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Abstract20

It has been a longstanding challenge in geometric morphometrics and medical imaging to infer the physical21

locations (or regions) of 3D shapes that are most associated with a given response variable (e.g. class22

labels) without needing common predefined landmarks across the shapes, computing correspondence maps23

between the shapes, or requiring the shapes to be diffeomorphic to each other. In this paper, we introduce24

SINATRA: the first statistical pipeline for sub-image analysis which identifies physical shape features25

that explain most of the variation between two classes without the aforementioned requirements. We also26

illustrate how the problem of 3D sub-image analysis can be mapped onto the well-studied problem of27

variable selection in nonlinear regression models. Here, the key insight is that tools from integral geometry28

and differential topology, specifically the Euler characteristic, can be used to transform a 3D mesh29

representation of an image or shape into a collection of vectors with minimal loss of geometric information.30

Crucially, this transform is invertible. The two central statistical, computational, and mathematical31

innovations of our method are: (1) how to perform robust variable selection in the transformed space32

of vectors, and (2) how to pullback the most informative features in the transformed space to physical33

locations or regions on the original shapes. We highlight the utility, power, and properties of our method34

through detailed simulation studies, which themselves are a novel contribution to 3D image analysis.35

Finally, we apply SINATRA to a dataset of mandibular molars from four different genera of primates36

and demonstrate the ability to identify unique morphological properties that summarize phylogeny.37

Significance38

The recent curation of large-scale databases with 3D surface scans of shapes has motivated the devel-39

opment of tools that better detect global-patterns in morphological variation. Studies which focus on40

identifying differences between shapes have been limited to simple pairwise comparisons and rely on41

pre-specified landmarks (that are often expert-derived). We present the first statistical pipeline for an-42

alyzing collections of shapes without requiring any correspondences. Our novel algorithm takes in two43
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classes of shapes and highlights the physical features that best describe the variation between them. We44

use a rigorous simulation framework to assess our approach. Lastly, as a case study, we use SINATRA45

to analyze molars from suborders of primates and demonstrate its ability recover known morphometric46

variation across phylogenies.47

Introduction48

Sub-image analysis is an important, yet open, problem in both medical imaging studies and geometric49

morphometric applications. One statement of this problem is, given two classes of 3D images or shapes50

(e.g. computed tomography (CT) scans of bones or magnetic resonance images (MRI) of different tissues),51

which physical features on the shapes are most important to defining a particular class label. More52

generally, the sub-image analysis problem can be framed as a regression-based task, where one is given53

a collection of shapes and the goal is to find the properties that explain the greatest variation in some54

response variable (continuous or binary). For example, one may be interested in identifying the structures55

of glioblastoma tumors that best indicate signs of potential relapse and other clinical outcomes [1]. From56

a statistical perspective, the sub-image selection problem is therefore directly related to the variable57

selection problem — given high-dimensional covariates and a univariate outcome, we want to infer which58

of the variables are most relevant in explaining or predicting variation in the observed response.59

There are several challenges in framing sub-image analysis as a regression. The first challenge cen-60

ters around representing a 3D object as a (square integrable) covariate or feature vector. The desired61

transformation should have minimal loss in geometric information and should also be applicable to a62

wide range of shape and imaging datasets. In this paper, we will use a tool from integral geometry and63

differential topology called the Euler characteristic (EC) transform [1–4], which sufficiently maps shapes64

into vectors without requiring pre-specified landmark points or pairwise correspondences. This property65

will be central to our innovations. Once we are given a vector representation of the shape, the second66

challenge in framing sub-image analysis as a regression-based problem is quantifying which topological67

features are most relevant in explaining variation in a continuous outcome or binary class label. This is the68

classic take on variable selection which we address using a Bayesian regression model and an information69

theoretic metric to measure the relevance of each topological feature. Importantly, our Bayesian method70

allows us to perform variable selection for nonlinear functions — again, we will discuss the importance of71

this requirement later. The last challenge deals with how to interpret the most informative topological72

features obtained by our variable selection methodology. An important property of the EC transform is73

that it is invertible; thus, we can take the most informative topological features and naturally recover74

the physical regions on the shape that are most informative. In this paper, we introduce SINATRA: a75

unified statistical pipeline for sub-image analysis that addresses each of these challenges and is the first76

sub-image analysis method that does not require landmarks or correspondences.77

Classically there have been three approaches to modeling random 3D images and shapes: (i) landmark-78

based representations [5], (ii) diffeomorphism-based representations [6], and (iii) representations that use79

integral geometry and excursions of random fields [7]. The main idea behind landmark-based analysis is80

that there are points on shapes that are known to be in correspondence with each other. As a result, any81

shape can be represented as a collection of 3D coordinates. The shortcoming with landmark-based ap-82

proaches is twofold. First, many modern datasets are not defined by landmarks; instead, they are consist83

of 3D CT scans [8, 9]. Second, reducing these detailed mesh data to simple landmarks often results in a84

great deal of information loss. Alternatively, diffeomorphism-based approaches have bypassed the need85

for landmarks. There has also been a great deal of progress in developing tools that efficiently compare86

the similarity between shapes in large databases via algorithms that continuously deform one shape into87

another [10–14]. Unfortunately, these methods require that shapes be diffeomorphic: a continuous trans-88

formation between two shapes that places them in correspondence. There are many applications where89

shapes and images cannot be placed in correspondence because of qualitative differences. For example, in90
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a dataset of fruit fly wings, some mutants may have extra lobes of veins [15]; or, in a dataset of brain ar-91

teries, many of the arteries cannot be continuously mapped to each other [16]. Indeed, in large databases92

such as the MorphoSource [9], the CT scans of skulls across many clades will not be diffeomorphic. Thus,93

there is a real need for 3D image analysis methods that do not require correspondences.94

In previous work [2], two topological transformations for shapes were introduced: the persistent95

homology (PH) transform and the EC transform were introduced. These tools from integral geometry96

first allowed for pairwise comparisons between shapes or images without requiring correspondence or97

landmarks. Since then, mathematical foundations of the two transforms and their relationship to the98

theory of sheaves and fiber bundles have been established [3, 4]. Detailed mathematical analyses have99

also been provided [3]. Most relevant to our approach, in this paper, is a nonlinear regression framework100

which uses the EC transform to predict outcomes of disease free survival in glioblastoma [1]. The two101

major takeaways from this work is that the EC transform reduces the problem of regression with shape102

covariates into a problem in functional data analysis (FDA), and that nonlinear regression models are103

more accurate than linear models when predicting complex phenotypes and traits. The SINATRA pipeline104

further enhances the relation between FDA and topological transforms by enabling variable selection with105

shapes as covariates.106

Beyond the pipeline, other notable contributions of this paper include software packaging to implement107

our approach, and a detailed design of rigorous simulation studies that may be used to assess the accuracy108

of sub-image selection methods. The freely available software comes with several built-in capabilities that109

are integral to sub-image analyses in both biomedical studies and geometric morphometric applications.110

First, and foremost, SINATRA does not require landmarks or correspondences in the data. Second,111

given a dataset of normalized and axis aligned 3D images, SINATRA will output evidence measures that112

highlight the physical regions of shapes that are most variable between two predefined classes. There are113

many applications where users may suspect a priori that certain landmarks may vary across groups of114

shapes (e.g. via the literature). To this end, SINATRA also provides notions of statistical “significance”115

for any region of interest (ROI) by computing p-values and Bayes factor estimates that effectively detail116

how likely it is to be informative by chance [17].117

Throughout the rest of the paper, we will describe each mathematical step of the SINATRA pipeline,118

and demonstrate its power and utility via simulations. We will also use a dataset of mandibular molars119

from four different genera of primates to show that our method has the ability to (i) further understanding120

of how landmarks vary across evolutionary scales in morphology and (ii) visually detail how known121

anatomical aberrations are associated to specific disease classes and/or case-control studies.122

Results123

SINATRA Pipeline Overview124

The SINATRA pipeline generally implements four key steps (Fig. 1). First, the geometry of 3D shapes125

(represented as triangular meshes) is summarized by a collection of vectors (or curves) that encode126

changes in their topology. Second, a nonlinear Gaussian process model, with the topological summaries127

as input variables, is used to classify the shapes. Third, an effect size analog and corresponding association128

metric is computed for each topological feature used in the classification model. These quantities provide129

a notion of evidence that a given topological feature is associated with a particular class. Fourth, the130

topological features are iteratively mapped back onto the original shapes (in rank order according to their131

association measures) via a reconstruction algorithm. This allows us to highlight the physical (spatial)132

locations that best explain the variation between the two groups. Details of our implementation choices133

are detailed below, with theoretical support given in SI Appendix.134
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Step One: Topological Summary Statistics for 3D Shapes. In the first step of the SINATRA135

pipeline, we use a tool from integral geometry and differential topology called the Euler characteristic136

(EC) transform [1–4]. Briefly, for a mesh M, the Euler characteristic is one of the accessible topological137

invariants derived using the following summation138

χ = #V (M)−#E(M) + #F (M), (1)139

where {#V (M),#E(M),#F (M)} denote the number of vertices (corners), edges, and faces of the mesh,140

respectively. An EC curve χν(M) tracks the change in the Euler characteristic, with respect to a given141

filtration of length l in direction ν (Figs. 1(a) and (b)). Mathematically, this is done by first specifying142

a height function hν(x) = xᵀν for vertex x ∈ M in direction ν. We then use this height function to143

define sublevel sets (or subparts) of the mesh Ma
ν in direction ν, where hν(x) ≤ a. The EC curve is144

simply χ(Ma
ν) over a range of l filtration steps over a (Fig. 1(b)). The EC transform is the collection of145

EC curves across a set of directions ν = 1, . . . ,m, and effectively maps a 3D shape into a concatenated146

p = (l ×m)-dimensional feature vector. For a study with n-shapes, an n × p design matrix X is to be147

statistically analyzed, where the columns denote the Euler characteristic computed at a given filtration148

step and direction. Each sublevel set value, direction, and set of shape vertices used to compute an EC149

curve are stored for the association mapping and projection phases of the pipeline. Note that notions150

of sufficiency, stating the m number of directions and the l range of sublevel set values required for the151

EC transform to preserve all information for a family of shapes, have been previously provided [3]. In152

this paper, we will use simulations to outline empirical procedures and develop intuition behind these153

quantities.154

Step Two: Shape Classification. In the second step of the SINATRA pipeline, we use (weight-space)155

Gaussian process probit regression to classify shapes based on their topological summaries generated by156

the EC transformation. Namely, we specify the following (Bayesian) hierarchical model [18–22]157

y ∼ B(π), g(π) = Φ−1(π) = f , f ∼ N (0,K), (2)158

where y is an n-dimensional vector of Bernoulli distributed class labels, π is an n-dimensional vector159

representing the underlying probability that a shape is classified as a “case” (i.e. y = 1), g(·) is a160

probit link function with Φ(·) being the cumulative distribution function (CDF) of the standard normal161

distribution, and f is an n-dimensional vector estimated from the data. The key objective of SINATRA162

is to use the topological features in X to find the physical 3D properties that best explain the variation163

across shape classes. To accomplish this objective, we use kernel regression where the utility of generalized164

nonparametric statistical models is well-established due their ability to account for various complex data165

structures [23–28]. Generally, kernel methods posit that f lives within a reproducing kernel Hilbert166

space (RKHS) defined by some (nonlinear) covariance function that implicitly account for higher-order167

interactions between features, leading to more complete classifications of data [29–31]. To this end, we168

assume f to be normally distributed with mean vector 0, and covariance matrix K defined by the radial169

basis function Kij = exp{−θ‖xi − xj‖2} with bandwidth θ set using the median heuristic [32]. The full170

model specified in Equation (2) is commonly referred to as “Gaussian process classification” or GPC.171

Step Three: Feature (Variable) Selection. To estimate the model in Equation (2), we use an172

elliptical slice sampling Markov chain Monte Carlo (MCMC) algorithm (SI Appendix Section 1.1). This173

enables samples to be taken from the approximate posterior distribution of f (given the data), and also174

allows for the computation of an effect size analog for each topological summary statistic [33–35]175

β = (XᵀX)†Xᵀf , (3)176
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where (XᵀX)† is the generalized inverse of (XᵀX). These effect sizes represent the nonparametric equiv-177

alent to coefficients in linear regression using generalized ordinary least squares. SINATRA uses these178

weights and assigns a measure of relative centrality to each summary statistic (first panel Fig. 1(c)) [35].179

Specifically, this criterion evaluates how much information in classifying each shape is lost when a particu-180

lar topological feature is removed from the model. This is determined by computing the Kullback-Leibler181

divergence (KLD) between (i) the conditional posterior distribution p(β−j |βj = 0) with the effect of the182

j-th topological feature being set to zero, and (ii) the marginal posterior distribution p(β−j) with the183

effects of the j-th feature being integrated out. Namely,184

KLD(βj) =

∫
β−j

log

(
p(β−j)

p(β−j |βj = 0)

)
p(β−j) dβ−j j = 1, . . . , p. (4)185

which has a closed form solution when the posterior distribution of the effect sizes is assumed to be186

(approximately) Gaussian (SI Appendix 1.2). Finally, we normalize to obtain an association metric187

for each topological feature, γj = KLD(βj)/
∑

KLD(βl). There are two main takeaways from this188

formulation. First, the KLD is a non-negative quantity, and equals zero if and only if the posterior189

distribution of β−j is independent of the effect βj . Intuitively, this is equivalent to saying that removing190

an unimportant shape feature will have no impact on explaining the variance between shape classes. The191

second key takeaway is that γ is bounded on the unit interval [0, 1], with the natural interpretation of192

providing relative evidence of association for shape features; higher values suggesting greater importance.193

For this metric, the null hypothesis assumes that every feature equally contributes to the total variance194

between shape classes, while the alternative proposes that some features are indeed more central to195

this explanation than others [35]. As we will show in the coming sections, when the null assumption196

is met, SINATRA will display association results that are appear uniformly distributed and effectively197

indistinguishable.198

Step Four: Reconstruction. After obtaining association measures for each topological feature, we199

map this information back onto the physical shape (second panel Fig. 1(c) and 1(d)). We refer to this200

process as reconstruction, as this procedure recovers regions that explain the most variation between shape201

classes (SI Appendix Section 1.3). Intuitively, the goal is to identify vertices on the shape that correspond202

to topological features with the greatest association measures. Begin by considering d directions all within203

a cone of cap radius or angle θ, which we denote as C(θ) = {ν1, . . . , νd | θ}. Next, let Z be the set of204

vertices whose projections onto the directions in C(θ) are contained within the collection of “significant”205

topological features — meaning, for every z ∈ Z, the product z · ν is contained within a sublevel set206

(taken in the direction ν ∈ C(θ)) that shows high evidence of association in the feature selection step. A207

reconstructed region is then defined as the union of all mapped vertices from each cone, or R :=
⋃
iZi.208

The choice to use cones is motivated by the idea that vectors of Euler characteristics taken along directions209

close together will express comparable information, allowing us to leverage findings between them and210

increase our power of detecting truly associated shape vertices and regions — this as opposed to antipodal211

directions where the lack of shared information may do harm when determining reconstructed manifolds212

(SI Appendix Section 1.4) [3, 36,37].213

Visualization of Enrichment. Once shapes have been reconstructed, we can visualize the relative214

importance or “evidence potential” for each vertex on the mesh. This is computed using the following215

simple procedure. First, we sort the topological features from largest to smallest, in descending order,216

according to their association measures γ1 ≥ γ2 ≥ · · · ≥ γp. Next, we iteratively move through the217

sorted measures Tk = γk (starting with k = 1), and we reconstruct the vertices corresponding to the218

topological features in the set {j : γj ≥ Tk}. The evidence potential for each vertex is then defined219

as the largest threshold Tk at which it is reconstructed for the first time. Here, the key intuition is220

that vertices with earlier “birth times” in the reconstruction are more important relative to vertices that221
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appear later. We illustrate these values via heatmaps over the reconstructed meshes (Fig. 1(d)). For222

consistency across different applications and case studies, we set the coloring of these heatmaps to be on223

a scale from [0 − 100]. Here, a maximum value of 100 represents the threshold value at which the first224

vertex is born, while 0 denotes the threshold when the last vertex on the shape is reconstructed. Under225

the null hypothesis, where there are no meaningful regions differentiating between two classes of shapes,226

(mostly) all vertices will appear to be born relatively early and at the same time. This will not be the227

case under the alternative.228

Algorithmic Overview and Implementation. Software for implementing the steps in the SINATRA229

pipeline is carried out in R code, which is freely available at https://github.com/lcrawlab/SINATRA.230

This algorithm requires the following inputs: (i) axis aligned shapes represented as meshes; (ii) y, a231

binary vector denoting shape classes; (iii) r, the radius of the bounding sphere for the shapes (which we232

usually set to 1/2 since we work with meshes normalized to the unit ball); (iv) c, the number of cones233

of directions; (v) d, the number of directions within each cone; (vi) θ, the cap radius used to generate234

directions in a cone; and (vii) l, the number of sublevel sets (i.e. filtration steps) to compute the Euler235

characteristic (EC) along a given direction. In the next two sections, we discuss strategies for how to236

choose values for the free parameters through simulation studies. A table detailing scalability for the237

current algorithmic implementation can be found in SI Appendix (see Table S1).238

Simulation Study: Perturbed Spheres239

We begin with a simple proof-of-concept simulation study to demonstrate the power of our proposed240

pipeline and illustrate how different parameter value choices will affect its ability to detect truly associated241

features on 3D shapes. To do so, we take 100 spheres and perturb regions on their surfaces to create two242

equally sized classes. This is done by using the following two-step procedure:243

• First, we generate a fixed number of (approximately) equidistributed points on each sphere: some244

number u regions to be shared across classes, and the remaining v regions to be unique to class245

assignment.246

• Second, within each region, we perturb the k closest vertices {x1,x2, . . . ,xk} by a pre-specified scale247

factor α and add some random normally distributed noise εi ∼ N (0, 1). Formally, this specified as248

x∗i := xiα+ εi for i = 1, . . . , k.249

We consider three scenarios based on the number of shared and unique regions between shape classes250

(Figs. 2(a)-2(c)). Specifically, we choose u/v = 2/1 (scenario I), 6/3 (scenario II), and 10/5 (scenario III),251

and set all regions to be k = 10 vertices-wide. Intuitively, each sequential scenario represents an increase252

in degree of difficulty. Class-specific regions should be harder to identify in shapes with more complex253

structures. We analyze fifty different simulated datasets for each of the three scenarios. In each simulated254

dataset, only vertices used to create class-specific regions are defined as true positives, and we quantify255

SINATRA’s ability to prioritize these true vertices using receiver operating characteristic (ROC) curves256

plotting true positive rates (TPR) against false positive rates (FPR) (SI Appendix Section 2). We then257

evaluate SINATRA’s power as a function of its free parameter inputs: c number of cones, d number of258

directions per cone, direction generating cap radius θ, and l number of sublevel sets per filtration. Here,259

we iteratively vary each parameter across a wide range of appropriate values, while holding the others at260

fixed constants {c = 25, d = 5, θ = 0.15, l = 30}. Figures displayed in the main text are based on varying261

the number of cones (Figs. 2(d)-2(f)), while results for the other sensitivity analyses can be found in SI262

Appendix (Figs. S1-S3).263

As expected, SINATRA’s ability to detect associated regions depends on the proportion of shape264

class variance V(y) that is explained by each of the corresponding associated vertices. More specifically,265

the algorithm’s performance is consistently better when shapes are defined by just a few prominent266

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 14, 2019. ; https://doi.org/10.1101/701391doi: bioRxiv preprint 

https://github.com/lcrawlab/SINATRA
https://doi.org/10.1101/701391
http://creativecommons.org/licenses/by-nc-nd/4.0/


7

regions (e.g. scenario I) versus when shape definitions are more complex (e.g. scenarios II and III).267

This is because, in the former setting, associated vertices make greater individual-level contributions to268

the overall variance between classes (i.e. V(y)/10 > V(y)/30 > V(y)/50). Note that similar trends in269

performance have been shown during the assessment of high-dimensional variable selection methods in270

other application areas [38–40].271

This simulation study also allows us to demonstrate the general behavior and effectiveness of the272

SINATRA algorithm as a function of different choices for its free input parameters. First, we assess273

what happens to our power when we adjust the number of cones of directions used to compute Euler274

characteristic curves. The key takeaway for this parameter is that computing topological summary275

statistics over just a single cone of directions (i.e. c = 1) is ineffective at capturing enough variation to276

identify class-specific regions (Figs. 2(d)-2(f)). This supports the intuition that seeing more of a shape277

leads to an improved ability to understand its complete structure [1–3]. Our empirical results show that278

this can be achieved by summarizing the shapes with filtrations taken over multiple directions. As a279

result, in practice, we suggest specifying multiple cones c > 1 and utilizing multiple directions d per cone280

(see monotonically increasing power in Fig. S1). While the other two parameters do not have monotonic281

properties, their effects on SINATRA’s performance still have natural interpretations. For example, when282

changing the angle between directions within cones from θ ∈ [0.05, 0.5] radians, we observe that power283

steadily increases until θ = 0.25 radians and then slowly decreases afterwards (Fig. S2). This supports284

previous theoretical results that state cones should be defined by directions that are in close proximity to285

each other [3]; but not too close such that they effectively explain the same local information with little286

variation. Lastly, and perhaps most importantly, is understanding the performance of the algorithm as287

a function of the number of sublevel sets l (i.e. the number of steps in the filtration) used to compute288

Euler characteristic curves. As we will show in the next section, this depends on the types of shapes289

being analyzed. Intuitively, for very intricate shapes, coarse filtrations with too few sublevel sets will290

cause the algorithm to miss or “step over” very local undulations in a shape. For the spheres simulated291

in this section, class-defining regions are global-like features, and so finer filtration steps fail to capture292

this information (Fig. S3); however, this is less important when only a few features decide how shapes are293

defined (e.g. scenario I). To this end, in practice, we recommend choosing the angle between directions294

within cones θ and the number of sublevel sets l via cross validation or some grid-based search.295

As a final demonstration, we show what happens when the null assumptions of the SINATRA pipeline296

are met (Fig. S4). Recall that, under the null hypothesis, our feature selection measure assumes that all297

3D regions of a shape equally contribute to explaining the variance between classes — that is, no one298

vertex (or corresponding topological characteristics) is more important or more central than the others.299

Here, we generate synthetic shapes under the two cases when SINATRA will fail to produce significant300

results: (a) two classes of shapes that are effectively the same (up to some small Gaussian noise), and (b)301

two classes of shapes that are completely dissimilar. In the first simulation case, there are no “significantly302

associated” regions and thus no group of vertices distinctively stand out as being important (Fig. S4(a)).303

In the latter simulation case, shapes between the two classes look nothing alike; therefore, all vertices304

contribute to class definition, but no one feature is central or key to explaining the observed variation305

(Fig. S4(b)).306

Simulation Study: Caricatured Shapes307

We further assess the SINATRA pipeline using a second simulation study where we modify computed to-308

mography (CT) scans of real Lemuridae teeth (one of the five families of Strepsirrhini primates commonly309

known as lemurs) [41] using a well-known caricaturization procedure [42]. Briefly, we fix the triangular310

mesh of an individual tooth and specify class-specific regions centered around expert-derived biological311

landmarks (Fig. 3) [10]. For each triangular face contained within a class-specific region, we multiply a312

corresponding affine transformation by a positive scalar that smoothly varies on the triangular mesh and313

attains maximum value at the biological landmark used to define the region (SI Appendix Section 3).314
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We caricature 50 different teeth according to the following procedure (Fig. 3(a)):315

• First, we take the expert-derived landmarks for a given tooth, and assign v of them to be specific316

to one class and v′ to be specific to the other class.317

• Second, we perform the caricaturization where each face in the v and v′ class-specific regions is318

multiplied by a positive scalar (i.e. exaggerated or enhanced). This is repeated twenty-five times319

(with some small noise per replicate) to create two equally-sized classes of 25 shapes.320

Here, we explore two scenarios by varying the number of class-specific landmarks v and v′ that determine321

the caricaturization in each class. In the first, we set both v, v′ = 3; while, in the second, we fix v, v′ = 5.322

As in the previous simulations with perturbed spheres, the difficulty of the scenarios increases with the323

number of caricatured regions. We evaluate SINATRA’s ability to identify the vertices involved in the324

caricaturization using ROC curves (SI Appendix Section 2), and we again assess this estimate of power325

as a function of the algorithm’s free parameter inputs. While varying each parameter, we hold the others326

at fixed constants {c = 15, d = 5, θ = 0.15, l = 50}. Figures described in the main text are based on327

varying the number of cones (Figs. 3(b) and 3(c)), and results for the other sensitivity analyses can be328

found in SI Appendix (Figs. S5-S7).329

Overall, as noted above, scenarios where classes are determined using fewer caricatured regions result330

in better (or at least comparable) performance than scenarios which used more regions. Similar to the331

simulations with perturbed spheres, we observe that SINATRA’s power increases monotonically with an332

increasing number of cones and directions used to compute the topological summary statistics (Figs. 3(b),333

3(c), and S5). For example, at a 10% FPR with c = 5 cones, we achieve 30% TPR in scenario I experiments334

and 35% in scenario II. Increasing the number of cones to c = 35 improves power to 52% and 40% TPR335

for scenarios I and II, respectively. Trends from the previous section also remain consistent when choosing336

the angle between directions within cones (Fig. S6) and the number of sublevel sets (Fig. S7). Results337

for the former again suggest that there is an optimal cap radius to be used when generating directions338

in a cone. For the latter, since we are analyzing shapes with more intricate features, finer filtrations lead339

to more power.340

Recovering Known Morphological Variation Across Genera of Primates341

As a real application of our pipeline, with “ground truth” or known morphological variation, we consider342

a dataset of CT scans of n = 59 mandibular molars from two suborders of primates: Haplorhini (which343

include tarsiers and anthropoids) and Strepsirrhini (which include lemurs, galagos, and lorises). From344

the haplorhine suborder, there were 33 molars from the genus Tarsius [10, 43, 44] and 9 molars from the345

genus Saimiri [45]. From the strepsirrhine suborder, we have two examples of lemurs with 11 molars346

coming from the genus Microcebus and 5 molars being derived from the genus Mirza [10, 43, 44]. The347

meshes of all teeth were aligned, translated to be centered at the origin, and normalized to be enclosed348

within a unit sphere (SI Appendix Section 4 and Fig. S8).349

This specific collection of molars was selected because morphologists and evolutionary anthropologists350

have come to understand variation of the paraconid, the cusp of a primitive lower molar. The paraconids351

are retained only by Tarsius and do not appear in the other genera (Fig. 4(a)) [45, 46]. Phylogenetic352

analyses of mitochondrial genomes across primates place estimates of divergence dates of the subtree353

composed of Microcebus and Mirza from Tarsius at 5 million years before the branching of Tarsius from354

Saimiri [47]. Our main objective is to see if SINATRA recovers the information that the paraconids are355

specific to the Tarsius genus and whether variation across the molar is associated to the divergence time356

of the genera.357

Since Tarsius is the only genus with the paraconid in this sample, we used SINATRA to perform three358

pairwise classification comparisons (Tarsius against Saimiri, Mirza, and Microcebus, respectively), and359

assessed SINATRA’s ability to prioritize/detect the location of the paraconid as the region of interest360
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(ROI). Based on our findings in the simulation studies, we run SINATRA with c = 35 cones, d = 5361

directions per cone, a cap radius of θ = 0.25 to generate each direction, and l = 75 sublevel sets to362

compute topological summary statistics. In each comparison, we evaluate the evidence for each vertex363

based on the first time that it appears in the reconstruction. Again, we refer to this as the evidence364

potential for a vertex. We then display this information via a heatmap for each tooth (Fig. 4(b)), which365

allows us to visualize the physical regions that are most differential between the genera.366

To assess the strength of SINATRA’s ability to find Tarsius-specific paraconids, we make use of a367

null-based scoring method. Here, we place an expert-derived paraconid landmark on each Tarsius tooth,368

and consider the K = {10, 50, 100, 150, 200} nearest vertices surrounding the landmark’s centermost369

vertex. This collection of K + 1 vertices defines our ROI. Within each ROI, the SINATRA computed370

evidence potentials are weighted by the surface area (or area of the Voronoi cell) encompassed by their371

corresponding vertices, and then summed together. This aggregated value, which we will denote as τ∗,372

represents a score of association for the ROI. To construct a “null” distribution and assess the strength373

of any score τ∗, we randomly select N = 500 other “seed” vertices across the mesh of each Tarsius tooth374

and uniformly generate N -“null” regions that are K-vertices wide. Similar (null) scores τ1, . . . , τN are375

then computed for each randomly generated region. A “p-value”-like quantity (for the i-th molar) is then376

generated by following377

Pi =
1

N + 1

N∑
t=1

I(τ∗i ≤ τt), (5)378

where I(·) denotes an indicator function, and a smaller Pi can be interpreted as having more confidence379

in SINATRA’s ability to find the desired paraconid landmark. To ensure the robustness of this analysis,380

we generate the N -random null regions via one of two ways: (i) using a K-nearest neighbors (KNN)381

algorithm on each of the N -random seed vertices [48], or (ii) manually constructing K-vertex wide null382

regions such that they have surface areas equal to that of the paraconid ROI (SI Appendix Section 5).383

In both settings, we take the median of the Pi values in Equation (5) across all teeth, and report them384

for each genus and choice of K combination (see the first half of Table 1). Notedly, using p-values as a385

direct metric of evidence can be problematic. For example, moving from P = 0.03 to P = 0.01 does not386

increase evidence for the alternative hypothesis (or against the null hypothesis) by a factor of 3. To this387

end, a calibration formula has been provided that transforms a p-value to a bound/approximation of a388

Bayes factor (BF) [17], the ratio of the marginal likelihood under the alternative hypothesis H1 versus389

the null hypothesis H0, via the formula390

BF(Pi)10 = [−e Pi log(Pi)]
−1, (6)391

for Pi < 1/e and BF(Pi)10 is an estimate of Pr[H1 |M]/Pr(H0 |M), where M are the molars as meshes392

and H0 and H1 are the null and alternative hypotheses, respectively. Table 1 reports the calibrated Bayes393

factor estimates as well.394

Overall, we observe that the paraconid ROI is more strongly enriched in the comparisons between395

the Tarsius and either of the strepsirrhine primates, rather than for the Tarsius-Saimiri comparison.396

We suspect this difference is partly explained by the divergence times between these genera: Tarsius397

is more recently diverged from Saimiri than from the strepsirrhines. This conjecture is consistent with398

the intuition we developed in our simulation studies where classes of shapes with sufficiently different399

morphology result in more accurate identification of unique ROI. On the other hand, the Tarsius-Saimiri400

comparison is analogous to the simulations under to the null model: with the molars being too similar,401

no region appears key to explaining the variance between the two classes of primates.402
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Discussion403

In this paper, we introduce SINATRA: the first statistical pipeline for sub-image analysis that does not404

require landmarks or correspondence points between images. We state properties of SINATRA using405

simulations and illustrate the practical utility of SINATRA on real data. The current formulation and406

software for SINATRA is limited to the classification setting. Extending the model and algorithm to the407

regression setting with continuous responses is trivial. There are many evolutionary applications where408

adaptation and heredity must first be disentangled in the analyses of continuous traits and phenotypes.409

The standard approach for this is to explicitly account for the hierarchy of descent by adding genetic410

covariance or kinship across species to the likelihood either via phylogenetic regression [49] or linear411

mixed models (e.g. the animal model) [50]. Modeling covariance structures also arises in statistical and412

quantitative genetics applications where individuals are related [51–53]. The SINATRA framework uses413

a Bayesian hierarchical model that is straightforward to adapt to analyze complex covariance structures414

in future work.415

Acknowledgements416

The authors would like to thank Ani Eloyan, Anthea Monod, Jenny Tung, and Christine Wall for helpful417

conversations and suggestions. This research was partly supported by grants P20GM109035 (COBRE418

Center for Computational Biology of Human Disease; PI Rand) and P20GM103645 (COBRE Center for419

Central Nervous; PI Sanes) from the NIH NIGMS, 2U10CA180794-06 from the NIH NCI and the Dana420

Farber Cancer Institute (PIs Gray and Gatsonis), as well as by an Alfred P. Sloan Research Fellowship421

(No. FG-2019-11622) awarded to LC. A majority of this research was conducted using computational422

resources and services at the Center for Computation and Visualization (CCV), Brown University. SM423

would like to acknowledge partial funding from HFSP RGP005, NSF DMS 17-13012, NSF BCS 1552848,424

NSF DBI 1661386, NSF IIS 15-46331, NSF DMS 16-13261, as well as high-performance computing par-425

tially supported by grant 2016-IDG-1013 from the North Carolina Biotechnology Center. Any opinions,426

findings, and conclusions or recommendations expressed in this material are those of the author(s) and427

do not necessarily reflect the views of any of the funders.428

Author Contributions Statement429

LC conceived the study. SM and LC developed the methods. BW, TS, and HK developed the algorithms430

and implemented the software. DB designed sampling strategy for the molar analysis. All authors431

performed the analyses, interpreted the results, and wrote and revised the manuscript.432

Competing Financial Interests433

The authors have declared that no competing interests exist.434

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 14, 2019. ; https://doi.org/10.1101/701391doi: bioRxiv preprint 

https://doi.org/10.1101/701391
http://creativecommons.org/licenses/by-nc-nd/4.0/


11

Figures and Tables435
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Figure 1. Schematic overview of SINATRA: a novel statistical framework for feature
selection and association mapping with 3D shapes. (a) The SINATRA algorithm requires the
following inputs: (i) aligned shapes represented as meshes; (ii) y, a binary vector denoting shape classes;
(iii) r, the radius of the bounding sphere for the shapes; (iv) c, the number of cones of directions; (v) d,
the number of directions within each cone; (vi) θ, the cap radius used to generate directions in a cone;
and (vii) l, the number of sublevel sets (i.e. filtration steps) to compute the Euler characteristic (EC)
along a given direction. (b) We first select initial positions uniformly on a unit sphere. Then for each
position, we generate a cone of d directions within angle θ using Rodrigues’ rotation formula [54],
resulting in a total of m = c× d directions. For each direction, we compute EC curves with l sublevel
sets. We concatenate the EC curve along all the directions for each shape to form vectors of topological
features of length p = l ×m. Thus, for a study with n-shapes, an n× p design matrix is statistically
analyzed using a Gaussian process classification model. (c) Evidence of association for each topological
feature vector are determined using relative centrality measures. Using these measures, we reconstruct
corresponding shape regions by identifying the vertices (or locations) on the shape that correspond to
“statistically associated” topological features. (d) This enables us to visualize the enrichment of
physical features that best explain the variance between the two classes. The heatmaps display vertex
evidence potential on a scale from [0− 100]. A maximum of 100 represents the threshold at which the
first shape vertex is reconstructed, while 0 denotes the threshold when the last vertex is reconstructed.
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(f) Scenario III

Figure 2. Power analysis for detecting associated vertices across different classes of perturbed spheres. Here, we generate
100 shapes by partitioning unit spheres into 10 vertex-wide regions, centered at 50 equidistributed points. Two classes (50 shapes per
class) are defined by shared (blue protrusions) and class-specific (red indentations) characteristics. The shared or “non-associated”
features are chosen by randomly selecting u regions and pushing the sphere outward at each of these positions. This is done for all
shapes, regardless of class. To generate class-specific or “associated” features, v distinct regions are chosen for a given class and
perturbed inward. We vary these parameters and analyze three increasingly more difficult simulation scenarios: (a) u = 2 shared and
v = 1 associated; (b) u = 6 shared and v = 3 associated; and (c) u = 10 shared and v = 5 associated. In panels (d)-(f), ROC curves
depict the ability of SINATRA to identify vertices located within associated regions, as a function of increasing the number of cones of
directions used in the algorithm. These results give empirical evidence that seeing more of a shape (i.e. using more unique directions)
generally leads to an improved ability to map back onto associated regions. Other SINATRA parameters were fixed at the following:
d = 5 directions per cone, θ = 0.15 cap radius used to generate directions in a cone, and l = 30 sublevel sets per filtration. Results are
based on fifty replicates in each scenario.
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(i) Original Shape
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(iii) Reconstruction

(iii) Reconstruction
(a) Caricature Simulation Flowchart
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Figure 3. Power analysis for detecting associated vertices across different classes of
caricatured shapes. (a) Here, we modify real Lemuridae molars using the following caricaturization
procedure. (i) First, we fix the triangular mesh of an individual tooth. (ii) Next, we take expert-derived
landmarks for the tooth [10], and assign v of them to be specific to one class and v′ to be specific to the
other. The caricaturization is performed by multiplying each face within these regions by positive
scalars so that class-specific features are exaggerated. This is repeated twenty-five times (with some
small added noise) to create two equally-sized classes of 25 shapes. (iii) The synthetic shapes are
analyzed by SINATRA to identify the associated regions. We consider two scenarios by varying the
number of class-specific landmarks that determine the caricaturization in each class. In scenario I, we
set v, v′ = 3; and in scenario II, v, v′ = 5. In panels (b) and (c), ROC curves depict the ability of
SINATRA to identify vertices located within associated regions, as a function of increasing the number
of cones of directions used in the algorithm. Other SINATRA parameters were fixed at the following:
d = 5 directions per cone, θ = 0.15 cap radius used to generate directions in a cone, and l = 50 sublevel
sets per filtration. Results are based on fifty replicates in each scenario.
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Tarsius

Saimiri

Mirza

Microcebus

Haplorhini  

Strepsirrh
ini  

Platyrrhini  

(a) Associated Feature and Phylogenetic Relationship

(i) Tarsius vs. 
Saimiri

(ii) Tarsius vs. 
Mirza

(iii) Tarsius vs. 
Microcebus Evidence Scale

(b) Example of Reconstructions per Comparison

Figure 4. Real data analysis aimed at detecting unique paraconids in molars belonging to
primates in Tarsius genus. Here, we carry out three different pairwise comparisons where we
analyze the physical difference between Tarsius molars and teeth from (i) Saimiri, (ii) Mirza, and (iii)
Microcebus genus, respectively. In panel (a), we depict the phylogentic relationship between these
groups. Morphologically, we know that tarsier teeth have an additional high-cusp (highlighted in red),
which allows this genus of primate to reduce a wider range of foods [55]. The goal of this analysis is to
assess SINATRA’s ability to find this region of interest (ROI). In panel (b), we show an example of the
reconstruction resulting from each comparison. Intuition behind these results is consistent both with
the phylogeny of the primates, as well as with our previous simulation studies. Genetically, Tarsius
differ more from the Mirza and Microcebus genus, rather than from Saimiri. As a result, SINATRA is
powered to find the unique paraconid in the former two comparisons because of the appropriate genetic
distance, rather than in the latter case where molar structure is much more similar. The heatmaps
display vertex evidence potential on a scale from [0− 100]. A maximum of 100 represents the threshold
at which the first shape vertex is reconstructed, while 0 denotes the threshold when the last vertex is
reconstructed.
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Test Region Size Tarsius vs. Saimiri Tarsius vs. Mirza Tarsius vs. Microcebus

P
-V

a
lu
es

(P
)

KNN

10 4.75× 10−1 3.39× 10−1 2.14× 10−1

50 2.89× 10−1 2.10× 10−1 1.56× 10−1

100 2.14× 10−1 2.20 × 10−2 6.19 × 10−2

150 1.99× 10−1 1.80 × 10−2 6.59 × 10−2

200 2.22× 10−1 2.99 × 10−2 9.18 × 10−2

Equal-Area

10 3.21× 10−1 2.10× 10−1 1.84× 10−1

50 2.81× 10−1 1.72× 10−1 1.26× 10−1

100 2.40× 10−1 4.39 × 10−2 8.78 × 10−2

150 2.59× 10−1 3.79 × 10−2 8.18 × 10−2

200 2.55× 10−1 4.39 × 10−2 9.98 × 10−2

B
a
ye
s
F
a
ct
o
rs

(B
F
)

KNN

10 — 1.003 1.115

50 1.025 1.122 1.269

100 1.115 4.381 2.136

150 1.145 5.087 2.053

200 1.101 3.505 1.678

Equal-Area

10 1.009 1.122 1.181

50 1.031 1.215 1.409

100 1.074 2.681 1.722

150 1.051 3.016 1.796

200 1.055 2.681 1.599

Table 1. Null region experiment to evaluate SINATRA’s ability to find paraconids in
Tarsius molars. Here, the goal is to assess how likely it is that SINATRA finds the region of interest
(ROI) by chance. To do so, we first generate 500 “null” regions on each Tarsius tooth using (i) a KNN
algorithm and (ii) an equal-area approach (SI Appendix Section 5). Next, for each region, we sum the
evidence potential or “birth times” of all the vertices it contains. Then, we compare how many times
the aggregate scores for the ROI is less than those for the null regions. The median of these “p-values”,
and their corresponding calibrated Bayes factors (BF) when median P < 1/e, across all teeth are
provided above for the three primate comparisons. Results with values p-values less than 0.1 and BFs
greater than 1.598 are given in bold.
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