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6

Abstract7

We introduce a non-parametric method for unbiased cell population discovery in single-cell flow8

and mass cytometry that annotates cell populations with biologically interpretable phenotypes9

through a new procedure called Full Annotation Using Shape-constrained Trees (FAUST).10

We used FAUST to discover novel (and validate known) cell populations associated with11

treatment outcome across three cancer immunotherapy clinical trials. In a Merkel cell carcinoma12

anti-PD-1 trial, we detected a PD-1 expressing CD8+ T cell population – undetected both by13

manual gating and existing computational discovery approaches – in blood at baseline that was14

associated with outcome and correlated with PD-1 IHC and T cell clonality in the tumor. We also15

validated a previously reported cellular correlate in a melanoma trial, and detected it de novo16

in two independent trials. We show that FAUST’s phenotypic annotations enable cross-study17

data integration and multivariate analysis in the presence of heterogeneous data and diverse18

immunophenotyping staining panels, demonstrating FAUST is a powerful method for unbiased19

discovery in single-cell data.20

1 Introduction21

Cytometry is used throughout the biological sciences to interrogate the state of an individual’s22

immune system at a single-cell level. Modern instruments can measure approximately thirty (via23

fluorescence) or forty (via mass) protein markers per individual cell [1] and increasing throughput24

can quantify millions of cells per sample. In typical clinical trials, multiple biological samples are25

measured per subject in a longitudinal design. Consequently, a single clinical trial can produce26

hundreds of high-dimensional samples that together contain measurements on millions of cells.27

To analyze these data, cell sub-populations of interest must be identified within each sample.28

The manual process of identifying cell sub-populations is called “gating”. An investigator gates a29

single sample by sequentially inspecting bi-variate scatter plots of protein expression and grouping30

cells with similar expression profiles together. Each sample is gated according to the same scheme,31
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FAUST Method 3

and samples are usually compared on the basis of the frequencies of cells found within each cell32

sub-population.33

Manual gating introduces the potential for bias into cytometry data analysis [1, 2]. One source34

of bias is the choice of gating strategy, since it is fixed in advance and is only one of many possible35

strategies to identify a cell phenotype. A different strategy can lead to different gate placements36

and consequently different cell counts. A more serious source of bias arises from the fact that37

manual gating only identifies cell populations deemed important a-priori by the investigator. Since38

the number of possible populations grows exponentially with the number of measured protein39

markers, manual identification cannot be used to perform unbiased discovery and analysis on40

high-dimensional cytometry data: there are too many combinations of markers for a single person41

to consider.42

Researchers have developed numerous computational methods over the last decade to address43

manual gating’s limitations [3, 4]. Many such methods [4–7] have helped scientists interrogate44

the immune system in a variety of clinical settings [8, 9]. Despite these successes, computational45

approaches to gating face significant challenges of their own when applied to large experimental46

datasets. Similar to manual gating, methods often require that investigators either bound or47

specify the number of clusters (i.e., cell sub-populations) in a sample [5, 10], or know the relevant48

clusters in advance [11]. This information is generally not available in the discovery context. One49

recommended solution is to partition a dataset into a very large number of clusters in order50

to capture its main structure [12]. However, as observed in [13], when methods make strong51

assumptions about the distribution of protein measurements [14, 15], the structure captured by52

over-partitioning can reflect a method’s parametric assumptions rather than biological signal.53

Another challenge for many methods is that biologically equivalent clusters are given different,54

uninformative labels when samples are analyzed independently. In such cases, methods must55

provide a mechanism to match clusters across samples. One matching approach is to define a56

metric on the space of protein measurements to enable the quantification of cluster similarities57

across samples [16, 17]. However, as the dimensionality of the data increases, choosing an58

appropriate metric becomes more difficult due to sparsity [12]. A different approach is to59

concatenate experimental samples together and then cluster the combined data [6, 18, 19]. This60

approach can mask biological signal in the presence of batch effects or large sample-to-sample61
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variation in protein expression. It also introduces the risk that a method will fail to identify62

small-but-biologically-interesting clusters, since computational limitations lead many methods to63

recommend sub-sampling cells from each sample before combining the samples for analysis [7].64

In order to address these issues we have developed a non-parametric gating method for65

cytometry experiments named Full Annotation Using Shaped-constrained Trees (FAUST, Figure 1).66

FAUST defines cell sub-populations as modes of the joint-distribution of protein expression within67

each sample. Direct non-parametric estimation of the joint distribution is often computationally68

infeasible for cytometry data due to its dimensionality and throughput [20]. FAUST instead69

selects a subset of consistently well-separated protein markers using a novel depth score, bounds a70

standardized set of phenotypic regions containing modes of interest for the selected markers alone,71

and annotates those regions relative to data-derived annotation boundaries. By standardization,72

we mean that the number of regions is fixed across samples, but the location of the boundaries of73

those regions can vary from sample to sample. Consequently, FAUST clusters are annotated with74

biologically interpretable labels and each represents a cell sub-population with a homogeneous75

phenotype.76

FAUST’s standardization of phenotypic regions provides a common solution to three major77

challenges posed by sample- and batch-heterogeneity in cytometry experiments: cluster discovery,78

cluster matching, and cluster labeling. Since each discovered cluster is merely a collection of79

cells falling within a phenotypic region, FAUST can accommodate significant sample-to-sample80

heterogeneity. Similarly, since each region (and therefore each cluster) is assigned exactly one81

phenotypic label, the labels can be used to match clusters across samples and interpret the cell type82

of each cluster. An additional benefit of matching regions by phenotypic labels is robustness to83

sparsity since cell counts within a region can vary by orders of magnitude across samples. Here we84

apply the unbiased FAUST procedure to analyze data generated from three cancer immunotherapy85

clinical trials and demonstrate how our approach can be used to discover candidate biomarkers86

associated with outcome and perform cross-study analyses in the presence of heterogeneous87

marker panels.88
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Figure 1: Overview of FAUST. FAUST estimates annotation boundaries for an experimental unit.
An experimental unit is user defined and can be a sample, stimulation condition, subject, batch, or
site. This schematic overview of FAUST assumes the experimental unit is an individual sample
stained with a panel of cell markers as detected by cytometry. A) To estimate annotation bound-
aries, FAUST grows an exhaustive forest of 1-dimensional, depth-3 gating strategies, constrained
by shape: if, prior to depth-3, the cells in a node of the gating strategy have unimodal expression
along all markers, the gating strategy along that path terminates. B) Annotation boundaries are
estimated for markers within an experimental unit by averaging over gates drawn for that marker
over the entire annotation forest. A "depth score" (Methods 4.4) is derived for each marker and it
quantifies how well-gated the marker is in each experimental unit. The distribution of scores across
experimental units is used to determine whether a marker should be included in the discovery
process and to determine the number of annotation boundaries a marker should receive. C) This
procedure ensures that FAUST selects a standard set of markers for discovery and annotation as
well as a standard number of annotation boundaries per selected marker. D) For each experimental
unit, FAUST then relaxes the depth-3 constraint and conducts a search of 1-dimensional gating
strategies in order to discover and select phenotypes present in the experimental unit. Each
discovered phenotype is given a score that quantifies the homogeneity of cells in an experimental
unit with that phenotype; high-scoring phenotypes are then selected for annotation (Methods 4.8).
Each selected phenotype is annotated using all selected markers from step C), regardless of the
specific gating strategy that led to the phenotype’s discovery. E) FAUST returns an annotated
count matrix with counts of cells in each phenotypic region discovered and selected in step D)
that also survives down-selection by frequency of occurrence across experimental units.
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2 Results89

2.1 FAUST identifies baseline CD8+ T cells in blood that associate with out-90

come in CITN-09, a Merkel cell carcinoma anti-PD-1 trial91

We used FAUST to perform cell sub-population discovery in cytometry data generated from92

peripheral blood mononuclear cells (PBMCs) isolated from patients with Merkel cell carcinoma93

(MCC) receiving pembrolizumab on the Cancer Immunotherapy Trials Network (CITN) phase 294

clinical trial CITN-09 [21], with the goal of identifying baseline correlates of response to treatment95

(NCT02267603, see supplementary table S1). We analyzed 78 longitudinal samples stained with96

immunophenotyping panels to identify T cell subsets within whole blood (Methods 4.10). FAUST97

selected 10 markers for discovery and subsequently annotated 402 discovered cell sub-populations98

using these markers, corresponding to 94.8% of cells in the median sample. Of these, 238 had99

phenotypes that included a "CD3+" annotation. Since the panel was designed to investigate T100

cells, only these CD3+ sub-populations were used for downstream correlates analysis.101

Following [22], we used binomial generalized linear mixed models (GLMMs) to test each102

sub-population for differential abundance at the baseline time point (prior to receiving anti-103

PD-1 therapy) between responders and non-responders in 27 subjects (equation (4.5) specifies104

the model). We defined responders as subjects that exhibited either a complete (CR) or partial105

(PR) response (per RECIST1.1 [23]), and non-responders as subjects exhibiting progressive (PD) or106

stable (SD) disease. At an FDR-adjusted 5% level [24], four sub-populations were associated with107

response to therapy. Two had a CD28+ HLA-DR+ CD8+ annotation, with PD-1 dim (FDR-adjusted108

p-value: 0.022) or PD-1 bright (FDR-adjusted p-value: 0.030), respectively. The third had an109

HLA-DR- CD28+ CD4 bright PD-1 dim annotation (FDR-adjusted p-value: 0.022), while the fourth110

had an HLA-DR- CD28- CD4 bright PD-1 dim annotation (FDR-adjusted p-value: 0.027). The111

observed CD28+ phenotypes agree with published findings highlighting the importance of CD28112

expression in CD8+ T cells in anti-PD1 immunotherapy [25, 26]. Effect sizes with 95% confidence113

intervals for the correlates are reported in Supplementary Table A.6. Three of the four correlates114

were annotated CD45RA- and CCR7-, indicating they represented effector-memory T cells. The115

complete phenotypes are described in Figure 2.116

We inspected the primary flow cytometry data to confirm that the discovered population phe-117
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notypes matched the underlying protein expression. By plotting cluster densities against samples118

(Figure 2A), we observed that the FAUST annotations accurately described the observed cellular119

phenotypes in these sub-populations. We also visualized these data using UMAP embeddings [27]120

with "qualitative" parameter settings [28] (Figure 2B,C). We observed FAUST clusters were not121

typically separated into disjoint "islands" in the UMAP embedding (Figure 2C), and that single122

UMAP "islands" contained significant variation in expression of some of the measured protein123

markers (Figure 2B). Taken together, these observations demonstrate that visualizations derived124

via dimensionality reduction (here, UMAP) do not necessarily reflect all variation measured in125

the underlying protein data, and that any method that solely relies on UMAP for population126

discovery would likely miss these sub-populations.127
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Figure 2: FAUST annotations reflect underlying protein expression not captured by dimension-
ality reduction. A) In a baseline responder’s sample, the densities of per-marker fluorescence
intensity for cells in the four correlates (different colors) as well as the entire collection of live
lymphocytes in the sample (gray) are compared. Cells used in density calculations are marked
by tick marks and demonstrate that differences in cluster annotations reflect strict expression
differences in the underlying data. B) A UMAP embedding computed from the same sample
as panel A using the ten stated protein markers. All cells in the sample were used to compute
the embedding. The embedding is colored by the relative intensity of observed PD-1 expression,
windsorized at the 1st and 99th percentile, and scaled to the unit interval. A random subset
of 10,000 cells is displayed from 233,736 cells in the sample together with the complete set of
61 CD8+ PD-1 dim cells, 176 CD8+ PD-1 bright cells, 450 CD45RA- CD4 bright PD-1 dim cells,
and 76 CD45RA+ CD4 bright PD-1 dim cells. C) The same UMAP embedding highlighting the
location of the cells from the four discovered sub-populations. FAUST annotations are listed in
depth-score order (Methods 4.4), from highest depth score to lowest. The sub-populations are
annotated by FAUST as: CD4 bright CD3+ CD8- CD45RA- HLA-DR- CD28+ PD-1 dim CD25-
CD127- CCR7- (yellow cells in solid red box); CD4- CD3+ CD8+ CD45RA- HLA-DR+ CD28+
PD-1 bright CD25- CD127- CCR7- (orange cells in dashed blue box); CD4- CD3+ CD8+ CD45RA-
HLA-DR+ CD28+ PD-1 dim CD25- CD127- CCR7- (purple cells in dashed blue box); CD4 bright
CD3+ CD8- CD45RA+ HLA-DR- CD28- PD-1 dim CD25- CD127+ CCR7+ (dark blue in dotted
green box).

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 13, 2019. ; https://doi.org/10.1101/702118doi: bioRxiv preprint 

https://doi.org/10.1101/702118
http://creativecommons.org/licenses/by-nc-nd/4.0/


FAUST Method 9

Reports that CD8 T cells co-expressing HLA-DR and CD28 can exhibit anti-viral properties [29],128

as well as reports of CD28 dependent rescue of exhausted CD8 T cells by anti-PD1 therapies in129

mice [26], led us to investigate the association between the abundance of the therapeutic-response-130

associated sub-populations discovered by FAUST and tumor viral status of each subject, as MCC131

is a viral-associated malignancy. We adapted the differential abundance GLMM to test for an132

interaction between response to therapy and tumor viral status in the four cell sub-populations133

discovered and annotated by FAUST. This interaction was statistically significant for both CD8+134

correlates. The observed interaction p-value of 0.026 for the CD8+ PD-1 dim correlate (Figure 3A)135

suggested that these T cells may be particularly relevant in subjects with virus-positive tumors.136

In order to further investigate the relevance of these T cells measured in blood, we examined137

published data on PD-1 immunohistochemistry (IHC) staining in tumor biopsies from the same138

patients (described in [30]). Importantly, the in-tumor PD-1 measurement is a known outcome139

correlate in MCC [30]. Limited overlap between the assays resulted in only five subjects where140

both flow cytometry and tumor biopsy anti-PD-1 IHC staining were available, and only four of141

these were virus-positive. Nonetheless, the frequencies of the CD8+ PD-1 dim T cells were strongly142

correlated (r = 0.945) with the PD-1 total IHC measurements within the four virus-positive143

subjects (Figure 3B).144

We also examined published TCR clonality data generated from patient tumor samples,145

described in [31]. Ten subjects passing clonality QC were common to the two datasets, six of which146

were virus positive. Frequencies of the FAUST populations within these six subjects were strongly147

correlated (r = 0.952) with the measurement of productive clonality (Figure 3C). Normalizing the148

correlate cell counts by the total number of CD3+ annotated FAUST sub-populations (i.e., total T149

cells, the recommended normalization constant for T cell clonality) instead of total lymphocyte150

count produced an observed correlation of r = 0.972 (Supplementary Figure S1). Together,151

these results led us to hypothesize that the CD8+ T cell correlate discovered by FAUST in152

blood represents a circulating population of tumor-associated virus-specific T cells that are also153

detectable in the tumor and whose presence in the tumor is known to correlate with outcome.154

Due to the small sample size, this hypothesis must be confirmed on an independent, larger set155

of patient samples. However, our results demonstrate that FAUST discovers and annotates cell156

sub-populations that are immunologically plausible, suggest a testable hypothesis for follow-up157
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experimentation, and potentially have clinical utility.158
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Figure 3: A CD8+ PD-1 dim CD28+ HLA-DR+ T cell sub-population discovered and anno-
tated by FAUST is associated with outcome in virus positive subjects and with independent
measurements of PD-1 and T cell clonality in the tumor. A) Boxplots of the abundance of the
CD8+ PD-1 dim CD28+ HLA-DR+ T cell outcome correlate discovered by FAUST, stratified by
subjects’ response to therapy (FDR adjusted p-value contrasting all responders (n = 18) vs all
non-responders (n = 9): 0.022) and their viral status (unadjusted p-value of interaction: 0.026). B)
The abundance of the CD8+ PD-1 dim CD28+ HLA-DR+ T cell correlate among virus positive
subjects against total PD-1 expression measured by IHC from tumor biopsies as described in
[30], with observed correlation in virus positive subjects (n=4) of 0.942. C) The abundance of
the CD8+ PD-1 dim CD28+ HLA-DR+ T cell correlate among virus positive subjects plotted
against productive clonality (1- normalized entropy) from tumor samples as described in [31], with
observed correlation in virus positive subjects (n=6) of 0.959. Supplementary Figure S2 displays
the remaining correlates.
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2.2 FAUST sub-populations capture underlying biological and technical sig-159

nals in longitudinal studies160

Consistently identifying and annotating cell populations that are missing across a subset of samples161

is a significant challenge in computational cytometry analysis [32]. To demonstrate how FAUST’s162

phenotypic standardization can address this issue we examined the longitudinal profiles of specific163

cell sub-populations in the MCC anti-PD-1 trial for which we expected longitudinal changes in164

the abundance of these populations due to known technical effects. In the MCC anti-PD-1 trial,165

we examined all CD8+ T cells with the PD-1-bright phenotype. The temporal abundance of these166

cells is shown in (Figure 4A) and reveals that these cells are not detectable in most samples after167

subjects have received pembrolizumab therapy, presumably from pembrolizumab blocking the168

detecting antibody. This is consistent with the expected behavior of anti-PD-1 as observed in other169

trials run within the CITN (data not shown).170

We also analyzed flow cytometry data from a second CITN trial: CITN-07 (NCT02129075, see171

supplementary table S1 for trial data), a randomized phase II trial studying immune responses172

against a DEC-205/NY-ESO-1 fusion protein (CDX-1401) and a neoantigen-based melanoma173

vaccine plus poly-ICLC when delivered with or without recombinant FLT3 ligand (CDX-301)174

in treating patient with stage IIB to stage IV melanoma. The cytometry data consisted of fresh175

whole blood stained for myeloid cell phenotyping (Methods 4.12). Here, FAUST discovered176

and annotated 132 cell sub-populations using 10 markers (selected by depth-score), assigning177

phenotypic labels to 93.2% of cells in the median sample.178

In the FLT3-Ligand + therapeutic Vx trial we expected to observe expansion of dendritic cells179

in response to FLT3-L stimulation [33]. Examination of the longitudinal profile of clusters with180

phenotypic annotations consistent with dendritic cells (Figure 4B) revealed dynamic expansion181

and contraction of the total DC compartment in the FLT3-L stimulated cohort but not in the182

unstimulated-by-FLT3-L-pre-treatment cohort. The expansion peaked at day 8 after FLT3-L183

simulation in cycles 1 and 2. This dynamic is consistent with observations from manual gating184

of the DC population [34], the expected biological effect of FLT3-L [33], and the timing of FLT3185

administration.186

These results demonstrate that FAUST is able to detect, annotate, and correctly assign abun-187

dance to cell sub-populations, including those that are missing in some samples. The longitudinal188
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behavior of PD-1 bright T cell populations in the MCC anti-PD-1 trial and the dendritic cells in189

the FLT3 ligand + CDX-1401 trial are consistent with manual gating of cytometry data and serve190

as an internal validation of the methodology.191

Figure 4: The longitudinal profiles of aggregated FAUST cell populations in a pembrolizumab
therapy trial and a FLT3-L + CDX-1401 trial. A) The aggregated frequency of all CD8+ PD-1-
bright T-cell populations found by FAUST across all time points. B) The longitudinal profiles of all
cell sub-populations with phenotypes consistent with the DC compartment: CD19-, CD3-, CD56-,
HLA-DR+, CD14- CD16- and CD11C+/-. Light colored lines show individual subjects. The dark
line shows the median across subjects over time. Error bars show the 95% confidence intervals of
median estimate at each time point. Cohort 1 (n=16 subjects), cohort 2 (n=16 subjects).

2.3 FAUST identifies phenotypically similar myeloid sub-populations associ-192

ated with clinical response across multiple cancer immunotherapy trials193

Both the MCC anti-PD-1 and FLT3-L + therapeutic Vx trials had cytometry datasets stained with194

a myeloid phenotyping panel. We selected two additional myeloid phenotyping datasets (one195

CyTOF discovery and one FACS validation assay) from a previously-published anti-PD-1 trial in196

metastatic melanoma [8]. We will refer to these as the melanoma anti-PD-1 FACS and melanoma197

anti-PD-1 CyTOF datasets. In each study, a different staining panel was used to interrogate the198

myeloid compartment. Details of the FAUST analysis of these data are provided in Methods 4.199

A principal finding of the published analysis of the melanoma anti-PD-1 trial was that the200
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frequency of CD14+ CD16- HLA-DRhi cells was associated with response to therapy. In all four201

datasets FAUST identified cell sub-populations associated with clinical outcome at baseline (FDR-202

adjusted 5% level, using binomial GLMMs to test for differential abundance) whose phenotype203

was consistent with the previously-published CD14+ CD16- HLA-DRhi phenotype (Figure 5A-D).204

Complete phenotypes, effect sizes and confidence intervals for the myeloid baseline predictors205

discovered in the MCC anti-PD-1 myeloid phenotyping data are in Supplementary Table S2; those206

discovered in the FLT3-L + therapeutic Vx trial are in Supplementary Table S3. These results207

demonstrate the power of our approach to detect candidate biomarkers in a robust manner across208

different platforms, staining panels, and experimental designs.209
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Figure 5: FAUST consistently discovers CD14+CD16-HLADR+ monocytes associated with
outcome at baseline across immunotherapy trials. A) The baseline outcome-associated sub-
population discovered by FAUST in the MCC anti-PD-1 trial myeloid data (n=15, 10 Responders,
5 Non-Responders). The full FAUST annotation for the sub-population was CD33 bright CD16-
CD15- HLA-DR bright CD14+ CD3- CD11B+ CD20- CD19- CD56- CD11C+. B) The baseline
outcome-associated sub-population discovered by FAUST in the FLT3-L therapeutic Vx trial
myeloid data (n=32, 18 No Recurrence, 14 Recurrence). The full FAUST annotation for the sub-
population was CD8- CD3- HLA-DR+ CD4- CD19- CD14+ CD11C+ CD123- CD16- CD56-. C) The
baseline outcome-associated sub-population found by FAUST from the re-analysis of the Krieg
CyTOF panel 03 (stratified by batch) (n=19, 10 Responder, 9 Non-Responder). The full FAUST
annotation for the sub-population was CD16- CD14+ CD11B+ CD11C+ ICAM1+ CD62L- CD33+
PDL1+ CD7- CD56- HLA-DR+. D) The baseline outcome-associated sub-population found by
FAUST from the re-analysis of the Krieg FACS validation data (n=31, 16 Responder, 15 Non-
Responder). The full FAUST annotation for the sub-population was CD3- CD4+ HLA-DR+ CD19-
CD14+ CD11B+ CD56- CD16- CD45RO+.
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2.4 FAUST enables cross-study comparisons between different marker panels210

FAUST annotations make it possible to test hypotheses involving prior biological knowledge of211

hierarchical relationships among cell types. By jointly modeling those annotated populations212

related through biological hierarchy, we are able to account for their dependence structure when213

conducting secondary tests of interests. This is analogous to the techniques used to perform gene214

set enrichment analysis in gene expression data [35]. We contrast this approach against aggregating215

(i.e., summing) cell sub-population counts on the basis of their common annotations to derive216

ancestral populations that resemble those obtained by manual gating, which we hypothesized can217

obscure interesting signals in the data.218

To demonstrate this we tested each of four different myeloid sub-compartments for association219

with outcome at baseline in each of the three trials which used heterogeneous marker panels.220

We used the FAUST annotations to define membership in the myeloid compartment (described221

below), excluding the Krieg CyTOF dataset since 10 of 19 baseline samples had fewer than 1500222

total cells. All FAUST sub-populations that were annotated as lineage negative (CD3-, CD56-,223

CD19-) and expressing HLA-DR (either dim or bright) were selected as part of the myeloid224

compartment. We further defined myeloid sub-compartments in terms of a sub-population’s CD14225

and CD16 expression, with CD14- CD16- cells defined as dendritic cells, and other combinations226

as double-positive, CD14+, or CD16+ monocytes, respectively.227

We fit two models to each dataset. First, a multivariate model of all candidate cell sub-228

populations was fit (Methods 4.15), and the cell sub-populations’ model coefficients were ag-229

gregated over each sub-compartment to test for increased abundance in responders vs. non-230

responders at baseline. This model represents the cell population analog of gene set enrichment231

analysis. Second, a univariate model was fit to cell counts derived by summing over each myeloid232

sub-compartment (Methods 4.16), producing a single coefficient to test for increased abundance in233

responders vs. non-responders at baseline. This represents the modeling approach one would un-234

dertake if the myeloid sub-compartments were defined using a manual gating strategy. One-sided235

99% confidence intervals (Bonferroni-adjusted 95% CIs) were computed for all tests.236

Using the aggregate model, we only observed significantly increased abundance of the237

CD14+CD16- sub-compartment among responders (Figure 6A) in the melanoma anti-PD-1 trial238

FACS dataset, a finding consistent with the authors’ validation analysis [8]. We did not observe239
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significantly increased abundance in either CITN trial dataset using the aggregate model. However,240

using the multivariate model, we observed significantly increased abundance in the CD14+CD16-241

monocyte sub-compartment across all datasets (Figure 6A).242

These results suggested that sub-populations defined by manual gating may not exhibit243

significant differential abundance when they don’t capture all the heterogeneity in a cell population244

measured in the dataset. To test this, we used the binomial model (Methods 4.12) to model all cell245

population counts derived in 32 baseline samples from the CD45+ sub-populations defined by246

manual gating in CITN-07 (Supplementary Table S7), and did not detect an association between the247

CD14, mDC, or pDC sub-populations and non-recurrence at the FDR-adjusted 5% level. Similarly,248

we did not identify statistically significant correlates of outcome in the MCC anti-PD-1 trial when249

we fit our binomial model (Methods 4.10) to counts derived from populations identified by the250

manual gating strategy in the 27 baseline T cell samples (Supplementary Table S5).251

In contrast, the multivariate model also detected a significant association between outcome and252

increased abundance in the CD14-CD16- dendritic cell sub-compartment (Figure 6B) in the two253

CITN trials, consistent with our analysis of baseline predictors in those trials. We did not detect254

such an association in the DC sub-compartment in the Melanoma anti-PD1 trial. Since both the255

CITN trials used fresh blood samples for analysis while the latter used frozen PBMC samples [8],256

we hypothesize the observed differences in modeling outcomes is due to cryopreservation status,257

a hypothesis supported by studies [36, 37] that examine the differential effect of cryopreservation258

on monocytes and DCs, respectively. This multivariate modeling approach demonstrates how259

FAUST can enable cross-study data integration and analysis even in the presence of heterogeneous260

staining panels.261
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Figure 6: Standardized annotation of clusters enables cross-study meta-analysis of datasets
stained with disparate marker panels. Differential abundance between responders and non-
responders across the different sub-compartments was tested by aggregating model coefficients
(analogous to meta-analysis over cell sub-populations in a sub-compartment) from a multivariate
GLMM and by univariate modeling of aggregated cell counts. One-sided, 99% (Bonferroni-
adjusted) confidence intervals for increased abundance in responders vs. non-responders are
displayed for each sub-compartment in each dataset. In all modeling scenarios, when the whisker
of a forest-plot line crosses the vertical red-line at 1, this indicates the increased odds in the
responders vs non-responders are not statistically significant at the Bonferonni-adjusted level.
A) Cells in the CD14+ CD16- HLA-DR+ sub-compartment were found to be significantly more
abundant in responders than non-responders in all datasets tested using the multivariate modeling
approach. In the univariate modeling of aggregate cell counts, the CD14+ CD16- HLA-DR+ sub-
compartment was only significant in the melanoma anti-PD-1 FACS dataset, consistent with the
authors’ published findings. The x-axis can be interpreted as the odds increase in the probability
of observing more cells in the responders than the non-responders in the compartment. B) Cells
in the CD14- CD16- HLA-DR+ sub-compartment were found to be significantly more abundant in
responders than non-responders in the two CITN datasets tested using the multivariate modeling
approach. We hypothesize that the observed difference between the CITN trials and the melanoma
anti-PD-1 trial is explained by cryopreservation in the latter trial, since it has been reported
that cryopreservation affects the relative abundance of pDCs and mDCs [37], but does not
affect monocyte function [36]. See supplementary Information A.12 for results from the other
compartments.
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2.5 FAUST is robust to different data generating processes262

We re-analyzed the MCC anti-PD-1 T cell dataset described in section 2.1 with the clustering263

methods densityCut [38], FlowSOM [5], Phenograph [39], and FAUST. For all non-FAUST methods,264

we set tuning parameters to the settings reported in [4] when possible. Among all compared265

methods, FAUST was the only method to discover baseline T cell subsets associated with response266

to therapy at the FDR-adjusted 5% level (Supplementary Section A.7).267

We also conducted a simulation study that simulated the discovery process in cytometry data268

analysis by inducing a differentially abundant population associated with a simulated response to269

therapy, in datasets generated from a variety of mixture models (Supplementary Section A.13).270

We compared FAUST to FlowSOM in this study since FlowSOM is computationally efficient, is271

recommended in the review [4], and is used in the diffCyt method [18]. Across simulation settings,272

we found that FAUST consistently performed the discovery task well, while FlowSOM’s discovery273

performance was adversely affected by departures from normality combined with simulated batch274

effects and nuisance variables.This study confirms our empirical finding that FAUST robustly275

detects signals in data that are not found by other discovery methods.276

3 Discussion277

We applied FAUST to five datasets (CyTOF and flow) from three independent immunotherapy tri-278

als. Across these trials, FAUST discovered cell sub-populations and labeled them with annotations279

that are generally consistent with previous manual gating of the cytometry data (when aggregated280

by appropriate annotation) as well as with the known biological context, strongly supporting this281

novel unbiased approach.282

We found FAUST discovered cell populations associated with clinical outcome in the analyzed283

datasets that are missed by other methods. Notably, manual gating did not identify statistically284

significant correlates of outcome in the MCC anti-PD-1 baseline T cell data. The multivariate285

analyses (Section 2.4) found that only some fully-annotated sub-populations exhibit differential286

abundance (captured by the individual model coefficients), differences that can be obscured287

when the cell counts are aggregated for a single test. Since aggregation produces clusters that288

are similar to those obtained by standard manual gating, the aggregate models suggest two289
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ways that manual analysis can fail to uncover signal present in a dataset. Manual analysis may290

not gate out sub-populations that differ between conditions (due to bias), or may incompletely291

describe the heterogeneity of protein expression in the gated cell populations. Both occurred in292

the CITN datasets: in the MCC anti-PD-1 trial, neither HLA-DR+CD14+CD16- monocytes nor293

HLA-DR+CD14-CD16- DCs were manually gated (Supplementary Table S6), since the manual294

gating strategy was designed to interrogate MDSCs in the subjects. In the FLT3-L trial, CD14+,295

mDCs, and pDCs were manually gated, but a differential signal at the FDR-adjusted 5% level was296

not detected at baseline.297

In contrast, the unbiased approach taken by FAUST leads it to conduct an exhaustive search of298

(methodologically constrained) gating strategies in order to estimate the location of annotation299

boundaries for markers in each sample. When FAUST is applied to a heterogeneous population of300

cells (e.g. live lymphocytes which contain T cells, B cells, monocytes, etc.), this means FAUST uses301

information from many different cell types to estimate sample-specific annotation boundaries for302

each marker it selects. FAUST goes on to use these boundaries to annotate the sub-populations it303

subsequently discovers in each sample. In consequence, FAUST produces annotations that describe304

the protein expression of each discovered sub-population relative to the starting population of305

cells in the sample, and differs in kind from the standard paradigm of following a path in a single306

gating strategy to arrive at a phenotype. We hypothesize it is these methodological characteristics –307

as well as its pervasive use of non-parametric statistical methods – that explain FAUST’s discovery308

performance relative to manual gating on the analyzed datasets.309

The sub-populations discovered by FAUST are consistent with their immunological context310

and recent literature. The PD-1 dim CD28+ T cell sub-population identified in the MCC anti-PD-1311

trial may represent virus specific T cells as evidenced by their correlation with T cell clonality312

measurements from the tumor biopsy (Figure 3C). This further accords with literature that313

highlights the role of CD28 in anti-PD-1 immunotherapy, which reports CD28 signaling disrupted314

by PD-1 impairs T cell function [25]. It has also been reported that, following PD-1 blockade,315

CD28 is necessary for CD8 T cell proliferation [26]. The sub-populations are also consistent with316

reports that certain PD-1int CD8+ T cells are responsible for viral control in mice [40] after PD-1317

blockade [41]. Taken together with our findings, the PD-1 dim CD28+ T cell sub-population may318

have prognostic value in MCC subjects with virus-positive tumors, though we emphasize this319
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hypothesis requires further validation in an independent cohort. Supporting this assertion is the320

surprisingly strong correlation between the T cell frequency and anti-PD-1 IHC measured from321

the tumor where the latter is a known prognostic marker. Although this evidence is tempered by322

small sample size, its strength warrants further investigation. The consistent detection of myeloid323

sub-populations with a CD14+CD16-HLA-DR+ phenotype across four different datasets from324

three independent trials spanning different cancer types and therapies strongly suggests that325

FAUST is detecting real biological signals in the analyzed datasets.326

As with any computational method, FAUST has tuning parameters that need to be adjusted327

to analyze real experimental data. These parameters are described in section 4.9, and in our328

view are uniquely interpretable among computational methods since they affect how FAUST329

processes 1-dimensional density estimates. Our results demonstrate that FAUST can consistently330

detect immunologically-plausible candidate biomarkers from measurements made in blood using331

a simple, well-understood assay. Many large experimental flow cytometry datasets already exist,332

and FAUST has the potential for the productive re-analysis and meta-analysis of such data.333

4 Methods334

4.1 FAUST method: underlying statistical model335

FAUST assumes the following criteria are met in a cytometry experiment consisting of n experi-336

mental units Ei, 1  i  n.337

Assumption 1. Each sample in the cytometry experiment has been compensated (as needed) as well as338

pre-gated to remove debris and dead cells.339

If pre-gating has not been performed by an investigator, computational methods [42, 43] can340

be used before applying FAUST to cytometry data in order to guarantee this assumption is met.341

Assumption 2. In each sample, measurements on the live cells are made using a common set of p342

transformed protein markers.343

Let ni denote the number of events in the ith experimental unit. FAUST supposes each event

Ei,j in an experimental unit Ei, of dimension p (the number of markers), arises as a sample from a
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finite mixture model

Ei,j ⇠
M

Â
m=1

wm · fm,i(x) , (4.1)

for 1  j  ni, with M 2 N, 0  wm  1 and ÂM
m=1 wm = 1 for all 1  i  n. FAUST assumes the

mixture components fm,i of an experimental unit in (4.1) belong to the class of densities on the

space of protein measurements

Fi ⌘
⇢

fm,i 9 lm,i 2 Rk, sm,i 2 R such that
fm,i + lm,i

sm,i
2 F 8 1  m  M

�
(4.2)

for each experimental unit i, with the common class F is defined as

F ⌘ { fm f is unimodal along all margins} . (4.3)

(4.2) expresses the fundamental modeling assumption: each mixture (4.1) that generates an344

experimental unit consists of a common set of densities (4.3), with unit-specific changes to location345

(the translations lm,i) and scale (the scalar multiples sm,i) of the component densities. These unit-346

specific modifications represent technical and biological effects. We emphasize that we only assume347

marginal unimodality for the f in (4.3), but make no assumptions about the joint-distribution of348

these densities.349

4.2 FAUST method: overview350

FAUST is designed to perform independent approximate modal clustering of each mixture (4.1) in351

each experimental unit. Its approximation strategy is to use 1-dimensional densities to grow an352

exhaustive forest of gating strategies (section 4.3), from which it estimates a standardized set of353

annotation boundaries for all markers in a mixture, which exhibit 1-dimensional multimodality354

either marginally or across a large number of conditional 1-dimensional density estimates. An-355

notation boundaries are estimated (section 4.5) by taking a weighted average of marginal and356

conditional 1-dimensional antimodes for a marker that FAUST selects, using a score (section 4.4)357

that quantifies if the marker has persistent multimodality in the experimental unit. FAUST also358

uses the distribution of the depth score across units to select a subset of markers to use for cluster359
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discovery and annotation (section 4.6).360

FAUST defines a cluster as a subset of events in an experimental unit that fall inside either a361

conical or hyper-rectangular region bounded by the Cartesian product of the standardized set of362

annotation boundaries. FAUST discovers cluster phenotypes by growing a forest of partition trees363

for each experimental unit (trees are grown at random, following a strategy related to growing the364

annotation forest), and locating a sub-collection of homogeneous leaf nodes in the forest relative365

to the standardized phenotypic boundaries (section 4.8). FAUST collects a list of phenotypes366

discovered in each experimental unit and counts how often each phenotype appears across the367

set of lists. If a phenotype exceeds a user-specified filtering threshold, FAUST will annotate that368

cluster in each experimental unit relative to the standardized annotation boundaries. Intuitively,369

each annotation is a pointer to a modal region of each experimental unit’s mixture distribution.370

FAUST concludes by deriving a count matrix, with each row corresponding to a sample in the371

experiment, each column an annotated cluster, and each entry the cell count corresponding to the372

annotated cluster in the sample.373

4.3 FAUST method: growing the annotation forest374

For all markers in a sample, all cells for each marker are tested for unimodality using the dip test375

[44]. The hypothesis of unimodality is rejected for any marker that has dip test p-values below376

0.25. All markers which are deemed multimodal according to this dip criterion are then used377

to start gating strategies. Gate locations for each strategy are determined using the taut string378

density estimator [45]. The location of each gate is the mid-point of any anti-modal component of379

the taut string. Since the taut string makes no assumptions about the number of modes present in380

a density, in principle this approach can lead to estimating an arbitrary number of gates in a given381

strategy. In practice, we only pursue strategies containing 4 or fewer gates under the assumption382

that marker expression of 5 expression categories does not reflect biological signal.383

Once the initial set of gates are computed for a given marker, events are divided into sub-384

collections relative to the gates for that marker and the procedure recurses and repeats along each385

sub-collection. Algorithm 1 gives an overview of the procedure. A gating strategy terminates386

when it meets any of the following stopping conditions. First, once a strategy involves any three387

combinations of markers, it terminates. This is because the space of gating strategies grows388
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factorially with the number of markers. Due to this growth rate, nodes in the forest are penalized389

factorially relative to their depth in the gating strategy when we subsequently compute the depth390

score. Second, if at any point in a strategy FAUST fails to reject the null hypothesis of unimodality391

for all tested markers, the strategy terminates regardless of depth. Finally, a gating strategy392

terminates along a branch if all nodes along the branch contain too few cells. The algorithm393

displayed here assumes event measurements are distinct in the cytometry dataset, and all nodes394

in the forest contain in excess of 500 events. For details of how FAUST breaks ties and deals with395

nodes containing between 25 and 500 events, we refer the reader to [46].396

Algorithm 1 Grow Annotation Forest

1: function growAnnotationForest(currentCells, currentDepth, activeMarkers)
2: if (length(currentCells) < 500) or (currentDepth > 3) then
3: return strategy . Gating strategy stops due to depth, event constraints.
4: else
5: currentDepth currentDepth + 1
6: multimodalList empty list
7: for markerIndex 2 (columns(expressionMatrix)\ activeMarkers) do
8: if pValue(dipTest(expressionMatrix[currentCells,markerIndex])) < 0.25 then
9: append(multimodalList, markerIndex)

10: if length(multimodalList) == 0 then
11: return strategy . Gating strategy stops due to shape constraint.
12: else
13: for markerIndex in multimodalList do
14: boundaryList empty list
15: Compute taut string density estimate of expressionMatrix[currentCells,markerIndex]
16: boundaryList mid-points of antimodal components of taut string
17: remainingMarkers activeMarkers \ markerIndex
18: for i in [1,length(boundaryList)] do
19: lg boundaryList[(i-1)]
20: ug boundaryList[i]
21: newCells rows of expressionMatrix[currentCells,markerIndex] between lg and ug
22: growAnnotationForest(newCells, currentDepth,remainingMarkers)

4.4 FAUST method: depth score computation397

Suppose there are p > 1 active markers in a sample. To compute the depth score for any of the398

p markers, the annotation forest is first examined to determine the following quantities: d1, the399

number of times different markers are gated in the root population; d2, the number of times400

children of the root are gated; and d3 the number of times grandchildren of the root are gated. For401
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i 2 {1, 2, 3} define402

di ⌘
1
di

.

For 1  m  p, let403

Nm ⌘ {Nm,1, Nm,2, . . . , Nm,n}

be the set of all n parent nodes in the annotation forest for which the null hypothesis of unimodality404

is rejected for marker m. For a parent node 1  j  n, let 1R denote the indicator function that is 1405

when Nm,j is the root population. Similarly, let 1C denote an indicator of a child of the root, and406

1G a grandchild of the root. Define the scoring function407

Q(Nm,j) ⌘ (1� aR)1R(Nm,j) + (1� aR)(1� aC)1C(Nm,j) + (1� aR)(1� aC)(1� aG)1G(Nm,j) ,

where, abusing notation, we let408

aR ⌘ aR(Nm,j) ⌘ the dip test p-value in the root population of the gating strategy that led to Nm,j .

We allow aC and aG to be defined similarly. The function Q can be interpreted as a measure of the409

quality of the gating strategy that led to node Nm,j. In the case of a grandchild node that had clear410

modal separation along all markers in the strategy, Q(Nm,j) ⇡ 1, while a grandchild node that411

had p-values of 0.25 at each ancestral node, Q(Nm,j) ⇡ 27/64 = 0.753.412

Let Pm be the population size for marker m in the root population. Next define413

P(Nm,j) ⌘
# of cells in node Nm,j

Pm
.

Finally, define414

D(Nm,j) ⌘ d1 · 1R(Nm,j) + d2 · 1C(Nm,j) + d3 · 1G(Nm,j) .

The depth score is defined to be the normalized sum415

DS(Nm) ⌘
Ân

i=1 Q(Nm,i) · P(Nm,i) · D(Nm,j)

max1qp DS(Nq)
⌘ Ân

i=1 w(Nm,i)

max1qp DS(Nq)
. (4.4)

The depth score maps Nm into [0, 1], with at least one marker in a gated sample achieving416
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the maximal score of 1. This is taken as a measure of separation quality: the best scoring marker417

according to the depth score is taken to be the best separated marker in that sample at the root418

population, and conditionally along all other gating strategies. Normalizing to the unit interval419

allows depth scores to be compared across experimental units for given markers. By using the420

factorial weights di, the depth score also explains why FAUST only explores gating strategies421

involving, at most, combinations of three markers in its scoring and marker selection phase.422

Adding more combinations of markers induces a factorial increase in computational cost. But any423

marker that enters a gating strategy at depth 4 (or beyond) will be dominated in depth score by424

those markers initially gated in the annotation forest at or near the root population. Consequently,425

after normalization in experiments with a large number of markers, such markers have depth426

score an e above zero, and are effectively never selected by FAUST for discovery and annotation.427

Hence the restriction to 3-marker gating strategies.428

4.5 FAUST method: annotation boundary estimation429

The depth score is also used to estimate annotation boundaries. Recalling FAUST only explores430

gating strategies with 4 or fewer annotation boundaries, FAUST partitions the set431

Nm = G1 [ G2 [ G3 [ G4 .

Define432

G1 ⌘ {Nm,i 2 Nm Nm,i has a single gate determined by the taut string} .

G2,G3, and G4 are defined similarly. In other words each Gi is the subset of nodes in the annotation433

forest for marker m i gates. Recalling (4.4), we can partition the score sum434

n

Â
i=1

w(Nm,i) =
4

Â
j=1

Â
N2Gj

w(N) .

FAUST selects the number of annotation boundaries for the marker m by choosing the set Gj with435

the maximal sum ÂN2Gj
w(N). Letting g1(Nm,j) denote the smallest gate location estimated by436

the taut string in node Nm,j (which is the only gate location if FAUST selects G1), FAUST estimates437
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the phenotypic boundary locations for the marker by taking the weighted average438

ÂN2Gj
w(N)g1(N)

ÂN2Gj
w(N)

.

In the event FAUST selects Gj, j > 1 (i.e., multiple annotation boundaries), similar weighted439

averages are taken for g2(Nm,j), etc.440

4.6 FAUST method: marker selection441

Markers are selected by comparing the user-selected, empirical depth score quantile 4.9.4 across442

experimental units to a user-selected threshold value 4.9.5. All markers whose empirical quantile443

exceeds the threshold are used for discovery and annotation.444

4.7 FAUST method: boundary standardization445

FAUST standardizes the number of annotation boundaries for each marker by majority vote. The446

most frequently occurring number of annotation boundaries across experimental units is chosen447

as the standard number. This behavior can be over-ridden via the preference list tuning parameter448

(see 4.9.6) in order to incorporate prior biological information into FAUST.449

Next, for a given marker, FAUST selects the set of samples where the number of annotation450

boundaries for that marker matches the standard. Then, by rank, FAUST computes the median451

absolute deviation of the location of each phenotypic boundary across experimental units. We452

refer to these median boundary locations as the standard boundaries.453

FAUST enforces standardization of annotation boundaries for non-conforming experimental454

units by imputation or deletion . Imputation in an experimental unit occurs when FAUST estimates455

fewer boundaries than the standard. In this case, each boundary in the non-conforming unit is456

matched to one of the standards by distance. Unmatched standards are used to impute the missing457

boundaries. Similar distance computations are done in the case of deletion, but FAUST deletes458

boundaries that are farthest from the standards. For both imputation and deletion, if multiple459

boundaries match the same standard, then the boundary minimizing the distance is kept, and the460

other boundaries are deleted. Should this result in standards that don’t map to any boundaries,461

then those unmatched standards are used to impute the missing boundaries.462
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4.8 FAUST method: phenotype discovery and cluster annotation463

For each experimental unit, FAUST constructs a forest of partition trees (randomly sampled)464

and annotates selected leaves from this forest relative to the standardized annotation boundaries.465

Partition tree construction is similar to tree construction for the annotation forest (4.3), but they are466

not depth-constrained: a tree continues to grow following the previously described strategy until467

each leaf is unimodal according to the dip test [44] or contains fewer than 25 cells. Consequently,468

a single partition tree defines a clustering of an experimental unit. Clusterings from the forest469

of partition trees are combined into a single clustering in the following manner. To ensure cells470

are not assigned to multiple clusters, a subset of leaves of the partition forest are selected by471

scoring leaves according to shape criteria, and then selecting a subset of leaves across partition472

trees that share no cells to maximize their total shape score. Only the selected leaves are given473

phenotypic annotations. FAUST keeps a list of discovered phenotypes for each experimental474

unit, and concludes by returning exact counts of cells in each sample whose phenotypes exceed475

a user-specified occurrence frequency threshold. For more details of the scoring and selection476

procedure, we refer the reader to [46].477

4.9 FAUST method: tuning parameters478

We describe the key tuning parameters of FAUST.479

4.9.1 Starting cell population480

The name of the population in the manual gating strategy where FAUST conducts discovery and481

annotation.482

4.9.2 Active markers483

A list of all markers in the experiment that can possibly be used for discovery and annotation in484

the starting cell population. FAUST will only compute the depth score for markers in this initial485

set.486
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4.9.3 Marker boundary matrix487

A 2⇥ n matrix of lower and upper protein expression bounds. By default, it is set for � inf and488

inf for all markers in a flow experiment. When the manual gating strategy does not remove all489

debris or doublets from the starting cell population, samples can appear to have clusters of events490

along at very low or very high expression values for some markers. By setting boundaries for491

those markers to exclude these doublet or debris clusters, FAUST treats all events below the lower492

and above the upper bounds as default low or high, respectively. These events are not dropped493

from the experiment. However, they are ignored when testing for multimodality and subsequent494

density estimation. In the case of mass cytometry experiments, the default lower boundary is set495

to 0 for all markers in an experiment in order to accommodate the zero-inflation common to mass496

cytometry data. The number of events in a marker that fall between the lower and upper marker497

boundaries in the starting cell population define the effective sample size for that marker.498

4.9.4 Depth-score selection quantile499

The empirical quantile of a marker’s depth-score across all experimental units that is used to500

compare against a user-selected depth-score threshold. By default, this parameter is set to the501

median.502

4.9.5 Depth-score selection threshold503

A value in [0, 1] used to select a subset of markers to be used in discovery and annotation based504

on their empirical depth score selection quantile. By default, this parameter is set to 0.01.505

4.9.6 Supervised Boundary Estimation List506

Allows the user to modify FAUST’s default gate standardization methodology for each marker.507

This parameter is one way to incorporate prior (biological) knowledge in the FAUST procedure: if508

a marker is known to have a certain range of expression, such as low-dim-bright, this can be used509

to encourage or force FAUST to estimate the corresponding number of annotation boundaries510

from the data. Similarly, if FMO controls have been collected for a marker, this parameter can be511

used to set the phenotypic boundary according to the controls.512
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4.9.7 Phenotype Occurrence Threshold513

An integer value (set to 1 by default) used to include or exclude discovered phenotypes in the final514

count matrix returned by FAUST. If a phenotype appears at least Phenotype Occurrence Threshold515

times across experimental units, it is included in the final counts matrix. By default, all discovered516

phenotypes are included. Phenotypes exceeding the threshold are assumed to be biological signal517

while those that fall below it are assumed to be sample- or batch-specific effects. A consequence518

of this assumption is that all cells in a sample associated with any phenotype falling below the519

threshold are re-annotated with a common non-informative label indicating those phenotypes520

ought not be analyzed due to their rarity.521

4.10 CITN-09 T cell Panel Analysis522

The CITN-09 T cell staining panel is described in the supplementary information A.10.1. FAUST523

tuning parameter settings (above) for this dataset are described in supplementary section A.9.2.524

Between one and four samples were collected from 27 patients with stage IV and unresectable

stage IIIB Merkel Cell Carcinoma and [21, 47] spanning the course of treatment. All 27 patients

had samples collected at baseline (cycle C01, before initiation of anti-PD-1 therapy); 16 at cycle C02

(3 weeks post-treatment of the second cycle of therapy); 22 at cycle C05 (12 weeks post-treatment of

the fifth cycle of therapy); and 13 at end of trial (EOT, patient specific). 18 of 27 subjects responded

to therapy (CR/PR) for an observed response rate of 67%. Each sample was pre-gated to remove

debris and identify live lymphocytes. Let ci,k denote the number of events in FAUST cluster k for

sample i. Let ni denote the number of events in the ith subject’s baseline sample. Similar to [22],

we assume ci,k ⇠ Binomial(ni, µi,k). Our model is

logit�1(µi,k) = b0 + b1 · Responder + xi,k , (4.5)

where Responder is an indicator variable equal to 1 when the subject exhibits complete or partial525

response to therapy, and 0 otherwise, and each xi,k ⇠ N(0, s

2
i,k) is a subject-level random effect.526

The R package lme4 was used to fit all GLMMs [48].527
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4.11 CITN-09 Myeloid Panel528

The CITN-09 Myeloid staining panel is described in supplementary information A.10.2. FAUST529

tuning parameter settings are described in supplementary information A.9.3. This dataset consisted530

of 69 samples stained to investigate myeloid cells. An initial screen comparing the ratio of the531

number of events in the singlet gate to the number of events in the root population led us to532

remove 14 samples from analysis due to low quality. We ran FAUST on the remaining 55 samples533

which consisted of 16 samples collected at cycle C01, before initiation of anti-PD-1 therapy; 15 at534

cycle C02; 15 at cycle C05; and 9 at EOT. Of the 16 baseline samples, 1 was coded as inevaluable535

"NE". This sample was removed from downstream statistical analysis. 10 of the 15 subjects with536

baseline samples available responded to therapy (PR/CR), for an observed response rate of 67%.537

Discovery and annotation was run at the individual sample level using cells in the "45+" node538

of the manual gating strategy. FAUST selected 11 markers: CD33, CD16, CD15, HLA-DR, CD14,539

CD3, CD11B, CD20, CD19, CD56, CD11C. FAUST annotated 102 cell sub-populations in terms of540

these markers, labeling 92.9% of the cells in the median sample. The statistical model used here is541

identical to (4.5), with counts are now derived from the 15 baseline samples.542

4.12 CITN-07 Phenotyping Panel Analysis543

We ran FAUST on this dataset comprising of a total of 358 longitudinal samples from 35 subjects544

in two cohorts (Cohort 1: with FLT-3 pre-treatment and Cohort 2: without pre-treatment), with545

between 4 and 12 samples per subject over four cycles of therapy and at end of trial. Subjects546

were given FLT-3 ligand seven days prior to the start of the first two of four treatment cycles.547

FLT-3 ligand was given to promote the expansion of myeloid and dendritic cell compartments in548

order to investigate whether expansion improved response to therapy. FAUST was configured to549

perform cell population discovery and annotation per sample in order to account for biological and550

technical heterogeneity. Debris, dead cells and non-lymphocytes were excluded by pre-gating. The551

CITN-07 Phenotyping staining panel is described in supplementary information A.10.3. FAUST552

tuning parameter settings are described in supplementary information A.9.1. FAUST discovered553

132 cell populations. We tested each discovered cell population at the cohort-specific baseline for554

association with recurrence of disease (14 subjects had disease recur, 18 did not have disease recur).555

We analyzed the baseline counts using a model similar to (4.5). Here, the model was adjusted for556
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subject-to-subject variability using a random effect, while cohort status, recurrence, and NYESO-1557

staining of the tumor by immunohistochemistry (measured as positive, negative, or undetermined)558

were modeled as population effects.559

4.13 Krieg et al. CyTOF Analysis560

The markers used for the Krieg et al. [8] CyTOF panel are described in supplementary information561

A.10.4. FAUST tuning parameter settings are described in supplementary information A.9.4. We562

used FAUST to discover and annotate cell populations in the mass cytometry datasets stained to563

investigate myeloid cells. Following [8], we removed samples with fewer than 50 cells from our564

analysis, leaving 19 samples (from 19 subjects) at baseline for downstream statistical analysis. 10565

of the 19 samples at baseline were from subjects that went on to exhibit response to therapy. To566

account for batch effects and small sample sizes, all samples within a batch were concatenated567

and processed by FAUST. FAUST selected 11 markers for discovery and annotation: CD16, CD14,568

CD11b, CD11c, CD33, ICAM1, CD62L, PD-L1, CD7, CD56, and HLA-DR and annotated 64 cell569

sub-populations in terms of these markers, labeling 72.9% of cells in the median sample.570

Our baseline model was similar to (4.5), but was modified by

logit�1(µi,k) = b0 + b1 · Responder + xi,k + hi,j ,

where j 2 {1, 2}, and hi,j ⇠ N(0, s

2
j ) is a random effect included to model the batch effects.571

4.14 Krieg et al. FACS Analysis572

The Krieg et al. [8] FACS staining panel is described in supplementary information A.10.5. FAUST573

tuning parameter settings are described in supplementary information A.9.5. We used FAUST to574

process 31 baseline flow cytometry samples from responders and non-responders to therapy (16575

responders, 15 non-responders). FAUST was run at the individual sample level on live cells from576

the manual gating strategy used by [8]. QC and review of the manual gating strategy let us to577

make manual adjustments to the "Lymphocytes" gate of 7 samples in this dataset. An example of578

this gate adjustment is shown in the supplementary information (S4) FAUST selected 9 markers for579

discovery and annotation: CD3, CD4, HLA-DR, CD19, CD14, CD11b, CD56, CD16, and CD45RO.580
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FAUST annotated 40 cell sub-populations in terms of these markers, labeling 94.4% of cells in the581

median sample. The statistical model used here is identical to (4.5), with ci,k now denoting the 40582

clusters in the FACS data, and ni refers to the baseline FACS sample counts.583

4.15 Compartment multivariate analysis584

All FAUST clusters annotated as CD3-, CD56-, and CD19- and included in the univariate analysis

were included in the multivariate analysis. Within this set, sub-populations annotated as HLA-DR-

were further excluded. This defined the Myeloid compartment for CITN-07, CITN-09, and the

Krieg et al. FACS data [8]. Let k⇤ denote the number of FAUST clusters within a given study. Let n

denote the number of subjects at baseline, and N = n · k⇤. For 1  i  N, 1  j  k⇤ our statistical

model is

logit�1(µi,j) = b0 + bR · Responderi +
k⇤

Â
j=1

�
bc,j · Clusteri,j + bi,j · Clusteri,j · Responderi

�
+ xi ,

(4.6)

where Clusteri,j is an indicator variable that is 1 when observation i is from cluster j and 0

otherwise, Responderi is an indicator variable when observation i is taken from a responding

subject, and hi ⇠ N(0, s

2
i ) is an observation-level random effect. To test for differential abundance

across a compartment, we test for positivity of linear combination of the coefficients bi,j in (4.6).

For example to test for differential abundance across an entire compartment, we test

H0 : bR +
1
k⇤

·
k⇤

Â
j=1

bi,j  0 ,

H1 : bR +
1
k⇤

·
k⇤

Â
j=1

bi,j > 0 .

4.16 Compartment aggregate analysis585

For the aggregate analysis, compartment definitions are the same as presented in section 4.15.586

Counts are derived by summing across FAUST clusters within each compartment. The model(4.5)587

is then used to test each derived compartment for differential abundance.588
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4.17 Code availability589

FAUST is available as an R package at https://github.com/RGLab/FAUST.590
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