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Abstract

Decoding information from neural responses in visual cortex demonstrates
interpolation across repetitions or exemplars. Is it possible to decode novel
categories from neural activity without any prior training on activity from those
categories? We built zero-shot neural decoders by mapping responses from
macaque inferior temporal cortex onto a deep neural network. The resulting
models correctly interpreted responses to novel categories, even extrapolating
from a single category.

Neural decoding approaches typically train machine learning classifiers on1

responses to a set of stimuli and subsequently test the classifier using either2

different repetitions of the same training stimuli or responses to different exem-3

plars from the same training categories. These approaches have been extremely4

successful in a wide variety of domains [1], but show limited generalization.5

Zero-shot neural decoding, or interpreting neural activity without prior6

exposure to any similar information [2–6], holds great promise to improve7

the generalizability of neural information processing models. While standard8

decoders predict information directly from patterns of neural activity, zero-shot9

decoders map neural activity to an intermediate representation that constitutes10

a computational hypothesis for the neural code [2]. The intermediate represen-11

tation is selected such that it has a known or easily learned relationship to a12
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wide variety of to-be-predicted outputs. In an impressive recent demonstration13

of zero-shot decoding, Anumanchipalli and colleagues [6] reconstructed recog-14

nizable human speech from electrophysiological recordings in human motor15

cortex via a computational model of articulatory movement. Even though the16

decoding model was only trained to map neural activity to the articulatory17

model, and not representations of words or semantics, the models could recon-18

struct intelligible human speech. Here, we demonstrate such zero-shot decoding19

from electrophysiological responses for visual objects.20

Beyond a feat of engineering, the degree of generalization has important21

consequences for the conclusions that can be drawn from a model of neural22

information processing. The greater the generalization, the stronger the evi-23

dence that a model captures generic processing beyond any particular set or24

class of stimuli. As an example, consider a standard linear decoder trained to25

distinguish whether responses along the ventral stream were evoked by images26

of airplanes or chairs. The decoder could interpolate within its training space27

to label neural responses to new images of airplanes or chairs, but it would28

not be able to accurately label neural responses to cars or tables. A zero-shot29

model can capture generic visual information and extrapolate to new categories30

on which it was not trained.31

Constructing generic zero-shot decoders for visual objects necessitates a32

model for visual processing in the primate brain. How well do we understand33

the neural code for visual object processing? Deep convolutional neural net-34

works (DCNNs) constitute a promising initial approximation to the cascade35

of computations along the ventral stream that support visual object recogni-36

tion [7–11]. DCNNs are goal-directed, hierarchical, image-computable models37

capable of recognizing complex, natural objects and scenes [12], and repre-38

sentations in DCNNs predict object-evoked neural activity in rhesus macaque39

inferior temporal cortex (IT) [13–15], which is at the top of the ventral visual40

stream hierarchy and plays a central role in visual object recognition [16,17].41

While DCNNs are powerful pattern extractors, it remains possible that their42

performance predicting IT responses is driven by generalization within stimuli43

(e.g., different views of the same chair) or within categories (e.g., one type44

of chair to another). To test whether DCNNs capture the type of flexible45

visual processing accomplished by biological vision, the mapping from DCNNs46

to IT should generalize across object categories (e.g. chairs to cars). While47

some studies have shown extrapolation across categories [3, 13], the degree48

of generalization remains unclear. In an extreme case, can IT to DCNN49

mappings learned from neural activity evoked by a single object category50

extrapolate to novel categories? If the mappings generalize to new images from51

the same category, we can conclude that DCNN responses capture category-52

level information within IT. If the mappings generalize to new images from53

novel categories, this suggests that DCNNs capture generic visual information54

in IT beyond any one category.55
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Figure 1. Overview of zero-shot approach and deep convolutional
neural network (DCNN) architecture. a. Overview of zero-shot decoding
pipeline. IT recordings were mapped to an intermediate space defined as unit
activity in a deep convolutional neural network trained for object categorization.
Pre-learned mappings from DCNN unit activity to object categories were used to
generate predictions from DCNN-aligned IT recordings. The decoders are zero-
shot if neural recordings from the test categories are withheld when learning the
IT to DCNN. b. Example images from the eight object categories: Airplanes,
Animals, Boats, Cars, Chairs, Faces, Fruits, Tables [18]. c. VGG-16 trained for
object categorization on the ImageNet dataset [19] was used as the intermediate
basis-space to which IT recordings were aligned. In the pooling layers, DCNN
activity is organized along two spatial dimensions and a feature-based channel
dimension. To summarize the full spatio-featural activity-space, we encoded
DCNN activity into 1000 components using principle components analysis (left,
orange). To isolate spatial activity, we averaged across the channel dimension
in DCNN activity (center, blue). To isolate spatially invariant feature-based
activity, we averaged across the spatial dimensions (right, green). d. Object
category (binary prediction between all 28 combinations of the eight categories,
chance = 50%) could be predicted from all types of DCNN activity, with
components and feature-based activity showing a sharp rise in decodability
across layers. This plot does not include any neural data, it only shows
decodability using DCNN activity.
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To determine whether representations in DCNNs capture generic visual56

processing in the primate brain, we built zero-shot neural decoders for object57

category from multi-electrode array recordings in rhesus macaque IT (Fig. 1a).58

IT responses were evoked by images of computer-generated objects on natural59

scene backgrounds with high variation in position, size, and orientation (Fig.60

1b). We tested whether zero-shot decoders trained on neural responses to a61

set of categories (e.g., airplane and chair images) can accurately label neural62

activity evoked by novel categories (e.g., cars and tables). In the most extreme63

instance, we tested whether zero-shot decoders trained on neural responses64

from a single category can generalize to label neural responses evoked by seven65

novel categories.66

First, we defined an intermediate space based on unit activity in a DCNN67

trained for object categorization (VGG-16 pre-trained on ImageNet, Supple-68

mental Fig. 1) [19]. For the pooling layers, we analyzed three features69

computed from DCNN activity: principal component scores, feature-based70

channel activity, and spatial activity (Fig. 1c). For the fully-connected layers,71

we analyzed two DCNN features: principal components and feature-based72

channel activity. Within each layer, each DCNN feature for each layer was73

mapped to object category using a series of 8-choose-2 linear support vector74

machine (SVM) classifiers to make binary predictions of object category. Im-75

portantly, the training of these SVMs did not incorporate any neural data.76

Object category could be predicted from each of the seven VGG-16 layers77

for all three DCNN features (Fig. 1d). For components and feature-based78

activity, and to a lesser extent for spatial activity, performance improved for79

progressively deeper layers relative to earlier layers.80

Next, we mapped IT activity to DCNN activity using linear regression (2081

category-matched 75% train, 25% test folds). The resultant IT to DCNN82

transformation matrices were multiplied by IT activity vectors from the test83

set to transform IT activity into the same space as DCNN component scores.84

The transformed IT activity was multiplied by the transpose of the PCA85

transformation matrix to reconstruct the full DCNN activity space for a given86

layer. As with true DCNN activity, feature-based and spatial reconstructions87

were computed for the five pooling layers, and the full 4096 reconstructed88

channel activations were analyzed for fully-connected layers. This procedure89

was repeated separately for each layer and cross-validation fold (Supplemental90

Fig. 2).91

Finally, to determine whether the mapping between IT and DCNN activity92

extrapolates to novel categories, IT activity from the test categories was held93

out during training of the mapping. If decoding accuracies when recognizing94

novel categories are high, this indicates that the IT to DCNN mapping is95

zero-shot, capturing generic visual information in IT to generalize to novel96

categories on which it was never trained.97

To assess the overall amount of shared generic visual information between98
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Figure 2. DCNN features reconstructed from IT activity match true
DCNN features for the same images even when extrapolating across
categories. a. High matching accuracies were achieved when neural activity
from two test categories was held out during training (six training categories),
indicating that IT to DCNN mappings indeed generalize across object category.
b. As a control, a decoder was trained on neural responses from all eight
categories, matching the overall number of training images to the number
used for the zero-shot decoder. Strikingly similar results were obtained for the
zero-shot and all categories control decoders. c. Zero-shot matching accuracies
were normalized to calculate proportion of above-chance matching accuracy
achieved by the zero-shot model relative to the all categories model. Normalized
matching accuracies are close to ceiling for all layers and reconstruction types.
d, e, f. Zero-shot, all categories control, and normalized results when only
one category was used to train the zero-shot decoder. Again, the zero-shot
decoder displayed highly similar results to the all categories control decoder.
All accuracies for all decoders, DCNN feature-types, and layers are significant
at P <0.001 (permutation testing).
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IT and DCNN activity, reconstructed DCNN features were matched to the true99

DCNN features from the same images, relative to the true DCNN features from100

every other image in the test set, for all possible pair-wise combinations. We101

measured the matching accuracy, which ranges from 0.5 (chance) to 1 (perfect102

reconstruction of features) (Fig. 2). We examined the extreme cases where103

the maximum number of available training data (six categories) and minimum104

number (one category) were used.105

When the zero-shot decoder was trained on neural responses from six cate-106

gories, matching accuracies for reconstructed DCNN components, feature-based107

activity, and spatial activity were all well above chance (all Ps <0.001, permu-108

tation testing), with components and feature-based activity exhibiting higher109

matching accuracies than spatial activity (Fig. 2a). As a control, we compared110

the zero-shot decoder’s performance to a decoder trained on responses from111

all categories, matching the overall number of training images to the number112

used for the zero-shot decoder. This all categories control decoder displayed113

strikingly similar results to the zero-shot decoder (Fig. 2b, all Ps <0.001,114

permutation testing). A normalized matching accuracy, the proportion of115

above-chance matching accuracies achieved by the zero-shot decoder relative to116

the all categories control decoder, was calculated as (matching accuracyZero-Shot117

– chance) / (matching accuracyAllCategories – chance). A normalized matching118

accuracy of 0 indicates zero-shot performance was at chance, a value of 1119

indicates the zero-shot matching accuracy was equal to the matching accuracy120

for the model trained on all categories. Normalized matching accuracies were121

all close to ceiling (Fig. 2c), indicating strinkingly comparable accuracies122

between the zero-shot and all categories control decoders.123

Even when the zero-shot decoder was trained on neural responses from just124

one category, matching accuracies remained well above chance (Fig. 2d, all Ps125

<0.001, permutation testing). Again, after computing normalized accuracies126

relative to an all categories control decoder matched for the number of training127

images (Fig. 2e), we find normalized accuracies close to ceiling (Fig. 2f),128

demonstrating strong generalization of the IT to DCNN mappings. Full129

matching results for all possible numbers of training categories can be seen in130

Supplemental Fig. 3.131

Next, we assessed whether the information captured in the IT to DCNN132

mappings is discriminative of object categories. For this purpose, we used the133

same 8-choose-2 SVM classifiers, trained on DCNN activity (Fig. 1d), without134

retraining or fine-tuning on neural data, to generate object category predictions135

from IT-reconstructed DCNN features (Fig. 3). In other words, the model136

presented with IT responses from novel categories and the task is decode which137

category was presented to the monkey, even though the mapping to reconstruct138

DCNN activations from IT was never exposed to neural responses from that139

particular category.140

When the zero-shot decoder was trained on six categories, we see significant141
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Figure 3. Object category can be decoded from IT-reconstructed
DCNN features even when extrapolating to novel categories that
were not used for training the IT to DCNN mapping. a. High classifi-
cation accuracies were achieved when neural activity from two test categories
was held out during training (six training categories), indicating that IT to
DCNN mappings capture generic information about visual object category.
Direct decoding accuracies (predicting category directly from IT responses
using linear SVMs) are shown in purple. b. A control decoder, where the
IT to DCNN mapping was learned using IT responses from all eight cate-
gories, showed a similar pattern of results, albeit with higher accuracies. c.
Zero-shot classification accuracies were normalized to calculate proportion of
above-chance classification accuracy achieved by the zero-shot model relative to
the all categories model. Normalized classification accuracies were all greater
than zero, and the best normalized accuracies for feature-based reconstructions
achieved over 80% of the accuracies seen for the all categories control decoder.
d, e, f. Zero-shot, all categories control, and normalized results when only one
category was used to train the zero-shot decoder. Again, the zero-shot decoder
displayed a similar pattern of results to the all categories control decoder but
with lower accuracies. All accuracies for all decoders, DCNN feature-types,
and layers are significant at P <0.001 (permutation testing).
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prediction for all reconstructed DCNN features and layers (Fig. 3a, all Ps142

<0.001, permutation testing). Feature-based reconstructions produced the143

best zero-shot predictions and were well above chance. The feature-based144

reconstructions show an increase in zero-shot prediction accuracy over the145

first few layers before flat-lining, indicating an expected increase in shared146

information about object category between IT and the DCNN across layers.147

Again, we compare the zero-shot performance to a control decoder where the148

IT to DCNN mapping was learned on responses from all categories (Fig. 3b,149

all Ps <0.001, permutation testing)) by calculating normalized classification150

accuracies. These normalized classification accuracies were all well above151

0, with the feature-based reconstructions from the later layers achieving a152

proportion over 0.8 of the accuracies seen for the all categories decoder (Fig.153

3c). These results demonstrate that information captured about the neural154

code for object representation when learning the mapping from IT to DCNN155

activity extrapolates to untrained novel object categories.156

When a single category was used to train the zero-shot decoder, accuracies157

were still all significantly above chance (Fig. 3d, all Ps <0.001, permutation158

testing). After normalizing these accuracies to an all categories control model159

matched for training set size (Fig. 3e, all Ps <0.001, permutation testing),160

normalized accuracies were all greater than zero (Fig. 3f). Despite only ever161

being exposed to neural responses from a single object category, this zero-shot162

decoder was still able to make pair-wise category judgments for neural responses163

from seven held-out novel categories, displaying extreme generalization not164

previously reported for any neural decoding model from any imaging modality.165

Full classification results for all possible number of training categories can be166

seen in Supplemental Fig. 4.167

Overall, mappings from IT to DCNN activity generalized across object168

category and novel object categories could be predicted without the model169

having prior exposure to responses from those categories, providing evidence170

that DCNNs capture generic visual information in rhesus macaque IT, as171

opposed to information that is restricted to the categories used for fitting.172

Understanding the neural code for objects requires not only interpolation to173

novel test items similar to those in the training set (as is standard practice), but174

also extrapolation to completely novel shapes that are clearly distinct from those175

in the training set. Such zero-shot generalization demonstrates that the model176

has captured the inherent structure of information encoded in neural activity177

and the relationship between the encoded features and object category. The178

extreme case of successful generalization from just a single training category179

(Figs. 2d,f and 3d,f) suggests a robust relationship between IT and DCNN180

representations.181

In studies linking DCNN features to brain activity, the DCNN units are182

usually treated equally without regard to the native dimensions in DCNN183

representations. Here, we separate feature-based and spatial activity, as well as184
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principal component scores summarizing the full spatio-featural activity space,185

to provide greater clarity regarding which aspects of DCNN representations are186

explaining the neural variance that carries information about object category.187

We find that feature-based DCNN channel activity reconstructed from IT188

activity carries the most generic visual information.189

This work demonstrates the promise of zero-shot neural decoders from190

electrophysiological recordings, which has broad applications. Theoretically,191

zero-shot decoders are superior to standard decoders because they necessitate192

a computational hypothesis for the neural code underlying the targeted process193

and support maximal generalization. On the engineering side, they could194

enable advances such as decoders from chronic neural recordings that can be195

flexibly updated without new training data. Rather than directly mapping196

neural responses to every desired output, neural activity would be mapped197

to a convenient intermediate space that captures the relevant variance for198

many different outputs. Predicting novel information from the decoder would199

simply necessitate training a new computational model linking the intermediate200

features to the new outputs, rather than collecting new neural recordings to201

learn a direct mapping. As chronic neural recordings become commonplace,202

building such flexible, generalizable neural decoding systems will become ever203

more important.204

Methods205

Dataset206

Details about the experimental setup, recording procedure, and pre-processing207

can be found in [18]. Briefly, two awake rhesus macaque monkeys were passively208

shown a rapid-serial-visual-presentation stream of 2560 grayscale images, each209

presented 5̃0 times (28 minimum repetitions) for 100 ms, depicting computer-210

generated objects from eight categories (Airplanes, Animals, Boats, Cars,211

Chairs, Faces, Fruits Tables) superimposed on arbitrary natural scene back-212

grounds. Within each of the eight categories, there were eight unique objects213

(40 images per object). The full stimulus set in [18] had three conditions of214

objects: low-variation (same size, position, orientation across all background),215

medium-variation (some variation in size, position, orientation across back-216

grounds), and high-variation (high variation in size, position, orientation across217

backgrounds). Here, only images and IT responses from the high-variation218

condition were used (in which behavioral recognition for a monkey or machine219

would be most difficult). Neural recordings were acquired from 168 visually-220

selective IT units using multi-electrode arrays. Firing rates were calculated221

from 70 to 170 ms post stimulus onset and averaged across repetitions.222
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Cross-Validation Folds223

For all analyses, data were split into category-matched training and testing224

folds. Data were split into folds according to object, so even within-category the225

specific objects used in the various training and testing phases were independent.226

DCNN activity from 75% of the images (six objects per category) was used to227

map DCNN activity to category labels, define the PCA transform on DCNN228

activity, and learn the mapping between IT and DCNN activity (Fig. 1).229

Neural and DCNN activity from 25% of the images (two objects per category)230

was used to test the models. Twenty unique train-test splits were used for all231

analyses.232

DCNN Architecture233

We used VGG-16 trained for 1000-way object categorization on the ImageNet234

dataset [19]. VGG-16 is a hierarchical DCNN with 21 convolutional, max-235

pooling, and fully-connected layers (Fig 1a. middle column). Our analyses236

focused on the five pooling layers (pool 1 = 802,816 units, pool2 = 401,408237

units, pool3 = 200,704 units, pool4 = 100,352 units, pool5 = 25,088 units, fc6238

= 4096 units, fc7 = 4096 units), which were selected to sample DCNN activity239

from across the entire hierarchy. The full unit activity space for each layer240

was reduced to 1000 principle component scores using PCA (75% train, 20%241

test cross-validation splits). To isolate feature-based channel activity in the242

pooling layers, we averaged units across the spatial dimensions (pool 1 = 64243

channels, pool2 = 128 channels, pool3 = 256 channels, pool4 = 512 channels,244

pool5 = 512 channels). To isolate spatial activity in the pooling layers, we245

averaged unit activity across channels (pool1 = [112, 112], pool2 = [56, 56],246

pool3 = [28, 28], pool4 = [14, 14], pool5 = [7, 7]. The fully-connected layers247

are organized along a single channel dimension, so all 4096 units were included248

as feature-based activity.249

DCNN Readout SVMs250

The relationship between DCNN activity and object category labels was learned251

using linear support-vector-machines (SVMs). DCNN activity from 75% of the252

images (six objects/category) were used to train the SVMs, and DCNN activity253

from 25% of the images (two different objects/category) were used to test the254

SVMs. Prior to training, each unit was normalized to have a mean of zero and255

a standard deviation of one across images. The same scaling learned on the256

training set was applied to the test set. Twenty-eight 8-choose-2 binary SVMs257

were trained, one for every potential pair amongst the eight object categories258

in the dataset. Binary classification was selected so the two test categories259

could easily be held-out in the zero-shot condition. Hyper-parameters for260

each binary classifier were optimized to maximize classification accuracy using261
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three-fold cross-validation within the training set. The same DCNN readout262

SVMs were used to predict object category from DCNN activity for all analyses.263

To emphasize, the DCNN readout SVMs were trained independent from any264

electrophysiological recordings and were never exposed to IT activity until the265

test phases.266

Decoding Methodology267

We used partial least squares regression (PLSR) with 25 components (as in [13])268

to learn the mapping between IT activity and DCNN activity. IT and DCNN269

activity from 75% of the images (six objects/category) were selected as the270

training set to learn the IT to DCNN transformation. When IT and DCNN271

activity from all eight categories were used to learn the transformation, the272

same transformation was applied to test IT activity from all categories. For273

zero-shot decoding, one to six categories were used to learn the transformation,274

and the transformation was applied to the held-out test categories. To assess275

how well the IT to DCNN transformation extrapolates to novel categories in276

the most extreme conditions, we used all possible numbers of categories (one to277

six, step-size one) to learn the IT to DCNN transformation. In all of the above278

versions, the IT activity transformed into DCNN activity was passed into the279

DCNN readout SVMs to generate the final object category predictions.280

Matching Analysis281

To assess the accuracy of the reconstructions and obtain a measure of the282

overall amount of shared generic information between IT and DCNN activity,283

we matched DCNN features reconstructed from IT to true DCNN features from284

the same image. In a pairwise fashion, the reconstructed DCNN features were285

correlated (Pearson) with the true DCNN features for the same image and the286

true DCNN features from another image in the test set. If the within-image287

correlation is greater than the between-images correlation, that comparison288

was scored as a hit. For a given target image, this comparison was made for289

every other image in the test set, and the same procedure was applied using290

each test image as the target image. We averaged across all comparisons to291

get a matching accuracy (50% chance). Significance was determined using292

permutation testing. Reconstructed DCNN features were permuted 1000 times293

relative to their image labels and the full analysis was run to derive a null294

distribution of matching accuracies. P was defined as the proportion of matching295

accuracies from this null distribution that are greater than the true matching296

accuracy. The matching analysis was run for each DCNN feature-type and297

layer.298

11/18

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 16, 2019. ; https://doi.org/10.1101/700344doi: bioRxiv preprint 

https://doi.org/10.1101/700344


Classification Analysis299

To assess whether DCNN features reconstructed from IT activity contain300

information about object category, the reconstructions were fed into the 8-301

choose-2 linear SVMs trained on true DCNN activity. The SVMs were not302

modified or fine-tuned on any neural activity. Significance was derived using303

permutation testing, again permuting the reconstructed DCNN features relative304

to image labels to derive empirical null distributions of classification accuracies.305

The classification analysis was run for each DCNN feature-type and layer.306

Normalizing Zero-Shot Accuracies307

To better assess zero-shot accuracies and compare across conditions with308

different numbers of training categories, we calculated normalized zero-shot309

accuracies. The scores account for the proportion of above-chance accuracy310

present in a zero-shot decoder relative to a control decoder trained on neural311

responses for all categories. In all comparisons, the number of training images312

for the all categories control decoder was matched to the number of training313

images for the zero-shot decoder.314
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Figure S1. Features extracted from each layer of VGG-16. Components
(orange) were defined using principle components analysis and the number
of components (1000) was matched across layers. Spatial activity (blue) was
defined by averaging across the channel dimension in the native unit-activity
space. Feature-based activity (green) was defined by averaging unit activity
across the spatial dimensions. The final dimensionality of each feature-type is
shown.
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Figure S2. a. Two rhesus macaque monkeys viewed images from 8 object
categories while IT responses were recorded using multi-electrode arrays. DCNN
activity for each image was computed using VGG-16, and the full unit activity
for each layer was encoded into 1000 components using PCA. b. Using partial
least squares regression (PLSR), linear mappings were learned from IT response
patterns to DCNN components. These mappings were applied to held-out
data (twenty 75% train, 25% test splits) to decode DCNN components from IT
activity. The decoded components were multiplied by the transpose of the PCA
transformation to reconstruct the full space of DCNN activity for each layer.
In the five pooling layers, full reconstructions were averaged across channels
(blue arrows) to calculate spatial reconstructions and across spatial dimensions
(green arrows) to calculate spatially invariant feature-based reconstructions.
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Figure S3. (expanding on Fig. 2) Matching results for all possible
number of training categories. a. Model-based matching accuracy when
training on neural activity from all categories (similar to Fig. 2). The number
of training images, shown along the top of each column, are matched to the
number of training images for each zero-shot condition below. The subplot
for 240 training images corresponds to Fig. 2e and the subplot for 1440
training images corresponds to Fig. 2b. b. Zero-shot matching accuracy for
all possible number of training categories. The number of training categories
are shown at the top of each column. The subplot for one training category
corresponds to Fig. 2d and the subplot for six training categories corresponds
to Fig. 2a. c. Zero-shot matching accuracy normalized by the all categories
matching accuracy. The subplot for one training category corresponds to Fig.
2f and the subplot for six training categories corresponds to Fig. 2c.
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Figure S4. (expanding on Fig. 3) Classification results for all possible
number of training categories. a. Model-based classification accuracy
training on neural activity from all categories (similar to Fig. 3). The number
of training images, shown along the top of each column, were matched to the
number of training images for each zero-shot condition below. The subplot for
240 training images corresponds to Fig. 3e and the subplot for 1440 training
images corresponds to Fig. 3b. b. Zero-shot classification accuracy for all
possible number of training categories. The number of training categories
are shown at the top of each column. The subplot for one training category
corresponds to Fig. 3d and the subplot for six training categories corresponds
to Fig. 3a. c. Zero-shot classification accuracy normalized by the all categories
classification accuracy. The subplot for one training category corresponds to
Fig. 3f and the subplot for six training categories corresponds to Fig. 3c.
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