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Abstract

Both pleiotropic connectivity and mutational correlations can restrict the de-

coupling of traits under divergent selection, but it is unknown which is more

important in trait evolution. In order to address this question, we create

a model that permits within-population variation in both pleiotropic con-

nectivity and mutational correlation, and compare their relative importance

to trait evolution. Specifically, we developed an individual-based, stochas-

tic model where mutations can affect whether a locus affects a trait and

the extent of mutational correlations in a population. We find that traits

can decouple whether there is evolution in pleiotropic connectivity or mu-

tational correlation but when both can evolve then evolution in pleiotropic

connectivity is more likely to allow for decoupling to occur. The most com-

mon genotype found in this case is characterized by having one locus that

maintains connectivity to all traits and another that loses connectivity to

the traits under stabilizing selection (subfunctionalization). This genotype is

favoured because it allows the subfunctionalized locus to accumulate greater
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effect size alleles, contributing to increasingly divergent trait values in the

traits under divergent selection without changing the trait values of the other

traits (genetic modularization). These results provide evidence that partial

subfunctionalization of pleiotropic loci may be a common mechanism of trait

decoupling under regimes of corridor selection.

Introduction1

One of the central problems in evolutionary biology is understanding the2

processes through which new traits arise. One process that can lead to the3

creation of new traits is when existing traits become differentiated from one4

another because they are selected for a new purpose (Rueffler et al., 2012).5

There has long been evidence that this can happen through gene duplica-6

tion followed by trait decoupling (Muller, 1936; Ohno, 1970; Rastogi and7

Liberles, 2005; Han et al., 2009). One example in vertebrates is the dif-8

ferentiation of forelimbs from hind limbs, where the same gene that was9

responsible for both fore and hind limb identity in development diverged10

(Graham and McGonnell, 1999; Minguillon et al., 2009; Petit et al., 2017).11

In this case, the paralogous genes Tbx4/Tbx5 that encode transcription fac-12

tors for fore/hindlimb identity likely evolved from the same ancestral gene,13

and their expression differentiated after duplication (Minguillon et al., 2009).14

Somehow during selection for functional divergence, there was a decoupling15

of genetically integrated traits, which allowed them to respond to selection as16

independent genetic modules (Wagner and Altenberg, 1996; Hansen, 2006).17

Genetic decoupling was likely also responsible for the evolution of trait di-18

vergence in vertebrate metameric segmentation into differentiated somites,19

and the emergence of cell differentiation in multicellular organisms (Holley20

2007; Wagner et al. 2019; but see Newman 2020).21

Although modular structures in phenotypic covariation (where pheno-22

typic variation is more correlated within groups of traits than between them)23

are found in a wide range of organisms, including yeast, round worms, mice,24
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and humans (Jiang et al., 2008; Wang et al., 2010; Hlusko, 2016), the un-25

derlying genetic architectures producing genetic integration between traits26

are still uncertain. Genetic integration, constraining the decoupling of traits,27

may arise from pleiotropic connections between loci and traits, where they28

may or may not create genetic and phenotypic covariation (Baatz and Wag-29

ner, 1997; Kenney-Hunt et al., 2008; Smith, 2016). When selection favours30

the divergence of traits, the constraining effect of pleiotropy may come in31

two forms: a pleiotropic connectivity effect or a mutational correlation ef-32

fect (Stern, 2000). A pleiotropic connectivity effect depends on how highly33

pleiotropically connected a gene is. For instance, a gene product (e.g. en-34

zyme, transcription factor, etc.) may affect more than one trait (or func-35

tion) by having multiple substrates or binding sites, thus affecting multiple36

downstream processes. This may constrain the evolutionary divergence of37

those traits because the effect of a mutation beneficial for one trait may be38

deleterious for other traits (when those other traits are under stabilizing se-39

lection). It is expected that the net fitness effect of a pleiotropic mutation is40

decreased in proportion to the number of traits it affects (Orr, 2000; Welch41

and Waxman, 2003; Martin and Lenormand, 2006). Therefore, a pleiotropic42

connectivity effect can constrain divergent trait evolution even without creat-43

ing genetic correlation among traits (a.k.a, hidden pleiotropy Wagner, 1989;44

Baatz and Wagner, 1997). Whereas, a mutational correlation effect is the45

effect of a mutation affecting how correlated are the effects of mutations at46

pleiotropic loci. Thus, a mutational correlation effect may induce correlated47

changes in the traits affected by pleiotropic loci. However, the strength of48

the correlational effect of the mutations is not dependent on the number of49

traits affected but on the properties of the genes, processes, or traits affected.50

When those effects are correlated among traits, they can constrain trait de-51

coupling in addition to those caused by the dimensionality of the pleiotropic52

loci (Lande, 1979; Arnold, 1992; Stern, 2000).53

Biological examples may help to illuminate the distinction between the54
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Figure 1: The two types of mutations affecting pleiotropic effects using a transcription
factor (TF) as an example.

two types of pleiotropy that can hinder the decoupling of traits. Imagine55

a transcription factor (TF) that has multiple target binding sites affecting56

the expression of multiple genes, which in turn affect several traits. If the57

binding sites have identical sequences, then mutations in the gene encoding58

the TF are expected to be in perfect correlation with respect to their effects59

on the traits. In this scenario, a mutational correlation mutation may be a60

mutation in one of the binding sequences that leads to differential binding of61

the transcription factor (Figure 1). Now, that the binding sites are no longer62

identical, mutations in the gene encoding the TF may no longer have per-63

fectly correlated effects on the traits. As the name suggests, the mutational64

correlation mutation has affected the correlation between effects of mutations65

in the TF’s gene on the traits it affects. Whereas, another type of mutation66

might affect a TF’s access to one of it’s binding sites (e.g. by methylating67

the DNA in the region of that binding site). If this type of mutation causes68

the TF to affect more or less traits than it did before the mutation, it would69

be considered a pleiotropic connectivity mutation.70

Both pleiotropic connectivity and mutational correlations can evolve as a71

result of divergent selection and affect the ability of traits to decouple from72

one another. Although previous models have included either evolution in73

pleiotropic connections or mutational correlation, their relative importance74
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in constraining trait decoupling remains to be seen (Jones et al., 2003, 2007;75

Melo and Marroig, 2015; Chebib and Guillaume, 2017). Here we attempt76

to answer this question by using stochastic simulations, where individuals77

in a population can vary in both pleiotropic connections and mutational78

correlations, while applying divergent selection on some traits but not others,79

and then observing what affects the decoupling of traits.80

Methods81

Simulation model82

We modified the individual-based, forward-in-time, population genetics83

simulation software Nemo (v2.3.46) (Guillaume and Rougemont, 2006) to84

allow for the evolution of pleiotropic connectivity and mutational correla-85

tions. The simulations consisted of a single population of size N of randomly86

mating, hermaphroditic, diploid individuals, with a probability 1/N of self-87

fertilization, similar to a classical Wright-Fisher population model. Each88

individual had two pleiotropic QTLs affecting four traits. The phenotypic89

value of each trait, zi, was calculated by adding the allelic values at the two90

loci: zi =
∑L

l=1(Xi,l + Yi,l), where X is the maternally inherited allele and91

Y the paternally inherited allele, i is the trait number (i ∈ [1, 4]), and L92

is the locus number (L ∈ [1, 2])) (Figure 2). For simplicity, we assumed no93

environmental variance (i.e. heritability is 1).94

Generations were non-overlapping and consisted of three main stages:95

mating, viability selection, ageing. In the mating stage, pairs of individuals96

were chosen to produce offspring (with a mean fecundity of three offspring97

to ensure population size replenishment). It was during the mating stage98

that recombination between loci and mutations occurred. In the viability99

selection stage, Gaussian stabilizing selection was applied on offspring and100

determined the survival probability of individuals, whose fitness was calcu-101

lated as w = exp
[
−1

2

(
(z− θ)T ·Ω−1 · (z− θ)

)]
, where z is the individual102

trait value vector, θ is the vector of local optimal trait values, and Ω is the103
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Figure 2: Pictorial representation of quantitative trait locus (QTL) alleles and the traits
they affect with example values for illustration. Here, Trait 1 has a value of 1.89 determined
by the sum of allelic values (X1,1, Y1,1, andY1,2) pleiotropically connected to it from Locus
1 (0.5 + 0.89) and Locus 2 (0.5), where Y1,2 represents the maternally inherited allele of
Locus 2 that affects Trait 1. Trait 2 is affected differently by the two loci and has a value
of 1.32 (0.5 + 0.1 + 0.22 + 0.5). The allelic values of a QTL were affected by mutation
at a rate of µ. The pleiotropic connections between a QTL and a trait could be removed
or added by mutation at a rate of µpleio, and toggled whether an allelic value was added
to a trait value or not.

selection variance-covariance matrix (n× n, for n traits) describing the mul-104

tivariate Gaussian selection surface. The Ω matrix is a diagonal matrix with105

diagonal elements corresponding to the strength of selection, ω2, on each106

trait (where strength of selection scales inversely with ω2), and off-diagonal107

elements corresponding to the strength of correlational selection, ρωij, be-108

tween traits i and j. In the ageing stage, the adults were removed from109

the population and the offspring matured into breeding adults for the next110
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generation.111

Three types of mutations (each with a separate mutation rate) were pos-112

sible: mutations at the additive QTL affecting the traits, mutations at a set113

of modifier loci separately affecting the correlation of the mutational effects114

at the additive QTL, and mutations affecting the connectivity of the QTL to115

the traits, reducing or increasing the pleiotropic degree (the number of traits116

a locus affects) of each locus. The first type of mutations changed the allelic117

values of a QTL by randomly drawing effects from a multivariate normal dis-118

tribution, with variance-covariance matrix M. The mutational effects were119

added to the existing allelic values at the QTL (continuum-of-alleles model;120

Crow and Kimura, 1964). These mutations appeared at a rate given by µ.121

The variance of the mutational effect for all traits were constant and set at122

α2 = 0.1 in the diagonal of the M-matrix. Each pairwise trait covariance of123

the M matrix was governed by its own separate modifier locus. We will refer124

to variance-standardized covariance values, or mutational correlation ρµij as125

the off-diagonal elements of the M matrix. As M is a 4× 4 symmetrical ma-126

trix, the 6 ρµij coefficients were controlled by 6 diploid modifier loci, carried127

by each individual and inherited in the same manner as the additive QTL.128

Each individual thus carried its own M matrix. The second type of mutation129

thus changed these mutational correlation allelic values by randomly drawing130

from a uniform distribution (−0.2∗ log[1−U(0, 1)]), and adding the effect to131

the existing allelic value (which was bound between -1 and 1). These muta-132

tions appeared at a rate given by µmutcor. In order to get a particular muta-133

tional effect correlation, ρµij, the two mutational correlation allelic values of134

the corresponding modifier locus were averaged together (Figure 3). All the135

pairwise mutational effect correlations (ρµij) were combined with mutational136

effect variances (α2
i ) to create the M matrix for an individual, whenever a137

mutational effect on a QTL that directly affected traits was required. The138

third type of mutation affected the pleiotropic connections between QTLs139

and traits, determining whether the allelic value of a QTL was added to a140
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trait value. A mutation of this type affected the pleiotropic connections be-141

tween a trait and the maternally or paternally inherited alleles separately.142

Thus, QTLs could be ‘heterozygotes’ in their pleiotropic degree depending143

on the pleiotropic degree of the maternally and paternally inherited alleles.144

These mutations appeared at a rate given by µpleio (Figure 2).145

Figure 3: Pictorial representation of the modifier loci that contained the allelic values
for producing the pairwise mutational effect correlations (ρµij) between Traits i and j.
The allelic values of a modifier locus were affected by mutation at a rate of µmutcor, and
were averaged together to produce the corresponding correlation for the M matrix. The
mutational effect variances, α2, remained static with a value of 0.1 for all traits.

Experimental design146

To understand the impact of divergent selection on the structure of ge-147

netic architecture, simulations were run with a population of 500 individuals148

that had two additive loci underlying four traits (Figure 4). The initial149

conditions were set to full pleiotropy (each locus affecting every trait) and150

strong mutational correlations between trait pairs (ρµ = 0.99). This way,151

mutational effects in phenotypic space were highly constrained to fall along152

a single direction, and reducing variation for divergent selection. All traits153

had an initial phenotypic value of 2 with equal allelic values of 0.5 at each154

allele of the two QTL.155
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Figure 4: Pictorial representation of the genetic architecture modelled within individuals
at the start of the simulations, with 2 loci, 4 traits, and full pleiotropic connectivity
between them.

Selection regimes were designed to mimic divergent selection between156

trait modules, where Trait Module 1 included Traits 1 and 2, and Trait157

Module 2 included Traits 3 and 4. Initially, optimum trait values, θk, (k ∈158

1, 2, 3, 4), were all set to 2 (the same as the initial trait values). There159

was moderately strong stabilizing selection on each trait (ω2 = 5), strong160

correlational selection between traits in the same trait module (ρω12 = ρω34 =161

0.9), and no correlation between traits in different trait modules (ρω13 =162

ρω14 = ρω23 = ρω24 = 0). After this, divergent directional selection proceeded163

by maintaining constant optimal trait values for Traits 3 and 4 (θ3 = θ4 =164

2) and increasing the optimal trait values for Traits 1 and 2 by 0.001 per165

generation for 5000 generations, bringing the trait optima to θ1 = θ2 = 7166

(corridor model of selection sensu Wagner, 1984; Bürger, 1986). These 5000167

generations of divergent, directional selection on Traits 1 and 2 were then168

followed by 5000 generations of purely stabilizing selection.169

In order to compare the differential effects of evolving pleiotropic connec-170

tivity and evolving mutational correlations on trait decoupling, nine different171

simulations were run with all combinations of three different rates of muta-172
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tion in pleiotropic connectivity and mutational correlations (µpleio and µmutcor173

= 0, 0.001, or 0.01) representing no evolution, and mutation rates below, at174

and above the QTL allelic mutation rate (µ = 0.001), respectively.175

Simulations were also run with initial mutational correlations between176

all pairs set to 0 (ρµ = 0) to compare highly constraining genetic architec-177

ture (within a corridor selection regime) to ones with no constraints in the178

direction of mutational effects.179

We observed general patterns of average trait value divergence, popula-180

tion fitness, genetic correlation, pleiotropic degree (the number of traits a181

locus affects) and mutational correlation. In the case of pleiotropic degree,182

the two loci affecting trait values were sorted into a high and low pleiotropic183

degree locus for each individual before averaging over populations or repli-184

cates so that differential effects of the two loci were not averaged out in the185

final analysis. Statistics were averaged over 50 replicate simulations for each186

particular set of parameter values.187

Results188

Trait divergence and genetic modularity under constraints to genetic decou-189

pling190

In the absence of genetic architecture evolution (µpleio = µmutcor = 0),191

traits are still capable of divergence, but do not follow trait optima closely192

since traits 3 and 4 get pulled away from their optima as traits 1 and 2193

increase to follow theirs (Figure 5). With the introduction of variation in194

genetic architecture through mutation (µpleio, µmutcor > 0), average trait val-195

ues follow their optima more closely and the capability of trait divergence196

increases as mutation rates in genetic architecture increases, which leads to197

higher average population fitness values by generation 5000 (Figure 6). Also198

by generation 5000, simulations with higher pleiotropic connection mutation199

rates (µpleio ≥ 0.001 or µmutcor = 0.01) have distinctly modular genetic cor-200

relation structures with stronger correlations between traits 1 and 2 than201
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between traits 3 and 4 (Figure 7). But at the highest pleiotropic connec-202

tivity mutation rate (µpleio = 0.01) the genetic integration of trait 3 with203

4 (and even trait 1 with 2) is no longer as strong (i.e., the genetic correla-204

tion drops, see Figure 7). An increase in pleiotropic connectivity variation205

has a greater impact on trait divergence evolution and modularization of the206

genetic architecture of the traits than the same increase in mutational cor-207

relation variation, which is evident when either µpleio or µmutcor is the same208

as the allelic mutation rate (µ = 0.001). Even when the mutation rate for209

mutational correlation is at the highest tested (µmutcor = 0.01), an increase210

in the mutation rate for pleiotropic connections still improves the ability for211

traits to diverge, which can be seen in the decrease in variance over replicate212

simulations (Figure 5).213

Effects of pleiotropic connectivity and mutational correlation evolution on214

rate and extent of trait decoupling215

When evolution of pleiotropic connections is possible (µpleio > 0), the most216

common allele in almost all cases is one that maintains connections to Traits217

1 and 2, but has lost connections to traits 3 and 4 after two mutational events.218

This allele is found in Locus 1 or 2 at a frequency of 0.873 averaged over the219

populations of all simulations where evolution of pleiotropic connections is220

possible. The allele goes to fixation or near fixation in one locus where its221

pleiotropic degree decreases from four to two, and this happens more rapidly222

as µpleio increases (Figure 8). The decrease in pleiotropic degree resulting223

from the increase in frequency of this allele coincides with the modularization224

of genetic correlations, the divergence of traits and the increase in fitness.225

The proportion of times in which this particular allele becomes common in226

Locus 1 or in Locus 2 is approximately equal over all simulations (0.491 and227

0.509, respectively, over 300 simulations) and is never observed in both loci228

in any one individual.229

When the mutation rate for pleiotropic connectivity (µpleio) is zero, mu-230

tational correlation evolution can still lead to trait divergence but this takes231
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Figure 5: Trait value divergence over 5,000 generations of divergent selection on Traits 1
and 2 (Trait Module 1) followed by 5,000 generations of stabilizing selection for different
combinations of mutation rate in pleiotropic connectivity (µpleio) and mutational corre-
lations (µmutcor). Orange – average values of Traits 1 and 2; Blue – average values of
Traits 3 and 4; Black – trait value optima for Trait Modules 1 and 2. Shaded regions show
standard errors of the mean for 50 replicate simulations.

longer, does not diverge as fully, and therefore leads to lower population232

mean fitness. Evolution of the mutational correlation occurs by a general de-233

crease in all mutational correlations between traits at a rate determined by234

the mutation rate of mutational correlations (Figure 9). When the mutation235

rate at the mutational correlation loci is higher than the pleiotropic muta-236
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Figure 6: Average population fitness after 5,000 generations of divergent selection on Traits
1 and 2 (Trait Module 1) for different combinations of mutation rate in pleiotropic con-
nectivity (µpleio) and mutational correlations (µmutcor). All error bars represent standard
errors of the mean for 50 replicate simulations.

tion rate then genotypic patterns do emerge where one locus disconnected237

from Trait 3 combines with lower mutational correlations between Traits 1238

and 4 or 2 and 4, or a locus disconnected to Trait 4 combines with lower239

mutational correlations between Traits 1 and 3 or 2 and 3 (at frequencies of240

0.16 and 0.10 over 50 replicates, respectively). But even in the case with a241

higher mutation rate for mutational correlation than the pleiotropic connec-242
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Figure 7: Genetic correlations between traits after 5,000 generations of divergent selec-
tion on Traits 1 and 2 (Trait Module 1) for different combinations of mutation rate in
pleiotropic connectivity (µpleio) and mutational correlations (µmutcor). Red – higher ge-
netic correlation. White – no genetic correlation

tivity mutation rates, full subfunctionalization (one locus loses connections243

to Traits 3 and 4) is a possible outcome occurring in 18% of 50 replicates244

after 5,000 generations.245

Effect of mutational correlation initial conditions set to zero (ρµ = 0 versus246

ρµ = 0.99)247

In simulations where all mutational correlations are initialized at zero,248

there is little to no constraint on trait divergence despite full pleiotropic249

connectivity. This can be observed in trait values that follow their optima250
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Figure 8: Average number of traits connected to each locus over 5,000 generations of
divergent selection on Traits 1 and 2 (Trait Module 1) followed by 5,000 generations of
stabilizing selection for different combinations of mutation rate in pleiotropic connectivity
(µpleio) and mutational correlations (µmutcor). Loci are sorted so that locus with higher
pleiotropic degree (Locus H) is always shown above and lower pleiotropic degree (Locus L)
shown below. Shaded regions show standard errors of the mean for 50 replicate simulations.

closely, leading to little reduction in fitness as optima for Traits 1 and 2251

diverge from Traits 3 and 4, with little evolution in mutational correlations252

and pleiotropic degree during divergent selection (Figure 10). There are still253

patterns of genetic architecture evolution as alleles with lowered pleiotropic254

degree still emerge in the populations, but fixation is not common nor are255
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Figure 9: Average within and between trait module mutational correlation over 5,000
generations of divergent selection on Traits 1 and 2 (Trait Module 1) followed by 5,000
generations of stabilizing selection for different combinations of mutation rate in pleiotropic
connectivity (µpleio) and mutational correlations (µmutcor). Orange – mutational corre-
lation between Traits 1 and 2 (within Trait Module 1); Blue – mutational correlation
between traits 3 and 4 (within Trait Module 2); Black – average mutational correlations
between Traits 1 and 3, 1 and 4, 2 and 3, and 2 and 4 (between Trait Module 1 and 2).
Shaded regions show standard errors of the mean for 50 replicate simulations.

any allelic patterns of mutational correlations.256
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Figure 10: Average trait value, fitness, mutational correlation and pleiotropic degree,
when all ρµ values are initialized to 0, over 5,000 generations of divergent selection on
Traits 1 and 2 (Trait Module 1) followed by 5,000 generations of stabilizing selection for
different combinations of mutation rate in pleiotropic connectivity (µpleio) and mutational
correlations (µmutcor). For pleiotropic degree, loci are sorted so that locus with higher
pleiotropic degree (Locus H) is always shown above and lower pleiotropic degree (Locus
L) shown below. Orange – Trait 1 and 2 values or mutational correlation between Traits
1 and 2 (Trait Module 1); Blue – Trait 3 and 4 values or mutational correlation between
Traits 3 and 4 (Trait Module 2); Black – average mutational correlations between Traits
1 and 3, 1 and 4, 2 and 3, and 2 and 4 (between Trait Modules 1 and 2). Shaded regions
show standard errors of the mean for 50 replicate simulations.

Discussion257

Evolution in pleiotropic connectivity and mutational correlation can lead to258

trait divergence259

Previous models of genetic architecture evolution have shown that evo-260

lution in pleiotropic connections and mutational correlation can influence261
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genetic correlation between traits and therefore responses to selection, but262

as far as we are aware this is the first time both have been allowed to evolve263

in the same model. When a genetic architecture is highly constraining to264

the decoupling of some traits from others, then evolution of the structure265

of the genetic architecture itself can clearly facilitate the rate and extent of266

trait divergence. Although genetic architecture may evolve through changes267

in pleiotropic connectivity between genes and traits, and in the mutational268

correlations between traits, the former leads to a greater release of genetic269

constraints and faster adaptation in the corridor selection regime. A qual-270

itative distinction exists between these two types of genetic constraints to271

decoupling for two reasons. First, genetic constraints based on mutational272

correlation distributions are more difficult targets of selection compared to273

pleiotropic connections because mutations on modifiers of genetic correla-274

tions do not affect the trait phenotypes directly, whereas a single allele that275

differs in its pleiotropic connectivity does. Second, mutational correlations276

require pleiotropic connections to be effectual on traits (there can be no mu-277

tational correlations if a QTL affects only one trait), whereas the latter can278

affect the rate of adaptation regardless of mutational correlation (Baatz and279

Wagner, 1997; Chebib and Guillaume, 2017).280

The results of this study corroborate results from previous models of281

pleiotropic evolution. We observe that divergent selection in the form of the282

corridor model leads to modular genetic architecture with greater genetic cor-283

relations between traits within trait modules and lower correlations between284

trait modules. This was also the case in both Melo and Marroig (2015) and285

Pavlicev et al. (2011) under the corridor model. Unfortunately, it is unclear286

whether patterns of partial modular pleiotropy that were responsible for the287

emergence of genetic modularity in our study were also observed in these288

studies because they did not report the most common resulting genotypes289

after corridor selection. Melo and Marroig (2015) did however vary the mu-290

tation rate in pleiotropic connectivity (while keeping allelic mutation rate the291
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same) and found that when µpleio was 10 times greater than µ, there were292

higher within and between trait module correlation compared to when µpleio293

and µ were the same. Though our results corroborate this relationship as294

well, we cannot deduce the state of the pleiotropic connections that led to295

those results in their simulations. Their study also did not include evolution296

in mutational correlations so it is not possible to do a comparison on the rel-297

ative effects of mutational correlation and pleiotropic connectivity evolution298

on patterns of genetic modularity. Pavlicev et al. (2011) had a deterministic299

model with rQTL (modifier loci) that affected the correlations between traits300

directly instead of affecting the pleiotropic connections, making it difficult301

to compare patterns of partial modular pleiotropic connectivity. Jones et al.302

(2007) found “extreme” variation among replicates in the average mutational303

correlation observed when ρµ was capable of evolving, similar to what was304

observed in our study (as well as when simulations were run with the same305

parameter values as the Jones et al. (2007) study; Supplemental Figure S1).306

This variation of the evolution of mutational correlation is likely due to an307

unstable equilibrium in the adaptive landscape in which highly positive or308

negative mutational correlations have a selective advantage over mutational309

correlations closer to zero (Lande (1980); Zhang and Hill (2002); Jones et al.310

(2007); Supplemental Figure S2).311

Patterns of pleiotropy312

What explains the emergence of one dominant genotype that was ob-313

served with one locus losing its connections to Traits 3 and 4, and the other314

locus maintaining full pleiotropy? When mutational correlations are strong,315

genetic modularization should arise so that mutational effects can increase316

Traits 1 and 2 values without also increasing Traits 3 and 4, (especially when317

stabilizing selection is strong compared to directional selection). If stabilizing318

selection had been weaker and/or directional selection been much stronger,319

then more loci affecting the traits would have increased the proportion of ad-320

vantageous mutations allowing for divergence (Hansen, 2003). For the same321
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reason, we don’t observe complete genetic modularization with one locus only322

connected to Traits 1 and 2, and the other only connected to Traits 3 and323

4. With both loci contributing to Traits 1 and 2, there is more mutational324

input to increase their values, giving support to the idea that intermediate325

levels of genetic integration will maximize evolvability when pleiotropic ef-326

fects are all positive (Hansen, 2003). Also, since we were interested in the327

evolution of genetic architectures allowing trait decoupling, we started our328

simulations with a highly genetically integrated, monomorphic population.329

This makes evolution in our model dependent on de-novo mutations and as330

traits diverged, the negative effects of pleiotropy on traits under stabilizing331

selection increased, leading to modularization in the genetic architecture.332

But, if we had simulated genetic architectures where the allelic mutation333

rate (µ) was high enough and/or selection acted on many loci with small334

effects, pleiotropy may not have been as constraining, and integrated genetic335

architectures (loci affecting all traits) could be more evolvable. Whether in-336

tegrated or modular genetic architectures will evolve in response to divergent337

selection is dependent on the relative effects of mutation and selection on the338

different traits (Pavlicev and Hansen, 2011). This also would have been true339

if standing genetic variation had already existed in pleiotropic connectivity340

and mutational correlations in a population prior to divergent selection. We341

could imagine that many possible combinations of pleiotropic connectivity342

and mutational correlation alleles that allow for increased variation and re-343

duced covariation between traits could also exist. In those scenarios, genetic344

modularization may not be associated with trait divergence.345

The results we obtain in this study are also related to work done on the346

evolutionary fate of duplicated, pleiotropic genes (Ohno, 1970; Hahn, 2009;347

Innan and Kondrashov, 2010; Guillaume and Otto, 2012). Previous models348

describe the conditions under which both genes remained fully pleiotropic,349

which is expected to be favorable when there is selection for increased dosage350

as we had for traits 1 and 2 (Ohno, 1970). There is some empirical evidence351
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of this in ribosomal RNA, histone genes, as well as amylase genes in humans352

with high starch diets (Zhang, 2003; Perry et al., 2007; Qian et al., 2010).353

Other models describe when one or both genes lose their connection to some354

traits, known as subfunctionalization, if there is a relaxation of selection after355

duplication (Force et al., 1999; Lynch and Force, 2000). Empirical evidence356

for subfunctionalization exists for vertebrate limb evolution, as discussed in357

the introduction, as well as pathway specialization in plants (Bomblies and358

Doebley, 2006; Des Marais and Rausher, 2008). Compared to models with359

selection for increased dosage, our model has selection only for higher values360

in Traits 1 and 2, whereas selection for increased values in all four traits is361

expected to maintain all pleiotropic connections. The difference compared to362

neutral models where subfunctionalization is the result is that in our model363

there is no relaxation of selection due to duplication and redundancy. In that364

case, Guillaume and Otto (2012) showed that the maintenance of pleiotropy365

in one gene and subfunctionalization in the other (the most common outcome366

in our simulations) is predicted when there is asymmetry in either the trait367

contributions to fitness or in the expression levels of the genes. The gene368

with higher expression was predicted to remain fully pleiotropic, with loss of369

pleiotropy in the second, less expressed gene. Our results fit very well with370

that later outcome, although the conditions were different. In Guillaume and371

Otto (2012), a fitness trade-off emerged from the competitive allocation of the372

gene product (amount of protein produced) between two traits under positive373

selection (i.e., increased allocation to one trait reduced allocation to the other374

trait). The fitness trade-off in our model arose from the corridor model of375

selection whereby increased additive contributions to Traits 1 and 2 via fully376

pleiotropic mutations with correlated allelic values trade-off negatively with377

Traits 3 and 4 under stabilizing selection. The trade-off is quickly attenuated378

when the mutational correlations between traits under divergent selection379

decreases. Mutation in pleiotropic connections of the QTL was nevertheless380

more efficient in breaking the constraint to trait divergence. It is also a381
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more plausible mechanism since mutations changing a transcription factors’s382

access to transcription binding sites may cause a drastic change associated383

with a change in pleiotropic connectivity.384

Empirical evidence for mutational correlation and pleiotropy385

The pleiotropic connections and mutational correlations in our model ab-386

stract out the types of molecular level changes that may lead to changes in387

genetic correlations between traits. Some examples of variation in pleiotropic388

connectivity come from empirical studies on transcriptional regulation. For389

example, expression of the Tbx4 gene (described earlier) is required not only390

for hindlimb development but is also expressed in genital development (Chap-391

man et al., 1996). Although the upstream enhancer of Tbx4, hindlimb en-392

hancer B (or HLEB), is functional in both hindlimb and genital development393

in both mice and lizards, HLEB appears to have lost its hindlimb enhancer394

function in snakes due to mutations in one of the enhancer’s binding regions395

(Infante et al., 2015). A more recent example comes from two species of396

Drosophila the diverged only 500,000 years ago. D. yakuba has both hypan-397

drial and sex comb bristles whereas D. santomea has only sex comb bristles398

(Rice and Rebeiz, 2019). Quantitative trait mapping crosses between the399

species and with D. melanogaster revealed that a single nucleotide change in400

a regulatory enhancer of the scute gene, which promotes bristle development,401

was responsible for D. santomea losing its hypandrial bristles and increasing402

its sex comb bristle number (Nagy et al., 2018). These examples provide403

evidence that mutations in DNA binding sites can affect a gene’s pleiotropic404

degree, allowing for evolution of trait decoupling.405

Correlated mutational effects, on the other hand, may arise from muta-406

tions that cause correlated effects in more than one of a gene’s molecular func-407

tions or from mutations causing correlated effects in a gene product’s multiple408

processes, but empirical data is still needed to discover the mechanisms un-409

derlying mutational correlations (Hodgkin, 1998; Wagner and Zhang, 2011).410

Even if the specific molecular mechanism that is the cause of correlation is411
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not known, it is still possible to estimate the genomic M-matrix which de-412

scribes the combined pattern of (co)variation arising from mutations in all413

loci that affect the traits of interest. Mutation accumulation experiments in414

D. melanogaster (Houle and Fierst, 2013) or C. elegans (Estes et al., 2005)415

provide examples of such genomic M-matrix estimates and show the exis-416

tence of strong mutational correlation among morphological and life-history417

traits. Additionally, mutational correlations in C. elegans seem to corre-418

spond to phenotypic correlations among traits after removing environmental419

correlations and suggest that pleiotropy is somewhat restricted within traits420

of related function (Estes et al., 2005). Unfortunately, the M-matrix is only421

a summary statistic, which represents patterns of mutational variance across422

traits. It does not necessarily represent the correlations of mutational effects423

underlying that mutational variance between traits, which may be hidden424

due to multiple effects cancelling each other out.425

It is also possible to discover evidence of modular pleiotropy from genome-426

wide studies using gene knock-out/-down experiments as was performed in427

yeast (Dudley et al., 2005; Güldener et al., 2005; Ohya et al., 2005), C. elegans428

(Sönnichsen et al., 2005), and the house mouse (Bult et al., 2008), which429

have shown that whole-gene pleiotropy is variable (not all genes affect all430

traits) and often modular (Wang et al., 2010; Wagner and Zhang, 2011).431

QTL studies further show variable pleiotropy in D. melanogaster (Mezey432

et al., 2005), threespine stickleback (Albert et al., 2008), the house mouse433

(Cheverud et al., 1997; Kenney-Hunt et al., 2008; Miller et al., 2014), and434

A. thaliana (Juenger et al., 2005), among others (Porto et al., 2016).435

One empirical study based on human patient data manages to link mu-436

tational correlation with modular variation of pleiotropy by measuring both437

the genomic M-matrices and the pleiotropic degree of main and epistatic438

effects of mutations affecting the replicative capacity (fitness) of HIV-1 in439

different drug environments (Polster et al., 2016). In doing so, they dis-440

covered that epistasis can affect the pleiotropic degree of single mutations441
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producing modular genetic architectures and that epistatic-pleiotropic effect442

modules matched modules of fitness co-variation among drugs. These results443

suggest that epistasis may be fundamental in shaping the genetic integration444

itself, which may allow organisms to enhance their evolvability in the face of445

selection (Pavlicev et al., 2008, 2011; Pavlicev and Cheverud, 2015).446

Conclusion447

Both pleiotropic connectivity and mutational correlation can constrain448

the divergence of traits under divergent selection, but when both can evolve,449

trait divergence occurs because pleiotropic connections are broken between450

loci and traits under stabilizing selection. The evolution of pleiotropic con-451

nectivity is favoured because it is an easier target of selection than a distri-452

bution of mutational effects. The most commonly observed genotype thus453

includes one locus that maintains connections to both traits under direc-454

tional selection and both traits under stabilizing selection, and the other455

locus losing its connection to the traits under stabilizing selection (subfunc-456

tionalization). The subfunctionalization of one locus allows it to contribute457

to increasingly divergent trait values in the traits under directional selection458

without changing the trait values of the other traits, which leads to separate459

genetic modules. These results indicate that partial subfunctionalization is460

sufficient to allow genetic decoupling and the divergence of traits with little461

to no loss of average fitness.462
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Supplemental481

Figure S1: Average mutational correlation ρµ values for different values of correlational
selection ρω. Parameter values were chosen to match those used in Jones et al. 2007
wherever possible and averages were taken over values from every five generations after
burn-in between generation 10,000 and 20,000. Number of loci = 50, Number of traits =
2, N = 2372, ω2 = 9, µ = 0.0002, µmutcor = 0.002, and α2 = 0.05.
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Figure S2: Average fitness for different values of mutational correlation (static). Parameter
values were chosen to match those used in Jones et al. 2007 wherever possible and averages
were taken over values from every five generations after burn-in between generation 10,000
and 15,000. Number of loci = 50, Number of traits = 2, N = 2372, ω2 = 9, ρω = 0.75, µ
= 0.0002, and α2 = 0.05.
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