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Abstract:  43 
Pleiotropy – when a single mutation affects multiple traits – is a controversial topic with 44 
far-reaching implications. Pleiotropy plays a central role in debates about how complex 45 
traits evolve and whether biological systems are modular or are organized such that every 46 
gene has the potential to affect many traits. Pleiotropy is also critical to initiatives in 47 
evolutionary medicine that seek to trap infectious microbes or tumors by selecting for 48 
mutations that encourage growth in some conditions at the expense of others. Research in 49 
these fields, and others, would benefit from understanding the extent to which pleiotropy 50 
reflects inherent relationships among phenotypes that correlate no matter the perturbation 51 
(vertical pleiotropy). Alternatively, pleiotropy may result from genetic changes that 52 
impose correlations between otherwise independent traits (horizontal pleiotropy). We 53 
distinguish these possibilities by using clonal populations of yeast cells to quantify the 54 
inherent relationships between single-cell morphological features. Then, we demonstrate 55 
how often these relationships underlie vertical pleiotropy and how often these 56 
relationships are modified by genetic variants (QTL) acting via horizontal pleiotropy. Our 57 
comprehensive screen measures thousands of pairwise trait correlations across hundreds 58 
of thousands of yeast cells and reveals ample evidence of both vertical and horizontal 59 
pleiotropy. Additionally, we observe that the correlations between traits can change with 60 
the environment, genetic background and cell-cycle position. These changing 61 
dependencies suggest a nuanced view of pleiotropy: biological systems demonstrate 62 
limited pleiotropy in any given context, but across contexts (e.g., across diverse 63 
environments and genetic backgrounds) each genetic change has the potential to 64 
influence a larger number of traits. Our method suggests that exploiting pleiotropy for 65 
applications in evolutionary medicine would benefit from focusing on traits with 66 
correlations that are less dependent on context.  67 
 68 
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Introduction 89 
Pleiotropy exists when a single mutation affects multiple traits (1,2). Often, 90 

pleiotropy is defined instead as a single gene contributing to multiple traits, although 91 
what is implied is the original definition — that a single change at the genetic level can 92 
have multiple consequences at the phenotypic level (2). As our ability to survey the 93 
influence of genotype on phenotype improves, examples of pleiotropy are growing (3-8). 94 
For example, individual genetic variants have been associated with seemingly disparate 95 
immune, neurological, and digestive symptoms in humans and mice (9,10). Genes 96 
affecting rates of cell division across diverse environments and drug treatments have been 97 
identified in microbes and cancers (11,12). A view emerging from genome-wide 98 
association studies is that variation in complex traits is “omnigenic” in the sense that 99 
many loci indirectly contribute to variation in many traits (13,14). 100 

 101 
However, the extent of pleiotropy remains a major topic of debate because, 102 

despite its apparent prevalence, pleiotropy is thought to be evolutionarily 103 
disadvantageous. The more traits a mutation affects, the more likely it is that the mutation 104 
will have a negative impact on at least one. Pervasive pleiotropy should therefore 105 
constrain evolution (15), exacting what is known as a cost of complexity or cost of 106 
pleiotropy (11,16-19). This cost may bias which mutations underlie adaptation, for 107 
example, toward less-pleiotropic cis-regulatory changes over more-pleiotropic changes in 108 
trans-acting factors (20,21), or toward changes to proteins that participate in relatively 109 
few biological processes (22,23). Over long periods, the cost of pleiotropy may influence 110 
the organization of biological systems, favoring a modular structure in which genetic 111 
changes influencing one group of traits have minimal impact system-wide (24-29). 112 

At stake in the ongoing debate about the extent of pleiotropy (30-33) are some of 113 
modern biology’s prime objectives, including the prediction of complex phenotypes from 114 
genotype data (18,34,35) and the prediction of how organisms will adapt to 115 
environmental change (36,37). These predictions are more challenging if genetic changes 116 
influence a large number of traits with complex interdependencies. Nonetheless, 117 
understanding how a given mutation influences multiple traits could be powerful, 118 
allowing prediction of some phenotypic responses given others (38,39). Indeed, recent 119 
strategies in medicine called evolutionary traps aim to exploit pleiotropy, for example by 120 
finding genetic changes that provide resistance to one treatment while promoting 121 
susceptibility to another (40-42).  122 

The lack of consensus about the extent of pleiotropy in natural systems is in part 123 
due to poorly defined expectations for how to test for it experimentally. One key issue is 124 
that defining a phenotype is not trivial (43,44). Consider a variant in the apolipoprotein B 125 
gene that increases low-density lipoprotein (LDL) cholesterol levels as well as the risk of 126 
heart disease. Elevated LDL promotes heart disease (45), so are these two phenotypes or 127 
one? Alternatively, consider a mutation in the phenylalanine hydroxylase gene that 128 
affects nervous system function and skin pigmentation. These dissimilar effects, both 129 
symptoms of untreated phenylketonuria (PKU), originate from the same problem: a 130 
deficiency in converting phenylalanine to tyrosine (46). Is it appropriate to call mutations 131 
that have this single metabolic effect pleiotropic? Likewise, shall one call pleiotropic a 132 
mutation that makes tomatoes both ripen uniformly and taste bad, when the effect of the 133 
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mutation is to reduce the function of a transcription factor that promotes chloroplast 134 
development, which in turn necessarily affects both coloration and sugar accumulation 135 
(47)? 136 

The LDL, PKU and tomato cases are examples of vertical pleiotropy, i.e. 137 
pleiotropy that results when one phenotype influences another or both are influenced by a 138 
shared factor (5,43). The alternative to vertical pleiotropy is horizontal pleiotropy, in 139 
which genetic differences induce correlations between otherwise independent 140 
phenotypes. It might be tempting to discard vertical pleiotropy as less “genuine” (48) or 141 
less important than horizontal pleiotropy, but that would be a mistake because vertical 142 
pleiotropy reveals important information about the underlying biological systems that 143 
produce the phenotypes in question. Consider the value in identifying yet-unknown 144 
factors in heart disease by finding traits that correlate with it, or in understanding where 145 
in a system an intervention is prone to produce undesirable side effects. Consider also 146 
that the extent and nature of vertical pleiotropy speak directly to the question of 147 
modularity: modularity is implied if vertical pleiotropy either is rare or manifests as small 148 
groups of correlated traits that are isolated from other such groups. If there is modularity 149 
then there can be horizontal pleiotropy, when particular genetic variants make links 150 
between previously unconnected modules. 151 

The above considerations suggest that a unified analysis that distinguishes and 152 
compares horizontal and vertical pleiotropy is needed to make sense of the organization 153 
and evolution of biological systems. However, existing methods of distinguishing 154 
horizontal and vertical pleiotropy are problematic because judgments must be made about 155 
which traits are independent from one another. Such judgments differ between 156 
researchers and over time. Indeed, the tomato example can be viewed as a case of 157 
horizontal pleiotropy transitioning recently to vertical pleiotropy as knowledge of the 158 
underlying system advanced.  159 

In this study, we propose and apply an empirical and analytical approach to 160 
measuring pleiotropy that relies far less on subjective notions of what constitutes an 161 
independent phenotype. The key principle is that the distinction between vertical and 162 
horizontal pleiotropy lies in whether traits are correlated in the absence of genetic 163 
variation (43). For vertical pleiotropy, the answer is yes: because one trait influences the 164 
other or the two share an influence, non-genetic perturbations that alter one phenotype are 165 
expected to alter the other. For horizontal pleiotropy, the answer is no: genetic variation 166 
causes the trait correlation. In this study, we determined how traits correlate in the 167 
absence of genetic variation by measuring single-cell traits in clonal populations of cells. 168 

We used high-throughput morphometric analysis (49-53) of hundreds of 169 
thousands of single cells of the budding yeast Saccharomyces cerevisiae to measure how 170 
dozens of cell-morphology traits (thousands of pairs of traits) co-vary within clonal 171 
populations and between such populations representing different genotypes. Within-172 
genotype correlations report on vertical pleiotropy, whereas between-genotype 173 
correlations report on horizontal pleiotropy to the extent that they exceed the 174 
corresponding within-genotype correlations. For one set of genotypes, we used 374 175 
progeny of a cross of two natural isolates (54), which enabled not only the estimation of 176 
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vertical and horizontal pleiotropy but also the identification of quantitative trait loci 177 
(QTL) with pleiotropic effects. For another set of genotypes, we used a collection of 178 
mutation-accumulation lines, each of which contains a small number of unique 179 
spontaneous mutations (55,56), which enabled a more direct test of the ability of 180 
mutations to alter trait correlations. 181 

The traits we study – morphological features of single cells – represent important 182 
fitness-related traits (51,57,58) that contribute to processes such as cell division and 183 
tissue invasion (e.g. cancer metastasis (59)). Cell-morphological features may correlate 184 
across cells for a variety of vertical or horizontal reasons. Vertical reasons include: (1) 185 
inherent geometric constraints (e.g. on cell circumference and area); (2) constraints 186 
imposed by gene-regulatory networks (e.g. if the genes influencing a group of traits are 187 
all under control of the same transcription factor); and (3) constraints induced by 188 
developmental processes (e.g. as a yeast cell divides or “buds”, many morphological 189 
features are affected). Horizontal pleiotropy might be evident because genetic variants 190 
each affecting two or more traits (that are otherwise weakly correlated) are segregating in 191 
the progeny of the cross between two natural isolates. Alternatively, horizontal pleiotropy 192 
might be evident because a particular allele strengthens the trait correlation so that 193 
genetic variation affecting one trait is more likely to affect another when that allele is 194 
present. These alternatives can be distinguished by examining trait correlations in two 195 
subsets of progeny strains defined by which natural isolate’s allele they possess at a QTL 196 
of interest.  197 

In addition to genetic variation, non-genetic variation may also alter the 198 
correlations between traits. We rely on non-genetic heterogeneity within clonal 199 
populations to serve as perturbations that reveal inherent trait correlations. However, the 200 
correlations themselves might be heterogeneous within these populations. For example, 201 
the dependencies between morphological features may change as cells divide. To control 202 
for this possibility, we performed our trait mapping and subsequent analysis after binning 203 
cells into three stages (unbudded, small-budded and large-budded cells). We further 204 
examined whether trait correlations change across the cell cycle by using a machine-205 
learning approach to more finely bin the imaged cells into 48 stages of division.  206 

 207 
Collectively, the results we present here demonstrate that both types of pleiotropy, 208 

vertical and horizontal, are prevalent for single-cell morphological traits, suggesting that 209 
biological systems occupy a middle ground between extreme modularity and extreme 210 
interconnectedness. Perhaps more surprisingly, we find that trait correlations are often 211 
context dependent, and can be altered by mutations as well as cell-cycle state and drug 212 
treatments. The dynamic nature of trait correlations encourages caution when attempting 213 
to quantify and interpret the extent of pleiotropy in nature or when making predictions 214 
about correlated phenotypic responses to the same selection pressure, as is done when 215 
crafting evolutionary traps. However, applying our approach may suggest which trait 216 
correlations are less context dependent and therefore more useful in setting such traps.  217 
 218 
 219 
 220 
 221 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 9, 2020. ; https://doi.org/10.1101/700716doi: bioRxiv preprint 

https://doi.org/10.1101/700716


Results: 222 
 223 
QTLs with pleiotropic effects influence yeast single-cell morphology 224 

To detect genes with pleiotropic effects on cell morphology, we measured 167 225 
single-cell morphological features (e.g. cell size, bud size, bud angle, distance from 226 
nucleus to bud neck; Table S1) in 374 yeast strains that were generated in a previous 227 
study from a mating between two wild yeast isolates (54,60). These wild isolates, one 228 
obtained from soil near an oak tree, the other from a wine barrel, differ by 0.006 SNPs 229 
per site (61) and have many heritable differences in single cell morphology (62). For 230 
example, we find that yeast cells from the wine strain, on average, are smaller, are 231 
rounder, and have larger nuclei during budding than yeast cells from the oak strain (Fig 232 
S1).   233 

To measure their morphologies, we harvested exponentially growing cells from 234 
three replicate cultures of each of these 374 recombinant strains, and imaged on average 235 
800 fixed, stained cells per strain using high-throughput microscopy in a 96-well plate 236 
format (Fig S2). We used control strains present on each plate to correct for plate-to-plate 237 
variation (see Methods), and quantified morphological features using CalMorph software 238 
(53), which divides cells into three categories based on their progression through the cell 239 
cycle (i.e. unbudded, small-budded, and large-budded cells) and measures phenotypes 240 
specific to each category.  241 

A simple way to measure pleiotropy would be to identify QTL that contribute to 242 
variation in these phenotypes, and then to count the number of phenotypes to which each 243 
QTL contributes. However, such a measure is sensitive to the statistical thresholds that 244 
are used, and therefore risks yielding false inferences about trait modularity. Using a 245 
liberal threshold would cause false-positive cases of pleiotropy (less apparent 246 
modularity), whereas a conservative threshold would cause failures to detect pleiotropic 247 
QTL when they exist (more apparent modularity). Such a measure also assumes the 248 
counted traits are somehow independent except for correlations induced by genetic 249 
variants. Statistically independent traits could be constructed (and then counted) as 250 
principal components of the original traits, but the concern about too-liberal or too-251 
conservative QTL-detection thresholds would remain. Moreover, as we explore 252 
extensively below, trait correlations are hierarchical (differing within and between 253 
genotypes and conditions), making application of principal components analysis 254 
problematic. For these reasons, we do not focus on counting the number of phenotypes 255 
influenced by a given locus. Still, to begin to dissect vertical and horizontal pleiotropy we 256 
must start with candidate examples of pleiotropic loci.  257 

To detect QTL, we used 225 markers spread throughout the genome (54) and 258 
Haley-Knott regression implemented in the R package R/qtl (63,64). We used a standard 259 
permutation-based method to estimate statistical significance (63-65), with permutations 260 
performed separately for each trait such that the per-trait probability of detecting a false 261 
positive is 0.05. With this cutoff, we identified 41 QTL that contribute to variation in 155 262 
of the surveyed morphological features (Fig 1A). This approach does not correct for the 263 
testing of multiple traits. When we do so using a false-discovery rate set to 5%, results do 264 
not change qualitatively. Indeed, the majority of QTL-trait associations that are 265 
eliminated using this more-stringent cutoff involve QTL that are detected regardless of 266 
this correction (Fig 1A; 80% of red points are present at QTL that also possess black 267 
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points). This observation suggests many of the associations detected with the less-268 
stringent cutoff are not spurious. We therefore present subsequent analyses using the 269 
QTL-trait associations based on the less-stringent cutoff, but we also report analyses 270 
using the reduced set of associations based on the more-stringent cutoff to establish that 271 
qualitative conclusions did not change. 272 

Most of the QTL we detect are pleiotropic, meaning each contributes to variation 273 
in more than one morphological feature (Fig 1A; 36/41 QTL influence multiple traits, 274 
20/26 after correcting for testing multiple traits). The median number of traits to which 275 
each QTL contributes is 5 (5.5 after correction). This finding provides some support for 276 
the idea that biological systems demonstrate limited pleiotropy, in that the median 277 
number of traits affected per QTL is low (5/167). This median number of traits is similar 278 
to that found in previous high-dimensional QTL screens (17,31), and in analyses of gene 279 
knockouts in yeast and mouse (11). Further evidence that biological systems demonstrate 280 
limited pleiotropy, and thus a modular organization, comes from previous studies of this 281 
mapping family that show these same QTL do not contribute to variation in sporulation 282 
efficiency (60).  283 

However, as noted above, conclusions drawn about modularity from studies that 284 
count traits are subject to criticism: some QTL influences may be too small to detect, 285 
even with less-stringent significance thresholds, creating the appearance of modularity 286 
even if every QTL influences every trait to at least some small degree. Further, we detect 287 
some QTL that influence large numbers of traits, up to 73 (68 after correction). Although 288 
such QTL mitigate to some extent concerns about detection power, they highlight other 289 
potential problems: some QTL might contain multiple genetic differences that impact 290 
different traits, and some morphological features might be inherently correlated and 291 
therefore should not be counted as independent traits. Next, we focus on the first of these 292 
problems by asking whether these QTL represent single genes that contribute to 293 
phenotypic variation in many morphological features. We return to the issue of trait 294 
independence after that. 295 
 296 
Single genes with pleiotropic effects influence yeast single-cell morphology 297 

When a QTL affects multiple traits, it might not mean that variation in a single 298 
gene is contributing to variation in these traits but instead that linked genes are 299 
contributing to variation in distinct, individual traits. We partitioned genotype-phenotype 300 
associations on the same chromosome into separate QTL when they were greater than 5 301 
cM apart, except in genome regions where many genotype-phenotype associations are 302 
present and there is no clear break point. A distance of 5 cM corresponds on average to 8 303 
protein-coding genes in the yeast genome. The largest QTL we detected spans 17 cM, 304 
which is roughly half the window size utilized in a previous study of this same QTL 305 
mapping family (63). This approach reduces but does not eliminate the possibility that 306 
QTL represent the action of linked loci. 307 

For a small number of QTL with high pleiotropy (highlighted in Fig 1A), we 308 
sought to test whether the effects on different morphological features were due to the 309 
action of a single gene. We performed these tests by swapping the parental versions of 310 
candidate genes (i.e. we genetically modified the wine strain to carry the oak version of a 311 
given gene, and vice versa). We used the delitto perfetto technique to perform these 312 
swaps (66), such that the only difference between a parental genome and the swapped 313 
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genome is the coding sequence of the single candidate gene plus up to 1 kb of flanking 314 
sequence (see Methods). Candidate genes were selected based on descriptions of the 315 
single-cell morphologies of their knockout mutants (67) and the presence of at least one 316 
non-synonymous amino acid difference between the wine and oak alleles (62).  317 

When a candidate gene contributes to the morphological differences between the 318 
wine and oak parents, we expect yeast strains that differ at only that locus to recapitulate 319 
some of the morphological differences between the wine and oak parents. Indeed, this is 320 
what we observe for PXL1, a candidate for the QTL on chromosome 11, and HOF1, a 321 
candidate for the QTL on chromosome 13 (Fig 1B; compare each plot on the right to the 322 
leftmost plot; see also Table S2). This influence is most pervasive for HOF1; both the 323 
oak and the wine alleles have a strong effect on the morphology of the opposite parent, 324 
and their effects recapitulate the parental difference to a large extent. The pervasive 325 
influence of HOF1 on various morphological features is consistent with the fact that this 326 
gene’s product affects actin-cable organization and is involved in both polar cell growth 327 
and cytokinesis (68). The effect of PXL1 on cell morphology is also apparent across 328 
many single-cell features, although only the oak allele has a strong effect that 329 
recapitulates the parental difference. We evaluated RAS1, a candidate for the QTL on 330 
chromosome 15, but initial tests indicated that it did not have a significant impact on 331 
most morphological features (Table S2). We also attempted to swap alleles for a 332 
candidate gene corresponding to the QTL on chromosome 8, but were unsuccessful (see 333 
Methods).  334 

A previous screen for QTL influencing single-cell morphology in the progeny of a 335 
genetically distinct pair of yeast strains (a different vineyard strain and a laboratory 336 
strain) found some of the same pleiotropic QTL that we detect in the wine and oak cross 337 
(69) (compare their Table 2 to our Table S1). In particular, we both find a QTL in the 338 
same position on chromosome 15 that influences many morphological features related to 339 
nucleus size, shape, and position in the cell (Fig 1A; orange). We also both detect a QTL 340 
near base pair 100,000 on chromosome 8 that influences cell size and shape (Fig 1A; 341 
pink). In the previous screen, the genetic basis of this QTL was shown to be a single 342 
nucleotide change within the GPA1 gene (69).  343 

The main conclusion from our gene-swapping experiments, which is consistent 344 
with the previous cell-morphology QTL study (69) as well as with comprehensive 345 
surveys of how gene deletions affect the morphology of a laboratory yeast strain (11,49), 346 
is that single genes with pleiotropic effects on cell morphology are readily detected in 347 
budding yeast. Moreover, the morphological traits involved were previously shown to 348 
influence fitness (51,57,58), which raises the question: why do so many genetic analyses 349 
(including ours) detect pleiotropy (5,9-12,14) when other work suggests that pleiotropy 350 
exacts a cost (17,18,20,21)?  351 

 352 
Dissecting pleiotropy using clonal populations of cells 353 

One hypothesis to explain pervasive pleiotropy may be that the phenotypes we 354 
chose to measure are not independent. Instead, many of these single-cell morphological 355 
features may be inherently related such that perturbing one will have unavoidable 356 
consequences on another and thus any associated limitation of adaptation will be 357 
unavoidable as well. In other words, the hypothesis is that much of the pleiotropy we 358 
observe is vertical pleiotropy. A test of this hypothesis is to ask whether traits that are 359 
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jointly affected by the same QTL are correlated in the absence of genetic differences. Our 360 
dataset provides a unique opportunity to perform such a test because we quantified 361 
single-cell traits for, on average, 800 clonal cells per yeast strain (Fig S2).  362 

We leverage the hierarchical structure and large sample size of our dataset to 363 
obtain precise estimates of the correlations that exist within and between strains. Thereby 364 
we learn about the underlying relationships between morphological traits, which we use 365 
to distinguish vertical from horizontal pleiotropy. Because we are studying clonal 366 
families without a complicated pedigree structure, these within- and between-strain 367 
correlations are equivalent to the so-called environmental and genetic correlations of 368 
quantitative genetics (70). Here, we use a simple (and fast) method that is appropriate for 369 
two-level hierarchical data to partition the total correlation into a pooled within-strain 370 
component (rW) and a between-strain component (rB) (71). One caveat of this correlation-371 
partitioning approach is that rB is effectively the correlation between strain means, which 372 
can bias estimates of genetic covariance (70). This bias is most pronounced at small 373 
sample sizes (70), so our large sample sizes allay concern. Nonetheless, for a subset of 374 
traits, we tested whether estimates obtained from correlation partitioning are similar to 375 
those obtained from mixed-effect linear models that specify the variance-covariance 376 
structure of the experimental design. Environmental correlations estimated using both 377 
methods are nearly identical (Fig S3). Genetic correlations estimated by correlation 378 
partitioning are sometimes slightly smaller in magnitude than those obtained by linear 379 
modeling (Fig S3). This bias is conservative; it may prevent us from identifying cases 380 
where the environmental and genetic correlations significantly differ but will not tend to 381 
create such cases. Despite this reduced power, we rely on the correlation-partitioning 382 
approach, which is substantially faster, because our goal is to estimate environmental and 383 
genetic correlations for thousands of trait pairs. 384 

Unlike the mapping analysis, which considered phenotypes across all three 385 
classes of cell type (unbudded, small-budded and large-budded), this correlation-386 
partitioning analysis can only be applied to pairs of phenotypes that can be measured in 387 
the same cell. Three of the 36 pleiotropic QTL exclusively affect traits from different cell 388 
types. For example, a QTL on chromosome 4 affects the shape of the nucleus in 389 
unbudded cells as well as in large-budded cells. The correlation between these traits 390 
cannot be partitioned into a within-strain component because these traits are never 391 
measured in the same single cell. Excluding these three QTL leaves 33 pleiotropic QTL. 392 

 The 167 single-cell morphological features we measured represent 5645 pairs of 393 
traits (378, 1081, and 4186 pairs of morphological features pertaining to unbudded, 394 
small-budded, and large-budded cells respectively). Because some of these traits are 395 
related, these thousands of trait pairs are not independent. This dependence prevents us 396 
from reliably counting the absolute number of traits that are influenced by vertical vs. 397 
horizontal pleiotropy. Still, partitioning correlations into a non-genetic (rW) and a genetic 398 
(rB) component for thousands of trait pairs enables us to: 1) analyze a network describing 399 
the degree to which morphological traits are interconnected or modular, and 2) detect 400 
examples of horizontal pleiotropy if they exist. This approach differs from that of 401 
previous studies of pleiotropy that used principal component analysis (PCA) to 402 
understand which traits are correlated (17). Performing PCA on the individual-cell data is 403 
not the same as controlling for rW because PCA would ignore the strain groupings, which 404 
can then dominate the analysis (the classic “heterogeneous subgroup” problem in 405 
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correlation analysis (72)). As a consequence, PCA can miss cases of horizontal pleiotropy 406 
and obscure, rather than reveal, inherent trait relationships. 407 
 408 
Inherent relationships between traits contribute to pleiotropy  409 

We focus first on vertical pleiotropy by analyzing correlations that exist in the 410 
absence of any genetic differences (rW). In the analyses that follow, when we refer to rW 411 
(or rB), we mean the magnitude of the correlation, as the sign has no relevance for 412 
arbitrary pairs of traits. The distribution of rW across traits that are influenced by the same 413 
QTL reflects the degree to which that QTL acts via vertical pleiotropy. The overall 414 
pattern of rW values (i.e., whether there are isolated clusters of highly correlated traits 415 
versus a densely interconnected network of traits) reflects the modularity of the 416 
underlying biological system. These within-strain correlations are estimated with 417 
extremely high precision because of our large sample size of hundreds of thousands of 418 
clonal cells (800 per each of 374 strains).  419 

Most pairs of single-cell morphological traits are not strongly correlated across 420 
clonal cells (Fig 2A). Median rW is < 0.1, and 74% of pairs have rW < 0.2. Even if we 421 
allow for nonlinear correlations by transforming data using a nonparametric model that 422 
finds the fixed point of maximal correlation (73), rW is less than 0.2 for roughly 65% of 423 
pairs. These observations suggest that most of the morphological traits we surveyed are 424 
not inherently related; i.e. for any individual cell, the value of one trait does not predict 425 
well the values of most other traits.  426 

Nonetheless, the distribution of rW has a prominent right tail (Fig 2A) indicating 427 
that some morphological features are strongly correlated across clonal cells. These 428 
correlated features are more likely to be influenced by pleiotropic QTL. Among pairs 429 
represented by this right tail (specifically, those with rW > 0.2), 75% consist of traits that 430 
share at least one QTL influence; the same is true for only 36% of pairs with rW < 0.2. 431 
These percentages are similar after changing our QTL detection threshold to correct for 432 
having tested multiple phenotypes (66% and 21%, respectively). Further, the number of 433 
pleiotropic QTL influencing both traits in a pair correlates with that pair’s rW (Pearson’s r 434 
is 0.52 before correction and 0.54 after). These results suggest that inherent correlations 435 
among morphological features often cause genetic perturbations to one feature to have 436 
consequences on another. In other words, we observe evidence of vertical pleiotropy.  437 

Next, we studied each of the 33 pleiotropic QTL one at a time, asking whether 438 
they influence pairs of traits with higher rW than expected by chance. Most QTL have a 439 
higher median rW for the pairs of traits they influence than the median rW given by all 440 
possible pairs of traits (Fig 2B). This difference suggests that vertical pleiotropy drives a 441 
large portion of the pleiotropy we detect.  442 

We also used network analysis to move beyond the pairwise comparisons in Fig 443 
2A and ask if morphological traits tend to be clustered into modules. Traits with higher 444 
rW do indeed tend to group into clusters in networks in which the single-cell 445 
morphological traits are nodes and the rW magnitudes are edge weights (Fig 2C). This 446 
need not have been the case; pairs of traits with high rW could have been distributed 447 
throughout the network without necessarily being clustered near other high rW pairs. 448 
Instead, networks representing single-cell morphological features demonstrate more 449 
clustering than do random networks drawn from the same values of rW (Fig 2D; for 450 
corresponding figures from unbudded and small-budded trait networks, see Fig S4). This 451 
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observation might indicate that morphological phenotypes have a modular organization, 452 
whereby phenotypes within a module exert influence on one another, but exert less 453 
influence on phenotypes from other modules. However, this observation could also result 454 
from human bias when enumerating phenotypes that can be measured, in the sense that 455 
phenotypes that bridge modules might somehow be absent from the data set. The 456 
comprehensive nature of CalMorph diminishes this concern. A related concern is that 457 
apparent modules are formed by trivially related phenotypes, such as the radius and 458 
diameter of a circular object, but we do not find such trivial relationships among the 459 
CalMorph phenotypes. Even a high correlation between the length and area of the 460 
nucleus implies a constraint on nuclear aspect ratio.  461 

Our analysis of within-strain trait correlations so far suggests that natural 462 
variation contributing to variation in multiple single-cell morphological features often 463 
acts via vertical pleiotropy. Still, there are hints of another mechanism at play. Some 464 
QTL tend to influence traits that are not clustered in the correlation network (e.g. Fig 465 
2E). And many pleiotropic QTL influence some pairs of traits with negligible rW (Fig 466 
2B). To investigate how often pleiotropy is not predicted by the degree to which 467 
morphological features correlate in the absence of genetic variation, in the next section 468 
we compare trait correlations present across clones (rW) to those present between 469 
genetically diverse strains (rB).  470 

 471 
Many traits are more strongly correlated across strains than they are across clones  472 

When genetic changes that perturb one trait have collateral effects on another, we 473 
expect the way traits correlate across genetically diverse strains to reflect trait 474 
correlations across clones (i.e. rB = rW). When this condition is met, pleiotropy can be 475 
viewed as an expected consequence of inherent relationships between traits, i.e. vertical 476 
pleiotropy. On the other hand, if a QTL influences two traits that do not correlate across 477 
clones, it may cause these traits to correlate across strains in which this QTL is 478 
segregating. In this case, we expect rB will be greater than rW, suggesting horizontal 479 
pleiotropy.  480 

After correcting for testing thousands of trait pairs, rB significantly exceeds rW in 481 
25% of all trait pairs, and 43% of pairs in which at least one pleiotropic QTL influences 482 
both traits (Fig 3; left panel; 43% of points are above the envelope, which represents a 483 
Bonferroni-corrected significance threshold of p < 0.01). This percentage grows to 53% 484 
in the smaller set of QTL that are detected after correcting for testing many traits. In the 485 
majority of cases in which rB significantly differs from rW, rB is greater than rW (Fig 3; 486 
left panel; 78% of points outside the envelope are above it). The magnitude of the 487 
increase in rB vs. rW tends to scale with the number of pleiotropic QTL that jointly 488 
influence both traits in a pair (Fig 3; left panel; colors get warmer farther above the 489 
envelope). These observations are consistent with the hypothesis that QTL acting via 490 
horizontal pleiotropy increase rB relative to rW. 491 

However, horizontal pleiotropy is not the only reason traits may correlate 492 
differently across strains versus across clones. We find significant deviations in rB 493 
relative to rW in 14% of pairs for which no pleiotropic QTL influence both traits (Fig 3; 494 
right panel), or 16% such pairs when using the smaller set of QTL that are detected after 495 
correcting for testing many traits. This observation may suggest the presence of 496 
pleiotropic genetic variants that we did not have statistical power to detect in our QTL 497 
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screen. But an alternate explanation for the observed increases in rB over rW is that 498 
perhaps we sometimes underestimate rW.  499 

One reason rW could be underestimated is that single-cell measurements are 500 
noisier than group-level averages. To test this possibility, we randomly assigned 501 
individual cells to groups (pseudo-strains) having the same number of cells as the actual 502 
strains, and found that in these permuted data, rB and rW never significantly differ (Fig 3; 503 
insets). Because detection of rW was not underpowered relative to rB, we conclude that 504 
measurement noise does not meaningfully obscure rW. Another reason rW could be 505 
underestimated is if trait correlations across strains are more linear than those across 506 
clones. To test this possibility, for every pair of traits we transformed the single-cell trait 507 
measurements using a nonparametric model that finds their maximal correlation (73). 508 
This transformation abrogated significant differences in rB relative to rW for fewer than 509 
5% of affected trait pairs. Another reason rW might be less than rB is if there tends to be 510 
less phenotypic variation within strains than between strains. Contrary to this prediction, 511 
every morphological trait we surveyed varies more within strains than between strains. 512 
Indeed, broad-sense heritability of the traits did not exceed 15% (Fig S1B), reflecting that 513 
within-strain phenotypic variation (e.g. variation in a cell’s progress through the division 514 
cycle) accounted for at least 85% of the total variation. A final reason rW could be poorly 515 
estimated is if non-genetic heterogeneity across different subpopulations within clonal 516 
populations causes variation in rW. Therefore, next we investigated whether the 517 
relationship between single-cell features varies for clonal cells in different stages of the 518 
cell-division cycle.   519 

 520 
Inferring a cell’s progress through division from fixed cell images 521 

Pairs of traits for which rB is strong whereas rW is not should reflect horizontal 522 
pleiotropy, but a closer examination of some of these pairs revealed traits that should 523 
correlate due to simple geometric constraints. For example, cell size and the width of the 524 
bud neck should correlate due to the constraint that, even at its maximum, bud neck width 525 
cannot be larger than the diameter of the cell. When measured in small-budded cells, 526 
these two traits are correlated across yeast strains (rB = 0.40) but are significantly less 527 
correlated across clones (rW = 0.15). Given the simple geometric constraint coupling the 528 
width of the bud neck to the cell’s size, why is there a discrepancy between rB and rW? 529 
We reasoned that this discrepancy exists because the correlation between cell size and 530 
neck width is disrupted during particular moments of cell division; e.g. the width of the 531 
bud neck starts small even for large cells (Fig 4A; cell micrographs outlined in blue show 532 
two cells in the progress of budding). If the relationship between morphological features 533 
varies during cell division, rW may represent a poor summary statistic. 534 

How often does the relationship between morphological traits change during cell 535 
division? Our single cell measurements are primed to address this question: we fixed 536 
cells during exponential growth and imaged hundreds of thousands of single cells, 537 
thereby capturing the full spectrum of morphologies as cells divide. A remaining 538 
challenge is sorting these images according to progress through cell division, and then re-539 
measuring the correlation between morphological features within narrow windows along 540 
that progression.  541 

We performed this sorting using the Wishbone algorithm (74). This algorithm 542 
extracts developmental trajectories from high-dimensional phenotype data (typically 543 
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single-cell transcriptome data). We applied Wishbone separately to cells belonging to 544 
each of the three cell types defined by morphometric analysis (unbudded, small-budded, 545 
and large-budded cells). The trends describing how morphological features vary across 546 
Wishbone-defined cell-division trajectories are consistent with previous observations of 547 
how morphology changes as yeast cells divide (75,76) (Fig 4A; line plots). For example, 548 
Wishbone sorts fixed-cell images in such a way that cell area increases throughout the 549 
course of cell division (Fig4A; upper left panel), and nuclear elongation occurs just 550 
before nuclear division (Fig4A; lower left panel). These trajectories also match our own 551 
observations of how morphological features change as live cells divide, which we tracked 552 
by imaging at 1-minute intervals one of the 374 progeny strains that we had engineered to 553 
express a fluorescently tagged nuclear protein (HTB2-GFP) (Fig 4A; micrographs). We 554 
chose this particular strain because it does not deviate from the average morphology of all 555 
374 recombinants by more than one standard deviation for any of the phenotypes we 556 
measure. 557 

To further validate Wishbone’s performance, we asked whether it could 558 
reconstruct the time series of live-cell images from the HTB2-GFP strain. We obtained 559 
time series for 78 single dividing cells, each imaged over at least 20 timepoints. 560 
Quantifying morphological phenotypes from live-cell images in a high-throughput 561 
fashion proved difficult because the morphometric software was optimized for fixed-cell 562 
images and as cells grow and bud, the cells and their nuclei can move out of the focal 563 
plane. Also, although we used short exposure times when imaging GFP fluorescence, 564 
there are concerns about photo-toxicity and associated growth and morphology defects 565 
(77). For these reasons, we expect Wishbone to perform better on fixed-cell images than 566 
on time series of live cell images. Still, Wishbone’s cell-division trajectories recapitulate 567 
the time course. When we align time series data across live cells by centering on each 568 
cell’s average predicted progress through division, Spearman’s r is 0.65, 0.91, and 0.77 569 
for time series corresponding to each of the three cell types (Fig 4B; see Fig S5 for 570 
recapitulation of 78 individual time series). These correlations are substantially higher 571 
than those obtained by repeating the merging procedure after randomly permuting each 572 
time series (corresponding Spearman’s r of 0.42, 0.43. and 0.56). These observations 573 
suggest that Wishbone is effective at properly assigning single-cell images to their 574 
position in the cell cycle. 575 

 576 
Cell cycle state can influence the relationship between morphological features  577 

To identify cases where significant differences in rB vs. rW might result because 578 
rW is sensitive to cell-cycle state, we first assigned each imaged yeast cell from the QTL-579 
mapping population to one of 16 equal-sized bins based on Wishbone’s estimation of 580 
how far that cell had progressed through division. Because we did this separately for each 581 
of the previously defined cell stages (unbudded, small-budded, and large-budded), this 582 
additional binning finely partitions cell division into 48 (16 x 3) stages. To hold genotype 583 
representation constant across each of the 48 bins, we performed binning separately for 584 
each of the 374 mapping-family strains, then merged like bins across strains. We then 585 
performed correlation partitioning on each bin separately.  586 

Binning cells by cell-cycle state typically decreased the amount of phenotypic 587 
variation per bin, which we expect in turn to obscure the correlation between traits. 588 
Consider an extreme example: if there is no phenotypic variation remaining for a given 589 
trait, it cannot covary with any other traits. Indeed, for most pairs of traits, the binning 590 
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procedure either decreases rW or does not have a dramatic effect on it; decreases in rW are 591 
especially evident for trait pairs where variation of at least one of the traits shows a 592 
relatively large decrease upon binning (Fig 4C). However, for some pairs of traits, 593 
despite the decrease in phenotypic variation for at least one trait, the correlation between 594 
traits improves upon binning. For example, binning by cell division increases the 595 
correlation between cell size and the width of the bud neck (Fig 4D; leftmost plot) such 596 
that it approaches rB. This increased correlation is consistent with our hypothesis that the 597 
process of cell division was obscuring the dependency of bud neck width on cell size. 598 
Examining more pairs of traits for which binning tends to increase rW (Fig 4C; red, 599 
orange, and yellow points) reveals additional cases where the process of cell division 600 
decouples traits that are otherwise correlated, and where binning reveals the underlying 601 
correlation (Fig 4D; leftmost three plots). 602 

Despite the evidence that cell asynchrony alters some trait correlations, many 603 
cases remain where heterogeneity in cell-cycle state does not explain the observed 604 
discrepancy between rW and rB (Fig 4D; rightmost three plots). We previously 605 
demonstrated that rB significantly exceeds rW in 24% of all trait pairs (1389/5645) (Fig 606 
3). For almost half of these pairs (689 pairs), binning by cell division does not resolve the 607 
discrepancy between rB and rW to any extent; in other words, rW does not increase in any 608 
of the 16 bins. For an additional 193 pairs, binning by cell division resolves the 609 
discrepancy by at most 5% in any bin. These results imply that cell-cycle heterogeneity 610 
does not cause the discrepancy between rW and rB in the majority of cases, suggesting 611 
that the elevation of rB over rW could be explained by QTL demonstrating horizontal 612 
pleiotropy.  613 

 614 
Many QTL demonstrate horizontal pleiotropy 615 

To test horizontal pleiotropy further, we asked whether pleiotropic QTL cause 616 
increases in rB relative to rW. Not all pleiotropic QTL affect pairs of traits for which rB is 617 
significantly greater than rW, so we focus this analysis on the 27 out of 33 QTL that do. 618 
We divided our yeast strains into sets in which a given QTL is not segregating, then re-619 
measured the difference between rB and rW. More specifically, for each QTL, we split the 620 
374 phenotyped yeast strains into two groups based on whether they inherited the wine or 621 
the oak parent’s allele at the genotyped marker closest to the estimated QTL location. 622 
Then we repeated correlation partitioning on each subset of strains and compared the 623 
results to those obtained from the complete set. For each QTL, we focused on trait pairs 624 
in which: (1) both traits are affected by this QTL, and (2) rB is significantly greater than 625 
rW. Across all such pairs, median rB tends to decrease upon eliminating allelic variation at 626 
the marker nearest the QTL (Fig 5A). No similar reduction in rB is observed when we 627 
focus on pairs of traits that are not affected by each QTL (Fig 5A) and no similar 628 
reduction is observed in rW (median reduction in rW is 0.0001). 629 

There appear to be two ways in which a QTL may affect rB. In some cases, 630 
eliminating genetic variation at the marker nearest a QTL decreases rB in both resulting 631 
subpopulations. Such cases are consistent with a straightforward scenario in which 632 
horizontal pleiotropy results when a QTL that influences two or more traits (that are 633 
otherwise weakly correlated) is segregating in a population (Fig 5B; top row shows that 634 
the correlation is strongest in the mixed population where both oak and wine alleles are 635 
segregating). In other cases, eliminating allelic variation at a QTL site decreases rB in 636 
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only one of the two resulting subpopulations (i.e. the subpopulation possessing either the 637 
oak or the wine allele). This observation demonstrates that horizontal pleiotropy can 638 
emerge by virtue of a QTL allele strengthening a correlation between two traits so that 639 
genetic variation affecting one trait is more likely to affect the other when that allele is 640 
present (78,79) (Fig 5B; bottom row).  641 

How many cases where rB significantly exceeds rW can be explained, to some 642 
extent, by horizontal pleiotropy (i.e. a QTL increasing the between-genotype 643 
correlation)? For every trait pair where rB significantly exceeds rW and at least one QTL 644 
influences both traits in the pair (1108 pairs total), eliminating allelic variation at the 645 
marker nearest at least one of the shared QTL causes rB to decrease in one or both of the 646 
resulting subpopulations (Fig 5C: solid black line in rightmost plot). About 60% of these 647 
decreases affect both subpopulations (e.g. Fig 5B; top row) and 40% affect only one 648 
subpopulation (e.g. Fig 5B; bottom row). These decreases in rB appear to resolve the 649 
discrepancies in rB vs. rW more often and to a greater extent than does accounting for 650 
cell-cycle heterogeneity (Fig 5C; leftmost plot). Some QTL have larger impacts on rB 651 
than do others (Fig 5C). Eliminating allelic variation near a QTL on chromosome 13 652 
decreases rB in the largest number of traits pairs (658). Subtracting the influence of a 653 
QTL on chromosome 15 decreases rB to the greatest extent; the average decrease across 654 
342 affected trait pairs is 0.07.  655 

One caveat that remains is whether these examples of pleiotropy represent single 656 
genetic changes that influence multiple traits, or the presence of multiple nearby genetic 657 
variants within each QTL. Our finding that there are two types of horizontal pleiotropy 658 
(Fig 5B), provides some insight. The first type of horizontal pleiotropy (Fig 5B; upper 659 
row) may result from the presence of multiple genetic variants segregating together 660 
because recombination has not broken them apart. However, the second type of 661 
horizontal pleiotropy (Fig 5B; lower row) cannot be explained in the same way because a 662 
strong trait correlation exists in the absence of allelic variation at that QTL (blue points). 663 
Therefore, although multiple closely linked variants might underlie the difference in the 664 
trait correlation between the oak and wine alleles of the QTL, they would act at the level 665 
of the correlation rather than of individual traits.  666 
 667 
Spontaneous mutations alter the relationships between morphological features 668 

Our finding that some QTL alleles appear to strengthen correlations between 669 
otherwise weakly correlated traits (Fig 5B; lower panel) lends credence to the idea that 670 
the relationships between phenotypes, and thus the extent of phenotypic modularity (or 671 
integration), are mutable traits (80). This finding has implications for evolutionary 672 
medicine, in particular evolutionary traps, e.g. strategies to contain microbial populations 673 
by encouraging them to evolve resistance to one treatment so that they become 674 
susceptible to another (40-42). These traps will fail if targeted correlations can be broken 675 
by mutations. To test whether spontaneous mutations can alter trait correlations, we 676 
analyzed the cell-morphology phenotypes of a collection of yeast mutation-accumulation 677 
(MA) lines (55). These MA lines were derived from repeated passaging through 678 
bottlenecks, which dramatically reduced the efficiency of selection and thereby allowed 679 
retention of the natural spectrum of mutations irrespective of effect on fitness (56). We 680 
previously imaged these lines in high throughput (>1000 clonal cells imaged per each of 681 
94 lines) (51).  682 
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Because MA lines contain private mutations unique to each strain, they are not 683 
amenable to QTL mapping and between-strain trait correlations have less meaning. 684 
Instead, we focused on within-strain correlations, which we expected to be consistent 685 
across strains because of the limited number of mutations distinguishing the strains (an 686 
average of 4 single-nucleotide mutations per line (56)), except if a rare mutation does 687 
indeed alter the correlation. To determine if such correlation-altering mutations exist, we 688 
calculated within-strain correlations for each strain separately and asked, for each trait 689 
pair, whether any strains had extreme correlations relative to the other strains. For most 690 
trait pairs, the MA lines trait correlations did not vary much from each other or from that 691 
of the ancestor strain (Fig 6). However, in several instances, we observed a trait-pair 692 
correlation dramatically outside the range of the other trait pairs and more than four 693 
standard deviations from the mean (Fig 6A). Some mutations appear to influence many 694 
trait-trait relationships (mutations found in blue- and purple-colored strains in Fig 6B & 695 
C), whereas others influence fewer (mutations found in magenta-colored strain in Fig 696 
6C). Mutations that alter trait correlations are not necessarily the result of rare events 697 
such as aneuploidies or copy number variants; all five strains highlighted in Fig 6 do not 698 
possess these types of mutations and instead possess at least one single nucleotide 699 
mutation (56). 700 

Given that in the small sampling of spontaneous mutations captured by the MA 701 
strain collection, we found several that appear to alter the relationship between 702 
morphological features, we think such mutations are common enough to merit further 703 
consideration in evolutionary models. The mutations in the outlier lines provide candidate 704 
correlation-altering mutations for future mechanistic studies as well. 705 

 706 
Different environments alter the relationships between morphological features  707 

We have used non-genetic heterogeneity within clonal populations to uncover 708 
inherent trait correlations. One might consider achieving the same aim by using instead 709 
the non-genetic perturbations represented by different environmental treatments. 710 
However, our results suggest that trait correlations can be highly context dependent, 711 
changing across cell cycle state (Fig 4) and genetic background (Fig 5B lower panel & 712 
Fig 6). If trait correlations change across environments, then the intricacies of the 713 
environment-specific effects would need to be incorporated into any inferences about 714 
vertical and horizontal pleiotropy, adding a complicating dimension to the analysis.  715 

To investigate the potential utility of across-environment trait correlations for 716 
distinguishing horizontal from vertical pleiotropy, and to further explore the context 717 
dependence of trait correlations, we analyzed trait correlations across a range of 718 
concentrations of the Hsp90-inhibiting drug geldanamycin (GdA). We showed previously 719 
that GdA affects cell morphology (51), so it presents an opportunity to analyze how 720 
correlations among these traits vary across environments. We performed this analysis 721 
using a subset of the yeast strains from our QTL mapping family (Fig S6), partitioning 722 
trait correlations into a pooled within-strain component (rW) and a between-strain 723 
component (rB).  724 

GdA alters the correlations between morphological traits. The impact of GdA on 725 
rW increases with the concentration of GdA (Fig 7), suggesting that more extreme 726 
environmental differences are more likely to result in changes in rW. We conclude that 727 
looking across diverse environments is not a good way to understand the inherent 728 
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relationships between traits that exist in a single environment. Indeed, previous studies of 729 
pleiotropy have treated growth parameters in different environments as different traits 730 
(81) rather than as a way to estimate inherent trait correlations.  731 
 732 
Discussion:  733 

Although evolutionary biologists and medical geneticists alike appreciate that 734 
organismal traits can rarely be understood in isolation, the extent and implications of 735 
pleiotropy have remained difficult to assess. A common approach to measuring 736 
pleiotropy has been to count phenotypes influenced by individual genetic loci (18,34,35). 737 
For example, the median number of skeletal traits affected per QTL in a mouse cross was 738 
six (out of 70 traits measured); this small median fraction of traits suggests that variation 739 
in skeletal morphology is modular (17,31). Of course, for a count of traits to be 740 
meaningful the full trait list must be comprehensive, and correlations between traits must 741 
be properly accounted for (18,34,35). We aimed for comprehensiveness in a very similar 742 
way to the studies of mouse skeletal traits, by systematic phenotyping of a large number 743 
of morphological traits. However, we addressed the need for a principled approach to 744 
separating inherent trait correlations from those induced by genetic differences in a new 745 
way: by extending the analysis to include within-genotype correlations and thereby 746 
enabling an operational definition of the distinction between vertical and horizontal 747 
pleiotropy. 748 

Our comprehensive analysis of how thousands of trait pairs co-vary within and 749 
between mapping strains yields an unprecedently quantitative and nuanced view of 750 
pleiotropy. We found support for modularity, not only in the low median number of traits 751 
affected per QTL (five out of 167), but also in the way that within-genotype correlations 752 
grouped traits into relatively isolated clusters (Fig 2). We also found ample evidence of 753 
horizontal pleiotropy layered on top of that modularity, with many cases of between-754 
genotype trait correlations that exceeded within-genotype correlations (Fig 3).  755 

Our results do not speak directly to whether modularity results from selection 756 
against pleiotropy in nature because we survey only two natural genetic backgrounds 757 
(wine and oak). In other words, the presence of modularity is not necessarily evidence 758 
that it is adaptive or that it is maintained by natural selection. Future work comparing MA 759 
lines to a larger collection of natural isolates might help answer questions about the 760 
extent to which selection purges pleiotropic mutations.  761 
 Our partitioning of between-strain (genetic) and within-strain (environmental) 762 
correlations relates to another approach to understanding trait interdependencies, the 763 
estimation of the so-called G matrix. This genetic variance-covariance matrix 764 
summarizes the joint pattern of heritable variation in a population of the traits that 765 
compose its rows and columns, and is central to understanding how trait correlations 766 
constrain evolution. The G matrix arises in the multivariate breeder’s equation, which 767 
describes the responses to selection of correlated traits (82). If breeding is the goal, the 768 
distinction between vertical and horizontal pleiotropy is not so important, because both 769 
can impede selection. Indeed, any philosophical concern about what constitutes a 770 
biologically meaningful trait is irrelevant to the breeder, who actually cares about 771 
particular traits (e.g., milk yield and fat content). 772 

G matrices are not only relevant to breeders, but to evolutionary biologists as 773 
well, and it is worthwhile to place our results into this context. A major evolutionary 774 
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question in the G-matrix literature is whether the G matrix itself can evolve. In other 775 
words, do short-term responses to selection (as captured in the breeder’s equation) predict 776 
long-term responses or do constraints shift through time, perhaps in a way that facilitates 777 
(or is part of) adaptation (83)? Our results with MA lines add to evidence that the G 778 
matrix readily changes (84), in that individual mutations have major effects on particular 779 
trait correlations (e.g. Fig 6A). Our QTL-mapping results also support this view, in that 780 
some cases of horizontal pleiotropy appear to be caused by alleles that alter trait 781 
correlations (e.g. Fig 5B; bottom panel). 782 

Another prominent question in the G-matrix literature is the extent to which the P 783 
matrix, which includes all sources of phenotypic variation and covariation, predicts the G 784 
matrix, which only includes additive genetic effects (i.e., those that respond to selection). 785 
If P predicts G well, as proposed by Cheverud (85), then inference of selection responses 786 
from patterns of trait covariation in a population would suffice when genetic analysis 787 
would be difficult or costly. Our results do not speak directly to this question, because we 788 
did not estimate G itself and instead estimated genetic correlations that include non-789 
additive effects. However, our results are informative from another angle, which is the 790 
comparison of genetic and environmental correlations. As we showed (Fig 3), although 791 
there are cases in which the environmental and genetic correlations have different signs, 792 
the environmental correlations do tend to match the signs of the genetic correlations and 793 
predict their magnitudes to some extent as well, consistent with similarity between P and 794 
G. Future experiments using clones embedded in a more complicated crossing scheme 795 
could properly partition P into G, E, and the non-additive genetic components, to address 796 
Chevrud’s conjecture (85) more directly. There are only a few reports of comparisons of 797 
E matrices (86), but we encourage increased attention to the E matrix to understand 798 
inherent trait correlations and to contextualize G in a way that diminishes concerns about 799 
which traits are biologically meaningful and therefore merit status as the matrix’s rows 800 
and columns.  801 

A major and unforeseen conclusion of our work is the extent to which context is 802 
crucial. We have shown that trait correlations change through the cell-division cycle, in 803 
different genetic backgrounds, and across a drug gradient. It is likely that 804 
macroenvironmental differences alter trait correlations as well (87). These findings 805 
provide insight as to how biological systems appear to be modular, as evolutionary theory 806 
predicts (24-29), yet in other studies appear to be highly interconnected (13,14). Our 807 
results suggest that biological systems are modular, but that these modules change across 808 
contexts such that the potential phenotypic impacts of a genetic change can be extensive.  809 

These results support the idea that predicting the phenotypic impact of a genetic 810 
change requires a paradigm shift (88,89), away from merely mapping the relationships 811 
between traits and toward unfurling the range of contexts across which those 812 
relationships persist. Future work in this direction will not only advance understanding of 813 
the evolution of complex traits but will have practical benefits. For example, our 814 
approach demonstrates a potentially fruitful way to design evolutionary traps: studying 815 
within-genotype correlations across contexts to identify particularly immutable 816 
correlations between traits. 817 
 818 
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Materials and Methods: 833 
Measuring the morphology of single yeast cells 834 
Recombinant yeast strains were generated from a cross between the oak parent (BC233: 835 
SPS2:EGFP:kanMX4/SPS2:EGFP:kanMX4) and the wine parent (BC240: 836 
SPS2:EGFP:natMX4/SPS2:EGFP:natMX4) then genotyped at 225 markers in a previous 837 
study (54,60); each resulting recombinant strain is a homozygous diploid. We prepared 838 
yeast cells from these strains for microscopy using published methods (50-52,90). 839 
Briefly, yeast strains were grown in minimal media with 0.08% glucose in 96-well plates 840 
(91), harvested during exponential phase, fixed in 4% paraformaldehyde, stained for cell-841 
surface manno-protein (with FITC-concanavalin A) and nuclear DNA (with DAPI), 842 
sonicated, mounted on 96-well glass-bottom microscopy plates, and imaged with a Nikon 843 
Eclipse TE-2000E epifluorescence automated microscope using a 40× objective and 844 
appropriate fluorescence filters. Three biological replicate experiments were performed, 845 
typically yielding a total of between 500 to 1,000 imaged cells per strain (Fig S2).  846 
 847 
Statistical analysis and processing of cell image data 848 
Cell image processing was performed similarly to previous studies (50-52,90). Imaged 849 
cells were analyzed for quantitative morphological traits using the CalMorph software 850 
package (53), which reports on hundreds of morphological features that are each specific 851 
to one of three cell types: unbudded, small-budded, and large-budded cells. We excluded 852 
phenotypes for which >10% of cells had missing values, leaving 167 morphological 853 
features. Any cell that was not scored for all features pertaining to its type was 854 
eliminated. Each morphological trait was transformed via a Box-Cox transformation of 855 
the raw data with the value of lambda that makes the residuals of a linear regression of 856 
phenotype on strain most normal using the EnvStats package in R (92). Internal controls 857 
(several wells representing the wine and oak parents) were present on every 96-well plate 858 
and were used to correct for effects on phenotypic variation that resulted from differences 859 
among replicate experiments, such as differences in the brightness of the cell stain. We 860 
calculated the mid-parent value for each phenotype on every plate, then calculated the 861 
average mid-parent value across all plates. For each phenotype, we found the difference 862 
between the plate-specific mid-parent value and the average mid-parent value across all 863 
plates. Then we subtracted this difference from each plate for the corresponding 864 
phenotype. After correction, any cell with a morphological feature that deviated from the 865 
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average by more than 5 standard deviations was then eliminated, as investigation of such 866 
cells typically revealed these were CalMorph miscalls or cellular debris.  867 
 868 
QTL mapping 869 
QTL interval mapping was performed similarly to previous studies (63) using the R/qtl 870 
package (64). We performed a QTL scan using the function “scanone”, which finds at 871 
most one QTL per chromosome, followed by the “scantwo” function which allowed us to 872 
identify potential second additive QTL per chromosome. The yeast strains, which are 873 
homozygous diploids, were modeled as doubled haploids and QTL models were fit using 874 
Haley-Knott regression. When comparing QTL across traits, QTL greater than 5 cM apart 875 
on the same chromosome were counted as separate QTL. We estimate that a region of 5 876 
cM contains on average 8 genes, since there are 6,746 genes in the yeast genome (67), 877 
and the map length we calculated using R/qtl is 4076 cM. In some cases, we detected a 878 
QTL in between two others on the same chromosome and within 5 cM of both. In these 879 
cases, there were typically many QTL found within a narrow region without any gaps of 880 
greater than 2 cM. We counted these as single QTL that affect many traits. Using this 881 
method, the largest QTL we detect spans 17 cM. A summary of all significant QTL 882 
effects, including their chromosomal locations in cM and which QTL on the same 883 
chromosome we considered unique, is provided in Table S1 (also see Fig 1A).  884 
 885 
To determine significance thresholds, we employed the method of (65) as implemented in 886 
R/qtl (64). QTL were assigned a p-value based on a trait-specific empirical distribution of 887 
genome-wide LOD score maximums from 10,000 (1,000 for the two dimensional scan) 888 
randomly permutated datasets. We used a p-value cutoff of 0.05 to determine significant 889 
QTL. We also obtained a more stringent set of significant QTLs by correcting for the 890 
testing of multiple traits by controlling the false discovery rate across phenotypes. For 891 
each trait we took the position and p-value of the maximum LOD score on every 892 
chromosome. We calculated qvalues for this set of loci using the R ‘qvalue’ package (93) 893 
and used a 0.05 q-value threshold to call significant QTL. 894 
 895 
Candidate gene swaps 896 
All yeast transformations were performed using the lithium acetate (94) and delitto 897 
perfetto (66) methods. For each candidate gene, the gene was first deleted from haploid 898 
variants of both the wine and oak parental strains and replaced with a selectable marker, 899 
the yeast gene encoding orotidine-5’-phosphate decarboxylase (URA3). Gene knockouts 900 
were confirmed by growth on plates lacking uracil and DNA sequencing of the affected 901 
region. Next, the URA3 selectable marker was replaced with the other parent’s version of 902 
the candidate gene. These candidate gene ‘swaps’ were selected by growth on 5-903 
Fluoroorotic acid and confirmed by sequencing of the affected region. For each candidate 904 
gene, we swapped a region containing the coding sequence plus 5 – 750 bp up and 905 
downstream. We used the following regions of homology to define the boundaries of 906 
each swapped segment:  907 
 908 
~300bp upstream of PXL1: TTATAATTGTGGTTTAGCGTTTCATAGTCGC 909 
~300bp downstream of PXL1: CCTTATTCTCTATTCTTAGGCTCCTGTTCC 910 
~5bp upstream of HOF1: GAAAGAATGAGCTACAGTTATGAAGCTTG 911 
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~ 300bp downstream of HOF1: GTATTCGTAACAAGTGACTCTAATGATAT 912 
~ 750bp upstream of RAS1: CGACTAAAGGAATTATACCATCATGCATC 913 
~ 300bp downstream of RAS1: GCATTTCTAAAAACAGAGCTTTTGCCG 914 
 915 
These regions of homology were chosen by searching for regions of higher GC content 916 
nearby the start and end of each gene’s coding sequence. In addition, we attempted to 917 
swap the wine and oak parents’ versions of the GPA1 gene on chromosome 8. Despite 918 
trying various regions of homology, we could not successfully replace GPA1 with the 919 
URA3 selectable marker in the oak parent. GPA1 is known to be essential in some genetic 920 
backgrounds (95). 921 
 922 
Though the recombinant strains we studied are homothallic diploids, the strains in Fig 1B 923 
(both the parental strains and the strains possessing the gene swaps) are haploid. Because 924 
the analyses in Fig 1B compare pairs of strains (e.g. the oak haploid parent to the wine 925 
haploid parent, or the wine haploid parent to the wine haploid parent possessing the oak 926 
allele of PXL1), we only considered experiments where both strains in the pair were 927 
imaged in the same replicate experiment. To account for differences among replicate 928 
experiments, for each phenotype, we subtracted the value in one strain from the value in 929 
the other to calculate the phenotypic difference between strains in that replicate 930 
experiment; the reported value is the average of these differences across replicate 931 
experiments (Table S2, Fig 1B).  932 
 933 
Calculation of correlation coefficients 934 

We used WABA II as implemented in the multilevel package in R (71) to 935 
calculate cell-level (rW) and strain-level (rB) Pearson correlation coefficients for each pair 936 
of traits. We used an r-to-z transformation to determine whether differences in rB vs. rW 937 
are significant at a Bonferroni corrected p-value of 0.01 (this is a z-score cutoff of 4.63, 938 
given 5645 pairs of traits were tested). To assess whether correlations across single cells 939 
generally result in different values than correlations across group-level averages, we 940 
assigned yeast cells to groups (pseudo-strains) randomly, maintaining the same number 941 
of cells per strain as in the actual data. To assess whether results would differ if we 942 
allowed for non-linear correlations, we transformed the single-cell data using a 943 
nonparametric model that finds the fixed point of maximal correlation, implemented in 944 
the R package acepack (73). To assess whether results from WABA differed from those 945 
obtained using a standard quantitative genetics model (Fig S3), we implemented the latter 946 
using the nlme package in R (96) to specify a mixed-effects model with cells nested 947 
within strains. We specified a covariance structure that allows covariance between two 948 
traits but no covariance between cells or between strains. We used this model to calculate 949 
the environmental and genetic correlations for 350 pairs of randomly chosen traits.  950 
 951 
Live imaging single cells as they divide 952 
For live imaging the morphology of dividing yeast cells, we chose one of the 953 
recombinant yeast strains, F2_292. This strain was chosen because it does not deviate 954 
from the average morphology of all 374 recombinants by more than one standard 955 
deviation for any of the phenotypes we measured. F2_292 was transformed to express a 956 
fusion protein of GFP and a nuclear protein (histone H2B encoded by HTB2). Two 957 
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independent transformants were imaged in the GFP channel (for nuclei) and in brightfield 958 
(for cell outlines). We prepared live cells for imaging following published methods 959 
(91,97,98), in a similar way to that described above, except cells were neither fixed nor 960 
stained. Cells were taken during mid-log phase growth, seeded in 96-well glass bottom 961 
microscopy plates containing minimal media with 0.08% glucose, and imaged over a 962 
period of 3 hours. In each of four replicate experiments, cells were imaged either every 963 
minute, every 90 seconds, or every 2 minutes. We used short exposure times (afforded by 964 
the highly abundant HTB2-GFP) and took only a single image per well per timepoint to 965 
reduce photo-toxicity. We processed images with CalMorph then matched cells across 966 
timepoints by their centroid locations in the imaging fields. Overall we obtained time 967 
series for 78 cells that each: (1) were longer than 20 timepoints, (2) contained no gaps 968 
where the cell was not phenotyped for many consecutive timepoints, and (3) contained no 969 
images that appeared to be very out of focus potentially resulting in misestimation of 970 
phenotype values. Because CalMorph divides cells into unbudded, small-budded and 971 
large-budded stages, these 78 time series are also divided this way (11, 23, and 44 cells, 972 
respectively). 973 
 974 
We used the Wishbone algorithm implemented in python (74) to estimate progression 975 
through the cell-division cycle. Wishbone recapitulates each of these 78 time series (Fig 976 
S5) with Spearman correlations between the actual and inferred image orders that average 977 
0.42, 0.85, 0.40 across all unbudded, small-budded or large-budded series, respectively. 978 
The lower correlations between Wishbone’s predicted progress through division and time 979 
for the unbudded and large-budded cells may result because each time series captured 980 
only a part of the cell-division cycle and, during some stretches in the cycle, there are 981 
fewer morphological changes taking place. To estimate Wishbone’s accuracy across a 982 
longer stretch of time, we merged the Wishbone predictions within the classes of 983 
unbudded, small-budded or large-budded cell time series. To do so, we had to contend 984 
with the fact that the first timepoint for each imaged cell often represents a different 985 
moment in division. For example, some time series for unbudded cells start from an 986 
image that is already far along the division process (Fig S5; values close to 1 on the 987 
vertical axis) while others start from a cell image that has just begun its division cycle 988 
(Fig S5; values close to zero on the vertical axis). Therefore, we aligned the time series 989 
by subtracting from each the difference between Wishbone’s estimate of the average 990 
percent progress through division and the average time elapsed. 991 
 992 
Note that, because this merging procedure utilized information from Wishbone, it 993 
imposes a correlation between time and Wishbone’s estimated progress through division. 994 
To reduce the impact of this induced correlation, we eliminated the cell images in the 995 
middle of each time series, which represent the images that are most affected by this 996 
induced correlation. Eliminating 25% or 50% of cell images in this way reduced the 997 
correlations by at most 0.05, suggesting these correlations are not driven by our merging 998 
procedure. 999 
 1000 
Assigning cells to a bin based on progression through cell division 1001 
We used Wishbone to estimate how far each fixed-cell image had progressed through cell 1002 
division. Wishbone software requires input about which “start” cell has features 1003 
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resembling those present at the start of the cell cycle. To identify such features, we used 1004 
the data from the live-imaged cell time series. We plotted how single-cell features change 1005 
over the course of live imaging, and chose several features that correlate best with 1006 
progress through cell division (e.g. cell size, bud size, location of the nucleus). Complete 1007 
datasets provided at Open Science Framework (DOI 10.17605/OSF.IO/B7NY5) include 1008 
information on which fixed-cell image was chosen as the start cell. 1009 
 1010 
Using Wishbone’s estimation of how far each fixed cell had progressed through division, 1011 
we assigned each cell to one of 16 equal-sized bins. We did this separately for each of the 1012 
374 yeast strains, then merged like bins across strains, such that genetic diversity was 1013 
constant across each of the final 16 bins. We obtained very similar results to those 1014 
reported in Figs 4C, 4D, and 5C when we used 8 instead of 16 bins. The names of the 1015 
traits plotted in Fig 4 represent succinct summaries of single-cell morphologies 1016 
quantified using CalMorph (53). For fuller descriptions of these traits, see the following 1017 
trait designations in the CalMorph software manual: Fig 4A upper left: C11.1 in 1018 
unbudded cells, C101 in budded cells; Fig 4A lower left: D184 in small-budded cells, 1019 
D182 in unbudded and large-budded cells; Fig 4A upper right: C12.2; Fig 4A lower 1020 
right: D116; Fig 4C upper left: C101 and C109 in small-budded cells; Fig 4C upper 1021 
middle: C11.2 and D132 in small-budded cells; Fig 4C upper right: C105 and C113 in 1022 
small-budded cells; Fig 4C lower left: C114 and D145 in large-budded cells; Fig 4C 1023 
lower middle: C109 and C126 in large-budded cells; Fig 4C lower right: D14.2 and D169 1024 
in large-budded cells.  1025 
 1026 
Eliminating genetic variation at the marker nearest a QTL 1027 
For each of the 27 QTL suspected of horizontal pleiotropy (i.e. pleiotropic QTL that 1028 
influence at least one pair of traits for which rB significantly exceeds rW), we divided the 1029 
374 phenotyped yeast strains into two groups based on whether they inherited the wine or 1030 
the oak parent’s allele at the genotyped marker closest to the QTL. In some cases, a QTL 1031 
spans multiple markers; for example, a QTL on chromosome 15 that influences 64 1032 
morphological features spans 14 cM and 4 markers (Table S1). These 64 genotype-1033 
phenotype associations are mainly clustered around the ninth marker on chromosome 15, 1034 
though a few are closer to the eighth, tenth, or eleventh. To avoid redundancy, for QTL 1035 
spanning multiple markers we study the one that is most represented. After dividing 1036 
strains into two groups based on which allele they inherited at that marker, we performed 1037 
correlation partitioning separately for each group of strains.  1038 
 1039 
The names of the traits plotted in Fig 5B represent succinct summaries of single-cell 1040 
morphologies quantified using CalMorph. For fuller descriptions of these traits, see the 1041 
following trait designations in the CalMorph software manual: upper: D128 and C114 in 1042 
large-budded cells; lower: D197 and D17.1 in large-budded cells. 1043 
 1044 
Quantifying trait correlations within each MA line 1045 
Mutation accumulation occurred in a diploid laboratory yeast strain with genotype ade2, 1046 
lys2-801, his3-∆D200, leu2–3.112, ura3–52 (55). Resulting diploid MA lines were 1047 
sporulated to create haploids, which were sequenced in a previous study (56). We 1048 
previously imaged these haploid lines in high throughput (>1000 clonal cells imaged per 1049 
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each of 94 lines) (51). Fewer morphological traits were analyzed in that study than in the 1050 
current study, such that there were only 3731 pairs of traits to survey, as opposed to 5645 1051 
in the QTL-mapping family. We calculated Pearson correlations between every pair of 1052 
traits, separately within each MA line. The names of the traits plotted in Fig 6A represent 1053 
succinct summaries of single-cell morphologies quantified using CalMorph. For fuller 1054 
descriptions of these traits, see the following trait designations in the CalMorph software 1055 
manual: upper left: D185 and D186 in large-budded cells; upper right: C102 and D132 in 1056 
small-budded cells; lower left: C108 and D167 in large-budded cells; lower right: D135 1057 
and D169 in large-budded cells. 1058 
 1059 
Quantifying trait correlations across drug concentrations 1060 
For this analysis, we imaged the single-cell morphologies of 78 of the 374 strains that 1061 
comprised our QTL mapping family. We chose these strains because they were stored 1062 
together on a single 96-well plate (the rest of the 96 wells represent blanks or internal 1063 
controls), removing concerns about batch effects. We imaged these strains after 1064 
exponential growth in three concentrations of geldanamycin (GdA) (8.5 µM, 25 µM and 1065 
100 µM). We chose these concentrations because of their wide-ranging impacts on cell 1066 
growth rate (51). We obtained single-cell morphology measurements for cells grown in 1067 
the lowest concentrations of GdA from our previous study (51) and collected data for 1068 
cells grown in higher concentrations following the procedures outlined in that study, 1069 
which was very similar to those outlined above, but with a control for the solvent in 1070 
which GdA is dissolved. Specifically, cells exposed to GdA were compared to cells 1071 
imaged in identical conditions (containing the same concentration of the solvent DMSO) 1072 
but lacking GdA. GdA+/– paired experiments are performed side-by-side, with cells 1073 
grown in each condition being imaged in adjacent wells on a 384-well microscopy plate.  1074 
 1075 
Resulting morphological data were analyzed following similar procedures as described 1076 
above. Briefly, each trait was transformed via a Box-Cox transformation of the raw data 1077 
based on the residuals of a linear model with strain, environment, and replicate as effects. 1078 
Two replicates were performed for both the 8.5 and 100 µM environments, and a single 1079 
replicate for the 25 µM environment. Internal controls (wells representing the wine and 1080 
oak parents) were used to correct for effects on phenotypic variation that resulted from 1081 
differences among replicate experiments. We used WABA II to calculate cell-level (rW) 1082 
correlation coefficients in each of the three GdA concentrations, as well as the 1083 
corresponding three control conditions. To calculate the impact of GdA on rW, we 1084 
compared rW in each drug vs. control condition.  1085 
 1086 
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Figure 1: Pleiotropic QTL influence yeast single-cell morphology. The vertical axes in all plots represent the 155 
CalMorph morphological traits for which we detect QTL. These traits are sorted, from top to bottom, based on the 
difference between the oak and wine parental strains. (A) Of 41 QTL that contribute to variation in single-cell 
morphology, 36 contribute to variation in multiple features. The horizontal axis indicates the chromosomal location 
of each QTL (in cM). Differently shaped points indicate separate QTL that are more than 5 cM apart on the same 
chromosome. The darkness of a point represents the effect size of a QTL; effect sizes range from 1.3% (lightest 
points) to 17.5% (darkest points) of the difference between parents. All points represent genotype-phenotype 
associations detected using a per-trait genome-wide type one error rate of 5%. The points highlighted in black are 
significant after correcting for testing multiple phenotypes using a false discovery rate of 5%. The QTL highlighted 
in pink, green, purple, and orange are very pleiotropic, contributing to 57, 30, 73, or 64 morphological features, 
respectively. (B) Gene-swapping experiments demonstrate that single genes contribute to multiple morphological 
features. The horizontal axis represents the relative phenotypic differences between the wine and oak parents 
(leftmost column) or one of these strains versus a derivative strain that differs in a single gene. The relative 
phenotypic differences between a pair of strains are calculated by scaling each trait to have a mean of 0 and standard 
deviation of 1 across all cells in both strains, and then subtracting the average value in one strain from that in the 
other. To control for variation among replicate experiments, this scaling was done independently for each replicate 
experiment in which both strains were imaged. Error bars represent 95% confidence intervals inferred from the 
replicate experiments. The two gene replacements shown, PXL1 and HOF1, are respectively located within the QTL 
highlighted in green and purple in panel A. When calculating the difference between strains, we always subtracted 
the trait values of the strain possessing more wine genes from those of the strain possessing more oak genes, such 
that the effects of the wine or oak gene replacements appear in the same direction on all plots.   
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Figure 2: Pairs of traits with high correlation across clones are overrepresented among those influenced by 
pleiotropic QTL. Within-genotype correlations (rW) are calculated for 5645 pairs of morphological traits. (A) 
Histogram showing distribution of rW. (B) Each point represents rW for a pair of traits. The null distribution displays 
rW for all 5645 pairs of traits. Every other distribution displays rW for pairs of traits influenced by a single QTL. 
Horizontal axis labels represent the chromosome on which a QTL resides, followed by the order in which that QTL 
appears on the chromosome. Colored points correspond to those QTL highlighted in the same color in Fig 1A. Each 
boxplot shows the median (center line), interquartile range (IQR) (upper and lower hinges), and highest value within 
1.5 × IQR (whiskers). (C) Force-directed network visualizing how pairs of morphological features correlate across 
clones. Each node represents a single-cell morphological trait measured in large-budded cells. For networks 
representing traits from unbudded and small budded cells, see Fig S4. The thickness of the line connecting each pair 
of nodes is proportional to rW. Node position in the network is determined using the Fruchterman-Reingold 
algorithm. Purple nodes correspond to traits influenced by a QTL on chromosome 13 containing the HOF1 gene. 
(D) Cumulative distributions of weighted clustering coefficients (wcc) in a network created using measured values 
of rW (red line) or in 100 permuted networks (grey lines) for traits corresponding to large-budded cells. Permutations 
were performed by sampling rW, without replacement, and reassigning each value to a random pair of traits. For 
distributions summarizing wcc in networks representing traits from unbudded and small budded cells, see Fig S4. 
(E) The same network as in panel C with colored nodes corresponding to traits influenced by the leftmost QTL on 
chromosome 15.  
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Figure 3: Natural genetic variation affects the correlation between morphological features. The absolute value 
of the between-strain correlation (rB), made negative when rB and rW have opposite signs, is plotted against the 
absolute value of the within-strain correlation (rW), for each pair of traits. The plot at left shows pairs of traits that 
share at least one QTL influence. The color of each point represents the number of pleiotropic QTL that influence 
both traits in that pair. The plot at right shows pairs of traits that share no QTL influence. The dashed line represents 
a Bonferroni-corrected significance threshold of p < 0.01. Insets represent the results of correlation partitioning 
performed after randomly assigning individual cells to groups (pseudo-strains) having the same numbers of cells as 
the actual strains.  
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Figure 4: Morphological features vary as cells divide. The morphological features of unbudded (red), small-
budded (blue), and large-budded (purple) cells change as these cells progress through the cell cycle. (A) Variation of 
four traits through the cell cycle. Line plots represent fixed-cell images from all 374 mapping family strains, 
positioned on the horizontal axis based on progression through the cell cycle as calculated by Wishbone (74). 
Regression lines are smoothed with cubic splines, calculated with the “gam” method in the R package ggplot2 (99), 
to depict trends describing how each displayed trait varies across the estimated growth trajectory. The displayed 
trends match those observed in micrographs of live cells progressing through division. Each series of micrographs 
displays a different live cell imaged over several minutes, which are displayed in the lower right corner of each 
micrograph. (B) Centered data for 11, 23, and 44 unbudded, small-budded and large-budded cells, respectively, 
show how Wishbone sorts live cells in a way that recapitulates the actual time series. Each point in these plots 
represents a cell image from a single timepoint. The horizontal axis represents Wishbone’s estimation of how far 
that cell has progressed through division. The vertical axis displays time, as a percentage of the total time elapsed 
and adjusted in a way that controls for every cell having started at a different place in the cell division cycle at time 
zero (see Methods). Trend lines are smooth fits using the “loess” method in the R package ggplot (99). (C) The 
correlation between some morphological features changes throughout the course of cell division. The scatterplot 
shows how binning influences both the phenotypic correlation (vertical axis) and phenotypic variation (horizontal 
axis) across clones. Each point represents these values for a pair of traits as measured in 1 of 16 bins. The value on 
the horizontal axis represents whichever trait in each pair had the larger decrease in standard deviation, as such 
decreases are likely to reduce the correlation on the vertical axis. The blue line shows a smooth fit by loess 
regression. Colored points on the scatterplot correspond to bin 5 for each pair of traits represented by the line plots 
in panel D. (D) These line plots show three pairs of traits for which binning increases rW such that it approaches rB 
(leftmost three plots), and three pairs of traits for which rW does not approach rB even after binning (rightmost three 
plots). In each plot, rB is shown as the horizontal green line, rW (without binning) is shown as the horizontal purple 
line, and rW for each bin is shown in black.  
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Figure 5: Many QTL demonstrate horizontal pleiotropy. (A) Eliminating allelic variation at the site of each QTL 
tends to reduce rB. The vertical axis represents how rB changes upon eliminating allelic variation at each QTL site. 
Each point represents the median change in rB for all pairs of traits that are affected or unaffected by one of the 27 
QTL suspected of horizontal pleiotropy. Boxplots summarize these changes in rB when re-measured across strains 
possessing the wine (red) or the oak (blue) allele at the marker closest to the QTL. (B) The upper and lower series of 
three plots demonstrate two different ways that a QTL can increase the correlation between traits. Each point 
represents a yeast strain possessing either the wine (red) or the oak (blue) allele at a marker closest to a QTL on 
chromosome 15 (upper) or 8 (lower). In the upper plots, the QTL increases the correlation between nucleus shape 
and size ratio when it is segregating across strains. In the lower plots, the oak allele strengthens a correlation 
between bud shape and the position of the nucleus in the mother cell that is weak in the wine subpopulation. 
Numbers in the lower corner of each plot represent rB for the strains displayed. (C) Cumulative distributions display 
the extent to which binning cells or splitting strains resolves the difference between rB and rW. When calculating 
percent resolved (horizontal axes) we always plot the value in whichever subset (e.g. wine or oak) this percent is 
greatest. If subsetting always worsens the discrepancy between rB vs. rW, we score this as 0% resolution. Only pairs 
of traits for which rB is significantly greater than rW are considered. The pink, green, purple and orange lines show 
the effect of splitting strains by whether they inherited the wine or oak allele at the marker closest to each of four 
QTL (colors correspond to QTL in Fig 1A). In these plots, comparing the solid vs dotted lines shows that splitting 
strains resolves the discrepancy between rB and rW more often for pairs in which both traits are affected by the QTL 
than pairs in which both traits are unaffected. The black lines in the leftmost plot summarize these effects across 27 
QTL, displaying for each trait pair, the largest resolution in the rB vs. rW discrepancy observed across all QTL that 
affect the pair of traits (solid line) or all QTL that do not (dotted line). The red line shows the effect of binning cells 
by their progress through division, displaying the largest resolution in the rB vs. rW difference across all 16 bins.  
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Figure 6: Some MA lines display unique relationships between certain pairs of traits. In all plots, black 
represents the ancestor of the MA lines and colors represent MA lines with trait correlations that differ from other 
lines (strains: black = HAncestor, green = DHC81H1, red = DHC41H1, magenta = DHC40H1, blue = DHC66H1, 
purple = DHC84H1; see Table S2 in Geiler-Samerotte et al 2016 (51)). (A) Histograms display the number of MA 
lines with Pearson correlations corresponding to the values on the horizontal axis for four example pairs of traits; the 
number of bins is set to 30. (B) This plot displays, for each of the 94 MA lines, the cumulative distribution of the 
number of standard deviations away from the mean correlation across all trait pairs. (C) Plots display, for each MA 
line, the maximum deviation from the mean observed for any pair of traits (left) and the average standard deviation 
observed across all pairs of traits (right). 
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Figure 7: The correlations between traits changes depending on drug concentration. Plots display the density 
of trait pairs for which the within-strain correlation (rW) changes by the amount shown on the horizonal axis. To 
calculate how each drug treatment changes rW, we subtracted rW observed for a pair of traits in the drug condition 
from that observed in a paired experiment that lacked the drug. The absolute value of this change is displayed. These 
changes are smallest in the null condition, which represents the change in rW observed across replicate experiments 
lacking the drug. For clarity, we exclude regions of the plot for which density is less than 0.01. 
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Figure S1: Morphological differences exist between the parents of the QTL mapping family. (A–C) Each 
density plot displays the distribution of phenotype values from yeast cells corresponding to the wine parent (red), the 
oak parent (blue), or all of the 374 progeny (grey) for the trait listed on the horizontal axis. Trait names in 
parentheses correspond to those listed in the CalMorph manual (53). Each distribution represents at minimum 5,000 
cells from three replicate experiments; distributions corresponding to progeny strains represent many more cells 
(70,000 – 200,000 depending on whether the trait was measured in unbudded, small-budded, or large-budded cells). 
(D) The broad sense heritability for each of the 155 morphological features for which QTL were detected. 
Heritability is low because cell morphology varies across the cell cycle, and so the amount of non-genetic 
phenotypic variation is high.  
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Figure S2: Total numbers of cells imaged per each of 374 progeny strains. Each point represents, for one of the 
374 progeny strains, the number of unbudded, small-budded, or large-budded cells for which images passed filtering 
(see Methods). Each boxplot shows the median (center line), interquartile range (IQR) (upper and lower hinges), and 
highest value within 1.5 × IQR (whiskers). 
 
 

 
 
Figure S3: Comparison of correlation estimates obtained from correlation partitioning with those obtained 
from a mixed-effect linear model. Each point represents one of 350 randomly sampled trait pairs of the 5645 total. 
Vertical axes display trait correlations estimated using the correlation-partitioning approach; horizontal axes display 
trait correlations estimated using a mixed-effect linear model that specifies the variance-covariance structure of the 
experimental design. 
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Figure S4: Single-cell morphological traits have higher weighted clustering coefficients (wcc) than expected 
given the distribution of rW. (A – B) Force-directed networks visualizing how pairs of morphological features 
correlate across clones in unbudded (panel A) and small-budded (panel B) cells. Each node represents a single-cell 
morphological trait. The thickness of the line connecting each pair of nodes is proportional to rW. Node position in 
the network is determined using the Fruchterman-Reingold algorithm. Purple nodes correspond to traits influenced 
by a QTL on chromosome 13 containing the HOF1 gene. (C – D) Cumulative distributions of weighted clustering 
coefficients (wcc) in a network created using measured values of rW (red line) or in 100 permuted networks (grey 
lines) for traits corresponding to unbudded (panel C) or small-budded (panel D) cells. Permutations were performed 
by sampling rW, without replacement, and reassigning each value to a random pair of traits.  
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Figure S5: Wishbone recapitulates time series data obtained in live images of 78 cells undergoing exponential 
growth. Each point represents a cell image. Horizontal axes display the minute that image was captured during a 
three-hour window of exponential growth. Vertical axes display Wishbone’s prediction of how far that cell image 
has passed through the cell cycle. Linear regression lines are calculated with the “lm” method in the R package 
ggplot2 (99), and are colored red for images corresponding to unbudded cells, blue for small-budded cells and 
purple for large budded cells. Plots are organized by cell type and then from earliest to latest average predicted 
progress through cell division.  
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Figure S6: Total numbers of cells imaged per strain in varying concentrations of GdA. Each point represents, 
for one of the strains, the number of unbudded, small-budded, or large-budded cells for which images passed 
filtering (see Methods). Each boxplot shows the median (center line), interquartile range (IQR) (upper and lower 
hinges), and highest value within 1.5 × IQR (whiskers).  
 
S1 Table. Chromosomal locations, effects sizes and phenotypes affected by quantitative trait loci described in 
this study.  
 
S2 Table. Impact of gene swaps on single-cell morphological traits including the corrected phenotypic 
difference between strains for each phenotype, and its standard deviation and standard error across replicate 
experiments. 
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