- 1 Systematic assessment of commercially available low-input miRNA library preparation
- 2 kits
- 3 Fatima Heinicke¹, Xiangfu Zhong¹, Manuela Zucknick², Johannes Breidenbach³, Arvind
- 4 Sundaram¹, Siri T. Flåm¹, Magnus Leithaug¹, Marianne Dalland¹, Andrew Farmer⁴, Jordana
- 5 M. Henderson⁵, Melanie A. Hussong⁶, Pamela Moll⁷, Loan Nguyen⁸, Amanda McNulty⁴,
- 6 Jonathan M. Shaffer⁶, Sabrina Shore^{5,9}, HoiChong Karen Yip⁸, Jana Vitkovska⁷, Simon
- 7 Rayner¹, Benedicte A Lie¹*, Gregor D. Gilfillan¹*
- 8 ¹ Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo,

- ¹⁰ ² Department of Biostatistics, Oslo Centre for Biostatistics and Epidemiology, University of
- 11 Oslo, Oslo, Norway
- ³ Norwegian Institute for Bioeconomy Research, National Forest Inventory, Ås, 1431Norway
- ⁴ Takara Bio USA, Inc., Mountain View, CA, USA
- ⁵ TriLink Biotechnologies LLC, San Diego, CA, USA
- ⁶ QIAGEN Sciences, Frederick, MD 21703, USA
- ⁷Lexogen GmbH, Vienna, Austria
- ⁸ SeqMatic, LLC, Fremont, CA 94539, USA
- 18 ⁹ Current address: Singular Genomics, La Jolla, CA, USA
- 19 * contributed equally
- 20

^{9 0450} Norway

22 Abstract

23	High-throughput sequencing is increasingly favoured to assay the presence and abundance of
24	micro RNAs (miRNAs) in biological samples, even from low RNA amounts, and a number
25	of commercial vendors now offer kits that allow miRNA sequencing from sub-nanogram (ng)
26	inputs. However, although biases introduced during library preparation have been
27	documented, the relative performance of current reagent kits has not been investigated in
28	detail. Here, six commercial kits capable of handling <100ng total RNA input were used for
29	library preparation, performed by kit manufactures, on synthetic miRNAs of known
30	quantities and human biological total RNA samples. We compared the performance of
31	miRNA detection sensitivity, reliability, titration response and the ability to detect
32	differentially expressed miRNAs. In addition, we assessed the use of unique molecular
33	identifiers sequence (UMI) tags in one kit. We observed differences in detection sensitivity
34	and ability to identify differentially expressed miRNAs between the kits, but none were able
35	to detect the full repertoire of expected miRNAs. The reliability within the replicates of all
36	kits was good, while larger differences were observed between the kits, although none could
37	accurately quantify the majority of miRNAs. UMI tags, at least within the input ranges tested,
38	offered little advantage to improve data utility. In conclusion, biases in miRNA abundance
39	are heavily influenced by the kit used for library preparation, suggesting that comparisons of
40	datasets prepared by different procedures should be made with caution. This article is
41	intended to assist researchers select the most appropriate kit for their experimental conditions.
42 43	Keywords: microRNA, miRNA, small RNA-seq, library preparation, sequencing bias, low
44	RNA input, NGS, Next Generation Sequencing, UMI

45

46 Introduction

47	Micro RNAs (miRNAs) are ~22 nucleotide long non-coding small RNAs that regulate gene
48	expression at a post-transcriptional level by binding to their mRNA targets to inhibit
49	translation. First discovered in the early 1990s ¹² , miRNAs have been shown to impact
50	biological processes such as cellular differentiation and development ^{3-6 7-9 10-12 13 14} .
51	Alterations in miRNA expression have been observed in various diseases ^{15 16 17} and an
52	accurate method for detecting and measuring miRNA expression is therefore crucial. In
53	recent years, next generation sequencing (NGS) has evolved as the method of choice. The
54	main advantages of NGS, compared to qPCR and microarray techniques, are the possibility
55	to discover novel miRNAs and the ability to detect differences in miRNA sequences on a
56	single base level. Furthermore, NGS enables the study of low-abundance miRNAs, which is
57	especially useful when examining miRNAs in specific cell types or body fluids like serum
58	and plasma. Accordingly, the latest miRNA library preparation kits allow inputs as low as
59	100 picograms total RNA. The library preparation process typically consists of (i) addition of
60	adapter sequences onto the miRNA, (ii) reverse transcription and (iii) PCR amplification
61	prior to sequencing. The kits investigated in this study used both two adapter and single-
62	adapter circularization protocols which can broadly be divided into two classes: those
63	employing RNA ligases (e.g. T4 RNA ligase) and those employing polyadenylation (poly-A)
64	and template-switching oligonucleotides to attach adapter sequences to the single-stranded
65	miRNAs.

66

67 Despite the reported advantages of NGS, the miRNA abundance detected by sequencing and 68 that in the original sample have been shown to differ by up to four orders of magnitude ¹⁸. In 69 particular, the addition of adapters onto the miRNA insert has been identified as a major 70 contributor to this bias ^{19 20}. For protocols utilizing T4 RNA ligase, adapter ligation is

71	influenced by the ligase used, the miRNA insert and adapter primary sequence, as well as the
72	GC content and the secondary structures of miRNA insert and adapter ¹⁹⁻²³ . For poly-A
73	utilizing protocols, the enzyme poly (A) polymerase has also been reported to be influenced
74	by miRNA primary sequence and secondary structure ²⁴ . Other reported possible sources of
75	bias during library preparation include the reverse transcription and PCR steps, with PCR in
76	particular able to introduce both amplification bias and duplicate reads, but results have been
77	contradictory ¹⁹⁻²¹ . A recent study recommended the use of unique molecular identifiers
78	(UMI) to mitigate the reverse-transcription and PCR biases in future experiments ²⁵ . Previous
79	studies also reported that the incorporation of UMIs into sequence adapters resulted in
80	improved accuracy both in RNA-seq and smallRNA-seq analysis ^{26 27} .
81	
81 82	In this study we aimed to systematically assess the miRNA repertoire and frequency observed
	In this study we aimed to systematically assess the miRNA repertoire and frequency observed in NGS data using six different low-input library preparation protocols (Table 1).
82	
82 83	in NGS data using six different low-input library preparation protocols (Table 1).
82 83 84	in NGS data using six different low-input library preparation protocols (Table 1). Commercial vendors marketing kits stating compatibility with total RNA amounts ≤100 ng
82 83 84 85	in NGS data using six different low-input library preparation protocols (Table 1). Commercial vendors marketing kits stating compatibility with total RNA amounts ≤100 ng were invited to participate. The performance of the protocols was compared with regard to
82 83 84 85 86	in NGS data using six different low-input library preparation protocols (Table 1). Commercial vendors marketing kits stating compatibility with total RNA amounts ≤100 ng were invited to participate. The performance of the protocols was compared with regard to their detection rate sensitivity, reliability and ability to identify differentially expressed

90 **Results**

91 Experimental design and miRNA read yields

92 Synthetic miRNA and biologically derived human total RNA samples (21 samples in total)
93 were distributed to participating companies for library preparation (Figure 1a). Upon return
94 of libraries, library yield and size were measured (Supplementary Figure 2). Libraries were

95	pooled based on their miRNA content with the aim of obtaining at least 5 million reads
96	apiece. Based on the presence of additional small RNAs in some libraries, particularly those
97	prepared with the CATS and SMARTer-beta reagents, which displayed a wider range of
98	insert sizes, we did not expect all libraries to produce similar read counts at this stage.
99	Nevertheless, a large number of reads from both CATS and SMARTer-beta kits failed to pass
100	QC threshold filters.
101	The number of sequencing reads obtained ranged from 400,000 to more than 33 million reads
102	for the individual libraries (Supplementary Table 4).
103	
104	For all library preparation kits, the greatest proportion of reads were discarded during
105	mapping, most likely as a result of not allowing for any mismatches (Figure 1b and
106	Supplementary Figure 3). The absolute number of reads excluded differed between the kits.
107	As anticipated, a higher fraction of miRNA reads was obtained in the synthetic miRNA
108	samples compared to the human total RNA samples (Figure 1b), since the human total RNA
109	samples also contain additional classes of small RNA. SMARTer-beta and CATS returned
110	the lowest proportion of miRNA reads both in the synthetic miRNA and the human total
111	RNA samples compared to the other library preparation kits while TailorMix, followed by
112	QIAseq produced the highest proportions of miRNA reads (Figure 1b).
113	
114	To comprehensively evaluate the sensitivity and reliability of the library preparation kits, the
115	synthetic miRNA samples were randomly down-sampled to 2.5 million and human total
116	RNA samples to 0.75 million miRNA reads. The libraries of SMARTer-beta and CATS did
117	not reach these thresholds and were therefore excluded from further analysis. The results

118 presented hereafter are based on calculations using the down-sampled data with the exception

119 of the differential expression and UMI analyses for which raw (not down-sampled) miRNA

120 reads were used.

121

122 Detection rate sensitivity

123 Applying a relaxed detection threshold where miRNAs were defined as detected if one or

more read counts were registered, the detection rate sensitivity for all kits ranged from 94.7%

to 99.1%, and all miRNAs could be detected in at least one kit and replicate. QIAseq

126 followed by TailorMix detected the highest numbers of miRNAs in all three replicates in all

127 the mixes (Figure 2a). QIAseq and TailorMix also missed the fewest miRNAs in either one,

128 two, or all three triplicates. When comparing the detection rate sensitivity of the 1.0ng

129 synthetic miRNA samples (mix A-D) with the 0.1ng synthetic miRNA samples (mix E), no

130 striking difference in the number of detected miRNAs could be observed for any of the kits

131 (Figure 2a).

132

133 Most of the miRNAs that were undetected in QIAseq and TailorMix were neither detected by

134 the other two kits (Supplementary Figures 4 and 5). TailorMix was the only reagent that

135 detected each of the 903 equimolar miRNAs in at least one sample (Supplementary Figure 5).

136 srLp followed by CleanTag showed the highest numbers of kit-specific undetectable

137 miRNAs.

138

Analysis of the 40 non-equimolar miRNAs revealed that miRNAs undetected in one or more replicates belonged mostly to miRNAs present at low levels (Supplementary Figure 6), with QIAseq showing the highest detection rate, again followed by TailorMix. Notably, CleanTag and srLp failed to detect some miRNAs present at relatively high concentrations in all the replicates (mix C and D, Supplementary Figure 6). However, even though the majority of the

144 non-equimolar miRNAs could be detected in all replicates, the analysis indicated that factors

145 in addition to miRNA abundance influence detection rate sensitivity.

146

147	We next compared the performance at different detection thresholds, i.e. 1, 10, 50, 100, 200
148	read counts per million (CPM) for synthetic miRNA samples in all mix triplicates for each kit
149	(Figure 2b). With the exception of some of the non-equimolar miRNA oligonucleotides
150	present at the lowest concentration, all synthetic miRNAs should in theory obtain CPM
151	values above 200 with the library size of 2.5 million mapped miRNA reads. However, a
152	sharp decline in detection was observed at increasing CPM thresholds. Nonetheless, QIAseq
153	followed by TailorMix consistently detected the highest number of miRNAs across all
154	thresholds.

155

156 Intra-rater and Inter-rater reliability

157 Rlog transformed miRNA count data were used for the for intra- and inter-rater reliability

158 calculations. Intra-rater reliability calculations (the concordance between miRNA read counts

159 within the replicates of the library preparation kit) revealed excellent reliability for the

160 synthetic miRNA and the human total RNA samples within all tested kits with ICC values

above 0.99 and 0.98, respectively (Supplementary Table 5). Similarly, very strong

162 correlations were found when Pearson correlation coefficients were calculated (r > 0.97,

163 p < 0.05) (Supplementary Figure 7 and 9a). Bland-Altman plots, which describe the

agreement between two replicates by presenting the difference of them against the mean, also

165 showed good agreement (Supplementary Figure 8 and 9b). For all Bland-Altman

166 comparisons the bias was close to 0. The line of equality (not presented in our Bland-Altman

167 plots) was always within the agreement limits, which indicates a lack of systematic error in

168 the measurements within the replicates. All in all, strong intra-rater reliabilities were

- 169 observed within the samples prepared by each kit.
- 170

171	For the inter-rater reliability calculations (concordance of read counts seen between the
172	different kits) the first replicate of each mix, RA or healthy control sample was randomly
173	chosen. The synthetic miRNA and the human total RNA samples revealed good and excellent
174	inter-rater reliability with ICC values above 0.83 and 0.95 respectively (Supplementary Table
175	6). The correlation between the different kits was above 0.76 ($p < 0.05$) for the synthetic
176	miRNA and above 0.92 for the human total RNA samples (Supplementary Figure 10).
177	However, differences in the correlations between the reagents were seen for the synthetic
178	miRNA samples. The kits with the highest correlations (r > 0.94, p < 0.05) were, independent
179	of whether mix A-E was considered, CleanTag and srLp while QIAseq showed the lowest
180	correlation to the other kits. The Bland-Altman plots revealed no systematic error when
181	comparing the different kits to each other (Supplementary Figures 11 and 12). The limits of
182	agreements were smallest for CleanTag and srLp across all tested mixes in the synthetic
183	miRNA samples indicating a high agreement between those two kits. In summary, a modest-
184	to-good inter-rater reliability was obtained when comparing the mix-specific replicates of the
185	four miRNA library preparation kits with each other, with QIAseq showing the greatest
186	differences from the other reagents.
107	

187

The reliability measured against the theoretical miRNA concentration was only assessed for the synthetic miRNA samples. For the 903 equimolar miRNAs, the fold deviation of the first replicate of mix A from the median count for that sample was calculated as a rlog ratio (Supplementary Figure 13). When the absolute value of the rlog fold deviation for a miRNA was less than or equal to one, the miRNA was counted as equimolar. For the four kits this

193	was the case for 39.8 to 42.0% of the equimolar miRNAs. The remaining miRNAs showed a
194	bias towards over-representation (positive rlog fold change) rather than under-representation.
195	The coefficient of variation of the rlog counts across all replicates for the equimolar miRNAs
196	was lowest for QIAseq, followed by TailorMix, CleanTag and srLp, respectively
197	(Supplementary Table 7).
198	
199	For the 40 non-equimolar miRNAs, the correlation between the rlog counts of each library
200	preparation kit and their theoretical concentration varied between the mixes for all kits.
201	Overall, mix A and mix E showed greater correlations ($0.41 < r > 0.61$, $p < 0.05$) than mix B
202	to mix D ($0.08 < r > 0.47$, p < 0.05) (Supplementary Table 8). QIAseq showed the highest
203	correlation coefficients across all samples. All in all, these results suggest that on one hand
204	the reliability between the reagents is good, but on the other hand that none of the reagents
205	are ideally suited for accurate miRNA quantification.
206	

207 Differential expression

208 Most miRNA profiling studies aim to identify differentially expressed (DE) miRNAs 209 between samples of interest. When comparing mix A and mix B of the synthetic miRNA 210 samples, ideally all 40 non-equimolar miRNAs should be detected as DE with a log2 fold 211 change greater than or equal to one. All kits detected between 32 to 35 DE miRNAs (Figure 212 3a). However, some of those miRNAs (CleanTag, TailorMix and srLp=2 and QIAseq=1) 213 were from the pool of equimolar miRNAs. Of the 40 non-equimolar miRNAs, 26 were 214 detected to be DE by all kits, although they did not always agree on the log fold changes 215 (Figure 3b). The non-equimolar miRNAs hsa-miR-1199-5p, hsa-miR-22-5p and hsa-miR-216 940, which were three of the ten miRNAs expected to show the lowest fold differences (fold 217 change of 2) between mix A and mix B, could not be detected as DE by any of the reagents.

2	1	Q
4	T	0

219	In order to control as best possible that the levels of miRNA in mix A and mix B were as
220	expected, we performed quantitative reverse-transcriptase PCR assays on 16 selected non-
221	equimolar miRNAs (Supplementary Figure 14), which confirmed the intended ratios in the
222	starting material.
223	
224	Differential expression analysis of the human total RNA samples revealed different numbers
225	of DE miRNAs detected by the kits. CleanTag detected 19 DE miRNAs, QIAseq and
226	TailorMix detected two DE miRNAs each, while srLp did not detect any (Figure 3c). With
227	the exception of hsa-miR-486-3p, no overlap between the DE miRNAs was seen amongst the
228	kits (Figure 3d).
229 230	Titration response
231	The titration response of the 40 non-equimolar miRNAs in mixes A - D (Figure 1a) was
232	compared by scoring a miRNA as titrating or non-titrating based on detection in the expected
233	concentration order in the four mixes. Since there were five miRNAs at each chosen
234	concentration, the fraction of titrating miRNAs (0, 0.2, 0.4, 0.6, 0.8 or 1) was calculated for
235	each reagent kit for each concentration group (Table 2). The highest fraction of titrating
236	miRNAs was seen for QIAseq, which correctly scored all miRNA concentrations with greater
237	than 2-fold differences in mix A through mix D.
238 239	Effectiveness of QIAseq unique molecular identifier sequence tags
/	Enternation of Kinger and an anticentary more and sequence and

240 QIAseq was the only kit included in this study that implements unique molecular identifiers

- 241 (UMIs) during library preparation, which are claimed to enable more accurate quantification
- of miRNAs. For both synthetic miRNA and human total RNA samples, very strong Pearson

243	correlations were observed between the rlog transformed raw read and UMI counts
244	(Supplementary Figure 15). Comparison of the rlog sum of all UMI and ordinary read counts
245	revealed the sum of UMI counts to be negligibly smaller than the ordinary read counts for
246	both synthetic miRNA and human total RNA samples (Supplementary Figure 16a, b).
247	
248	To further examine whether UMI read counts might reduce undesirable over-representation
249	of miRNAs that were favourably amplified or sequenced, we examined the abundance of the
250	ten miRNAs with the highest ordinary read counts for each sample and compared this to their
251	respective UMI counts (Supplementary Figure 16c,d). Amongst those miRNAs no
252	overestimation of the ordinary read counts was observed compared to the UMI counts.
253	

254 Discussion

255 Several publications have revealed discrepancies between the frequencies of miRNAs present in the original samples and those detected by sequencing approaches ^{18 20}. The adapter 256 257 ligation steps in the small library preparation procedure, in addition to miRNA sequence and structure, have emerged as being most critical when trying to explain the discrepancy ^{18 19 21 43} 258 ⁴⁴ ²⁰ ²². As an alternative to the ligase-dependent ligation step in library preparation, poly-259 260 adenylation based procedures have been developed. Additional biases might be introduced 261 during reverse transcription and PCR steps, but in this case results have been contradictory $(^{19-21}, ^{25})$. The use of UMI tags has therefore been suggested to remove this potential bias²⁵. 262 263 Here we performed a comprehensive comparison of six low input small RNA sequencing 264 reagents utilizing both ligase-depend, polyA-based and single-adapter methods, including one 265 kit that employed UMI tags. Note that we assessed here only the performance of the kits to 266 identify miRNAs; other small RNA species that may be captured were not assessed.

267

268 Sequencing yields and miRNA read proportions

269	Considerably different numbers of raw reads were obtained from the different kits. The kits
270	from TailorMix and QIAseq returned the highest miRNA read counts both in the synthetic
271	miRNA and the human total RNA samples. However, raw read outputs cannot be used to
272	judge the performance of a method. Furthermore, since the samples from SMARTer-beta
273	were sequenced alone in a single lane, we cannot exclude that technical issues affecting only
274	that lane were responsible for the low raw read numbers that passed filters. The input range
275	tested in this study was at or below the indicated range stated for the SMARTer-beta kit (100
276	ng -1 ug total RNA or 2 ng – 200 ng enriched small RNA); this may have resulted in the
277	observed poor performance. Since this study was performed, the kit has been re-optimized
278	and released with a new formulation and improved performance. Nonetheless, the low
279	proportion of reads mapping to miRNAs from both the CATS and SMARTer-beta was
280	clearly evident, which could be attributable to inefficient removal of other small RNA species
281	during library preparation. However, greater numbers of reads that were not counted as
282	miRNA (due to imperfect match in length to the database reference sequence) were
283	noticeable for CATS, which may indicate that polyadenylation-based methods are trickier to
284	process during data analysis, due to uncertainties on the length of the poly-A tail added. To
285	reduce the influence of technical aspects (e.g. different library size selection and purification
286	methods, as well as raw read yields) on the comparisons, all miRNA counts were down-
287	sampled to the same levels. CATS and SMARTer-beta did not reach the selected thresholds
288	and were therefore excluded from further analysis.
289	

290 Detection rate sensitivity

291	When applying low detection rate sensitivity thresholds, most synthetic miRNAs could be
292	detected by the four remaining kits, indicating that all of them may be suited to assess the
293	overall miRNA repertoire. However, when applying more stringent detection thresholds
294	ranging from 1cpm to 200cpm, greater differences in detection rates between the kits became
295	evident, and QIAseq and TailorMix emerged as the most sensitive. It is worth noting that kit
296	specific biases played a greater role in miRNA detection than input RNA amounts, at least
297	within the ranges tested here (0.1-1.0 ng miRNA).

298

299 Reliability

300 Intra-rater reliability showed very high concordance between miRNA counts within the

301 replicates of a miRNA library preparation kit, independent of the kit, for both synthetic

302 miRNA and human total RNA inputs. Similar results have been reported by Giraldez, et al. ⁴⁴

303 and Wright, et al. ²⁵, although they refer to intra-rater reliability as reproducibility and

304 consistency respectively. The intra-rater reliability was strong both for 0.1ng and 1.0ng

305 synthetic miRNA samples for all kits in our study (data not shown) which is promising given

306 current interest in using low RNA inputs derived from small biological specimens.

307

In concordance with the findings reported by Giraldez, et al. ⁴⁴, Coenen-Stass, et al. ⁴⁵ and Wright, et al. ²⁵, inter-rater reliability (concordance of read counts seen between the different kits, also called reproducibility or consistency across replicates) was lower compared to the intra-rater reliability. In particular, QIAseq deviated from the other kits, but we stress that this does not indicate poorer performance. QIAseq employs a different 3'adapter sequence compared to the other three kits which may underlie the dissimilar preference for subset of miRNAs observed. These observations underscore the emerging conclusion that kit-specific

315	differences should be considered by any researchers comparing miRNA-seq datasets, as
316	supported by another recent study ⁴⁶ . Notably, the concordance between the miRNA counts
317	measured and the expected concentration for the synthetic miRNA samples was low, and
318	revealed that none of the library preparation kits could accurately quantify the majority of
319	miRNAs.

320

321 Differential expression

Differential expression analysis of synthetic miRNA mix A versus mix B revealed that all kits could detect at least 31 out of 40 non-equimolar miRNA correctly as DE (fold change ≥ 2). MiRNAs hsa-miR-1199-5p, hsa-miR-22-5p and hsa-miR-940 were never detected as DE by any of the kits. These miRNAs were present at two-fold concentration differences, the lowest fold change tested, which can be challenging. In general, all reagents displayed greater problems to detect small fold-change differences, reminiscent of results seen in the recent study by Giraldez, et al. ⁴⁴.

329

330	Our study offered the additional possibility to study levels of false positive DE miRNAs
331	detected from the 903 equimolar miRNAs. Equimolar miRNAs found to be DE were
332	characteristically detected as DE with low fold-changes and showed little agreement between
333	the kits, consistent with their being false positive calls. Taken together, QIAseq showed
334	slightly higher sensitivity (true positives) and slightly higher specificity (fewer false
335	positives) than the other reagents, although the false-positive calls did fall within the
336	expected rate set for the analysis (False discovery rate = 0.05). Reinforcing these conclusions,
337	the titration response analysis clearly demonstrated the superior performance of the QIAseq
338	reagents to most faithfully represent the levels of miRNAs in input material.
339	

It nonetheless appears that the different reagents have differing preferences for particular

341	miRNAs. The primary sequence of terminal miRNA nucleotides ¹⁸ , secondary structure
342	affecting ligation sites ⁴⁷ and co-folding of the miRNA and ligated adapters ²¹ have all been
343	documented as sources of bias affecting miRNA detection. Interestingly, the 3' adapter
344	sequence in the QIAseq kit differs from the other three kits analysed. However, our attempts
345	to explain the differences observed between the kits based on primary sequence or secondary
346	structure analyses were inconclusive (data not shown).
347	
348	Greater differences between kits were observed by examining DE miRNAs detected when
349	comparing the RA patient pool and healthy control pool of human CD8+ T cell RNA, where
350	the number of DE miRNA varied between none (srLp) to 19 (CleanTag). There are few
351	preceding studies of miRNAs from blood-isolated CD8+ cells in rheumatoid arthritis, but
352	some of the miRNAs found to be DE in this study have previously been associated with RA,
353	e.g. miR-221-3p 48 , miR-223-3p $^{49-51}$, miR-374b-5p 52 and miR-486-3p 52 , however further
354	confirmation is needed. Worryingly, in addition to the varying number of DE miRNA
355	detected by the different kits, there was almost no concordance between the miRNAs
356	identified. Taken together, it is advisable to interpret DE miRNA results from studies
357	employing different library preparation methods with caution.

358

340

359 Re-analysis of QIAseq dataset utilising UMIs

Reverse transcription and PCR-amplification may be potential sources of bias during library preparation, and PCR can also introduce duplicate reads. QIAseq was the only kit tested to address the issue of duplicate reads by the inclusion of UMIs, however, under the employed conditions, no appreciable difference between UMI counts and the ordinary read counts were detected, mirroring the findings of Wong, et al. ⁴⁶. Fu, et al. ²⁷ observed that higher fractions

365	of PCR duplicates could be observed when reducing the starting material, but when
366	comparing the 1.0ng and 0.1ng synthetic miRNA samples, no difference in the proportion of
367	PCR duplicates was seen. Nonetheless, it remains possible that at lower concentrations than
368	tested here, UMIs may prove useful for the elimination of duplicates to improve dataset
369	quality.
370	
371	In conclusion, the QIAseq kit from QIAGEN consistently demonstrated performance at, or
372	near, the top for all metrics examined. It should be mentioned that QIAGEN made an error
373	affecting samples 1-8 in their first attempt at library preparation and were supplied with
374	replacements. With the exception of performance in the titration response assay, the
375	TailorMix kit from SeqMatic closely followed. Lexogen's srLp and Trilink's CleanTag kit
376	also performed well, and the majority of differences we detected point to kit-specific biases.
377	However, whilst the experiments conducted here show that sequencing is a very sensitive
378	method for detecting miRNAs, even at low abundance, it is also clear that none of the kits
379	performed impressively with regard to accurately reflecting the relative input levels of all
380	miRNAs. There is clearly room for improvements in this regard for the development of
381	further enhanced reagents or methods to accurately quantitate miRNA levels.
382	

383 Material and Methods

384 Study material

385 The performance of six miRNA library preparation kits was examined using low-input

386 material consisting of synthetic miRNA samples or human-derived total RNA samples. To

387 maximize the possibility that each procedure was performed under optimum conditions,

388 samples were distributed to the kit vendors for library construction. Sequencing libraries were

389 returned to the Norwegian Sequencing Centre for sequencing and data analysis.

390 Synthetic miRNA samples

391	The synthetic miRNA samples consisted of a mixture of equimolar and non-equimolar

392 miRNAs. The miRXplore Universal Reference (Miltenyi, California, United States),

393 comprising 962 HPLC purified, 5' phosphorylated, synthetic oligonucleotides of human,

394 mouse, rat and viral miRNA origin, was used as an equimolar miRNA pool. For the non-

395 equimolar pool, 40 additional HPLC purified, 5'phosphorylated, synthetic oligonucleotides

396 representing human miRNA were purchased from Eurofins MWG Synthesis GmbH (Bavaria,

397 Germany). Altogether five different miRNA mixes were created (denoted mix A to mix E,

398 Figure 1a). Mix A and Mix B consisted of the equimolar miRNA pool supplemented with the

399 non-equimolar pool present at eight different concentration ratios between the two mixes

400 spanning a 100-fold range (Supplementary Table S1). Mix C was a titration of 0.75 mix A

401 and 0.25 mix B, while mix D was a titration of 0.25 mix A and 0.75 mix B. In the case of

402 mixes A-D, the total miRNA concentration was 30 nM, with individual equimolar miRNAs

403 present at 30 pM and other miRNAs ranging from 3 – 300 pM. Mix E consisted of the same

404 miRNAs as mix A but at a 10-fold lower concentration. Due to the low concentrations in the

405 five synthetic miRNA mixes, the samples were blended with yeast (Saccharomyces

406 *cerevisiae*) total RNA, which does not contain known endogenous miRNAs ²⁸, to minimise

407 degradation and loss of material due to adhesion to plasticware, and to mimic the more

408 complex total RNA mixtures encountered under typical usage. In each mix, the final RNA

409 content was 2 ng/µl, with miRNA representing approx. 10% (w/w) of the total amount (mixes

410 A-D) or 1% (mix E). The samples were distributed in triplicates to the participating vendors.

411 To each of the triplicates in mix A to mix E, one additional specific miRNA (miR-147a, miR-

412 212-3p or miR-412-3p) was added to check that the replicates were processed independently

413 throughout library preparation and were not combined into a single sample to increase

414 reproducibility.

415

- 416 To verify the intended ratios of the synthetic miRNA sample starting material, quantitative
- 417 reverse-transcriptase PCR was performed using 16 pre-designed TaqMan[®] Small RNA
- 418 assays (Thermo Fisher Scientific, Waltham, MA USA) according to manufacturer's
- 419 instructions. Assay details are provided in Supplementary Material and Methods. Relative
- 420 abundances of miRNAs in mixes A and B were measured by absolute quantification relative
- 421 to a standard curve.

422 Human-derived total RNA samples

423 Peripheral blood CD8+ T cells were magnetically sorted from newly diagnosed rheumatoid

424 arthritis (RA) patients (n=4) and healthy controls (n=4) using the EasySep cell isolation

425 system (Stemcell technologies, Vancouver, Canada). The RNA/DNA/Protein Purification Kit

426 (Norgen Biotek, Ontario, Canada) was used to isolate total RNA. Only RNA samples with

427 RNA integrity values above 8.5 were used for downstream analysis. To ensure the desired

428 amount of total RNA input for the miRNA library preparation, the four RA patients and the

429 four healthy controls were mixed together to obtain one pooled RA and one pooled healthy

430 control sample respectively. Triplicates of these different sample types were distributed to the

431 participants.

432 miRNA library preparation

433 Each participant was asked to prepare miRNA libraries from the 21 samples described above

434 using their specific miRNA library preparation kit. For optimization purposes the participants

435 received a further 20 ng of synthetic miRNA (blend of Mix A and Mix B) and 200 ng total

436 human RNA. All participants were requested to use the same Illumina i7 index sequence for

437	the same sample to avoid any possible effect of these sequences on the downstream library
438	preparation and sequencing process. Detailed sample and index information can be found in
439	Supplementary Table S2.
440	
441	At the time of writing, four of the six kits were commercially available in the formats used
442	for this study (CATs, QIAseq, CleanTag and TailorMix). A fifth kit, srLp, was also
443	commercially available, but with different index primer sequences. For comparison purposes
444	and to avoid possible bias arising from the use of different indexes, this participant

- 445 synthesised custom index primers complying with the index sequences specified in this
- 446 article. The SMARTer kit used in the study had not been released for purchase, but a
- 447 modified version is now available. It should be noted that this study is not exhaustive, since
- 448 two library preparation suppliers meeting the input amount inclusion criteria (PerkinElmer,
- 449 formerly Bioo Scientific, and NEB) declined to participate. Detailed descriptions of the
- 450 library preparation conditions employed by the producers of the specific reagents are
- 451 supplied in the Supplementary Material and Methods.
- 452

453 Sequencing

454 All libraries were sequenced at the Norwegian Sequencing Center on the same single-read

455 flow cell of a HiSeq 2500 (Illumina, San Diego, CA) with 75 bp reads generated using v4

- 456 clustering and SBS reagents according to the manufacturer's instructions. To avoid
- 457 sequencing lane bias, the libraries of srLp, QIAseq, TailorMix, CATS and CleanTag were
- 458 randomly distributed over five lanes of the flow cell, equivalent to sequencing 21 libraries per
- 459 lane (Supplementary Table S4). Due to concerns that the SMARTer beta libraries contained a
- 460 large proportion of non-miRNA inserts (higher molecular weight products than expected,
- 461 making it challenging to obtain equivalent numbers of reads per sample), these libraries were

462 sequenced independently from the other participants on a single lane (Supplementary Figure

463 1),

- 464 **Bioinformatic analysis**
- 465 **Read mapping and reference sequences**
- 466 Primary base calling and quality scoring was performed using RTA v1.18.66.4 (Illumina),
- 467 followed by demultiplexing and processing with Bcl2fastq v2.18.0.12 (Illumina).
- 468 For trimming of the 3' adapter, cutadapt v1.15 29 with parameter -m 10 was used. Detailed
- 469 information about adapter sequences is provided in the Supplementary Material and Methods.
- 470 Read mapping was performed using bowtie v1.1.2 30 with parameters –a and --norc. No
- 471 mismatch was allowed. As reference, the expected pools of synthetic miRNAs (962 synthetic
- 472 equimolar miRNAs originating from the miRXplore universal reference and 40 non-
- 473 equimolar miRNAs) were used for the synthetic miRNA samples, and the mature human
- 474 miRNA sequences specified in miRBase³¹ v21 for the human total RNA samples. We
- 475 confirmed that all replicates had been processed separately by verifying the presence/absence
- 476 of spiked replicate-specific miRNAs in the datasets from each sample. Further analysis
- 477 revealed that 59 of the miRNA sequences included in the miRXplore Universal Reference
- 478 were identical to sequences in the Saccharomyces cerevisae (sacCer3) genome
- 479 (Supplementary Table S3). To avoid potential miscounting of yeast fragments in the
- 480 downstream analysis, these miRNA were excluded and only the remaining 903 miRNA of
- 481 the miRXplore Universal Reference were analysed further. Mapped reads (restricted to
- 482 miRNAs matching exactly to the reference sequence and length) were counted using a
- 483 custom python script (available upon request).

484 **Read count modelling**

485	With the exception of differential expression and UMI analysis, all further downstream
486	analyses were performed on down-sampled mapped miRNA reads to minimise confounding
487	factors arising from sources such as read numbers and proportions of adapter dimer reads,
488	which can be influenced by the purification method chosen and by pipetting errors. Random
489	down-sampling to 2.5 million reads was performed for the synthetic miRNA samples and to
490	0.75 million reads for the human total RNA samples. The seed number was set to 123.
491	
492	In miRNA-seq count data, the average observed variance across samples increases with
493	higher average expression of the miRNA. If this heteroscedastic behaviour of the count data
494	is not taken into account, the results of most downstream analyses will be dominated by
495	highly expressed and highly variable miRNAs. We therefore transformed count data, where
496	indicated, with the rlog function of $DeSeq2^{32}$ (v1.20.0), which produces a superior
497	homoscedastic output than log2 transformation for low- and high-expressed genes ³² .
100	
498	Data analysis
499	Detection rate sensitivity and reliability
500	Data and statistical analyses were performed using R v3.5.2 33 and Python v2.7.13. Unless

501 otherwise stated, ggplot2³⁴ was used for data visualization. Synthetic miRNA and human

502 total RNA down-sampled read count data were used in the detection rate sensitivity analysis.

503 Upset plots were produced using the R package $UpSetR^{35}$ v1.4.0.

504

505 Rlog transformed synthetic miRNA and human total RNA count data were used for assessing

- 506 the reliability of the library preparation kits, on which intra-class correlation (ICC), Pearson
- 507 correlation and Bland-Altman agreements calculations were performed. For ICC, the two-
- 508 way mixed effects model, absolute agreement and single rater (ICC(3,1)) were applied using

509	the R package psych ³⁶ v1.8.4. ICC values were interpreted according to the recommendations
510	of Koo and Li 37 where ICC values above 0.9, between 0.75 and 0.9, between 0.5 and 0.75
511	and below 0.5 indicate excellent, good, moderate and poor reliability respectively. Thresholds
512	described by Chan 38 were used for the Pearson correlation where correlations above 0.8,
513	between 0.6 and 0.8, between 0.3 and 0.6 and below 0.3 are described as very strong,
514	moderately strong, fair and poor respectively. The R corrplot package ³⁹ v0.84 was utilized for
515	correlation plots and the R BlandAltmanLeh package ⁴⁰ v0.31 for Bland Altman calculations.

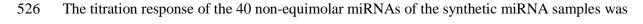
516 Differential expression and titration response

517 Original read count data of mix A and mix B were used for the differential expression

analysis using the R package $edgeR^{41}$ v3.22.3. For the synthetic miRNA samples a read count

519 filtering of 3 counts per million (cpm) in at least two libraries was applied to the differential

520 expression analysis while a filter of 20cpm in at least two libraries was used for the human


521 total RNA samples. miRNAs were defined as significantly differentially expressed after

522 multiple testing adjustment with the methods of Benjamini and Hochberg controlling for a

false discovery rate of 0.05. In addition, only those miRNA with $|\log 2 FC| > 1$ between the

524 tested conditions were kept.

525

527 examined in mixes A to D according to the analyses published by Shippy, et al. ⁴². Average

528 rlog expression values for each miRNA were calculated across the three replicates of each of

529 mixes A to D. If the average expression values for each miRNA followed the expected

530 concentration trend (across the four possible concentrations seen in each mix), it was scored

as titrating. Any deviations from the expected trend were scored as non-titrating.

532 UMI analysis

533 Q	IAGEN's anal	ysis tool Gene	globe was used	for assessing th	e effectiveness o	of QIAseq	's

- 534 UMIs. For the synthetic miRNA samples the option "other" was chosen for mapping while
- 535 "human" was chosen for the human total RNA samples during the primary data analysis. The
- 536 resulting count table included UMI (after PCR duplicate removal) and raw (before PCR
- 537 duplicate removal) read counts for each miRNA in the samples. Before analysing the
- 538 correlation between UMI and raw read counts, the counts were rlog transformed.

539

540 Acknowledgements

- 541 We thank Iris Langstein and Philipp Korber for S. cerevisiae RNA. Dalia Daujotyte and
- 542 Stephanie Bannister are also thanked for reviewing the results and manuscript.

543 **Funding statement**

- 544 This work was supported by the South-Eastern Regional Health Authorities under Grant
- 545 2015034 and under Grant 2016122.

546 Data availability statement

- 547 Raw sequencing fastq files and miRNA count tables will be made available in the Gene
- 548 Expression Omnibus database.

549 **Disclosure of interest**

- 550 AF and AM are employees of Takara Bio USA Inc., JMH is an employee of, and SS a
- 551 former employee, of TriLink Biotechnologies LLC. MAH and JMS are employees of
- 552 QIAGEN Sciences. PM and JV are employees of Lexogen GmbH. LN and HKY are
- 553 employees of SeqMatic LLC. FH, XZ, MZ, JB, AS, STF, ML, MD, SR, BAL and GDG
- 554 report no conflict of interest.
- 555

556 **References**

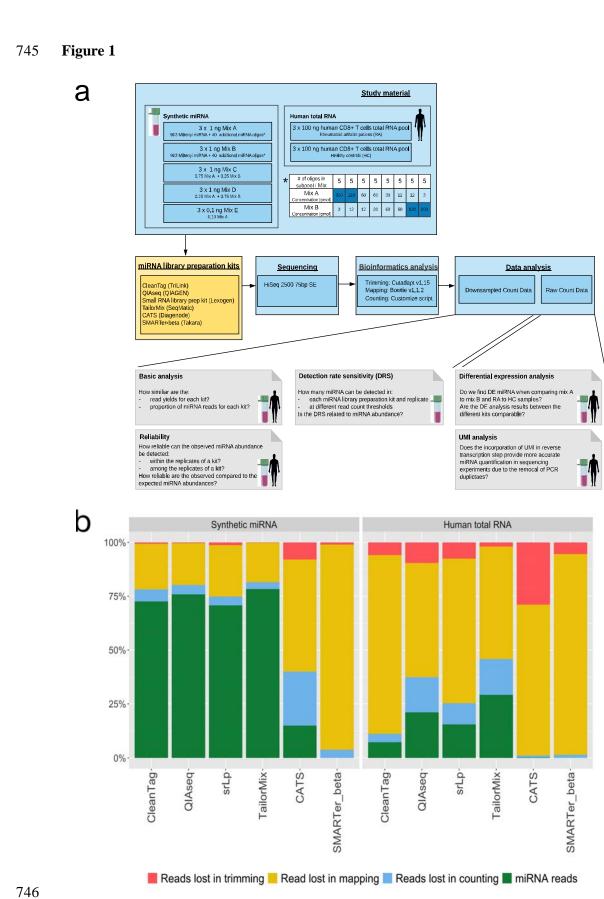
557 1. Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene 558 lin-14 by lin-4 mediates temporal pattern formation in C. elegans. *Cell* 559 1993;75(5):855-62. 560 2. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes 561 small RNAs with antisense complementarity to lin-14. *Cell* 1993;75(5):843-54. 562 3. Chen C-Z, Li L, Lodish HF, et al. MicroRNAs modulate hematopoietic lineage 563 differentiation. *Science* 2004;303(5654):83-86. 564 4. Ramkissoon SH, Mainwaring LA, Ogasawara Y, et al. Hematopoietic-specific 565 microRNA expression in human cells. *Leukemia Research* 2006:30(5):643-47. 566 5. Sempere LF, Freemantle S, Pitha-Rowe I, et al. Expression profiling of mammalian 567 microRNAs uncovers a subset of brain-expressed microRNAs with possible roles 568 in murine and human neuronal differentiation. *Genome Biology* 2004;5(3):R13. 569 6. Giraldez AJ, Cinalli RM, Glasner ME, et al. MicroRNAs regulate brain morphogenesis in 570 zebrafish. Science 2005;308(5723):833-38. 571 7. Bernstein E, Kim SY, Carmell MA, et al. Dicer is essential for mouse development. 572 Nature Genetics 2003;35(3):215. 573 8. Murchison EP, Partridge JF, Tam OH, et al. Characterization of Dicer-deficient murine 574 embryonic stem cells. Proceedings of the National Academy of Sciences of the 575 United States of America 2005;102(34):12135-40. 576 9. Gangaraju VK, Lin H. MicroRNAs: key regulators of stem cells. Nature Reviews 577 Molecular Cell Biology 2009;10(2):116. 578 10. Thai T-H, Calado DP, Casola S, et al. Regulation of the germinal center response by 579 microRNA-155. Science 2007;316(5824):604-08. 580 11. Xiao C, Rajewsky K. MicroRNA control in the immune system: basic principles. *Cell* 581 2009;136(1):26-36. 582 12. O'Connell RM, Rao DS, Chaudhuri AA, et al. Physiological and pathological roles for 583 microRNAs in the immune system. *Nature Reviews Immunology* 2010;10(2):111. 584 13. Chen J-F, Mandel EM, Thomson JM, et al. The role of microRNA-1 and microRNA-133 585 in skeletal muscle proliferation and differentiation. Nature Genetics 586 2006;38(2):228.

587	14. Zhao Y, Samal E, Srivastava D. Serum response factor regulates a muscle-specific
588	microRNA that targets Hand2 during cardiogenesis. <i>Nature</i>
589	2005;436(7048):214.
590	15. Calin GA, Dumitru CD, Shimizu M, et al. Frequent deletions and down-regulation of
591	micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia.
592	Proceedings of the National Academy of Sciences 2002;99(24):15524-29.
593	16. Peng Y, Croce CM. The role of MicroRNAs in human cancer. <i>Signal transduction and</i>
594	targeted therapy 2016;1:15004.
595	17. Furer V, Greenberg JD, Attur M, et al. The role of microRNA in rheumatoid arthritis
596	and other autoimmune diseases. <i>Clinical Immunology</i> 2010;136(1):1-15.
597	18. Linsen SE, de Wit E, Janssens G, et al. Limitations and possibilities of small RNA
598	digital gene expression profiling. <i>Nature methods</i> 2009;6(7):474.
599	19. Jayaprakash AD, Jabado O, Brown BD, et al. Identification and remediation of biases
600	in the activity of RNA ligases in small-RNA deep sequencing. <i>Nucleic Acids</i>
601	Research 2011;39(21):e141-e41.
602	20. Hafner M, Renwick N, Brown M, et al. RNA-ligase-dependent biases in miRNA
603	representation in deep-sequenced small RNA cDNA libraries. <i>RNA</i>
604	2011;17(9):1697-712.
605	21. Fuchs RT, Sun Z, Zhuang F, et al. Bias in ligation-based small RNA sequencing library
606	construction is determined by adaptor and RNA structure. <i>PloS One</i>
607	2015;10(5):e0126049.
608	22. Zhuang F, Fuchs RT, Sun Z, et al. Structural bias in T4 RNA ligase-mediated 3🛛 -
609	adapter ligation. Nucleic Acids Research 2012;40(7):e54-e54.
610	23. Shore S, Henderson JM, Lebedev A, et al. Small RNA library preparation method for
611	next-generation sequencing using chemical modifications to prevent adapter
612	dimer formation. <i>PloS One</i> 2016;11(11):e0167009.
613	24. Yehudai-Resheff S, Schuster G. Characterization of the E. coli poly (A) polymerase:
614	nucleotide specificity, RNA-binding affinities and RNA structure dependence.
615	Nucleic Acids Research 2000;28(5):1139-44.
616	25. Wright C, Rajpurohit A, Burke EE, et al. Comprehensive assessment of multiple
617	biases in small RNA sequencing reveals significant differences in the
618	performance of widely used methods. <i>BMC Genomics</i> 2019;20(1):513. doi:
619	10.1186/s12864-019-5870-3
620	26. Hong J, Gresham D. Incorporation of unique molecular identifiers in TruSeq adapters
621	improves the accuracy of quantitative sequencing. <i>BioTechniques</i>
622	2017;63(5):221-26.
623	27. Fu Y, Wu P-H, Beane T, et al. Elimination of PCR duplicates in RNA-seq and small
624	RNA-seq using unique molecular identifiers. <i>BMC Genomics</i> 2018;19(1):531.
625	28. Drinnenberg IA, Weinberg DE, Xie KT, et al. RNAi in budding yeast. <i>Science</i>
626	2009;326(5952):544-50.
627	29. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing
628	reads. <i>EMBnet journal</i> 2011;17(1):pp. 10-12.
629	30. Langmead B, Trapnell C, Pop M, et al. Ultrafast and memory-efficient alignment of
630	short DNA sequences to the human genome. <i>Genome Biology</i> 2009;10(3):R25.
631	31. Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs
632	using deep sequencing data. <i>Nucleic Acids Research</i> 2013;42(D1):D68-D73.
633	32. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for
634	RNA-seq data with DESeq2. <i>Genome biology</i> 2014;15(12):550.

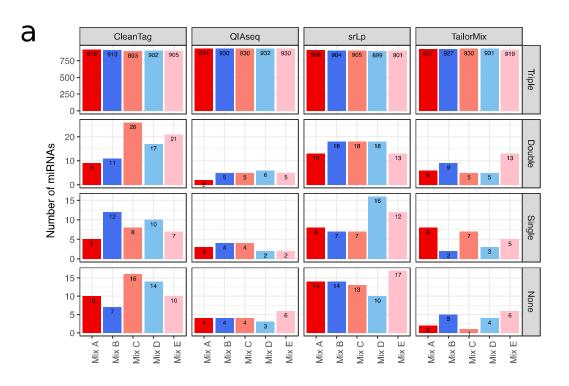
635	33. R Core Team. R: A language and environment for statistical computing. 2013
636	34. Wickham H, Chang W. ggplot2: An implementation of the Grammar of Graphics.
637	CRAN 2008
638	35. Conway JR, Lex A, Gehlenborg N. UpSetR: an R package for the visualization of
639	intersecting sets and their properties. <i>Bioinformatics</i> 2017;33(18):2938-40.
640	36. Revelle W. Package 'psych'. <i>CRAN</i> 2015
641	37. Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation
642	coefficients for reliability research. Journal of Chiropractic Medicine
643	2016;15(2):155-63.
644	38. Chan Y. Biostatistics 104: correlational analysis. <i>Singapore Med J</i> 2003;44(12):614-9.
645	39. Wei T, Simko V, Levy M, et al. Package 'corrplot'. Statistician 2017;56:316-24.
646	40. Lehnert B. R Package "BlandAltmanLeh". CRAN 2014
647	41. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for
648	differential expression analysis of digital gene expression data. <i>Bioinformatics</i>
649	2010;26(1):139-40.
650	42. Shippy R, Fulmer-Smentek S, Jensen RV, et al. Using RNA sample titrations to assess
651	microarray platform performance and normalization techniques. <i>Nature</i>
652	Biotechnology 2006;24(9):1123.
653	43. Dard-Dascot C, Naquin D, d'Aubenton-Carafa Y, et al. Systematic comparison of small
654	RNA library preparation protocols for next-generation sequencing. <i>BMC</i>
655	Genomics 2018;19(1):118.
656	44. Giraldez MD, Spengler RM, Etheridge A, et al. Comprehensive multi-center
657	assessment of small RNA-seq methods for quantitative miRNA profiling. <i>Nature</i>
658	Biotechnology 2018
659	45. Coenen-Stass AM, Magen I, Brooks T, et al. Evaluation of methodologies for
660	microRNA biomarker detection by next generation sequencing. <i>RNA Biology</i>
661	2018;15(8):1133-45.
662	46. Wong RK, MacMahon M, Woodside JV, et al. A comparison of RNA extraction and
663	sequencing protocols for detection of small RNAs in plasma. <i>BMC genomics</i>
664	2019;20(1):446.
665	47. Sorefan K, Pais H, Hall AE, et al. Reducing ligation bias of small RNAs in libraries for
666	next generation sequencing. <i>Silence</i> 2012;3(1):4.
667 668	48. Pandis I, Ospelt C, Karagianni N, et al. Identification of microRNA-221/222 and microRNA-323-3p association with rheumatoid arthritis via predictions using
669 670	the human tumour necrosis factor transgenic mouse model. <i>Annals of the</i>
670	Rheumatic Diseases 2012;71(10):1716-23.
671 672	49. Shibuya H, Nakasa T, Adachi N, et al. Overexpression of microRNA-223 in
672	rheumatoid arthritis synovium controls osteoclast differentiation. <i>Modern</i>
673	<i>Rheumatology</i> 2013;23(4):674-85.
674	50. Fulci V, Scappucci G, Sebastiani GD, et al. miR-223 is overexpressed in T-
675	lymphocytes of patients affected by rheumatoid arthritis. <i>Human Immunology</i>
676	2010;71(2):206-11.
677	51. Lu MC, Yu CL, Chen HC, et al. Increased miR-223 expression in T cells from patients
678	with rheumatoid arthritis leads to decreased insulin-like growth
679	factor-1-mediated interleukin-10 production. <i>Clinical & Experimental</i>
680	Immunology 2014;177(3):641-51.

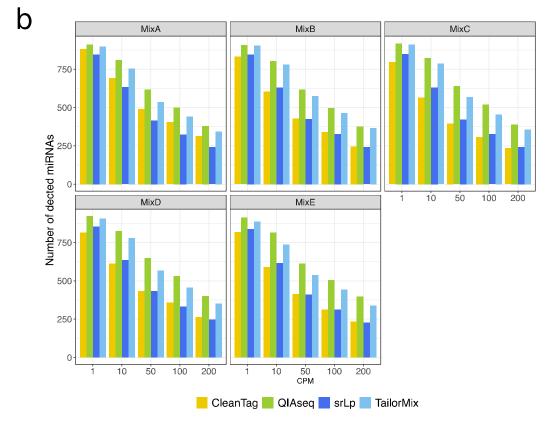
52. Murata K, Furu M, Yoshitomi H, et al. Comprehensive microRNA analysis identifies miR-24 and miR-125a-5p as plasma biomarkers for rheumatoid arthritis. *PloS One* 2013;8(7):e69118.

685	Appendices
686	Supplementary Figures (document: Supplementary_figures_Heinicke_etal2019.docx)
687	Supplementary Tables (document: Supplementary_tables_Heinicke_etal2019.xlsx)
688	Supplementary Material and Methods (document:
689	Supplementary_Material_and_Methods_Heinicke_etal2019.docx)
690	
691	
692	
693	
694	
695	
696	
697	
698	
699	
700	
701	
702	
703	
704	

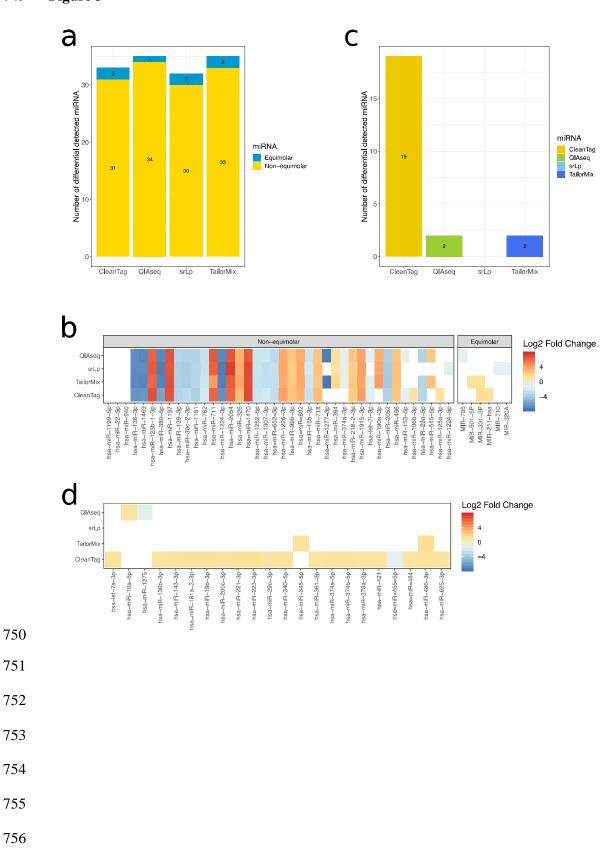

705 Table 1: Small RNA library preparation methods tested in this study.

Method Name	Commercial supplier	Key points*	Max. input volume tolerated	Reported RNA input range (varies with type of input tested)	Maximu m number of indexes available	Method types
CATS Small RNA-Seq Kit (CATS)	Diagenode s.a.	Single-tube, 4-step process of polynucleotide tailing, reverse transcription and PCR amplification. 1 purification step (2 if size selection required).	8 μ1	0.1 – 100 ng	24	Poly-A based. 2-adapter procedur e
Small RNA- Seq Library Prep Kit (srLp)	Lexogen GmbH [Cat. No. 052, 058]	4-step procedure of 3' adapter ligation, 5' adapter ligation, reverse transcription and PCR. 2 purification steps (3 if size selection required).	6 μΙ	0.05 – 1000 ng	96	Ligase based. 2-adapter procedur e
QIAseq miRNA Libr ary Kit (QIAseq)	QIAGEN [Cat. No. 331502 or 331505]	5-step procedure of 3' adapter ligation, 5' adapter ligation, reverse transcription and PCR. 2 purification steps (3 if size selection required).	5 μΙ	1 – 500 ng	96	Ligase based. UMI incorpora ted. 2-adapter procedur e
TailorMix microRNA Sample Preparation Kit Version 3 (TailorMix)	SeqMatic LLC.	4-step procedure of 3' adapter ligation, 5' adapter ligation, reverse transcription and PCR. 2 purification steps, including a final PAGE gel excision.	6 μΙ	1– 1000 ng	96	Ligase based. 2-adapter procedur e
SMARTer® miRNA-seq Kit (Beta version) (SMARTer)	Takara Bio USA Inc.	5-step procedure of 3' mono-adapter ligation, dephosphorylation, adapter dimer blocking, circularisation, reverse transcription and PCR. 2 purification steps, including a final PAGE gel excision.	4 μ1	100 – 1000 ng total RNA or 2 – 200 ng enriched small RNA	48	Ligase based. Single adapter procedur e


706		TriLink BioTechnologi es, LLC. is defined as a	Single-tube, procedure of 3' ligation, 5' adapter reverse transcription PCR. 1 purification labwork period that	ligation, on and step.	10µ1 tes in an in	1 – 1000 ng ncubation long	48 ger than 5	Ligase based. 2-adapter procedur e
707 708	minutes.							
709								
710								
711								
712								
713								
714								
715								
716								
717								
718								
719								
720								
721								
722								
723								
724								
725								
726								
727								
728								


- 729 Table 2: Fraction of titrating miRNAs (n=5) in each of the eight concentration groups. Average rlog
- 730 expression values for the 40 non-equimolar miRNAs were calculated across the three replicates each of
- 731 mixes A to D. Each miRNA was scored as titrating if the average values followed the expected trend in
- 732 concentrations from high to low or vice versa across mixes A to D.

Conc. Ratio	CleanTag	QIAseq	srLp	Tailor Mix
0.01	1	1	1	1
0.1	0.8	1	1	1
0.2	1	1	0.8	0.8
0.5	0.8	0.6	0.4	0.6
2	0.6	0.8	0.8	0.2
5	0.4	1	1	0.8
10	0.6	1	1	0.6
100	0.8	1	0.8	0.8



747 Figure 2

Figure	Caption
1	Experimental design and sequencing read distribution. A: Overview of the study material,
	miRNA library preparation kits used, sequencing, bioinformatics and data analysis. Steps
	presented in blue boxes were performed in-house, while the step presented in the yellow
	box was executed by the indicated library preparation vendors. Grey boxes represent
	individual data analysis steps. B: Percentage of reads that were removed during the
	bioinformatic analysis and final miRNA proportion remaining (green). Trimming refers to
	removal of adapter sequences, mapping to miRNA reference alignment, and counting to
	filtering of aligned miRNAs that did not have the same length as the reference sequence.
	Results presented are the mean of 15 replicates in the synthetic miRNA (left) and the mean
	of six replicates in the human total RNA samples (right).
	Figure 1 A was created using images from Servier Medical Art (Servier. <u>www.servier.com</u> ,
	licensed under a Creative Commons Attribution 3.0 Unported License).
2	Detection rate sensitivity. A: Bar charts presenting number of miRNAs detected in all
2	
	replicates (Triple), in 2 out of 3 replicates (Double), in 1 out of 3 replicates (Single) or not
	detected in any replicate (None) across all synthetic miRNA mixes and all library
	preparation kits. The maximum number of detectable miRNAs is 943 (903 equimolar and
	40 non-equimolar miRNA). B: Bar charts for various read count thresholds in the synthetic
	miRNA samples. A miRNA is defined as detected when it is (i) expressed in all three
	replicates of the mix and (ii) the read counts are greater or equal to the count per million
	(CPM) threshold displayed on the x-axis. The colours of the bars represent the reagents.
3	Differential expression analysis. Kit-specific number of differentially expressed miRNA
	detected for A: synthetic miRNA samples (mix A versus mix B) and C: human total RNA
	samples (RA versus healthy control). miRNA-specific log2 fold changes across the different
	kits for B: synthetic miRNA samples and D: human total RNA samples.