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Abstract 37 

Long non-coding RNAs (lncRNAs) constitute the majority of transcripts in the mammalian 38 

genomes and yet, their functions remain largely unknown. We systematically knockdown 285 39 

lncRNAs expression in human dermal fibroblasts and quantified cellular growth, morphological 40 

changes, and transcriptomic responses using Capped Analysis of Gene Expression (CAGE). 41 

Antisense oligonucleotides targeting the same lncRNA exhibited global concordance, and the 42 

molecular phenotype, measured by CAGE, recapitulated the observed cellular phenotypes while 43 

providing additional insights on the affected genes and pathways. Here, we disseminate the 44 

largest to-date lncRNA knockdown dataset with molecular phenotyping (over 1,000 CAGE 45 

deep-sequencing libraries) for further exploration and highlight functional roles for ZNF213-AS1 46 

and lnc-KHDC3L-2. 47 

 48 

Introduction 49 

Over 50,000 loci in the human genome transcribe long non-coding RNA (lncRNA) (Hon et al. 50 

2017; Iyer et al. 2015), which are defined as transcripts at least 200 nucleotides long with low or 51 

no protein-coding potential. While lncRNA genes outnumber protein-coding genes in 52 

mammalian genomes, they are comparatively less conserved (Ulitsky 2016), lowly expressed, 53 

and more cell-type-specific (Hon et al. 2017). However, the evolutionary conservation of 54 

lncRNA promoters (Carninci et al. 2005) and their structural motifs of lncRNAs (Xue et al. 55 

2016), (Chu et al. 2015) suggest that lncRNAs are fundamental biological regulators. To date, 56 

only a few hundred human lncRNAs have been extensively characterized (Quek et al. 2015; 57 

Volders et al. 2015; de Hoon et al. 2015; Ma et al. 2019), revealing their roles in regulating 58 

transcription (Engreitz, Ollikainen, et al. 2016), translation (Carrieri et al. 2012), and chromatin 59 

state (Gupta et al. 2010; Guttman and Rinn 2012; Guttman et al. 2011); (Ransohoff et al. 2018; 60 

Quinn and Chang 2016). 61 

 62 

Our recent FANTOM 5 computational analysis showed that 19,175 (out of 27,919) human 63 

lncRNA loci are functionally implicated (Hon et al. 2017). Yet, genomic screens are necessary to 64 

comprehensively characterize each lncRNA. One common approach of gene knockdown 65 

followed by a cellular phenotype assay typically characterizes a small percentage of lncRNAs for 66 

a single observable phenotype. For example, a recent large-scale screening using CRISPR 67 
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interference (CRISPRi) found that approximately ~3.7% of targeted lncRNA loci are essential 68 

for cell growth or viability in a cell-type specific manner (Liu et al. 2017). In addition, CRISPR-69 

Cas9 experiments targeting splice sites identified ~2.1% of lncRNAs that affect growth of K562 70 

(Liu et al. 2018) and a CRISPR activation study revealed ~0.11% lncRNAs to be important for 71 

drug resistance in melanoma (Joung et al. 2017). However, many of these studies target the 72 

genomic DNA, potentially perturbing the chromatin architecture, or focus on a single cellular 73 

assay, possibly missing other relevant functions and underlying molecular pathways.  74 

 75 

As a part of the FANTOM 6 pilot project, we established an automated high-throughput cell 76 

culture platform to suppress 285 lncRNAs expressed in human primary dermal fibroblasts (HDF) 77 

using antisense LNA-modified GapmeR antisense oligonucleotide (ASO) technology (Roux et 78 

al. 2017). We then quantified the effect of each knockdown on cell growth and morphology 79 

using real-time imaging, followed by Cap Analysis Gene Expression (CAGE; (Murata et al. 80 

2014) deep sequencing to reveal molecular pathways associated with each lncRNA. In contrast 81 

to cellular phenotyping, molecular phenotyping provides a detailed assessment of the response to 82 

an lncRNA knockdown at the molecular level, allowing biological pathways to be associated to 83 

lncRNAs even in the absence of an observable cellular phenotype. All data and analysis results 84 

are publicly available (see Data Access) and results can be interactively explored using our in-85 

house portal https://fantom.gsc.riken.jp/zenbu/reports/#FANTOM6/. 86 

 87 

Results 88 

Selection and ASO-mediated knockdown of lncRNA targets 89 

Human dermal fibroblasts (HDF) are non-transformed primary cells that are commonly used for 90 

investigating cellular reprogramming (Takahashi et al. 2007; Ambasudhan et al. 2011), wound-91 

healing (Li and Wang 2011), fibrosis (Kendall R., et al 2014), and cancer (Kalluri 2016). Here, 92 

an unbiased selection of lncRNAs expressed in HDF was performed to choose 285 lncRNAs for 93 

functional interrogation (Methods; Supplemental Table S1, Fig. 1A-C). Using RNA-seq profiling 94 

of fractionated RNA, we annotated the lncRNA subcellular localization in the chromatin-bound 95 

(35%), nucleus-soluble (27%), or cytoplasm (38%) (Fig. 1D). We then designed a minimum of 96 

five non-overlapping antisense oligonucleotides (ASOs) against each lncRNA (Supplemental 97 

Methods; Supplemental Table S2; Fig. 1E,F) and transfected them individually using an 98 
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automated cell culture platform to minimize experimental variability (Fig. 1G). The overall 99 

knockdown efficiencies across 2,021 ASOs resulted in median value of 45.4%, and we could 100 

successfully knockdown 879 out of 2,021 (43.5%) ASOs (>40% knockdown efficiency in at 101 

least two primer pairs or >60% in one primer pair; Supplemental Table S2). ASOs targeting 102 

exons or introns were equally effective, and knockdown efficiencies were independent of the 103 

genomic class, expression level, and subcellular localization of the lncRNA (Supplemental Fig. 104 

S1A–D).  105 

 106 

A subset of lncRNAs associated with cell growth and morphology changes 107 

To evaluate the effect of each lncRNA knockdown on cell growth and morphology, we imaged 108 

ASO-transfected HDF in duplicates every 3 hours for a total of 48 hours (Supplemental Table 109 

S3) and estimated their growth rate based on cell confluence measurements (Fig. 2A,B). First, 110 

we observed across all ASOs that changes in cell growth and morphological parameters were 111 

significantly correlated with knockdown efficiency (Supplemental Fig. S1E). Considering both 112 

successful knockdown and significant growth inhibition (Student’s two-sided t-test FDR ≤ 0.05), 113 

246 out of 879 ASOs (~28%) showed cellular phenotype (Fig. 2C, Table S3). 114 

 115 

To assess globally whether the observed growth inhibition is lncRNA-specific, we used all 194 116 

lncRNAs successfully targeted by at least two ASOs (Supplemental Fig. S2A) and found that 117 

ASOs targeting the same lncRNA were significantly more likely to have a concordant growth 118 

response than ASOs targeting different lncRNA (empirical p = 0.00037; Supplemental Methods; 119 

Supplemental Fig. S2B). However, different ASOs targeting the same lncRNA typically showed 120 

different effects on growth, possibly due to variable knockdown efficiencies, differences in 121 

targeted lncRNA isoforms, as well as off-target effects. To reliably identify target specific 122 

cellular phenotype, we applied conditional cutoffs based on the number of successful ASOs per 123 

each lncRNA (Supplemental Methods; Supplemental Fig. S2C) and identified 15/194 lncRNAs 124 

(7.7%) with growth phenotype (adjusted background less than 5%; Supplemental Fig. S2D). We 125 

validated A1BG-AS1, which was previously implicated in cell growth (Bai et al. 2019), 126 

CATG00000089639, RP11-195F19.9, and ZNF213-AS1 by measuring the MKI67 proliferation 127 

protein marker upon knockdown with siRNAs and selected ASOs (Fig. 2D, Supplemental Fig. 128 

S2E).  129 
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 130 

In addition to cell growth, we also explored changes in cell morphology (Fig. 2E). Using a 131 

machine learning-assisted workflow (Methods), each cell was segmented and its morphological 132 

features representing various aspects of cell shapes and sizes were quantified (Carpenter et al. 133 

2006) (Fig. 2F; Supplemental Table S3). As an example, knockdown of 14/194 lncRNAs (7.2%) 134 

affected the spindle-like morphology of fibroblasts, as indicated by a consistent decrease in their 135 

observed eccentricity without reducing the cell number, suggesting possible cellular 136 

transformation towards epithelial-like states. Collectively, we observed 59/194 lncRNAs (~30%) 137 

affecting cell growth and/or morphological parameters (Fig. 2G; Supplemental Table S3)  138 

 139 

Molecular phenotyping by CAGE recapitulates cellular phenotypes and highlights 140 

functions of lncRNAs 141 

Next, we selected 340 ASOs with high knockdown efficiencies (mostly greater than 50%; 142 

median 71.4%) and sequenced 970 CAGE libraries to analyze 154 lncRNAs (Fig. 3A; 143 

Supplemental Table S4). To assess functional implications by individual ASOs, we performed 144 

differential gene expression, Motif Activity Response Analysis (MARA; (FANTOM Consortium 145 

et al. 2009), and Gene Set Enrichment Analysis (GSEA; (Subramanian et al. 2005); Fig3B-E), 146 

and compared them with cellular phenotype.  147 

 148 

We globally observed significant knockdown-mediated transcriptomic changes (which generally 149 

correlated with KD efficiency; Supplemental Fig. S3A), with ~57% of ASOs showing at least 10 150 

differentially expressed genes (FDR ≤ 0.05; abs(log2FC) > 0.5). For 84 divergent-antisense 151 

lncRNAs (targeted by 186 independent ASOs) (Supplemental Methods), we found their partner 152 

gene to be generally unchanged (median abs(log2FC) = ~0.13), with an exception of two 153 

significantly downregulated and three significantly upregulated genes (FDR ≤ 0.05; 154 

Supplemental Fig. S3B). We have, however, noticed common response in a large number of 155 

ASOs (~30-35% of all responding ASOs) such as down-regulation of cell-cycle related 156 

pathways, upregulated stress genes and pathways or altered cell metabolism and energetics 157 

(Supplemental Fig. S3C,D).  158 

 159 
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When comparing knockdown-mediated molecular and cellular response, we found that 160 

transcription factor motifs that promote cell growth, including TFDP1, E2F1,2,3, and EP300, 161 

were positively correlated with the measured cell growth rate while transcription factor motifs 162 

known to inhibit growth or induce apoptosis (e.g. PPARG, SREBPF, and STAT2,4,6) were 163 

negatively correlated (Fig. 3D; Supplemental Fig. S4A; Supplemental Table S6). Moreover, 164 

correlations between GSEA pathways (Fig. 3F; Supplemental Fig. S4B; Supplemental Table S6) 165 

and FANTOM5 co-expression clusters (Supplemental Fig. S4C) showed that cell growth and 166 

replication related pathways were positively correlated with the measured growth rate, whereas 167 

those related to immunity, cell stress and cell death were negatively correlated. We found that 168 

amongst 53 ASOs implicated in growth inhibition pathway based on the CAGE profiles, only 169 

43% of them showed growth inhibition in the real-time imaging. This might suggest better 170 

sensitivity of transcriptomic profiling when detecting phenotypes as compared to live cell 171 

imaging methods, which are more prone to a delayed cellular response to the knockdown. 172 

 173 

Additionally, morphological changes were reflected in the molecular phenotype assessed by 174 

CAGE (Supplemental Fig. S4D). Cell radius and axis length were associated with GSEA 175 

categories related to actin arrangement and cilia, while cell compactness was negatively 176 

correlated with apoptosis. The extensive molecular phenotyping analysis also revealed pathways 177 

not explicitly associated with cell growth and cell morphology, such as transcription, translation, 178 

metabolism, development and signaling (Fig. 3E).  179 

 180 

Next, to globally assess whether individual ASO knockdowns lead to lncRNA-specific effects, 181 

we scaled the expression change of each gene across the whole experiment and compared 182 

differentially expressed genes (Fig. 3B) of all possible ASO pairs targeting the same lncRNA 183 

target versus different lncRNAs (Supplemental Methods; Supplemental Table S5). We found that 184 

the concordance of the same target group was significantly greater than that of the different 185 

target group (comparing the Jaccard indices across 10,000 permutations; Supplemental Fig. 186 

S5A), suggesting that ASO knockdowns are non-random and lead to more lncRNA specific 187 

effects than the non-targeting ASO pairs. Further, by requiring at least five common DEGs (FDR 188 

≤ 0.05, abs(log2FC) > 0.5, abs(Z-score) > 1.645) and ASO-pairs significantly above the non-189 

targeting ASO pairs background (p ≤ 0.05), we identified 16 ASO-pairs, targeting 13 lncRNAs, 190 
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exhibiting reproducible knockdown-mediated molecular responses in human dermal fibroblasts 191 

(Supplemental Fig. S5B). Corresponding GSEA pathways and MARA motifs of these 16 ASO-192 

pairs are shown in Supplemental Figure S5C. 193 

 194 

siRNA validation experiments 195 

To evaluate whether the lncRNA-specific effects can be measured by other knockdown 196 

technologies, nine lncRNAs, with relatively mild growth phenotype, were subjected to siRNA 197 

knockdown. We noted that higher concordance was observed for ASO modality alone 198 

(Supplemental Fig. S5D). The observed discrepancies in the transcriptional response between 199 

ASO and siRNA-mediated knockdowns could be contributed by their mode of action and 200 

variable activities in different subcellular compartments. Next, a concordant response was found 201 

for (5/36) ASO-siRNA pairs targeting three lncRNAs (Supplemental Fig. S5E; Supplemental 202 

Table S5), enriched in the cytoplasm (MAPKAPK5-AS1), soluble nuclear fraction (LINC02454) 203 

and in the chromatin-bound fraction (A1BG-AS1). While we cannot completely exclude the 204 

technical artefacts of each technology, concordant cellular response exhibited by using ASOs 205 

alone suggests that lncRNA, in part, are essential regulatory elements in cells. Yet, our study 206 

generally warrants a careful assessment of specific findings from different knockdown 207 

technologies, including CRISPR-inhibition, and demonstrates a requirement of using multiple 208 

replicates in a given target per each modality. 209 

 210 

ZNF213-AS1 is associated with cell growth and migration. 211 

Extensive molecular and cellular phenotype data for each ASO knockdown can be explored 212 

using our portal https://fantom.gsc.riken.jp/zenbu/reports/#FANTOM6. As an example of an 213 

lncRNA associated with cell growth and morphology (Fig. 2G), we showcase ZNF213-AS1 214 

(RP11-473M20.14). This lncRNA is highly conserved in placental mammals, moderately 215 

expressed (~8 CAGE tags per million) in HDF and enriched in the chromatin-bound fraction. 216 

Four distinct ASOs (ASO_01, ASO_02, ASO_05, and ASO_06) strongly suppressed expression 217 

of ZNF213-AS1, while expression of the ZNF213 sense gene was not significantly affected in 218 

any of the knockdowns. The four ASOs caused varying degrees of cell growth inhibition (Fig. 219 

4A). ASO_01 and ASO_06 showed a reduction in cell number, as well as an upregulation of 220 

apoptosis, immune and defense pathways in GSEA suggesting cell death. While cell growth 221 
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inhibition observed for ASO_02 and ASO_05 was confirmed by MKI67 marker staining (Fig. 222 

2D; Supplemental Tables S7), the molecular phenotype revealed suppression of GSEA pathways 223 

related to cell growth, as well as to cell proliferation, motility, and extracellular structure 224 

organization (Fig. 4B), and consistent in two ASOs downregulation of related motifs, for 225 

example, EGR1, EP300, SMAD1..7,9 (Fig. 4C).  226 

 227 

As cell motility pathways were affected by the knockdown, we tested whether ZNF213-AS1 228 

could influence cell migration. Based on the wound-closure assay after transient cell growth 229 

inhibition (mitomycin-C and serum starvation), we observed a substantial reduction of wound 230 

closure rate (~40% over a 24-hour period) in the ZNF213-AS1 depleted HDFs (Fig. 4D,E). The 231 

reduced wound healing rate should thus mainly reflect reduced cell motility, further confirming 232 

affected motility pathways predicted by the molecular phenotype. 233 

 234 

As these results indicated a potential role of ZNF213-AS1 in cell growth and migration, we used 235 

FANTOM CAT Recount 2 atlas (Imada et al. 2020), which incorporates the TCGA dataset 236 

(Collado-Torres et al. 2017), and found relatively higher expression of ZNF213-AS1 in acute 237 

myeloid leukemia (LAML) and in low-grade gliomas (LGG) as compared to other cancers 238 

(Supplemental Fig. S6A). In LAML, the highest expression levels were associated with mostly 239 

undifferentiated states, whereas in LGG, elevated expression levels were found in 240 

oligodendrogliomas, astrocytomas, and in IDH1 mutated tumors, suggesting that ZNF213-AS1 is 241 

involved in modulating differentiation and proliferation of tumors (Supplemental Fig. S6B–E). 242 

Further, univariate Cox proportional hazard analysis as well as Kaplan-Meier curves for LGG 243 

were significant and consistent with our findings (HR = 0.61, BH FDR = 0.0079). The same 244 

survival analysis on LAML showed a weak association with poor prognostic outcome but the 245 

results were not significant; (Supplemental Fig. S6F,G). 246 

 247 

RP11-398K22.12 (KHDC3L-2) regulates KCNQ5 in cis  248 

Next, we investigated in detail RP11-398K22.12 (ENSG00000229852) where the knockdowns 249 

by two independent ASOs (ASO_03, ASO_05) successfully reduced the expression of the target 250 

lncRNA (67-82% knockdown efficiency, respectively) and further downregulated its 251 

neighboring genes, KCNQ5 and its divergent partner novel lncRNA CATG00000088862.1 (Fig. 252 
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5A). While the two genomic loci occupy Chromosome 6 and are 650kb away, Hi-C analysis 253 

(Supplemental Methods; Supplemental Fig. S7) showed that they are located within the same 254 

topologically associated domain (TAD) and spatially co-localized (Fig. 5B). Moreover, 255 

chromatin-enrichment and single molecule RNA-FISH of RP11-398K22.12 (Fig. 5C) suggested 256 

its highly localized cis-regulatory role. 257 

 258 

In FANTOM5 (Hon et al. 2017), expression levels of RP11-398K22.12, KCNQ5 and 259 

CATG00000088862.1 were enriched in brain and nervous system samples, while GTEx (GTEx 260 

Consortium 2015) showed their highly-specific expression in the brain, particularly in the 261 

cerebellum and the cerebellar hemisphere (Fig. 5D). GTEx data also showed that expression of 262 

RP11-398K22.12 with KCNQ5 and CATG00000088862.1 was highly correlated across neuronal 263 

tissues (Fig. 5E,F), with the exception of cerebellum and cerebellar hemisphere, potentially due 264 

to relatively lower levels of KCNQ5 and CATG00000088862.1 while levels of RP11-398K22.12 265 

remained relatively higher. Additionally, we found an eQTL SNP (rs14526472) overlapping with 266 

RP11-398K22.12 and regulating expression of KCNQ5 in brain caudate (p = 4.2 × 10-6; 267 

normalized effect size -0.58). All these findings indicate that RP11-398K22.12 is implicated in 268 

the nervous system by maintaining the expression of KCNQ5 and CATG00000088862.1 in a cis-269 

acting manner.  270 

 271 

Discussion 272 

This study systematically annotates lncRNAs through molecular and cellular phenotyping by 273 

selecting 285 lncRNAs from human dermal fibroblasts across a wide spectrum of expression, 274 

conservation levels and subcellular localization enrichments. Using ASO technology allowed 275 

observed phenotypes to be associated to the lncRNA transcripts, while in contrast CRISPR-based 276 

approaches may synchronically influence the transcription machinery at the site of the divergent 277 

promoter or affect regulatory elements of the targeted DNA site. Knockdown efficiencies 278 

obtained with ASOs were observed to be independent of lncRNA expression levels, subcellular 279 

localization, and of their genomic annotation, allowing us to apply the same knockdown 280 

technology to various classes of lncRNAs.  281 

 282 
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We investigated the cis-regulation of nearby divergent promoters, which has been reported as 283 

one of the functional roles of lncRNA (Luo et al. 2016). However, in agreement with previous 284 

studies (Guttman et al. 2011) we did not observe general patterns in the expression response of 285 

divergent promoters (Supplemental Fig. S3B). Recent studies suggest that transcription of 286 

lncRNA loci that do not overlap with other transcription units may influence RNA polymerase II 287 

occupancy on neighboring promoters and gene bodies (Engreitz, Haines, et al. 2016), (Cho et al. 288 

2018). Thus, it is plausible that transcription of targeted lncRNA was maintained, despite 289 

suppression of mature or nascent transcripts using ASOs. This further suggests that the 290 

functional responses described in this study are due to interference of processed transcripts 291 

present either in the nucleus, the cytoplasm or both. While it is arguable that ASOs may interfere 292 

with general transcription by targeting the 5’-end of nascent transcripts and thus releasing RNA 293 

polymerase II followed by exonuclease-mediated decay and transcription termination (aka 294 

“torpedo model”; (Proudfoot 2016)), most of the ASOs were designed across the entire length of 295 

the transcript. Since we did not broadly observe dysregulation in nearby genes, interference of 296 

transcription or splicing activity is less likely to occur.  297 

 298 

We observed a reduction in cell growth for ~7.7% of our target lncRNA genes, which is in-line 299 

with previous experiments using CRISPRi-pooled screening, which reported 5.9% (in iPS cells) 300 

of lncRNAs exhibiting a cell growth phenotype (Liu et al. 2017). While these rates are much 301 

lower than for protein-coding genes (Sokolova et al. 2017), recurrent observations of cell growth 302 

(including cell death) phenotypes strongly suggest that a substantial fraction of lncRNAs play an 303 

essential role in cellular physiology and viability. Further, when applying image-based analysis, 304 

we found that lncRNAs affect cell morphologies (Fig. 2G), which has not been so far thoroughly 305 

explored. 306 

 307 

Several lncRNAs such as MALAT1, NEAT1, and FIRRE have been reported to orchestrate 308 

transcription, RNA processing, and gene expression (Kopp and Mendell 2018), but are not 309 

essential for mouse development or viability. These observations advocate for assays that can 310 

comprehensively profile the molecular changes inside perturbed cells. Therefore, in contrast to 311 

cell-based assays, functional elucidation via molecular phenotyping provides comprehensive 312 

information that cannot be captured by a single phenotypic assay. Herein, the number of 313 
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overlapping differentially expressed genes between 2 ASOs of the same lncRNA targets, 314 

indicated that 10.9% of lncRNAs exert a reproducible regulatory function in HDF.  315 

 316 

Although the features of selected lncRNAs being generally similar to those of other lncRNAs 317 

expressed in HDF (Fig. 1B-D), the cell type specific nature of lncRNAs and the relatively small 318 

sampling size (119 lncRNAs with knockdown transcriptome profiles) used in our study may not 319 

fully represent the whole extent of lncRNA in other cell types. However, lncRNA targets that did 320 

not exhibit a molecular phenotype may be biologically relevant in other cell types or cell states 321 

(Li and Chang 2014); (Liu et al. 2017). At the same time, our results showed that particular 322 

lncRNAs expressed broadly in other tissues (e.g., in the human brain) were functional in HDF (in 323 

case of RP11-398K22.12). Although the exact molecular mechanisms of RP11-398K22.12 are 324 

not yet fully understood, its potential role in HDF suggests that lncRNAs may be functionally 325 

relevant across multiple tissues in spite of the cell-type-specific expression of lncRNAs. 326 

 327 

Further, we used siRNA technology to knockdown lncRNA targets as a method for independent 328 

validation. When comparing the transcriptomes perturbed by ASOs and siRNAs, concordance 329 

was observed only for 3 out of 9 lncRNAs. This discrepancy is likely due to different modes of 330 

actions of the two technologies. While ASOs invoke RNase H-mediated cleavage, primarily 331 

active in the nucleus, the siRNAs use RNA-inducing silencing complex (RISC) mainly active in 332 

the cytoplasm. LncRNAs are known to function in specific subcellular compartments (Chen 333 

2016) and their maturity, secondary structures, isoforms and functions could be vastly different 334 

across compartments (Johnsson et al. 2013). Since the majority functional lncRNA are reported 335 

to be inside the nucleus (Palazzo and Lee 2018), (Sun et al. 2018), ASO-mediated knockdowns, 336 

which mainly target nuclear RNAs, are generally more suitable for functional screenings of our 337 

lncRNA (62% found in the nuclear compartment). Besides, the dynamics of secondary effects 338 

mediated by different levels of knockdown from different technologies are likely to be observed 339 

as discordance when considering the whole transcriptome, where this kind of discordance has 340 

been reported previously (Stojic et al. 2018). In contrast, in the MKI67 assay where only a single 341 

feature such as growth phenotype is assayed, siRNA knockdown revealed higher reproducibility 342 

with ASO knockdown. This suggested that the growth phenotype might be triggered by different 343 

specific pathways in ASO- and siRNA- knockdowns. 344 
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 345 

Previous studies suggests that lncRNAs regulate gene expression in trans epigenetically, via 346 

direct or indirect interaction with regulators such as DNMT1 (Di Ruscio et al. 2013) or by 347 

directly binding to DNA (triplex; (Mondal et al. 2015) or other RNA binding proteins (Tichon et 348 

al. 2016). Analysis of cellular localization by fractionation followed by RNA-seq and in situ 349 

hybridization can indicate whether a given lncRNA may act in trans by quantifying its 350 

abundance in the nuclear soluble fraction as compared to cytoplasm. While most lncRNAs in 351 

nuclear soluble fraction may affect pathways associated with chromatin modification, additional 352 

experiments to globally understand their interaction partners will elucidate the molecular 353 

mechanism behind trans-acting lncRNAs (Li et al. 2017); (Sridhar et al. 2017).  354 

 355 

In summary, our study highlights the functional importance of lncRNAs regardless of their 356 

expression, localization and conservation levels. Molecular phenotyping is a powerful and 357 

generally more sensitive to knockdown mediated changes platform to reveal the functional 358 

relevance of lncRNAs that cannot be observed based on the cellular phenotypes alone. With 359 

additional molecular profiling techniques, such as RNA duplex maps in living cells to decode 360 

common structural motifs (Lu et al. 2016), and Oxford Nanopore Technology (ONT) to annotate 361 

the full-length variant isoforms of lncRNA (Hardwick et al. 2019), structure-to-functional 362 

relationship of lncRNAs may be elucidated further in the future.  363 
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 364 

Methods 365 

Gene Models and lncRNA targets selections 366 

The gene models used in this study were primarily based on the FANTOM CAGE-associated 367 

transcriptome (CAT) at permissive level as defined previously (Hon et al. 2017). From this 368 

merged assembly, there were ~2,000 lncRNAs robustly expressed in HDF (TPM ≥ 1). However, 369 

we selected lncRNA knockdown targets in an unbiased manner to broadly cover various types of 370 

lncRNAs (TPM ≥ 0.2). Briefly, we first identified a list of the lncRNA genes expressed in HDF, 371 

with RNA-seq expression at least 0.5 fragments per kilobase per million and CAGE expression 372 

at least 1 tag per millions. Then we manually inspected each lncRNA locus in ZENBU genome 373 

browser for 1) its independence from neighboring genes on the same strand (if any), 2) support 374 

from RNA-seq (for exons and splicing junctions) and CAGE data (for TSS) of its transcript 375 

models and 3) support from histone marks at TSS for transcription initiation (H3K27ac) and 376 

along gene body for elongation (H3K36me3), from Roadmap Epigenomics Consortium 377 

(Roadmap Epigenomics Consortium et al. 2015). A representative transcript model, which best 378 

represents the RNA-seq signal, was manually chosen from each locus for design of antisense 379 

oligonucleotides (ASOs). In total, 285 lncRNA loci were chosen for ASO suppression. 380 

Additional controls (NEAT1, protein coding genes Supplemental Table S1) were added including 381 

MALAT1 as an experimental control. For details please refer to the Supplemental Methods. 382 

 383 

ASO design  384 

ASOs were designed as RNase H-recruiting locked nucleic acid (LNA) phosphorothioate 385 

gapmers with a central DNA gap flanked by 2-4 LNA nucleotides at the 5’ and 3’ ends of the 386 

ASOs. For details please refer to the Supplemental Methods. 387 

 388 

Automated cell culturing, ASO transfection and cell harvesting 389 

Robotic automation (Hamilton®) was established to provide stable environment and accurate 390 

procedural timing control for cell culturing and transfection. In brief, trypsin-EDTA detachment, 391 

cell number and viability quantification, cell seeding, transfection and cell harvesting were 392 

performed with automation. All transfections were divided into 28 runs at weekly basis. ASO 393 

transfection was performed with duplication. In each run, there were 16 independent 394 
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transfections with ASO negative control A (NC_A, Exiqon) and 16 wells transfected with an 395 

ASO targeting MALAT-1 (Exiqon).  396 

The HDF cells were seeded in 12-well plates with 80,000 cells in each well 24 hours prior to the 397 

transfection. A final concentration of 20 nM ASO and 2 µl lipofectamine RNAiMAX (Thermo 398 

Fisher Scientific) were mixed in 200 µl Opti-MEM (Thermo Fisher Scientific). The mixture was 399 

incubated at room temperature for 5 min and added to the cells, which were maintained in 1 ml 400 

complete medium. The cells were harvested 48 hours post-transfection by adding 200 µl RLT 401 

buffer from the RNeasy 96 Kit (Qiagen) after PBS washing. The harvested lysates were kept at -402 

80°C. RNA was extracted from the lysate for real time quantitative RT-PCR (Supplemental 403 

Methods). 404 

 405 

ASO transfection for real-time imaging 406 

The HDF cells were transfected manually in 96-well plate to facilitate high-throughput real time 407 

imaging. The cells were seeded 24 hours before transfection at a density of 5,200 cells per well. 408 

A final concentration of 20 nM ASO and 2 µl lipofectamine RNAiMAX (Thermo Fisher 409 

Scientific) were mixed in 200 µl Opti-MEM (Thermo Fisher Scientific). After incubating at 410 

room temperature for 5 min, 18 µl of the transfection mix was added to 90 µl complete medium 411 

in each well. The ASOs were divided in 14 runs and transfected in duplicates. Each plate 412 

accommodated 6 wells of NC_A control, 2 wells of MALAT1 ASO control and 2 wells of mock-413 

transfection (lipofectamine alone) control. 414 

Phase-contrast images of transfected cells were captured every 3 hours for 2 days with 3 fields 415 

per well by the IncuCyte® live-cell imaging system (Essen Bioscience). The confluence in each 416 

field was analyzed by the IncuCyte® software. The mean confluence of each well was taken 417 

along the timeline until the mean confluence of the NC_A control in the same plate reached 418 

90%. The growth rate in each well was calculated as the slope of a linear regression. A 419 

normalized growth rate of each replicate was calculated as the growth rate divided by the mean 420 

growth rate of the 6 NC_A controls from the same plate. Negative growth rate was derived when 421 

cells shrink and/or detach. As these rates of cell depletion could not be normalized by the rate of 422 

growth, negative values were maintained to indicate severe growth inhibition. Student’s t-test 423 

was performed between the growth rate of the duplicated samples and the 6 NC_A controls, 424 

assuming equal variance. 425 
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 426 

Cell morphology quantification 427 

For each transfection, representative phase-contrast image at a single time point was exported 428 

from the Incucyte time-series. These raw images were first transformed to probability maps of 429 

cells by pixel classification using ilastik (1.3.2) (Berg et al. 2019). The trained model was then 430 

applied to all images where the predicted probability maps of cells (grey scale, 16 bits tiff 431 

format) were subsequently used for morphology quantification in CellProfiler (3.1.5) (Carpenter 432 

et al. 2006). For details please refer to the Supplemental Methods. 433 

 434 

MKI67 staining upon lncRNA knockdown 435 

For the selected four lncRNA targets showing >25% growth inhibition, we used two siRNAs and 436 

ASOs with independent sequences. The transfected cells were fixed by adding pre-chilled 70% 437 

ethanol and incubated in -20°C. The cells were washed by FACS buffer (2% FBS in PBS, 0.05% 438 

NaN3) twice. FITC-conjugated MKI67 (20Raj1, eBioscience) was applied to the cells and 439 

subjected to flow cytometric analysis. Knockdown efficiency by siRNA was determined by real-440 

time quantitative RT-PCR using the same 3 primer pairs as for ASO knockdown efficiency. For 441 

details please refer to the Supplemental Methods. 442 

 443 

Wound closure assay 444 

The HDF cells were transfected by 20nM ASO as described earlier in 12-well plates. The cells 445 

were re-plated at 24 hours post-transfection into a 96-well ImageLock plate (Essen BioScience) 446 

at a density of 20,000 cells per well. At 24 hours after seeding, cells form a spatially uniform 447 

monolayer with 95-100% cell confluence. The cells were incubated with 5 µg/mL mitomycin-C 448 

for 2 hours to inhibit cell division. Then, medium was refreshed and a uniform scratch was 449 

created in each well by the WoundMaker™(Essen BioScience). The closure of the wound was 450 

monitored by IncuCyte® live-cell imaging system (Essen Bioscience) every 2 hours for 24 451 

hours. The RNA was harvested after the assay for real-time quantitative RT-PCR. For details 452 

please refer to the Supplemental Methods. 453 

 454 

Cap analysis of gene expression (CAGE) 455 
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Four micrograms of purified RNA were used to generate libraries according to the nAnT-iCAGE 456 

protocol (Murata et al. 2014). For details please refer to the Supplemental Methods. 457 

 458 

Chromosome conformation capture (Hi-C) 459 

Hi-C libraries were prepared essentially as described previously (Fraser, Ferrai, et al. 2015; 460 

Lieberman-Aiden et al. 2009) with minor changes to improve the DNA yield of Hi-C products 461 

(Fraser, Williamson, et al. 2015). For details please refer to the Supplemental Methods. 462 

 463 

Data Access 464 

All raw and processed sequencing data generated in this study have been submitted to the DNA 465 

Data Bank of Japan (DDBJ; https://www.ddbj.nig.ac.jp/) under accession numbers (DRA008311, 466 

DRA008312, DRA008436, DRA008511) or can be accessed through the FANTOM6 project 467 

portal https://fantom.gsc.riken.jp/6/datafiles. The analysis results can be downloaded from 468 

https://fantom.gsc.riken.jp/6/suppl/Ramilowski_et_al_2020/data/ and interactively explored 469 

using our in-house portal https://fantom.gsc.riken.jp/zenbu/reports/#FANTOM6/. 470 
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 634 

Figure legends 635 

Figure 1.  Selection of lncRNA targets, their properties and the study overview. (A) CAGE 636 

expression levels at log2TPM (tags per million) and human dermal fibroblasts (HDF) specificity 637 

of lncRNAs in the FANTOM CAT catalog (Hon, et al., Nature 2017; N = 62,873; grey), 638 

lncRNAs expressed in HDF (N = 6,125; blue) and targeted lncRNAs (N = 285; red). The dashed 639 

vertical line indicates most lowly expressed lncRNA target (~0.2 TPM). (B) Gene conservation 640 

levels of lncRNAs in the FANTOM CAT catalog (grey), lncRNAs expressed in HDF (blue) and 641 
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targeted lncRNAs (red). Crossbars indicate the median. No significant difference is observed 642 

when comparing targeted and expressed in HDF lncRNAs (Wilcoxon p = 0.11). (C) Similar to 643 

that in B, but for genomic classes of lncRNAs. Most of the targeted lncRNAs and those 644 

expressed in HDF are expressed from divergent promoters. (D) Subcellular localization (based 645 

on relative abundances from RNA-seq fractionation data) for targeted lncRNAs. Chromatin-646 

bound (N = 98; blue); Nuclear soluble (N = 76; green); Cytoplasmic (N = 108; red). Black 647 

contours represent the distribution of all lncRNAs expressed in HDF. (E) Example of ZNF213-648 

AS1 loci showing transcript model, CAGE and RNA-seq signal along with targeting ASOs. (F) 649 

Number of ASOs for target lncRNAs and controls used in the experiment. (G) Schematics of the 650 

study. 651 

Figure 2. Cell growth and morphology assessment. (A) Selected example (PTPRG1-AS1) 652 

showing the normalized growth rate estimation using a matching NC_A (negative control). (B) 653 

Correlation of the normalized growth rate for technical duplicates across 2,456 IncuCyte® 654 

samples. (C) Density distribution of normalized growth rates (technical replicates averaged) 252 655 

ASOs targeting lncRNAs with successful knockdown (KD) and growth phenotype (blue) 656 

consistent in 2 replicates (FDR < 0.05 as compared to matching NC_A; 246 ASOs inhibited 657 

growth), 627 ASOs targeting lncRNAs with successful KD (purple), 270 negative control 658 

(NC_A) samples (grey) and 90 mock-transfected cells (lipofectamine only) samples (yellow). 659 

(D) MKI67 staining (growth inhibition validation) for four selected lncRNA targets after siRNA 660 

and ASOs suppression. (E) IncuCyte® cell images of selected distinct cell morphologies changes 661 

upon an lncRNA KD. (F) An overview of cell morphology imaging processing pipeline using a 662 

novel lncRNA target, CATG000089639.1, as an example. (G) lncRNAs (N = 59) significantly 663 

(FDR < 0.05) and consistently (after adjusting for the number of successfully targeting ASOs) 664 

affecting cell growth (N = 15) and cell morphologies (N = 44). 665 

Figure 3. CAGE predicts cellular phenotypes. (A) RT-qPCR knockdown (KD) efficiency for 666 

2,021 ASO-transfected samples (targeted lncRNAs only). Grey dashed line indicates 50% KD 667 

efficiency generally required for CAGE selection. Purple dashed lines indicate median KD 668 

efficiency (71.5%) for 375 ASOs selected for CAGE sequencing. After quality control, 340 669 

ASOs targeting lncRNAs were included for further analysis. (B) Distribution of significantly 670 

differentially expressed genes (up-regulated: FDR < 0.05, Z-score > 1.645, log2FC > 0.5 and 671 

down-regulated: FDR < 0.05, Z-score < -1.645, log2FC < -0.5) across all 340 ASOs. (C) Motif 672 
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Response Activity Analysis (MARA) across 340 ASOs. Scale indicates Z-score of the relative 673 

motif activity (the range was set to abs(Z-score) =< 5 for visualization purposes). (D) Correlation 674 

between normalized growth rate and motif activities across 340 ASOs targeting lncRNAs with 675 

highlighted examples. Motifs sizes shown are scaled based on the HDF expression of their 676 

associated TFs (range 1 to ~600 TPM). (E) Enriched biological pathways across 340 ASOs. 677 

Scale indicates GSEA enrichment value calculated as -log10(p) × sign(NES). (F) same as in D, 678 

but for selected GSEA pathways. Pathways sizes are scaled based on the number of associated 679 

genes. 680 

Figure 4.  ZNF213-AS1 regulates cell growth, migration and proliferation. (A) Normalized 681 

growth rate across four distinct ASOs (in duplicates) targeting ZNF213-AS1 as compared to six 682 

negative control samples (shown in grey). (B) Enrichment of biological pathways associated with 683 

growth, proliferation, wound healing, migration and adhesion for ASO_02 and ASO_05. (C) 684 

Most consistently down- and upregulated transcription factor binding motifs including those for 685 

transcription factors known to modulate growth, migration and proliferation such as for example 686 

EGR family, EP300, GTF2I. (D) Transfected, re-plated and mitomycin-C (5 µg/mL)-treated 687 

HDF cells were scratched and monitored in the IncuCyte® imaging system. Relative wound 688 

closure rate calculated during the 24 hours post-scratching shows 40-45% reduction for the two 689 

targeting ASOs (ASO_02 (N = 10) and ASO_05 (N = 13)) as compared to NC_A transfection 690 

controls (N = 33, shown in grey) and the representative images of wound closure assay 16 hours 691 

post-scratching. (E) Knockdown efficiency measured by RT-qPCR after wound closure assay 692 

(72 hours post-transfection) showing sustained suppression (65-90%) of ZNF213-AS1. 693 

Figure 5.  RP11-398K22.12 down-regulates KCNQ5 and CATG00000088862.1 in cis. (A) 694 

Changes in expression levels of detectable genes in the same topologically associated domain 695 

(TAD) as RP11-398K22.12 based on Hi-C analysis. Both KCNQ5 and CATG00000088862.1 are 696 

down-regulated (p < 0.05) upon the knockdown of RP11-398K22.12 by two independent ASOs 697 

in CAGE analysis (left) as further confirmed with RT-qPCR (right). (B) (top) Representation of 698 

the chromatin conformation in the 4Mb region proximal to the TAD containing RP11-699 

398K22.12, followed by the locus gene annotation, CAGE, RNA-seq and ATAC-seq data for 700 

native HDFs. (bottom) Schematic diagram showing Hi-C predicted contacts of RP11-398K22.12 701 

(blue) and KCNQ5 (grey) (25Kb resolution, frequency >= 5) in HDF cells. Red line indicates 702 

RP11-398K22.12 and KCNQ5 contact. (C) FISH image for RP11-398K22.12 suggesting 703 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 25, 2020. ; https://doi.org/10.1101/700864doi: bioRxiv preprint 

https://doi.org/10.1101/700864


 
 

26

proximal regulation. TUG1 FISH image (suggesting trans regulation) is included as a 704 

comparison; (bar = 10 µm). (D) GTEx atlas across 54 tissues (N = 9,662 samples) shows 705 

relatively high expression levels of RP11-398K22.12 in 13 distinct brain regions samples 706 

(highlighted). (E) Expression correlation for RP11-398K22.12 and KCNQ5 in 8 out of 13 distinct 707 

brain regions, as highlighted in D. (F) Expression correlation for RP11-398K22.12 and 708 

CATG00000088862.1 in 8 out of 13 distinct brain regions, as highlighted in D. 709 
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