibits apoptosis via activation of the NF- kappaB signaling pathway in hepatocellular carcinoma. <i>Oncotarget</i> 2014, <i>5</i>, 12057-12069, doi:10.18632/oncotarget.2666. 268. Wang, X.; Lin, C.; Zhao, X.; Liu, A.; Zhau, J.; Li, X.; Song, L. Acylglycerol kinase promotes cell proliferation and tumorigenicity in breast cancer via suppression of the FOX01 transcription	2176		role in endocytosis. <i>Molecular biology of the cell</i> 2003 , <i>14</i> , 1240-1254,
 2178 261. Nakano, K.; Yamamoto, T.; Kishimoto, T.; Noji, T.; Tanaka, K. Protein kinases Fpk1p and Fpk2p are novel regulators of phospholipid asymmetry. <i>Molecular</i> <i>biology of the cell</i> 2008, <i>19</i>, 1783-1797, doi:10.1091/mbc.E07-07-0646. 262. Bastide, A.; David, A. The ribosome, (slow) beating heart of cancer (stem) cell. <i>Oncogenesis</i> 2018, <i>7</i>, 34, doi:10.1038/s41389-018-0044-8. 263. Manfrini, N.; Gobbini, E.; Baldo, V.; Trovesi, C.; Lucchini, G.; Longhese, M.P. G(1)/S and G(2)/M cyclin-dependent kinase activities commit cells to death in the absence of the S-phase checkpoint. <i>Mol Cell Biol</i> 2012, <i>32</i>, 4971-4985, doi:10.1128/MCB.00956-12. 264. Hu, X.; Lu, Z.; Yu, S.; Reilly, J.; Liu, F.; Jia, D.; Qin, Y.; Han, S.; Liu, X.; Qu, Z., et al. CERKL regulates autophagy via the NAD-dependent deacetylase SIRT1. <i>Autophagy</i> 2019, <i>15</i>, 453-465, doi:10.1080/15548627.2018.1520548. 265. Sun, F.; Xiong, Y.; Zhou, X.H.; Li, Q.; Xiao, L.; Long, P.; Li, L.J.; Cai, M.Y.; Wei, Y.X.; Ma, Y.L., et al. Acylglycerol kinase is over-expressed in early-stage cervical squamous cell cancer and predicts poor prognosis. <i>Tumour Biol</i> 2016, <i>37</i>, 6729-6736, doi:10.1007/s13277-015-4498-4. 266. Liu, N.; Wang, Z.; Cheng, Y.; Zhang, P.; Wang, X.; Yang, H.; Liu, H.; Zhang, Y.; Tu, Y. Acylglycerol kinase functions as an oncogene and an unfavorable prognostic marker of human gliomas. <i>Hum Pathol</i> 2016, <i>58</i>, 105-112, doi:10.1016/j.humpath.2016.07.034. 267. Cui, Y.; Lin, C.; Wu, Z.; Liu, A.; Zhang, X.; Zhu, J.; Wu, G.; Wu, J.; Li, M.; Li, J., et al. AGK enhances angiogenesis and inhibits apoptosis via activation of the NF- kappaB signaling pathway in hepatocellular carcinoma. <i>Oncotarget</i> 2014, <i>5</i>, 12057-12069, doi:10.18632/oncotarget.2666. 268. Wang, X.; Lin, C.; Zhao, X.; Liu, A.; Zhau, J.; Li, X.; Song, L. Acylglycerol kinase promotes cell proliferation and tumorigenicity in breast cancer via suppression of the FOX01 transcription factor. <i>Mol Cancer</i> 2014, <i>13</i>, 106, d	2177		doi:10.1091/mbc.e02-08-0501.
 Fpk1p and Fpk2p are novel regulators of phospholipid asymmetry. <i>Molecular</i> <i>biology of the cell</i> 2008, <i>19</i>, 1783-1797, doi:10.1091/mbc.E07-07-0646. Bastide, A.; David, A. The ribosome, (slow) beating heart of cancer (stem) cell. <i>Oncogenesis</i> 2018, <i>7</i>, 34, doi:10.1038/s41389-018-0044-8. Manfrini, N.; Gobbini, E.; Baldo, V.; Trovesi, C.; Lucchini, G.; Longhese, M.P. G(1)/S and G(2)/M cyclin-dependent kinase activities commit cells to death in the absence of the S-phase checkpoint. <i>Mol Cell Biol</i> 2012, <i>32</i>, 4971-4985, doi:10.1128/MCB.00956-12. Hu, X.; Lu, Z.; Yu, S.; Reilly, J.; Liu, F.; Jia, D.; Qin, Y.; Han, S.; Liu, X.; Qu, Z., et al. CERKL regulates autophagy via the NAD-dependent deacetylase SIRT1. <i>Autophagy</i> 2019, <i>15</i>, 453-465, doi:10.1080/15548627.2018.1520548. Sun, F.; Xiong, Y.; Zhou, X.H.; Li, Q.; Xiao, L.; Long, P.; Li, L.J.; Cai, M.Y.; Wei, Y.X.; Ma, Y.L., et al. Acylglycerol kinase is over-expressed in early-stage cervical squamous cell cancer and predicts poor prognosis. <i>Tumour Biol</i> 2016, <i>37</i>, 6729-6736, doi:10.1007/s13277-015-4498-4. Liu, N.; Wang, Z.; Cheng, Y.; Zhang, P.; Wang, X.; Yang, H.; Liu, H.; Zhang, Y.; Tu, Y. Acylglycerol kinase functions as an oncogene and an unfavorable prognostic marker of human gliomas. <i>Hum Pathol</i> 2016, <i>58</i>, 105-112, doi:10.1016/j.humpath.2016.07.034. Cui, Y.; Lin, C.; Wu, Z.; Liu, A.; Zhang, X.; Zhu, J.; Wu, G.; Wu, J.; Li, M.; Li, J., et al. AGK enhances angiogenesis and inhibits apoptosis via activation of the NF- kappaB signaling pathway in hepatocellular carcinoma. <i>Oncotarget</i> 2014, <i>5</i>, 12057-12069, doi:10.118632/oncotarget.2666. Wang, X.; Lin, C.; Zhao, X.; Liu, A.; Zhu, J.; Li, X.; Song, L. Acylglycerol kinase promotes cell proliferation and tumorigenicity in breast cancer via suppression of the FOX01 transcription factor. <i>Mol Cancer</i> 2014, <i>13</i>, 106, doi:10.1186/1476-4598-13-106. Kang, H.; Tsygankov, D.; Lew, D.J. Sensing a bud	2178	261.	
 biology of the cell 2008, 19, 1783-1797, doi:10.1091/mbc.E07-07-0646. Bastide, A.; David, A. The ribosome, (slow) beating heart of cancer (stem) cell. Oncogenesis 2018, 7, 34, doi:10.1038/s41389-018-0044-8. Manfrini, N.; Gobbini, E.; Baldo, V.; Trovesi, C.; Lucchini, G.; Longhese, M.P. G(1)/S and G(2)/M cyclin-dependent kinase activities commit cells to death in the absence of the S-phase checkpoint. <i>Mol Cell Biol</i> 2012, <i>32</i>, 4971-4985, doi:10.1128/MCB.00956-12. Hu, X.; Lu, Z.; Yu, S.; Reilly, J.; Liu, F.; Jia, D.; Qin, Y.; Han, S.; Liu, X.; Qu, Z., et al. CERKL regulates autophagy via the NAD-dependent deacetylase SIRT1. <i>Autophagy</i> 2019, <i>15</i>, 453-465, doi:10.1080/15548627.2018.1520548. Sun, F.; Xiong, Y.; Zhou, X.H.; Li, Q.; Xiao, L.; Long, P.; Li, L.J.; Cai, M.Y.; Wei, Y.X.; Ma, Y.L., et al. Acylglycerol kinase is over-expressed in early-stage cervical squamous cell cancer and predicts poor prognosis. <i>Tumour Biol</i> 2016, <i>37</i>, 6729-6736, doi:10.1007/s13277-015-4498-4. Liu, N.; Wang, Z.; Cheng, Y.; Zhang, P.; Wang, X.; Yang, H.; Liu, H.; Zhang, Y.; Tu, Y. Acylglycerol kinase functions as an oncogene and an unfavorable prognostic marker of human gliomas. <i>Hum Pathol</i> 2016, <i>58</i>, 105-112, doi:10.1016/j.humpath.2016.07.034. Cui, Y.; Lin, C.; Wu, Z.; Liu, A.; Zhang, X.; Zhu, J.; Wu, G.; Wu, J.; Li, M.; Li, J., et al. AGK enhances angiogenesis and inhibits apoptosis via activation of the NF- kappaB signaling pathway in hepatocellular carcinoma. <i>Oncotarget</i> 2014, <i>5</i>, 12057-12069, doi:10.18632/oncotarget.2666. Wang, X.; Lin, C.; Zhao, X.; Liu, A.; Zhu, J.; Li, X.; Song, L. Acylglycerol kinase promotes cell proliferation and tumorigenicity in breast cancer via suppression of the FOX01 transcription factor. <i>Mol Cancer</i> 2014, <i>13</i>, 106, doi:10.1186/1476-4598-13-106. Kang, H.; Tsygankov, D.; Lew, D.J. Sensing a bud in the yeast morphogenesis checkpoint: a role for Elm1. <i>Mol Biol Cell</i> 2016, <i>27</i>, 1764-1775, doi:10.1091/mbc.E16-01-001			
 2181 262. Bastide, A.; David, A. The ribosome, (slow) beating heart of cancer (stem) cell. <i>Oncogenesis</i> 2018, 7, 34, doi:10.1038/s41389-018-0044-8. 263. Manfrini, N.; Gobbini, E.; Baldo, V.; Trovesi, C.; Lucchini, G.; Longhese, M.P. G(1)/S and G(2)/M cyclin-dependent kinase activities commit cells to death in the absence of the S-phase checkpoint. <i>Mol Cell Biol</i> 2012, <i>32</i>, 4971-4985, doi:10.1128/MCB.00956-12. 264. Hu, X.; Lu, Z.; Yu, S.; Reilly, J.; Liu, F.; Jia, D.; Qin, Y.; Han, S.; Liu, X.; Qu, Z., et al. CERKL regulates autophagy via the NAD-dependent deacetylase SIRT1. <i>Autophagy</i> 2019, <i>15</i>, 453-465, doi:10.1080/15548627.2018.1520548. 265. Sun, F.; Xiong, Y.; Zhou, X.H.; Li, Q.; Xiao, L.; Long, P.; Li, L.; Cai, M.Y.; Wei, Y.X.; Ma, Y.L., et al. Acylglycerol kinase is over-expressed in early-stage cervical squamous cell cancer and predicts poor prognosis. <i>Tumour Biol</i> 2016, <i>37</i>, 6729-6736, doi:10.1007/s13277-015-4498-4. 266. Liu, N.; Wang, Z.; Cheng, Y.; Zhang, P.; Wang, X.; Yang, H.; Liu, H.; Zhang, Y.; Tu, Y. Acylglycerol kinase functions as an oncogene and an unfavorable prognostic marker of human gliomas. <i>Hum Pathol</i> 2016, <i>58</i>, 105-112, doi:10.1016/j.humpath.2016.07.034. 267. Cui, Y.; Lin, C.; Wu, Z.; Liu, A.; Zhang, X.; Zhu, J.; Wu, G.; Wu, J.; Li, M.; Li, J., et al. AGK enhances angiogenesis and inhibits apoptosis via activation of the NF- kappaB signaling pathway in hepatocellular carcinoma. <i>Oncotarget</i> 2014, <i>5</i>, 12057-12069, doi:10.18632/oncotarget.2666. 268. Wang, X.; Lin, C.; Zhao, X.; Liu, A.; Zhu, J.; Li, X.; Song, L. Acylglycerol kinase promotes cell proliferation and tumorigenicity in breast cancer via suppression of the FOX01 transcription factor. <i>Mol Cancer</i> 2014, <i>13</i>, 106, doi:10.1186/1476-4598-13-106. 269. Kang, H.; Tsygankov, D.; Lew, D.J. Sensing a bud in the yeast morphogenesis checkpoint: a role for Elm1. <i>Mol Biol Cell</i> 2016, <i>27</i>, 1764-1775, doi:10.1091/mbc.E16-01-0014. 270. Choi, E.J.; Yoo,			
 2182 Oncogenesis 2018, 7, 34, doi:10.1038/s41389-018-0044-8. 2183 263. Manfrini, N.; Gobbini, E.; Baldo, V.; Trovesi, C.; Lucchini, G.; Longhese, M.P. 2184 G(1)/S and G(2)/M cyclin-dependent kinase activities commit cells to death 2185 in the absence of the S-phase checkpoint. <i>Mol Cell Biol</i> 2012, <i>32</i>, 4971-4985, 2187 264. Hu, X.; Lu, Z.; Yu, S.; Reilly, J.; Liu, F.; Jia, D.; Qin, Y.; Han, S.; Liu, X.; Qu, Z., et al. 2188 CERKL regulates autophagy via the NAD-dependent deacetylase SIRT1. 2199 <i>Autophagy</i> 2019, <i>15</i>, 453-465, doi:10.1080/15548627.2018.1520548. 2190 265. Sun, F.; Xiong, Y.; Zhou, X.H.; Li, Q.; Xiao, L.; Long, P.; Li, L.J.; Cai, M.Y.; Wei, Y.X.; 2191 Ma, Y.L., et al. Acylglycerol kinase is over-expressed in early-stage cervical 2192 squamous cell cancer and predicts poor prognosis. <i>Tumour Biol</i> 2016, <i>37</i>, 6729-6736, doi:10.1007/s13277-015-4498-4. 2194 266. Liu, N.; Wang, Z.; Cheng, Y.; Zhang, P.; Wang, X.; Yang, H.; Liu, H.; Zhang, Y.; Tu, Y. Acylglycerol kinase functions as an oncogene and an unfavorable 2199 prognostic marker of human gliomas. <i>Hum Pathol</i> 2016, <i>58</i>, 105-112, doi:10.1016/j.humpath.2016.07.034. 2201 2057-12069, doi:10.18632/oncotarget.2666. 2202 268 Wang, X.; Lin, C.; Zhao, X.; Liu, A.; Zhang, X.; Zhu, J.; Wu, G.; Wu, J.; Li, M.; Li, J., et al. 2204 suppaB signaling pathway in hepatocellular carcinoma. <i>Oncotarget</i> 2014, <i>5</i>, 2205 12069, doi:10.18632/oncotarget.2666. 2202 268 Wang, X.; Lin, C.; Zhao, X.; Liu, A.; Zhu, J.; Li, X.; Song, L. Acylglycerol kinase 2203 promotes cell proliferation and tumorigenicity in breast cancer via 2204 suppression of the FOX01 transcription factor. <i>Mol Cancer</i> 2014, <i>13</i>, 106, doi:10.1186/1476-4598-13-106. 2206 269 Kang, H.; Tsygankov, D.; Lew, D.J. Sensing a bud in the yeast morphogenesis 2207 choi, E.J.; Yoo, N.; Liw,		262.	
 263. Manfrini, N.; Gobbini, E.; Baldo, V.; Trovesi, C.; Lucchini, G.; Longhese, M.P. G(1)/S and G(2)/M cyclin-dependent kinase activities commit cells to death in the absence of the S-phase checkpoint. <i>Mol Cell Biol</i> 2012, <i>32</i>, 4971-4985, doi:10.1128/MCB.00956-12. 264. Hu, X.; Lu, Z.; Yu, S.; Reily, J.; Liu, F.; Jia, D.; Qin, Y.; Han, S.; Liu, X.; Qu, Z., et al. CERKL regulates autophagy via the NAD-dependent deacetylase SIRT1. <i>Autophagy</i> 2019, <i>15</i>, 453-465, doi:10.1080/15548627.2018.1520548. 265. Sun, F.; Xiong, Y.; Zhou, X.H.; Li, Q.; Xiao, L.; Long, P.; Li, L.].; Cai, M.Y.; Wei, Y.X.; Ma, Y.L., et al. Acylglycerol kinase is over-expressed in early-stage cervical squamous cell cancer and predicts poor prognosis. <i>Tumour Biol</i> 2016, <i>37</i>, 6729-6736, doi:10.1007/s13277-015-4498-4. 266. Liu, N.; Wang, Z.; Cheng, Y.; Zhang, P.; Wang, X.; Yang, H.; Liu, H.; Zhang, Y.; Tu, Y. Acylglycerol kinase functions as an oncogene and an unfavorable prognostic marker of human gliomas. <i>Hum Pathol</i> 2016, <i>58</i>, 105-112, doi:10.1016/j.humpath.2016.07.034. 267. Cui, Y.; Lin, C.; Wu, Z.; Liu, A.; Zhang, Y.; Zhu, J.; Wu, G.; Wu, J.; Li, M.; Li, J., et al. AGK enhances angiogenesis and inhibits apoptosis via activation of the NF- kappaB signaling pathway in hepatocellular carcinoma. <i>Oncotarget</i> 2014, <i>5</i>, 12057-12069, doi:10.18632/oncotarget.2666. 268. Wang, X.; Lin, C.; Zhao, X.; Liu, A.; Zhu, J.; Li, X.; Song, L. Acylglycerol kinase promotes cell proliferation and tumorigenicity in breast cancer via suppression of the FOXO1 transcription factor. <i>Mol Cancer</i> 2014, <i>13</i>, 106, doi:10.1186/1476-4598-13-106. 269. Kang, H.; Tsygankov, D.; Lew, D.J. Sensing a bud in the yeast morphogenesis checkpoint: a role for Elm1. <i>Mol Biol Cell</i> 2016, <i>27</i>, 1764-1775, doi:10.1091/mbc.E16-01-0014. 270. Choi, E.J.; Yoo, N.J.; Kim, M.S.; An, C.H.; Lee, S.H. Putative Tumor Suppressor Genes EGR1 and BRSK1 Are Mutated in Gastric and Colorectal Cancers. <i>Oncology</i> 2016, <i>91</i>, 289		202.	
 G(1)/S and G(2)/M cyclin-dependent kinase activities commit cells to death in the absence of the S-phase checkpoint. <i>Mol Cell Biol</i> 2012, <i>32</i>, 4971-4985, doi:10.1128/MCB.00956-12. Cét. Hu, X.; Lu, Z.; Yu, S.; Reilly, J.; Liu, F.; Jia, D.; Qin, Y.; Han, S.; Liu, X.; Qu, Z., et al. CERKL regulates autophagy via the NAD-dependent deacetylase SIRT1. <i>Autophagy</i> 2019, <i>15</i>, 453-465, doi:10.1080/15548627.2018.1520548. Sun, F.; Xiong, Y.; Zhou, X.H.; Li, Q.; Xiao, L.; Long, P.; Li, L.J.; Cai, M.Y.; Wei, Y.X.; Ma, Y.L., et al. Acylglycerol kinase is over-expressed in early-stage cervical squamous cell cancer and predicts poor prognosis. <i>Tumour Biol</i> 2016, <i>37</i>, 6729-6736, doi:10.1007/s13277-015-4498-4. Liu, N.; Wang, Z.; Cheng, Y.; Zhang, P.; Wang, X.; Yang, H.; Liu, H.; Zhang, Y.; Tu, Y. Acylglycerol kinase functions as an oncogene and an unfavorable prognostic marker of human gliomas. <i>Hum Pathol</i> 2016, <i>58</i>, 105-112, doi:10.1016/j.humpath.2016.07.034. Cui, Y.; Lin, C.; Wu, Z.; Liu, A.; Zhang, X.; Zhu, J.; Wu, G.; Wu, J.; Li, M.; Li, J., et al. AGK enhances angiogenesis and inhibits apoptosis via activation of the NF- kappaB signaling pathway in hepatocellular carcinoma. <i>Oncotarget</i> 2014, <i>5</i>, 12057-12069, doi:10.18632/oncotarget.2666. Wang, X.; Lin, C.; Zhao, X.; Liu, A.; Zhu, J.; Li, X.; Song, L. Acylglycerol kinase promotes cell proliferation and tumorigenicity in breast cancer via suppression of the FOXO1 transcription factor. <i>Mol Cancer</i> 2014, <i>13</i>, 106, doi:10.1186/1476-4598-13-106. Kang, H.; Tsygankov, D.; Lew, D.J. Sensing a bud in the yeast morphogenesis checkpoint: a role for Elm1. <i>Mol Biol Cell</i> 2016, <i>27</i>, 1764-1775, doi:10.1091/mbc.E16-01-0014. Choi, E.J.; Yoo, N.J.; Kim, M.S.; An, C.H.; Lee, S.H. Putative Tumor Suppressor Genes EGR1 and BRSK1 Are Mutated in Gastric and Colorectal Cancers. <i>Oncology</i> 2016, <i>91</i>, 289-294, doi:10.1159/000450616. 		263	0
 in the absence of the S-phase checkpoint. <i>Mol Cell Biol</i> 2012, <i>32</i>, 4971-4985, doi:10.1128/MCB.00956-12. 264. Hu, X.; Lu, Z.; Yu, S.; Reilly, J.; Liu, F.; Jia, D.; Qin, Y.; Han, S.; Liu, X.; Qu, Z., et al. CERKL regulates autophagy via the NAD-dependent deacetylase SIRT1. <i>Autophagy</i> 2019, <i>15</i>, 453-465, doi:10.1080/15548627.2018.1520548. 265. Sun, F.; Xiong, Y.; Zhou, X.H.; Li, Q.; Xiao, L.; Long, P.; Li, L.J.; Cai, M.Y.; Wei, Y.X.; Ma, Y.L., et al. Acylglycerol kinase is over-expressed in early-stage cervical squamous cell cancer and predicts poor prognosis. <i>Tumour Biol</i> 2016, <i>37</i>, 6729-6736, doi:10.1007/s13277-015-4498-4. 266. Liu, N.; Wang, Z.; Cheng, Y.; Zhang, P.; Wang, X.; Yang, H.; Liu, H.; Zhang, Y.; Tu, Y. Acylglycerol kinase functions as an oncogene and an unfavorable prognostic marker of human gliomas. <i>Hum Pathol</i> 2016, <i>58</i>, 105-112, doi:10.1016/j.humpath.2016.07.034. 267. Cui, Y.; Lin, C.; Wu, Z.; Liu, A.; Zhang, X.; Zhu, J.; Wu, G.; Wu, J.; Li, M.; Li, J., et al. AGK enhances angiogenesis and inhibits apoptosis via activation of the NF-kappaB signaling pathway in hepatocellular carcinoma. <i>Oncotarget</i> 2014, <i>5</i>, 12057-12069, doi:10.18632/oncotarget.2666. 202 268. Wang, X.; Lin, C.; Zhao, X.; Liu, A.; Zhu, J.; Li, X.; Song, L. Acylglycerol kinase promotes cell proliferation and tumorigenicity in breast cancer via suppression of the FOX01 transcription factor. <i>Mol Cancer</i> 2014, <i>13</i>, 106, doi:10.1186/1476-4598-13-106. 269. Kang, H.; Tsygankov, D.; Lew, D.J. Sensing a bud in the yeast morphogenesis checkpoint: a role for Elm1. <i>Mol Biol Cell</i> 2016, <i>27</i>, 1764-1775, doi:10.1091/mbc.E16-01-0014. 270. Choi, E.J; Yoo, N.J; Kim, M.S.; An, C.H.; Lee, S.H. Putative Tumor Suppressor Genes EGR1 and BRSK1 Are Mutated in Gastric and Colorectal Cancers. <i>Oncology</i> 2016, <i>91</i>, 289-294, doi:10.1159/000450616. 		200.	
 doi:10.1128/MCB.00956-12. 264. Hu, X.; Lu, Z.; Yu, S.; Reilly, J.; Liu, F.; Jia, D.; Qin, Y.; Han, S.; Liu, X.; Qu, Z., et al. CERKL regulates autophagy via the NAD-dependent deacetylase SIRT1. <i>Autophagy</i> 2019, 15, 453-465, doi:10.1080/15548627.2018.1520548. 265. Sun, F.; Xiong, Y.; Zhou, X.H.; Li, Q.; Xiao, L.; Long, P.; Li, L.J.; Cai, M.Y.; Wei, Y.X.; Ma, Y.L., et al. Acylglycerol kinase is over-expressed in early-stage cervical squamous cell cancer and predicts poor prognosis. <i>Tumour Biol</i> 2016, <i>37</i>, 6729-6736, doi:10.1007/s13277-015-4498-4. 266. Liu, N.; Wang, Z.; Cheng, Y.; Zhang, P.; Wang, X.; Yang, H.; Liu, H.; Zhang, Y.; Tu, Y. Acylglycerol kinase functions as an oncogene and an unfavorable prognostic marker of human gliomas. <i>Hum Pathol</i> 2016, <i>58</i>, 105-112, doi:10.1016/j.humpath.2016.07.034. 267. Cui, Y.; Lin, C.; Wu, Z.; Liu, A.; Zhang, X.; Zhu, J.; Wu, G.; Wu, J.; Li, M.; Li, J., et al. AGK enhances angiogenesis and inhibits apoptosis via activation of the NF- kappaB signaling pathway in hepatocellular carcinoma. <i>Oncotarget</i> 2014, <i>5</i>, 12057-12069, doi:10.18632/oncotarget.2666. 268. Wang, X.; Lin, C.; Zhao, X.; Liu, A.; Zhu, J.; Li, X.; Song, L. Acylglycerol kinase promotes cell proliferation and tumorigenicity in breast cancer via suppression of the FOXO1 transcription factor. <i>Mol Cancer</i> 2014, <i>13</i>, 106, doi:10.1186/1476-4598-13-106. 269. Kang, H.; Tsygankov, D.; Lew, D.J. Sensing a bud in the yeast morphogenesis checkpoint: a role for Elm1. <i>Mol Biol Cell</i> 2016, <i>27</i>, 1764-1775, doi:10.1091/mbc.E16-01-0014. 270. Choi, E.J.; Yoo, N.J.; Kim, M.S.; An, C.H.; Lee, S.H. Putative Tumor Suppressor Genes EGR1 and BRSK1 Are Mutated in Gastric and Colorectal Cancers. <i>Oncology</i> 2016, <i>91</i>, 289-294, doi:10.1159/000450616. 			
 2187 264. Hu, X.; Lu, Z.; Yu, S.; Reilly, J.; Liu, F.; Jia, D.; Qin, Y.; Han, S.; Liu, X.; Qu, Z., et al. CERKL regulates autophagy via the NAD-dependent deacetylase SIRT1. <i>Autophagy</i> 2019, <i>15</i>, 453-465, doi:10.1080/15548627.2018.1520548. 2190 265. Sun, F.; Xiong, Y.; Zhou, X.H.; Li, Q.; Xiao, L.; Long, P.; Li, L.J.; Cai, M.Y.; Wei, Y.X.; Ma, Y.L., et al. Acylglycerol kinase is over-expressed in early-stage cervical squamous cell cancer and predicts poor prognosis. <i>Tumour Biol</i> 2016, <i>37</i>, 6729-6736, doi:10.1007/s13277-015-4498-4. 2194 266. Liu, N.; Wang, Z.; Cheng, Y.; Zhang, P.; Wang, X.; Yang, H.; Liu, H.; Zhang, Y.; Tu, Y. Acylglycerol kinase functions as an oncogene and an unfavorable prognostic marker of human gliomas. <i>Hum Pathol</i> 2016, <i>58</i>, 105-112, doi:10.1016/j.humpath.2016.07.034. 267. Cui, Y.; Lin, C.; Wu, Z.; Liu, A.; Zhang, X.; Zhu, J.; Wu, G.; Wu, J.; Li, M.; Li, J., et al. AGK enhances angiogenesis and inhibits apoptosis via activation of the NF- kappaB signaling pathway in hepatocellular carcinoma. <i>Oncotarget</i> 2014, <i>5</i>, 12057-12069, doi:10.18632/oncotarget.2666. 268. Wang, X.; Lin, C.; Zhao, X.; Liu, A.; Zhu, J.; Li, X.; Song, L. Acylglycerol kinase promotes cell proliferation and tumorigenicity in breast cancer via suppression of the FOXO1 transcription factor. <i>Mol Cancer</i> 2014, <i>13</i>, 106, doi:10.1186/1476-4598-13-106. 269. Kang, H.; Tsygankov, D.; Lew, D.J. Sensing a bud in the yeast morphogenesis checkpoint: a role for Elm1. <i>Mol Biol Cell</i> 2016, <i>27</i>, 1764-1775, doi:10.1091/mbc.E16-01-0014. 270. Choi, E.J; Yoo, N.J.; Kim, M.S.; An, C.H.; Lee, S.H. Putative Tumor Suppressor Genes EGR1 and BRSK1 Are Mutated in Gastric and Colorectal Cancers. <i>Oncology</i> 2016, <i>91</i>, 289-294, doi:10.1159/000450616. 			
 CERKL regulates autophagy via the NAD-dependent deacetylase SIRT1. <i>Autophagy</i> 2019, <i>15</i>, 453-465, doi:10.1080/15548627.2018.1520548. Sun, F.; Xiong, Y.; Zhou, X.H.; Li, Q.; Xiao, L.; Long, P.; Li, L.J.; Cai, M.Y.; Wei, Y.X.; Ma, Y.L., et al. Acylglycerol kinase is over-expressed in early-stage cervical squamous cell cancer and predicts poor prognosis. <i>Tumour Biol</i> 2016, <i>37</i>, 6729-6736, doi:10.1007/s13277-015-4498-4. Liu, N.; Wang, Z.; Cheng, Y.; Zhang, P.; Wang, X.; Yang, H.; Liu, H.; Zhang, Y.; Tu, Y. Acylglycerol kinase functions as an oncogene and an unfavorable prognostic marker of human gliomas. <i>Hum Pathol</i> 2016, <i>58</i>, 105-112, doi:10.1016/j.humpath.2016.07.034. Cui, Y.; Lin, C.; Wu, Z.; Liu, A.; Zhang, X.; Zhu, J.; Wu, G.; Wu, J.; Li, M.; Li, J., et al. AGK enhances angiogenesis and inhibits apoptosis via activation of the NF- kappaB signaling pathway in hepatocellular carcinoma. <i>Oncotarget</i> 2014, <i>5</i>, 12057-12069, doi:10.18632/oncotarget.2666. 202 Wang, X.; Lin, C.; Zhao, X.; Liu, A.; Zhu, J.; Li, X.; Song, L. Acylglycerol kinase promotes cell proliferation and tumorigenicity in breast cancer via suppression of the FOXO1 transcription factor. <i>Mol Cancer</i> 2014, <i>13</i>, 106, doi:10.1186/1476-4598-13-106. 269. Kang, H.; Tsygankov, D.; Lew, D.J. Sensing a bud in the yeast morphogenesis checkpoint: a role for Elm1. <i>Mol Biol Cell</i> 2016, <i>27</i>, 1764-1775, doi:10.1091/mbc.E16-01-0014. 270. Choi, E.J.; Yoo, N.J.; Kim, M.S.; An, C.H.; Lee, S.H. Putative Tumor Suppressor Genes EGR1 and BRSK1 Are Mutated in Gastric and Colorectal Cancers. <i>Oncology</i> 2016, <i>91</i>, 289-294, doi:10.1159/000450616. 		264	
 Autophagy 2019, 15, 453-465, doi:10.1080/15548627.2018.1520548. 265. Sun, F.; Xiong, Y.; Zhou, X.H.; Li, Q.; Xiao, L.; Long, P.; Li, L.J.; Cai, M.Y.; Wei, Y.X.; Ma, Y.L., et al. Acylglycerol kinase is over-expressed in early-stage cervical squamous cell cancer and predicts poor prognosis. <i>Tumour Biol</i> 2016, <i>37</i>, 6729-6736, doi:10.1007/s13277-015-4498-4. 2194 266. Liu, N.; Wang, Z.; Cheng, Y.; Zhang, P.; Wang, X.; Yang, H.; Liu, H.; Zhang, Y.; Tu, Y. Acylglycerol kinase functions as an oncogene and an unfavorable prognostic marker of human gliomas. <i>Hum Pathol</i> 2016, <i>58</i>, 105-112, doi:10.1016/j.humpath.2016.07.034. 267. Cui, Y.; Lin, C.; Wu, Z.; Liu, A.; Zhang, X.; Zhu, J.; Wu, G.; Wu, J.; Li, M.; Li, J., et al. AGK enhances angiogenesis and inhibits apoptosis via activation of the NF- kappaB signaling pathway in hepatocellular carcinoma. <i>Oncotarget</i> 2014, <i>5</i>, 12057-12069, doi:10.18632/oncotarget.2666. 268. Wang, X.; Lin, C.; Zhao, X.; Liu, A.; Zhu, J.; Li, X.; Song, L. Acylglycerol kinase promotes cell proliferation and tumorigenicity in breast cancer via suppression of the F0X01 transcription factor. <i>Mol Cancer</i> 2014, <i>13</i>, 106, doi:10.1186/1476-4598-13-106. 269. Kang, H.; Tsygankov, D.; Lew, D.J. Sensing a bud in the yeast morphogenesis checkpoint: a role for Elm1. <i>Mol Biol Cell</i> 2016, <i>27</i>, 1764-1775, doi:10.1091/mbc.E16-01-0014. 270. Choi, E.J.; Yoo, N.J.; Kim, M.S.; An, C.H.; Lee, S.H. Putative Tumor Suppressor Genes EGR1 and BRSK1 Are Mutated in Gastric and Colorectal Cancers. <i>Oncology</i> 2016, <i>91</i>, 289-294, doi:10.1159/000450616. 		204.	
 2190 265. Sun, F.; Xiong, Y.; Zhou, X.H.; Li, Q.; Xiao, L.; Long, P.; Li, L.J.; Cai, M.Y.; Wei, Y.X.; Ma, Y.L., et al. Acylglycerol kinase is over-expressed in early-stage cervical squamous cell cancer and predicts poor prognosis. <i>Tumour Biol</i> 2016, <i>37</i>, 6729-6736, doi:10.1007/s13277-015-4498-4. 2194 266. Liu, N.; Wang, Z.; Cheng, Y.; Zhang, P.; Wang, X.; Yang, H.; Liu, H.; Zhang, Y.; Tu, Y. Acylglycerol kinase functions as an oncogene and an unfavorable prognostic marker of human gliomas. <i>Hum Pathol</i> 2016, <i>58</i>, 105-112, doi:10.1016/j.humpath.2016.07.034. 2198 267. Cui, Y.; Lin, C.; Wu, Z.; Liu, A.; Zhang, X.; Zhu, J.; Wu, G.; Wu, J.; Li, M.; Li, J., et al. AGK enhances angiogenesis and inhibits apoptosis via activation of the NF- kappaB signaling pathway in hepatocellular carcinoma. <i>Oncotarget</i> 2014, <i>5</i>, 12057-12069, doi:10.18632/oncotarget.2666. 2202 268. Wang, X.; Lin, C.; Zhao, X.; Liu, A.; Zhu, J.; Li, X.; Song, L. Acylglycerol kinase promotes cell proliferation and tumorigenicity in breast cancer via suppression of the FOX01 transcription factor. <i>Mol Cancer</i> 2014, <i>13</i>, 106, doi:10.1186/1476-4598-13-106. 2206 269. Kang, H.; Tsygankov, D.; Lew, D.J. Sensing a bud in the yeast morphogenesis checkpoint: a role for Elm1. <i>Mol Biol Cell</i> 2016, <i>27</i>, 1764-1775, doi:10.1091/mbc.E16-01-0014. 2209 270. Choi, E.J.; Yoo, N.J.; Kim, M.S.; An, C.H.; Lee, S.H. Putative Tumor Suppressor Genes EGR1 and BRSK1 Are Mutated in Gastric and Colorectal Cancers. <i>Oncology</i> 2016, <i>91</i>, 289-294, doi:10.1159/000450616. 			
 Ma, Y.L., et al. Acylglycerol kinase is over-expressed in early-stage cervical squamous cell cancer and predicts poor prognosis. <i>Tumour Biol</i> 2016, <i>37</i>, 6729-6736, doi:10.1007/s13277-015-4498-4. 266. Liu, N.; Wang, Z.; Cheng, Y.; Zhang, P.; Wang, X.; Yang, H.; Liu, H.; Zhang, Y.; Tu, Y. Acylglycerol kinase functions as an oncogene and an unfavorable prognostic marker of human gliomas. <i>Hum Pathol</i> 2016, <i>58</i>, 105-112, doi:10.1016/j.humpath.2016.07.034. 267. Cui, Y.; Lin, C.; Wu, Z.; Liu, A.; Zhang, X.; Zhu, J.; Wu, G.; Wu, J.; Li, M.; Li, J., et al. AGK enhances angiogenesis and inhibits apoptosis via activation of the NF-kappaB signaling pathway in hepatocellular carcinoma. <i>Oncotarget</i> 2014, <i>5</i>, 12057-12069, doi:10.18632/oncotarget.2666. 268. Wang, X.; Lin, C.; Zhao, X.; Liu, A.; Zhu, J.; Li, X.; Song, L. Acylglycerol kinase promotes cell proliferation and tumorigenicity in breast cancer via suppression of the FOXO1 transcription factor. <i>Mol Cancer</i> 2014, <i>13</i>, 106, doi:10.1186/1476-4598-13-106. 269. Kang, H.; Tsygankov, D.; Lew, D.J. Sensing a bud in the yeast morphogenesis checkpoint: a role for Elm1. <i>Mol Biol Cell</i> 2016, <i>27</i>, 1764-1775, doi:10.1091/mbc.E16-01-0014. 209 270. Choi, E.J.; Yoo, N.J.; Kim, M.S.; An, C.H.; Lee, S.H. Putative Tumor Suppressor Genes EGR1 and BRSK1 Are Mutated in Gastric and Colorectal Cancers. <i>Oncology</i> 2016, <i>91</i>, 289-294, doi:10.1159/000450616. 		265	
 squamous cell cancer and predicts poor prognosis. <i>Tumour Biol</i> 2016, <i>37</i>, 6729-6736, doi:10.1007/s13277-015-4498-4. 266. Liu, N.; Wang, Z.; Cheng, Y.; Zhang, P.; Wang, X.; Yang, H.; Liu, H.; Zhang, Y.; Tu, Y. Acylglycerol kinase functions as an oncogene and an unfavorable prognostic marker of human gliomas. <i>Hum Pathol</i> 2016, <i>58</i>, 105-112, doi:10.1016/j.humpath.2016.07.034. 267. Cui, Y.; Lin, C.; Wu, Z.; Liu, A.; Zhang, X.; Zhu, J.; Wu, G.; Wu, J.; Li, M.; Li, J., et al. AGK enhances angiogenesis and inhibits apoptosis via activation of the NF- kappaB signaling pathway in hepatocellular carcinoma. <i>Oncotarget</i> 2014, <i>5</i>, 12057-12069, doi:10.18632/oncotarget.2666. 2022 268. Wang, X.; Lin, C.; Zhao, X.; Liu, A.; Zhu, J.; Li, X.; Song, L. Acylglycerol kinase promotes cell proliferation and tumorigenicity in breast cancer via suppression of the FOXO1 transcription factor. <i>Mol Cancer</i> 2014, <i>13</i>, 106, doi:10.1186/1476-4598-13-106. 206 269. Kang, H.; Tsygankov, D.; Lew, D.J. Sensing a bud in the yeast morphogenesis checkpoint: a role for Elm1. <i>Mol Biol Cell</i> 2016, <i>27</i>, 1764-1775, doi:10.1091/mbc.E16-01-0014. 209 270. Choi, E.J.; Yoo, N.J.; Kim, M.S.; An, C.H.; Lee, S.H. Putative Tumor Suppressor Genes EGR1 and BRSK1 Are Mutated in Gastric and Colorectal Cancers. <i>Oncology</i> 2016, <i>91</i>, 289-294, doi:10.1159/000450616. 		205.	
 2193 6729-6736, doi:10.1007/s13277-015-4498-4. 2194 266. Liu, N.; Wang, Z.; Cheng, Y.; Zhang, P.; Wang, X.; Yang, H.; Liu, H.; Zhang, Y.; Tu, Y. Acylglycerol kinase functions as an oncogene and an unfavorable prognostic marker of human gliomas. <i>Hum Pathol</i> 2016, <i>58</i>, 105-112, doi:10.1016/j.humpath.2016.07.034. 2198 267. Cui, Y.; Lin, C.; Wu, Z.; Liu, A.; Zhang, X.; Zhu, J.; Wu, G.; Wu, J.; Li, M.; Li, J., et al. AGK enhances angiogenesis and inhibits apoptosis via activation of the NF- kappaB signaling pathway in hepatocellular carcinoma. <i>Oncotarget</i> 2014, <i>5</i>, 12057-12069, doi:10.18632/oncotarget.2666. 2202 268. Wang, X.; Lin, C.; Zhao, X.; Liu, A.; Zhu, J.; Li, X.; Song, L. Acylglycerol kinase promotes cell proliferation and tumorigenicity in breast cancer via suppression of the FOX01 transcription factor. <i>Mol Cancer</i> 2014, <i>13</i>, 106, doi:10.1186/1476-4598-13-106. 2206 269. Kang, H.; Tsygankov, D.; Lew, D.J. Sensing a bud in the yeast morphogenesis checkpoint: a role for Elm1. <i>Mol Biol Cell</i> 2016, <i>27</i>, 1764-1775, doi:10.1091/mbc.E16-01-0014. 2209 270. Choi, E.J.; Yoo, N.J.; Kim, M.S.; An, C.H.; Lee, S.H. Putative Tumor Suppressor Genes EGR1 and BRSK1 Are Mutated in Gastric and Colorectal Cancers. <i>Oncology</i> 2016, <i>91</i>, 289-294, doi:10.1159/000450616. 			
 2194 266. Liu, N.; Wang, Z.; Cheng, Y.; Zhang, P.; Wang, X.; Yang, H.; Liu, H.; Zhang, Y.; Tu, Y. Acylglycerol kinase functions as an oncogene and an unfavorable prognostic marker of human gliomas. <i>Hum Pathol</i> 2016, <i>58</i>, 105-112, doi:10.1016/j.humpath.2016.07.034. 2198 267. Cui, Y.; Lin, C.; Wu, Z.; Liu, A.; Zhang, X.; Zhu, J.; Wu, G.; Wu, J.; Li, M.; Li, J., et al. AGK enhances angiogenesis and inhibits apoptosis via activation of the NF- kappaB signaling pathway in hepatocellular carcinoma. <i>Oncotarget</i> 2014, <i>5</i>, 12057-12069, doi:10.18632/oncotarget.2666. 2202 268. Wang, X.; Lin, C.; Zhao, X.; Liu, A.; Zhu, J.; Li, X.; Song, L. Acylglycerol kinase promotes cell proliferation and tumorigenicity in breast cancer via suppression of the FOX01 transcription factor. <i>Mol Cancer</i> 2014, <i>13</i>, 106, doi:10.1186/1476-4598-13-106. 2206 269. Kang, H.; Tsygankov, D.; Lew, D.J. Sensing a bud in the yeast morphogenesis checkpoint: a role for Elm1. <i>Mol Biol Cell</i> 2016, <i>27</i>, 1764-1775, doi:10.1091/mbc.E16-01-0014. 2209 270. Choi, E.J.; Yoo, N.J.; Kim, M.S.; An, C.H.; Lee, S.H. Putative Tumor Suppressor Genes EGR1 and BRSK1 Are Mutated in Gastric and Colorectal Cancers. <i>Oncology</i> 2016, <i>91</i>, 289-294, doi:10.1159/000450616. 			
 Y. Acylglycerol kinase functions as an oncogene and an unfavorable prognostic marker of human gliomas. <i>Hum Pathol</i> 2016, <i>58</i>, 105-112, doi:10.1016/j.humpath.2016.07.034. 267. Cui, Y.; Lin, C.; Wu, Z.; Liu, A.; Zhang, X.; Zhu, J.; Wu, G.; Wu, J.; Li, M.; Li, J., et al. AGK enhances angiogenesis and inhibits apoptosis via activation of the NF-kappaB signaling pathway in hepatocellular carcinoma. <i>Oncotarget</i> 2014, <i>5</i>, 12057-12069, doi:10.18632/oncotarget.2666. 202 268. Wang, X.; Lin, C.; Zhao, X.; Liu, A.; Zhu, J.; Li, X.; Song, L. Acylglycerol kinase promotes cell proliferation and tumorigenicity in breast cancer via suppression of the FOXO1 transcription factor. <i>Mol Cancer</i> 2014, <i>13</i>, 106, doi:10.1186/1476-4598-13-106. 269. Kang, H.; Tsygankov, D.; Lew, D.J. Sensing a bud in the yeast morphogenesis checkpoint: a role for Elm1. <i>Mol Biol Cell</i> 2016, <i>27</i>, 1764-1775, doi:10.1091/mbc.E16-01-0014. 2709 270. Choi, E.J.; Yoo, N.J.; Kim, M.S.; An, C.H.; Lee, S.H. Putative Tumor Suppressor Genes EGR1 and BRSK1 Are Mutated in Gastric and Colorectal Cancers. <i>Oncology</i> 2016, <i>91</i>, 289-294, doi:10.1159/000450616. 		266	
 2196 prognostic marker of human gliomas. <i>Hum Pathol</i> 2016, <i>58</i>, 105-112, doi:10.1016/j.humpath.2016.07.034. 2198 267. Cui, Y.; Lin, C.; Wu, Z.; Liu, A.; Zhang, X.; Zhu, J.; Wu, G.; Wu, J.; Li, M.; Li, J., et al. AGK enhances angiogenesis and inhibits apoptosis via activation of the NF- 200 kappaB signaling pathway in hepatocellular carcinoma. <i>Oncotarget</i> 2014, <i>5</i>, 12057-12069, doi:10.18632/oncotarget.2666. 2202 268. Wang, X.; Lin, C.; Zhao, X.; Liu, A.; Zhu, J.; Li, X.; Song, L. Acylglycerol kinase 203 promotes cell proliferation and tumorigenicity in breast cancer via 2204 suppression of the FOX01 transcription factor. <i>Mol Cancer</i> 2014, <i>13</i>, 106, doi:10.1186/1476-4598-13-106. 2206 269. Kang, H.; Tsygankov, D.; Lew, D.J. Sensing a bud in the yeast morphogenesis checkpoint: a role for Elm1. <i>Mol Biol Cell</i> 2016, <i>27</i>, 1764-1775, doi:10.1091/mbc.E16-01-0014. 2209 270. Choi, E.J.; Yoo, N.J.; Kim, M.S.; An, C.H.; Lee, S.H. Putative Tumor Suppressor Genes EGR1 and BRSK1 Are Mutated in Gastric and Colorectal Cancers. <i>Oncology</i> 2016, <i>91</i>, 289-294, doi:10.1159/000450616. 		200.	
 doi:10.1016/j.humpath.2016.07.034. 267. Cui, Y.; Lin, C.; Wu, Z.; Liu, A.; Zhang, X.; Zhu, J.; Wu, G.; Wu, J.; Li, M.; Li, J., et al. AGK enhances angiogenesis and inhibits apoptosis via activation of the NF- kappaB signaling pathway in hepatocellular carcinoma. <i>Oncotarget</i> 2014, <i>5</i>, 12057-12069, doi:10.18632/oncotarget.2666. 268. Wang, X.; Lin, C.; Zhao, X.; Liu, A.; Zhu, J.; Li, X.; Song, L. Acylglycerol kinase promotes cell proliferation and tumorigenicity in breast cancer via suppression of the FOX01 transcription factor. <i>Mol Cancer</i> 2014, <i>13</i>, 106, doi:10.1186/1476-4598-13-106. 269. Kang, H.; Tsygankov, D.; Lew, D.J. Sensing a bud in the yeast morphogenesis checkpoint: a role for Elm1. <i>Mol Biol Cell</i> 2016, <i>27</i>, 1764-1775, doi:10.1091/mbc.E16-01-0014. 270. Choi, E.J.; Yoo, N.J.; Kim, M.S.; An, C.H.; Lee, S.H. Putative Tumor Suppressor Genes EGR1 and BRSK1 Are Mutated in Gastric and Colorectal Cancers. <i>Oncology</i> 2016, <i>91</i>, 289-294, doi:10.1159/000450616. 			
 2198 267. Cui, Y.; Lin, C.; Wu, Z.; Liu, A.; Zhang, X.; Zhu, J.; Wu, G.; Wu, J.; Li, M.; Li, J., et al. AGK enhances angiogenesis and inhibits apoptosis via activation of the NF-kappaB signaling pathway in hepatocellular carcinoma. <i>Oncotarget</i> 2014, <i>5</i>, 12057-12069, doi:10.18632/oncotarget.2666. 2202 268. Wang, X.; Lin, C.; Zhao, X.; Liu, A.; Zhu, J.; Li, X.; Song, L. Acylglycerol kinase promotes cell proliferation and tumorigenicity in breast cancer via suppression of the FOXO1 transcription factor. <i>Mol Cancer</i> 2014, <i>13</i>, 106, doi:10.1186/1476-4598-13-106. 2206 269. Kang, H.; Tsygankov, D.; Lew, D.J. Sensing a bud in the yeast morphogenesis checkpoint: a role for Elm1. <i>Mol Biol Cell</i> 2016, <i>27</i>, 1764-1775, doi:10.1091/mbc.E16-01-0014. 2209 270. Choi, E.J.; Yoo, N.J.; Kim, M.S.; An, C.H.; Lee, S.H. Putative Tumor Suppressor Genes EGR1 and BRSK1 Are Mutated in Gastric and Colorectal Cancers. <i>Oncology</i> 2016, <i>91</i>, 289-294, doi:10.1159/000450616. 			
 AGK enhances angiogenesis and inhibits apoptosis via activation of the NF- kappaB signaling pathway in hepatocellular carcinoma. <i>Oncotarget</i> 2014, <i>5</i>, 12057-12069, doi:10.18632/oncotarget.2666. 268. Wang, X.; Lin, C.; Zhao, X.; Liu, A.; Zhu, J.; Li, X.; Song, L. Acylglycerol kinase promotes cell proliferation and tumorigenicity in breast cancer via suppression of the FOXO1 transcription factor. <i>Mol Cancer</i> 2014, <i>13</i>, 106, doi:10.1186/1476-4598-13-106. 269. Kang, H.; Tsygankov, D.; Lew, D.J. Sensing a bud in the yeast morphogenesis checkpoint: a role for Elm1. <i>Mol Biol Cell</i> 2016, <i>27</i>, 1764-1775, doi:10.1091/mbc.E16-01-0014. 270. Choi, E.J.; Yoo, N.J.; Kim, M.S.; An, C.H.; Lee, S.H. Putative Tumor Suppressor Genes EGR1 and BRSK1 Are Mutated in Gastric and Colorectal Cancers. <i>Oncology</i> 2016, <i>91</i>, 289-294, doi:10.1159/000450616. 		267	
 kappaB signaling pathway in hepatocellular carcinoma. Oncotarget 2014, 5, 12057-12069, doi:10.18632/oncotarget.2666. 2202 268. Wang, X.; Lin, C.; Zhao, X.; Liu, A.; Zhu, J.; Li, X.; Song, L. Acylglycerol kinase promotes cell proliferation and tumorigenicity in breast cancer via suppression of the FOXO1 transcription factor. Mol Cancer 2014, 13, 106, doi:10.1186/1476-4598-13-106. 2206 269. Kang, H.; Tsygankov, D.; Lew, D.J. Sensing a bud in the yeast morphogenesis checkpoint: a role for Elm1. Mol Biol Cell 2016, 27, 1764-1775, doi:10.1091/mbc.E16-01-0014. 2209 270. Choi, E.J.; Yoo, N.J.; Kim, M.S.; An, C.H.; Lee, S.H. Putative Tumor Suppressor Genes EGR1 and BRSK1 Are Mutated in Gastric and Colorectal Cancers. Oncology 2016, 91, 289-294, doi:10.1159/000450616. 		267.	
 12057-12069, doi:10.18632/oncotarget.2666. 2202 268. Wang, X.; Lin, C.; Zhao, X.; Liu, A.; Zhu, J.; Li, X.; Song, L. Acylglycerol kinase promotes cell proliferation and tumorigenicity in breast cancer via suppression of the FOXO1 transcription factor. <i>Mol Cancer</i> 2014, <i>13</i>, 106, doi:10.1186/1476-4598-13-106. 2206 269. Kang, H.; Tsygankov, D.; Lew, D.J. Sensing a bud in the yeast morphogenesis checkpoint: a role for Elm1. <i>Mol Biol Cell</i> 2016, <i>27</i>, 1764-1775, doi:10.1091/mbc.E16-01-0014. 2209 270. Choi, E.J.; Yoo, N.J.; Kim, M.S.; An, C.H.; Lee, S.H. Putative Tumor Suppressor Genes EGR1 and BRSK1 Are Mutated in Gastric and Colorectal Cancers. <i>Oncology</i> 2016, <i>91</i>, 289-294, doi:10.1159/000450616. 			
 2202 268. Wang, X.; Lin, C.; Zhao, X.; Liu, A.; Zhu, J.; Li, X.; Song, L. Acylglycerol kinase 2203 promotes cell proliferation and tumorigenicity in breast cancer via 2204 suppression of the FOXO1 transcription factor. <i>Mol Cancer</i> 2014, <i>13</i>, 106, 2205 doi:10.1186/1476-4598-13-106. 2206 269. Kang, H.; Tsygankov, D.; Lew, D.J. Sensing a bud in the yeast morphogenesis 2207 checkpoint: a role for Elm1. <i>Mol Biol Cell</i> 2016, <i>27</i>, 1764-1775, 2208 doi:10.1091/mbc.E16-01-0014. 2209 270. Choi, E.J.; Yoo, N.J.; Kim, M.S.; An, C.H.; Lee, S.H. Putative Tumor Suppressor 2210 Genes EGR1 and BRSK1 Are Mutated in Gastric and Colorectal Cancers. 2211 <i>Oncology</i> 2016, <i>91</i>, 289-294, doi:10.1159/000450616. 			
 promotes cell proliferation and tumorigenicity in breast cancer via suppression of the FOX01 transcription factor. <i>Mol Cancer</i> 2014, <i>13</i>, 106, doi:10.1186/1476-4598-13-106. 2206 269. Kang, H.; Tsygankov, D.; Lew, D.J. Sensing a bud in the yeast morphogenesis checkpoint: a role for Elm1. <i>Mol Biol Cell</i> 2016, <i>27</i>, 1764-1775, doi:10.1091/mbc.E16-01-0014. 2209 270. Choi, E.J.; Yoo, N.J.; Kim, M.S.; An, C.H.; Lee, S.H. Putative Tumor Suppressor Genes EGR1 and BRSK1 Are Mutated in Gastric and Colorectal Cancers. <i>Oncology</i> 2016, <i>91</i>, 289-294, doi:10.1159/000450616. 		260	
 suppression of the FOXO1 transcription factor. <i>Mol Cancer</i> 2014, <i>13</i>, 106, doi:10.1186/1476-4598-13-106. Kang, H.; Tsygankov, D.; Lew, D.J. Sensing a bud in the yeast morphogenesis checkpoint: a role for Elm1. <i>Mol Biol Cell</i> 2016, <i>27</i>, 1764-1775, doi:10.1091/mbc.E16-01-0014. Choi, E.J.; Yoo, N.J.; Kim, M.S.; An, C.H.; Lee, S.H. Putative Tumor Suppressor Genes EGR1 and BRSK1 Are Mutated in Gastric and Colorectal Cancers. <i>Oncology</i> 2016, <i>91</i>, 289-294, doi:10.1159/000450616. 		268.	
2205 doi:10.1186/1476-4598-13-106. 2206 269. Kang, H.; Tsygankov, D.; Lew, D.J. Sensing a bud in the yeast morphogenesis 2207 checkpoint: a role for Elm1. <i>Mol Biol Cell</i> 2016 , <i>27</i> , 1764-1775, 2208 doi:10.1091/mbc.E16-01-0014. 2209 270. Choi, E.J.; Yoo, N.J.; Kim, M.S.; An, C.H.; Lee, S.H. Putative Tumor Suppressor 2210 Genes EGR1 and BRSK1 Are Mutated in Gastric and Colorectal Cancers. 2211 <i>Oncology</i> 2016 , <i>91</i> , 289-294, doi:10.1159/000450616.			
 2206 269. Kang, H.; Tsygankov, D.; Lew, D.J. Sensing a bud in the yeast morphogenesis checkpoint: a role for Elm1. <i>Mol Biol Cell</i> 2016, <i>27</i>, 1764-1775, doi:10.1091/mbc.E16-01-0014. 2209 270. Choi, E.J.; Yoo, N.J.; Kim, M.S.; An, C.H.; Lee, S.H. Putative Tumor Suppressor Genes EGR1 and BRSK1 Are Mutated in Gastric and Colorectal Cancers. 2211 <i>Oncology</i> 2016, <i>91</i>, 289-294, doi:10.1159/000450616. 			
2207 checkpoint: a role for Elm1. Mol Biol Cell 2016, 27, 1764-1775, 2208 doi:10.1091/mbc.E16-01-0014. 2209 270. Choi, E.J.; Yoo, N.J.; Kim, M.S.; An, C.H.; Lee, S.H. Putative Tumor Suppressor 2210 Genes EGR1 and BRSK1 Are Mutated in Gastric and Colorectal Cancers. 2211 Oncology 2016, 91, 289-294, doi:10.1159/000450616.		0.00	
2208doi:10.1091/mbc.E16-01-0014.2209270.270.Choi, E.J.; Yoo, N.J.; Kim, M.S.; An, C.H.; Lee, S.H. Putative Tumor Suppressor2210Genes EGR1 and BRSK1 Are Mutated in Gastric and Colorectal Cancers.2211Oncology 2016, 91, 289-294, doi:10.1159/000450616.		269.	
 2209 270. Choi, E.J.; Yoo, N.J.; Kim, M.S.; An, C.H.; Lee, S.H. Putative Tumor Suppressor 2210 Genes EGR1 and BRSK1 Are Mutated in Gastric and Colorectal Cancers. 2211 Oncology 2016, 91, 289-294, doi:10.1159/000450616. 			•
2210Genes EGR1 and BRSK1 Are Mutated in Gastric and Colorectal Cancers.2211Oncology 2016, 91, 289-294, doi:10.1159/000450616.			7
2211 <i>Oncology</i> 2016 , <i>91</i> , 289-294, doi:10.1159/000450616.		270.	
2212 271. Wang, H.; Liu, X.B.; Chen, J.H.; Wang, Q.Q.; Chen, J.P.; Xu, J.F.; Sheng, C.Y.; Ni,		a –	
		271.	
2213 Q.C. Decreased expression and prognostic role of cytoplasmic BRSK1 in			
human breast carcinoma: correlation with Jab1 stability and PI3K/Akt	2214		human breast carcinoma: correlation with Jab1 stability and PI3K/Akt

2215		pathway. <i>Exp Mol Pathol</i> 2014 , 97, 191-201,
2216		doi:10.1016/j.yexmp.2014.07.012.
2217	272.	Saiyin, H.; Na, N.; Han, X.; Fang, Y.; Wu, Y.; Lou, W.; Yang, X. BRSK2 induced by
2218		nutrient deprivation promotes Akt activity in pancreatic cancer via
2219		downregulation of mTOR activity. <i>Oncotarget</i> 2017 , <i>8</i> , 44669-44681,
2220		doi:10.18632/oncotarget.17965.
2221	273.	Ye, Y.; Gu, B.; Wang, Y.; Shen, S.; Huang, W. E2F1-mediated MNX1-AS1-miR-
2222		218-5p-SEC61A1 feedback loop contributes to the progression of colon
2223		adenocarcinoma. <i>Journal of cellular biochemistry</i> 2019 , <i>120</i> , 6145-6153,
2224		doi:10.1002/jcb.27902.
2225	274.	Phan, N.N.; Wang, C.Y.; Chen, C.F.; Sun, Z.; Lai, M.D.; Lin, Y.C. Voltage-gated
2226	27 1.	calcium channels: Novel targets for cancer therapy. Oncol Lett 2017 , 14,
2220		2059-2074, doi:10.3892/ol.2017.6457.
2228	275.	Liu, K.T.; Yeh, I.J.; Chou, S.K.; Yen, M.C.; Kuo, P.L. Regulatory mechanism of
2229	275.	fatty acidCoA metabolic enzymes under endoplasmic reticulum stress in lung
2230		cancer. <i>Oncol Rep</i> 2018 , <i>40</i> , 2674-2682, doi:10.3892/or.2018.6664.
2230	276.	Furuta, J.; Nobeyama, Y.; Umebayashi, Y.; Otsuka, F.; Kikuchi, K.; Ushijima, T.
2231	270.	Silencing of Peroxiredoxin 2 and aberrant methylation of 33 CpG islands in
2232		putative promoter regions in human malignant melanomas. <i>Cancer Res</i> 2006 ,
2233		66, 6080-6086, doi:10.1158/0008-5472.CAN-06-0157.
2234	277.	Gao, Y.; Wang, W.; Cao, J.; Wang, F.; Geng, Y.; Cao, J.; Xu, X.; Zhou, J.; Liu, P.;
2235	277.	Zhang, S. Upregulation of AUF1 is involved in the proliferation of esophageal
2230		squamous cell carcinoma through GCH1. <i>Int J Oncol</i> 2016 , <i>49</i> , 2001-2010,
2237		doi:10.3892/ijo.2016.3713.
2238	270	
2239	278.	Mocino-Rodriguez, M.D.; Santillan-Benitez, J.G.; Dozal-Dominguez, D.S.;
2240 2241		Hernandez-Navarro, M.D.; Flores-Merino, M.V.; Sandoval-Cabrera, A.; Garcia
2241		Vazquez, F.J. Expression of AdipoR1 and AdipoR2 Receptors as Leptin-Breast
		Cancer Regulation Mechanisms. <i>Dis Markers</i> 2017 , <i>2017</i> , 4862016,
2243	270	doi:10.1155/2017/4862016.
2244	279.	Wang, L.; Collings, C.K.; Zhao, Z.; Cozzolino, K.A.; Ma, Q.; Liang, K.; Marshall,
2245		S.A.; Sze, C.C.; Hashizume, R.; Savas, J.N., et al. A cytoplasmic COMPASS is
2246		necessary for cell survival and triple-negative breast cancer pathogenesis by
2247		regulating metabolism. <i>Genes Dev</i> 2017 , <i>31</i> , 2056-2066,
2248	200	doi:10.1101/gad.306092.117.
2249	280.	Ross, J.B.; Huh, D.; Noble, L.B.; Tavazoie, S.F. Identification of molecular
2250		determinants of primary and metastatic tumour re-initiation in breast
2251	0.04	cancer. <i>Nature cell biology</i> 2015 , <i>17</i> , 651-664, doi:10.1038/ncb3148.
2252	281.	Bhise, N.S.; Chauhan, L.; Shin, M.; Cao, X.; Pounds, S.; Lamba, V.; Lamba, J.K.
2253		MicroRNA-mRNA Pairs Associated with Outcome in AML: From In Vitro Cell-
2254		Based Studies to AML Patients. <i>Front Pharmacol</i> 2015 , <i>6</i> , 324,
2255		doi:10.3389/fphar.2015.00324.
2256	282.	Tenreiro, S.; Outeiro, T.F. Simple is good: yeast models of neurodegeneration.
2257		<i>FEMS Yeast Res</i> 2010 , <i>10</i> , 970-979, doi:10.1111/j.1567-1364.2010.00649.x.
2258	283.	Billant, O.; Blondel, M.; Voisset, C. p53, p63 and p73 in the wonderland of S.
2259		cerevisiae. Oncotarget 2017 , 8, 57855-57869,
2260		doi:10.18632/oncotarget.18506.

2261 2262 2263	284.	Rodriguez-Escudero, I.; Roelants, F.M.; Thorner, J.; Nombela, C.; Molina, M.; Cid, V.J. Reconstitution of the mammalian PI3K/PTEN/Akt pathway in yeast. <i>Biochem J</i> 2005 , <i>390</i> , 613-623, doi:10.1042/BJ20050574.
2264	285.	Hamza, A.; Tammpere, E.; Kofoed, M.; Keong, C.; Chiang, J.; Giaever, G.; Nislow,
2265		C.; Hieter, P. Complementation of Yeast Genes with Human Genes as an
2266		Experimental Platform for Functional Testing of Human Genetic Variants.
2267		<i>Genetics</i> 2015 , <i>201</i> , 1263-1274, doi:10.1534/genetics.115.181099.
2268	286.	Sun, S.; Yang, F.; Tan, G.; Costanzo, M.; Oughtred, R.; Hirschman, J.; Theesfeld,
2269		C.L.; Bansal, P.; Sahni, N.; Yi, S., et al. An extended set of yeast-based
2270		functional assays accurately identifies human disease mutations. Genome Res
2271		2016 , <i>26</i> , 670-680, doi:10.1101/gr.192526.115.
2272	287.	Kachroo, A.H.; Laurent, J.M.; Yellman, C.M.; Meyer, A.G.; Wilke, C.O.; Marcotte,
2273		E.M. Evolution. Systematic humanization of yeast genes reveals conserved
2274		functions and genetic modularity. <i>Science</i> 2015 , <i>348</i> , 921-925,
2275		doi:10.1126/science.aaa0769.
2276	288.	Tardiff, D.F.; Khurana, V.; Chung, C.Y.; Lindquist, S. From yeast to patient
2277		neurons and back again: powerful new discovery platform. <i>Mov Disord</i> 2014 ,
2278		29, 1231-1240, doi:10.1002/mds.25989.
2279	289.	Veit, G.; Oliver, K.; Apaja, P.M.; Perdomo, D.; Bidaud-Meynard, A.; Lin, S.T.;
2280		Guo, J.; Icyuz, M.; Sorscher, E.J.; Hartman, J.I., et al. Ribosomal Stalk Protein
2281		Silencing Partially Corrects the DeltaF508-CFTR Functional Expression
2282		Defect. <i>PLoS biology</i> 2016 , <i>14</i> , e1002462, doi:10.1371/journal.pbio.1002462.
2283	290.	Costanzo, M.; Kuzmin, E.; van Leeuwen, J.; Mair, B.; Moffat, J.; Boone, C.;
2284		Andrews, B. Global Genetic Networks and the Genotype-to-Phenotype
2285	204	Relationship. <i>Cell</i> 2019 , <i>177</i> , 85-100, doi:10.1016/j.cell.2019.01.033.
2286	291.	Breslow, D.K.; Cameron, D.M.; Collins, S.R.; Schuldiner, M.; Stewart-Ornstein,
2287		J.; Newman, H.W.; Braun, S.; Madhani, H.D.; Krogan, N.J.; Weissman, J.S. A
2288		comprehensive strategy enabling high-resolution functional analysis of the
2289 2290		yeast genome. <i>Nat Methods</i> 2008 , <i>5</i> , 711-718, doi:10.1038/nmeth.1234.
2290		