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Abstract

Both pleiotropic connectivity and mutational correlations can restrict the de-
coupling of traits under divergent selection, but it is unknown which is more
important in trait evolution. In order to address this question, we create
a model that permits within-population variation in both pleiotropic con-
nectivity and mutational correlation, and compare their relative importance
to trait evolution. Specifically, we developed an individual-based, stochas-
tic model where mutations can affect whether a locus affects a trait and
the extent of mutational correlations in a population. We find that traits
can decouple whether there is evolution in pleiotropic connectivity or mu-
tational correlation but when both can evolve then evolution in pleiotropic
connectivity is more likely to allow for decoupling to occur. The most com-
mon genotype found in this case is characterized by having one locus that
maintains connectivity to all traits and another that loses connectivity to
the traits under stabilizing selection (subfunctionalization). This genotype is

favoured because it allows the subfunctionalized locus to accumulate greater
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effect size alleles, contributing to increasingly divergent trait values in the
traits under divergent selection without changing the trait values of the other
traits (genetic modularization). These results provide evidence that partial
subfunctionalization of pleiotropic loci may be a common mechanism of trait

decoupling under regimes of corridor selection.

1 Introduction

2 One of the central problems in evolutionary biology is understanding the
3 processes through which new traits arise. One process that can lead to the
+ creation of new traits is when existing traits become differentiated from one
s another because they are selected for a new purpose (Rueffler et al., 2012).
s There has long been evidence that this can happen through gene duplica-
7 tion followed by trait decoupling (Muller, 1936; Ohno, 1970; Rastogi and
s Liberles, 2005; Han et al., 2009). One example in vertebrates is the dif-
o ferentiation of forelimbs from hind limbs, where the same gene that was
10 responsible for both fore and hind limb identity in development diverged
1 (Graham and McGonnell, 1999; Minguillon et al., 2009; Petit et al., 2017).
12 In this case, the paralogous genes Tbzj/Tbx5 that encode transcription fac-
13 tors for fore/hindlimb identity likely evolved from the same ancestral gene,
11 and their expression differentiated after duplication (Minguillon et al., 2009).
15 Somehow during selection for functional divergence, there was a decoupling
16 of genetically integrated traits, which allowed them to respond to selection as
17 independent genetic modules (Wagner and Altenberg, 1996; Hansen, 2006).
18 Genetic decoupling was likely also responsible for the evolution of trait di-
19 vergence in vertebrate metameric segmentation into differentiated somites,
20 and the emergence of cell differentiation in multicellular organisms (Holley
2 2007; Wagner et al. 2019; but see Newman 2020).

2 Although modular structures in phenotypic covariation (where pheno-
23 typic variation is more correlated within groups of traits than between them)

a are found in a wide range of organisms, including yeast, round worms, mice,
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»» and humans (Jiang et al., 2008; Wang et al., 2010; Hlusko, 2016), the un-
s derlying genetic architectures producing genetic integration between traits
o7 are still uncertain. Genetic integration, constraining the decoupling of traits,
;s may arise from pleiotropic connections between loci and traits, where they
20 may or may not create genetic and phenotypic covariation (Baatz and Wag-
» ner, 1997; Kenney-Hunt et al., 2008; Smith, 2016). When selection favours
a1 the divergence of traits, the constraining effect of pleiotropy may come in
» two forms: a pleiotropic connectivity effect or a mutational correlation ef-
1 fect (Stern, 2000). A pleiotropic connectivity effect depends on how highly
s pleiotropically connected a gene is. For instance, a gene product (e.g. en-
3 zyme, transcription factor, etc.) may affect more than one trait (or func-
s tion) by having multiple substrates or binding sites, thus affecting multiple
s downstream processes. This may constrain the evolutionary divergence of
;s those traits because the effect of a mutation beneficial for one trait may be
» deleterious for other traits (when those other traits are under stabilizing se-
w0 lection). It is expected that the net fitness effect of a pleiotropic mutation is
a decreased in proportion to the number of traits it affects (Orr, 2000; Welch
2 and Waxman, 2003; Martin and Lenormand, 2006). Therefore, a pleiotropic
s connectivity effect can constrain divergent trait evolution even without creat-
1 ing genetic correlation among traits (a.k.a, hidden pleiotropy Wagner, 1989;
»s Baatz and Wagner, 1997). Whereas, a mutational correlation effect is the
s effect of a mutation affecting how correlated are the effects of mutations at
s pleiotropic loci. Thus, a mutational correlation effect may induce correlated
s changes in the traits affected by pleiotropic loci. However, the strength of
s the correlational effect of the mutations is not dependent on the number of
so traits affected but on the properties of the genes, processes, or traits affected.
51 When those effects are correlated among traits, they can constrain trait de-
s coupling in addition to those caused by the dimensionality of the pleiotropic
3 loci (Lande, 1979; Arnold, 1992; Stern, 2000).

54 Biological examples may help to illuminate the distinction between the
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Figure 1: The two types of mutations affecting pleiotropic effects using a transcription
factor (TF) as an example.

55 two types of pleiotropy that can hinder the decoupling of traits. Imagine
ss a transcription factor (TF) that has multiple target binding sites affecting
s the expression of multiple genes, which in turn affect several traits. If the
ss  binding sites have identical sequences, then mutations in the gene encoding
5o the TF are expected to be in perfect correlation with respect to their effects
s on the traits. In this scenario, a mutational correlation mutation may be a
s1 mutation in one of the binding sequences that leads to differential binding of
s2 the transcription factor (Figure 1). Now, that the binding sites are no longer
&3 identical, mutations in the gene encoding the TF may no longer have per-
e fectly correlated effects on the traits. As the name suggests, the mutational
s correlation mutation has affected the correlation between effects of mutations
s in the TF’s gene on the traits it affects. Whereas, another type of mutation
e might affect a TF’s access to one of it’s binding sites (e.g. by methylating
¢ the DNA in the region of that binding site). If this type of mutation causes
s the TF to affect more or less traits than it did before the mutation, it would
70 be considered a pleiotropic connectivity mutation.

7 Both pleiotropic connectivity and mutational correlations can evolve as a
22 result of divergent selection and affect the ability of traits to decouple from
73 one another. Although previous models have included either evolution in

72 pleiotropic connections or mutational correlation, their relative importance
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75 in constraining trait decoupling remains to be seen (Jones et al., 2003, 2007;
s Melo and Marroig, 2015; Chebib and Guillaume, 2017). Here we attempt
77 to answer this question by using stochastic simulations, where individuals
7 in a population can vary in both pleiotropic connections and mutational
7o correlations, while applying divergent selection on some traits but not others,

so and then observing what affects the decoupling of traits.

21 Methods

g2 Sitmulation model

83 We modified the individual-based, forward-in-time, population genetics
s« simulation software Nemo (v2.3.46) (Guillaume and Rougemont, 2006) to
s allow for the evolution of pleiotropic connectivity and mutational correla-
s tions. The simulations consisted of a single population of size N of randomly
& mating, hermaphroditic, diploid individuals, with a probability 1/N of self-
s fertilization, similar to a classical Wright-Fisher population model. Each
o individual had two pleiotropic QTLs affecting four traits. The phenotypic
o value of each trait, z;, was calculated by adding the allelic values at the two
o loci: z; = ZZL:1(XM + Y;), where X is the maternally inherited allele and
22 Y the paternally inherited allele, ¢ is the trait number (i € [1,4]), and L
o3 is the locus number (L € [1,2])) (Figure 2). For simplicity, we assumed no
o environmental variance (i.e. heritability is 1).

% Generations were non-overlapping and consisted of three main stages:
o Mmating, viability selection, ageing. In the mating stage, pairs of individuals
o were chosen to produce offspring (with a mean fecundity of three offspring
e to ensure population size replenishment). It was during the mating stage
oo that recombination between loci and mutations occurred. In the viability
wo selection stage, Gaussian stabilizing selection was applied on offspring and
w1 determined the survival probability of individuals, whose fitness was calcu-
w2 lated as w = exp [-3 ((z—60)T- Q7 - (z—0))], where z is the individual

w3 trait value vector, 6 is the vector of local optimal trait values, and €2 is the
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Figure 2: Pictorial representation of quantitative trait locus (QTL) alleles and the traits
they affect with example values for illustration. Here, Trait 1 has a value of 1.89 determined
by the sum of allelic values (X7 1,Y7,1,andY1 2) pleiotropically connected to it from Locus
1 (0.5 4+ 0.89) and Locus 2 (0.5), where Y7 o represents the maternally inherited allele of
Locus 2 that affects Trait 1. Trait 2 is affected differently by the two loci and has a value
of 1.32 (0.5 + 0.1 4+ 0.22 + 0.5). The allelic values of a QTL were affected by mutation
at a rate of y. The pleiotropic connections between a QTL and a trait could be removed
or added by mutation at a rate of jipjei0, and toggled whether an allelic value was added
to a trait value or not.

10 selection variance-covariance matrix (n X n, for n traits) describing the mul-
05 tivariate Gaussian selection surface. The €2 matrix is a diagonal matrix with
s diagonal elements corresponding to the strength of selection, w?, on each
107 trait (where strength of selection scales inversely with w?), and off-diagonal
s elements corresponding to the strength of correlational selection, p,;;, be-
w0 tween traits ¢ and j. In the ageing stage, the adults were removed from

no the population and the offspring matured into breeding adults for the next
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1 generation.

112 Three types of mutations (each with a separate mutation rate) were pos-
us sible: mutations at the additive QTL affecting the traits, mutations at a set
us of modifier loci separately affecting the correlation of the mutational effects
us  at the additive QTL, and mutations affecting the connectivity of the QTL to
us the traits, reducing or increasing the pleiotropic degree (the number of traits
17 a locus affects) of each locus. The first type of mutations changed the allelic
us  values of a QTL by randomly drawing effects from a multivariate normal dis-
ne tribution, with variance-covariance matrix M. The mutational effects were
10 added to the existing allelic values at the QTL (continuum-of-alleles model;
1 Crow and Kimura, 1964). These mutations appeared at a rate given by pu.
12 The variance of the mutational effect for all traits were constant and set at
123 a? = 0.1 in the diagonal of the M-matrix. Each pairwise trait covariance of
124 the M matrix was governed by its own separate modifier locus. We will refer
125 to variance-standardized covariance values, or mutational correlation p,;; as
16 the off-diagonal elements of the M matrix. As M is a 4 x 4 symmetrical ma-
127 trix, the 6 p,;; coefficients were controlled by 6 diploid modifier loci, carried
s by each individual and inherited in the same manner as the additive QTL.
120 Each individual thus carried its own M matrix. The second type of mutation
130 thus changed these mutational correlation allelic values by randomly drawing
131 from a uniform distribution (—0.2xlog[1 —U(0, 1)]), and adding the effect to
132 the existing allelic value (which was bound between -1 and 1). These muta-
1313 tions appeared at a rate given by fimutcor- In order to get a particular muta-
13« tional effect correlation, p,;;, the two mutational correlation allelic values of
135 the corresponding modifier locus were averaged together (Figure 3). All the
13s  pairwise mutational effect correlations (p,;;) were combined with mutational
157 effect variances (a?) to create the M matrix for an individual, whenever a
s mutational effect on a QTL that directly affected traits was required. The
130 third type of mutation affected the pleiotropic connections between QTLs

o and traits, determining whether the allelic value of a QTL was added to a
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w1 trait value. A mutation of this type affected the pleiotropic connections be-
12 tween a trait and the maternally or paternally inherited alleles separately.
13 Thus, QTLs could be ‘heterozygotes’ in their pleiotropic degree depending
s on the pleiotropic degree of the maternally and paternally inherited alleles.

us These mutations appeared at a rate given by jiyeio (Figure 2).
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Figure 3: Pictorial representation of the modifier loci that contained the allelic values
for producing the pairwise mutational effect correlations (p,i;) between Traits ¢ and j.
The allelic values of a modifier locus were affected by mutation at a rate of py,yutcor, and
were averaged together to produce the corresponding correlation for the M matrix. The
mutational effect variances, a?, remained static with a value of 0.1 for all traits.

us  Erperimental design

147 To understand the impact of divergent selection on the structure of ge-
us netic architecture, simulations were run with a population of 500 individuals
1o that had two additive loci underlying four traits (Figure 4). The initial
150 conditions were set to full pleiotropy (each locus affecting every trait) and
151 strong mutational correlations between trait pairs (p, = 0.99). This way,
12 mutational effects in phenotypic space were highly constrained to fall along
153 a single direction, and reducing variation for divergent selection. All traits
154 had an initial phenotypic value of 2 with equal allelic values of 0.5 at each
15 allele of the two QTL.
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Figure 4: Pictorial representation of the genetic architecture modelled within individuals
at the start of the simulations, with 2 loci, 4 traits, and full pleiotropic connectivity
between them.

156 Selection regimes were designed to mimic divergent selection between
157 trait modules, where Trait Module 1 included Traits 1 and 2, and Trait
155 Module 2 included Traits 3 and 4. Initially, optimum trait values, 0y, (k €
50 1,2,3,4), were all set to 2 (the same as the initial trait values). There
w0 was moderately strong stabilizing selection on each trait (w? = 5), strong
161 correlational selection between traits in the same trait module (py12 = puzs =
12 0.9), and no correlation between traits in different trait modules (p,13 =
163 Puld = P23 = Pw2a = 0). After this, divergent directional selection proceeded
1 by maintaining constant optimal trait values for Traits 3 and 4 (05 = 0, =
165 2) and increasing the optimal trait values for Traits 1 and 2 by 0.001 per
166 generation for 5000 generations, bringing the trait optima to 6; = 6, = 7
167 (corridor model of selection sensu Wagner, 1984; Biirger, 1986). These 5000
168 generations of divergent, directional selection on Traits 1 and 2 were then
10 followed by 5000 generations of purely stabilizing selection.

170 In order to compare the differential effects of evolving pleiotropic connec-
1 tivity and evolving mutational correlations on trait decoupling, nine different

12 simulations were run with all combinations of three different rates of muta-
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173 tion in pleiotropic connectivity and mutational correlations (ftpicio and fimutcor
e = 0, 0.001, or 0.01) representing no evolution, and mutation rates below, at
s and above the QTL allelic mutation rate (u = 0.001), respectively.

176 Simulations were also run with initial mutational correlations between
177 all pairs set to 0 (p, = 0) to compare highly constraining genetic architec-
s ture (within a corridor selection regime) to ones with no constraints in the
o direction of mutational effects.

180 We observed general patterns of average trait value divergence, popula-
1 tion fitness, genetic correlation, pleiotropic degree (the number of traits a
12 locus affects) and mutational correlation. In the case of pleiotropic degree,
13 the two loci affecting trait values were sorted into a high and low pleiotropic
18a  degree locus for each individual before averaging over populations or repli-
185 cates so that differential effects of the two loci were not averaged out in the
16 final analysis. Statistics were averaged over 50 replicate simulations for each

17 particular set of parameter values.

188 Results

189 Trait divergence and genetic modularity under constraints to genetic decou-
w0 pling

101 In the absence of genetic architecture evolution (fipicio = fmutcor = 0),
12 traits are still capable of divergence, but do not follow trait optima closely
103 since traits 3 and 4 get pulled away from their optima as traits 1 and 2
s increase to follow theirs (Figure 5). With the introduction of variation in
s genetic architecture through mutation (fipieio, mutcor > 0), average trait val-
s ues follow their optima more closely and the capability of trait divergence
17 increases as mutation rates in genetic architecture increases, which leads to
s higher average population fitness values by generation 5000 (Figure 6). Also
199 by generation 5000, simulations with higher pleiotropic connection mutation
200 rates (Upreio > 0.001 Or fimuteor = 0.01) have distinctly modular genetic cor-

201 relation structures with stronger correlations between traits 1 and 2 than

10
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20 between traits 3 and 4 (Figure 7). But at the highest pleiotropic connec-
203 tivity mutation rate (ppeio = 0.01) the genetic integration of trait 3 with
20 4 (and even trait 1 with 2) is no longer as strong (i.e., the genetic correla-
205 tion drops, see Figure 7). An increase in pleiotropic connectivity variation
206 has a greater impact on trait divergence evolution and modularization of the
27 genetic architecture of the traits than the same increase in mutational cor-
208 relation variation, which is evident when either fipieio OF mutcor 1S the same
200 as the allelic mutation rate (¢ = 0.001). Even when the mutation rate for
20 mutational correlation is at the highest tested (fmuscor = 0.01), an increase
o in the mutation rate for pleiotropic connections still improves the ability for
212 traits to diverge, which can be seen in the decrease in variance over replicate

23 simulations (Figure 5).

aa Effects of pleiotropic connectivity and mutational correlation evolution on

a5 rate and extent of trait decoupling

216 When evolution of pleiotropic connections is possible (fipieio > 0), the most
217 common allele in almost all cases is one that maintains connections to Traits
218 1 and 2, but has lost connections to traits 3 and 4 after two mutational events.
219 This allele is found in Locus 1 or 2 at a frequency of 0.873 averaged over the
20 populations of all simulations where evolution of pleiotropic connections is
a1 possible. The allele goes to fixation or near fixation in one locus where its
222 pleiotropic degree decreases from four to two, and this happens more rapidly
23 aS fipleio increases (Figure 8). The decrease in pleiotropic degree resulting
24 from the increase in frequency of this allele coincides with the modularization
25 of genetic correlations, the divergence of traits and the increase in fitness.
226 'The proportion of times in which this particular allele becomes common in
27 Locus 1 or in Locus 2 is approximately equal over all simulations (0.491 and
28 0.509, respectively, over 300 simulations) and is never observed in both loci
29 in any one individual.

230 When the mutation rate for pleiotropic connectivity (fipeio) is zero, mu-

231 tational correlation evolution can still lead to trait divergence but this takes

11
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Figure 5: Trait value divergence over 5,000 generations of divergent selection on Traits 1
and 2 (Trait Module 1) followed by 5,000 generations of stabilizing selection for different
combinations of mutation rate in pleiotropic connectivity (gpieio) and mutational corre-
lations (fmutcor). Orange — average values of Traits 1 and 2; Blue — average values of
Traits 3 and 4; Black — trait value optima for Trait Modules 1 and 2. Shaded regions show
standard errors of the mean for 50 replicate simulations.

longer, does not diverge as fully, and therefore leads to lower population
mean fitness. Evolution of the mutational correlation occurs by a general de-
crease in all mutational correlations between traits at a rate determined by
the mutation rate of mutational correlations (Figure 9). When the mutation

rate at the mutational correlation loci is higher than the pleiotropic muta-

12
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Figure 6: Average population fitness after 5,000 generations of divergent selection on Traits
1 and 2 (Trait Module 1) for different combinations of mutation rate in pleiotropic con-
nectivity (fpreio) and mutational correlations (fimutcor). All error bars represent standard
errors of the mean for 50 replicate simulations.

237 tion rate then genotypic patterns do emerge where one locus disconnected
238 from Trait 3 combines with lower mutational correlations between Traits 1
230 and 4 or 2 and 4, or a locus disconnected to Trait 4 combines with lower
20 mutational correlations between Traits 1 and 3 or 2 and 3 (at frequencies of
21 0.16 and 0.10 over 50 replicates, respectively). But even in the case with a

22 higher mutation rate for mutational correlation than the pleiotropic connec-

13
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Figure 7: Genetic correlations between traits after 5,000 generations of divergent selec-
tion on Traits 1 and 2 (Trait Module 1) for different combinations of mutation rate in
pleiotropic connectivity (ppreio) and mutational correlations (fmuytcor). Red — higher ge-
netic correlation. White — no genetic correlation

23 tivity mutation rates, full subfunctionalization (one locus loses connections
24 to Traits 3 and 4) is a possible outcome occurring in 18% of 50 replicates

25 after 5,000 generations.

25 Dffect of mutational correlation initial conditions set to zero (p, = 0 versus
47 Py = 099)

248 In simulations where all mutational correlations are initialized at zero,
a9 there is little to no constraint on trait divergence despite full pleiotropic

0 connectivity. This can be observed in trait values that follow their optima
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Figure 8: Average number of traits connected to each locus over 5,000 generations of
divergent selection on Traits 1 and 2 (Trait Module 1) followed by 5,000 generations of
stabilizing selection for different combinations of mutation rate in pleiotropic connectivity
(tpleio) and mutational correlations (fmutcor). Loci are sorted so that locus with higher
pleiotropic degree (Locus H) is always shown above and lower pleiotropic degree (Locus L)
shown below. Shaded regions show standard errors of the mean for 50 replicate simulations.

1 closely, leading to little reduction in fitness as optima for Traits 1 and 2
2 diverge from Traits 3 and 4, with little evolution in mutational correlations
23 and pleiotropic degree during divergent selection (Figure 10). There are still
4 patterns of genetic architecture evolution as alleles with lowered pleiotropic

»s  degree still emerge in the populations, but fixation is not common nor are
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Figure 9: Average within and between trait module mutational correlation over 5,000
generations of divergent selection on Traits 1 and 2 (Trait Module 1) followed by 5,000
generations of stabilizing selection for different combinations of mutation rate in pleiotropic
connectivity (ftpieio) and mutational correlations (fmutcor). Orange — mutational corre-
lation between Traits 1 and 2 (within Trait Module 1); Blue — mutational correlation
between traits 3 and 4 (within Trait Module 2); Black — average mutational correlations
between Traits 1 and 3, 1 and 4, 2 and 3, and 2 and 4 (between Trait Module 1 and 2).
Shaded regions show standard errors of the mean for 50 replicate simulations.

6 any allelic patterns of mutational correlations.
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Figure 10: Average trait value, fitness, mutational correlation and pleiotropic degree,
when all p, values are initialized to 0, over 5,000 generations of divergent selection on
Traits 1 and 2 (Trait Module 1) followed by 5,000 generations of stabilizing selection for
different combinations of mutation rate in pleiotropic connectivity (fpieio) and mutational
correlations (fmuteor). For pleiotropic degree, loci are sorted so that locus with higher
pleiotropic degree (Locus H) is always shown above and lower pleiotropic degree (Locus
L) shown below. Orange — Trait 1 and 2 values or mutational correlation between Traits
1 and 2 (Trait Module 1); Blue — Trait 3 and 4 values or mutational correlation between
Traits 3 and 4 (Trait Module 2); Black — average mutational correlations between Traits
1 and 3, 1 and 4, 2 and 3, and 2 and 4 (between Trait Modules 1 and 2). Shaded regions
show standard errors of the mean for 50 replicate simulations.

27 Discussion

s Fvolution in pleiotropic connectivity and mutational correlation can lead to
0 trait divergence
260 Previous models of genetic architpgture evolution have shown that evo-

s lution in pleiotropic connections and mutational correlation can influence
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%2 genetic correlation between traits and therefore responses to selection, but
%3 as far as we are aware this is the first time both have been allowed to evolve
%4 in the same model. When a genetic architecture is highly constraining to
%5 the decoupling of some traits from others, then evolution of the structure
x6  Of the genetic architecture itself can clearly facilitate the rate and extent of
s7  trait divergence. Although genetic architecture may evolve through changes
s in pleiotropic connectivity between genes and traits, and in the mutational
x9 correlations between traits, the former leads to a greater release of genetic
o0 constraints and faster adaptation in the corridor selection regime. A qual-
o itative distinction exists between these two types of genetic constraints to
a2 decoupling for two reasons. First, genetic constraints based on mutational
213 correlation distributions are more difficult targets of selection compared to
o pleiotropic connections because mutations on modifiers of genetic correla-
s tions do not affect the trait phenotypes directly, whereas a single allele that
s differs in its pleiotropic connectivity does. Second, mutational correlations
27 require pleiotropic connections to be effectual on traits (there can be no mu-
zs tational correlations if a QTL affects only one trait), whereas the latter can
zo  affect the rate of adaptation regardless of mutational correlation (Baatz and
20 Wagner, 1997; Chebib and Guillaume, 2017).

281 The results of this study corroborate results from previous models of
22 pleiotropic evolution. We observe that divergent selection in the form of the
283 corridor model leads to modular genetic architecture with greater genetic cor-
2 relations between traits within trait modules and lower correlations between
25 trait modules. This was also the case in both Melo and Marroig (2015) and
25 Pavlicev et al. (2011) under the corridor model. Unfortunately, it is unclear
27 whether patterns of partial modular pleiotropy that were responsible for the
s emergence of genetic modularity in our study were also observed in these
280 studies because they did not report the most common resulting genotypes
20 after corridor selection. Melo and Marroig (2015) did however vary the mu-

21 tation rate in pleiotropic connectivity (while keeping allelic mutation rate the
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22 same) and found that when ., was 10 times greater than pu, there were
203 higher within and between trait module correlation compared to when e,
24 and g were the same. Though our results corroborate this relationship as
25 well, we cannot deduce the state of the pleiotropic connections that led to
26 those results in their simulations. Their study also did not include evolution
207 in mutational correlations so it is not possible to do a comparison on the rel-
208 ative effects of mutational correlation and pleiotropic connectivity evolution
200 on patterns of genetic modularity. Pavlicev et al. (2011) had a deterministic
20 model with rQTL (modifier loci) that affected the correlations between traits
s directly instead of affecting the pleiotropic connections, making it difficult
32 to compare patterns of partial modular pleiotropic connectivity. Jones et al.
23 (2007) found “extreme” variation among replicates in the average mutational
s+ correlation observed when p, was capable of evolving, similar to what was
205 observed in our study (as well as when simulations were run with the same
w6 parameter values as the Jones et al. (2007) study; Supplemental Figure S1).
so7 This variation of the evolution of mutational correlation is likely due to an
ss  unstable equilibrium in the adaptive landscape in which highly positive or
w0 negative mutational correlations have a selective advantage over mutational
0 correlations closer to zero (Lande (1980); Zhang and Hill (2002); Jones et al.
su (2007); Supplemental Figure S2).

sz Patterns of pleiotropy

313 What explains the emergence of one dominant genotype that was ob-
siu - served with one locus losing its connections to Traits 3 and 4, and the other
a5 locus maintaining full pleiotropy? When mutational correlations are strong,
a6 genetic modularization should arise so that mutational effects can increase
a7 Traits 1 and 2 values without also increasing Traits 3 and 4, (especially when
ag  stabilizing selection is strong compared to directional selection). If stabilizing
20 selection had been weaker and/or directional selection been much stronger,
20 then more loci affecting the traits would have increased the proportion of ad-

w21 vantageous mutations allowing for divergence (Hansen, 2003). For the same
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2 reason, we don’t observe complete genetic modularization with one locus only
s23  connected to Traits 1 and 2, and the other only connected to Traits 3 and
s 4. With both loci contributing to Traits 1 and 2, there is more mutational
w5 input to increase their values, giving support to the idea that intermediate
w6 levels of genetic integration will maximize evolvability when pleiotropic ef-
27 fects are all positive (Hansen, 2003). Also, since we were interested in the
18 evolution of genetic architectures allowing trait decoupling, we started our
w9 simulations with a highly genetically integrated, monomorphic population.
;0 This makes evolution in our model dependent on de-novo mutations and as
s traits diverged, the negative effects of pleiotropy on traits under stabilizing
s selection increased, leading to modularization in the genetic architecture.
;3 But, if we had simulated genetic architectures where the allelic mutation
s rate (u) was high enough and/or selection acted on many loci with small
135 effects, pleiotropy may not have been as constraining, and integrated genetic
13 architectures (loci affecting all traits) could be more evolvable. Whether in-
s tegrated or modular genetic architectures will evolve in response to divergent
18 selection is dependent on the relative effects of mutation and selection on the
10 different traits (Pavlicev and Hansen, 2011). This also would have been true
a0 if standing genetic variation had already existed in pleiotropic connectivity
s and mutational correlations in a population prior to divergent selection. We
s could imagine that many possible combinations of pleiotropic connectivity
s and mutational correlation alleles that allow for increased variation and re-
s duced covariation between traits could also exist. In those scenarios, genetic
us  modularization may not be associated with trait divergence.

346 The results we obtain in this study are also related to work done on the
w7 evolutionary fate of duplicated, pleiotropic genes (Ohno, 1970; Hahn, 2009;
s Innan and Kondrashov, 2010; Guillaume and Otto, 2012). Previous models
us  describe the conditions under which both genes remained fully pleiotropic,
30 which is expected to be favorable when there is selection for increased dosage

31 as we had for traits 1 and 2 (Ohno, 1970). There is some empirical evidence
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52 of this in ribosomal RNA, histone genes, as well as amylase genes in humans
33 with high starch diets (Zhang, 2003; Perry et al., 2007; Qian et al., 2010).
s« Other models describe when one or both genes lose their connection to some
35 traits, known as subfunctionalization, if there is a relaxation of selection after
356 duplication (Force et al., 1999; Lynch and Force, 2000). Empirical evidence
57 for subfunctionalization exists for vertebrate limb evolution, as discussed in
3ss  the introduction, as well as pathway specialization in plants (Bomblies and
10 Doebley, 2006; Des Marais and Rausher, 2008). Compared to models with
w0 selection for increased dosage, our model has selection only for higher values
1 in Traits 1 and 2, whereas selection for increased values in all four traits is
2 expected to maintain all pleiotropic connections. The difference compared to
53 neutral models where subfunctionalization is the result is that in our model
s34 there is no relaxation of selection due to duplication and redundancy. In that
35 case, Guillaume and Otto (2012) showed that the maintenance of pleiotropy
36 in one gene and subfunctionalization in the other (the most common outcome
37 in our simulations) is predicted when there is asymmetry in either the trait
s contributions to fitness or in the expression levels of the genes. The gene
w0 with higher expression was predicted to remain fully pleiotropic, with loss of
s pleiotropy in the second, less expressed gene. Our results fit very well with
s that later outcome, although the conditions were different. In Guillaume and
w2 Otto (2012), a fitness trade-off emerged from the competitive allocation of the
w3 gene product (amount of protein produced) between two traits under positive
s selection (i.e., increased allocation to one trait reduced allocation to the other
ws trait). The fitness trade-off in our model arose from the corridor model of
as  selection whereby increased additive contributions to Traits 1 and 2 via fully
s pleiotropic mutations with correlated allelic values trade-off negatively with
ss Traits 3 and 4 under stabilizing selection. The trade-off is quickly attenuated
;9 when the mutational correlations between traits under divergent selection
;0 decreases. Mutation in pleiotropic connections of the QTL was nevertheless

;1 more efficient in breaking the constraint to trait divergence. It is also a
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;22 more plausible mechanism since mutations changing a transcription factors’s
;3 access to transcription binding sites may cause a drastic change associated

;s with a change in pleiotropic connectivity.

s Fmpirical evidence for mutational correlation and pleiotropy

386 The pleiotropic connections and mutational correlations in our model ab-
s7 stract out the types of molecular level changes that may lead to changes in
;s genetic correlations between traits. Some examples of variation in pleiotropic
;0 connectivity come from empirical studies on transcriptional regulation. For
10 example, expression of the Thx4 gene (described earlier) is required not only
31 for hindlimb development but is also expressed in genital development (Chap-
32 man et al., 1996). Although the upstream enhancer of Tbhz/, hindlimb en-
203 hancer B (or HLEB), is functional in both hindlimb and genital development
34 in both mice and lizards, HLEB appears to have lost its hindlimb enhancer
35 function in snakes due to mutations in one of the enhancer’s binding regions
w6 (Infante et al., 2015). A more recent example comes from two species of
so7 - Drosophila the diverged only 500,000 years ago. D. yakuba has both hypan-
ss drial and sex comb bristles whereas D. santomea has only sex comb bristles
10 (Rice and Rebeiz, 2019). Quantitative trait mapping crosses between the
wo species and with D. melanogaster revealed that a single nucleotide change in
w1 aregulatory enhancer of the scute gene, which promotes bristle development,
w2 was responsible for D. santomea losing its hypandrial bristles and increasing
w3 its sex comb bristle number (Nagy et al., 2018). These examples provide
ws evidence that mutations in DNA binding sites can affect a gene’s pleiotropic
ws degree, allowing for evolution of trait decoupling.

406 Correlated mutational effects, on the other hand, may arise from muta-
w7 tions that cause correlated effects in more than one of a gene’s molecular func-
w8 tions or from mutations causing correlated effects in a gene product’s multiple
w0 processes, but empirical data is still needed to discover the mechanisms un-
a0 derlying mutational correlations (Hodgkin, 1998; Wagner and Zhang, 2011).

an Even if the specific molecular mechanism that is the cause of correlation is
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a2 not known, it is still possible to estimate the genomic M-matrix which de-
a3 scribes the combined pattern of (co)variation arising from mutations in all
aa loci that affect the traits of interest. Mutation accumulation experiments in
as  D. melanogaster (Houle and Fierst, 2013) or C. elegans (Estes et al., 2005)
a6 provide examples of such genomic M-matrix estimates and show the exis-
a7 tence of strong mutational correlation among morphological and life-history
ais traits. Additionally, mutational correlations in C. elegans seem to corre-
a0 spond to phenotypic correlations among traits after removing environmental
w20 correlations and suggest that pleiotropy is somewhat restricted within traits
a1 of related function (Estes et al., 2005). Unfortunately, the M-matrix is only
w22 a summary statistic, which represents patterns of mutational variance across
w3 traits. It does not necessarily represent the correlations of mutational effects
2 underlying that mutational variance between traits, which may be hidden
w5 due to multiple effects cancelling each other out.

426 It is also possible to discover evidence of modular pleiotropy from genome-
w2 wide studies using gene knock-out/-down experiments as was performed in
ws yeast (Dudley et al., 2005; Giildener et al., 2005; Ohya et al., 2005), C. elegans
29 (Sonnichsen et al., 2005), and the house mouse (Bult et al., 2008), which
a0 have shown that whole-gene pleiotropy is variable (not all genes affect all
a1 traits) and often modular (Wang et al., 2010; Wagner and Zhang, 2011).
2 QTL studies further show variable pleiotropy in D. melanogaster (Mezey
a3 et al., 2005), threespine stickleback (Albert et al., 2008), the house mouse
s¢  (Cheverud et al., 1997; Kenney-Hunt et al., 2008; Miller et al., 2014), and
w5 A. thaliana (Juenger et al., 2005), among others (Porto et al., 2016).

436 One empirical study based on human patient data manages to link mu-
s tational correlation with modular variation of pleiotropy by measuring both
a8 the genomic M-matrices and the pleiotropic degree of main and epistatic
s effects of mutations affecting the replicative capacity (fitness) of HIV-1 in
wo different drug environments (Polster et al., 2016). In doing so, they dis-

a1 covered that epistasis can affect the pleiotropic degree of single mutations
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a2 producing modular genetic architectures and that epistatic-pleiotropic effect
a3 modules matched modules of fitness co-variation among drugs. These results
us  suggest that epistasis may be fundamental in shaping the genetic integration
ws itself, which may allow organisms to enhance their evolvability in the face of
us  selection (Pavlicev et al., 2008, 2011; Pavlicev and Cheverud, 2015).

47 Conclusion

448 Both pleiotropic connectivity and mutational correlation can constrain
wo  the divergence of traits under divergent selection, but when both can evolve,
w0 trait divergence occurs because pleiotropic connections are broken between
ss1 loci and traits under stabilizing selection. The evolution of pleiotropic con-
2 nectivity is favoured because it is an easier target of selection than a distri-
»s3 bution of mutational effects. The most commonly observed genotype thus
ss¢ includes one locus that maintains connections to both traits under direc-
ss5 tional selection and both traits under stabilizing selection, and the other
6 locus losing its connection to the traits under stabilizing selection (subfunc-
w7 tionalization). The subfunctionalization of one locus allows it to contribute
w3 to increasingly divergent trait values in the traits under directional selection
w0 without changing the trait values of the other traits, which leads to separate
wo genetic modules. These results indicate that partial subfunctionalization is
w1 sufficient to allow genetic decoupling and the divergence of traits with little

w2 10 no loss of average fitness.
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1 Supplemental

Jonesetal2007 (Fig3) vs=9, u=0.0002, uru=0.002, |=50
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Figure S1: Average mutational correlation p, values for different values of correlational
selection p,. Parameter values were chosen to match those used in Jones et al. 2007
wherever possible and averages were taken over values from every five generations after
burn-in between generation 10,000 and 20,000. Number of loci = 50, Number of traits =
2, N = 2372, w? =9, u = 0.0002, fmutcor = 0.002, and a? = 0.05.
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Figure S2: Average fitness for different values of mutational correlation (static). Parameter
values were chosen to match those used in Jones et al. 2007 wherever possible and averages
were taken over values from every five generations after burn-in between generation 10,000
and 15,000. Number of loci = 50, Number of traits = 2, N = 2372, w? =9, p,, = 0.75, u
= 0.0002, and o2 = 0.05.
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