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Abstract 

The assumption in the twin model that genotypic and environmental variables are 

uncorrelated is primarily made to ensure parameter identification, not because researchers 

necessarily think that these variables are uncorrelated. Although the biasing effects of such 

correlations are well understood, it would be useful to be able to estimate these parameters 

in the twin model. Here we consider the possibility of relaxing this assumption by adding 

polygenic score to the (univariate) twin model. We demonstrated numerically and analytically 

this extension renders the additive genetic (A) – unshared environmental correlation (E) and 

the additive genetic (A) - shared environmental (C) correlations simultaneously identified. We 

studied the statistical power to detect A-C and A-E correlations in the ACE model, and to 

detect A-E correlation in the AE model. The results showed that the power to detect these 

covariance terms, given 1000 MZ and 1000 DZ twin pairs (=0.05), depends greatly on the 

parameter settings of the model. We show fixing the estimated percentage of variance in the 

outcome trait that is due to the polygenic scores greatly increases statistical power.  
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A-E covariance, A-C covariance, classical twin design, structural equation model, identification, 
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The classical twin design (Eaves, et al. 1978; Martin et al. 1997) arguably has been one of the 

most productive genetically informative designs in the study of human traits (Polderman et al. 

2015). Twin studies have contributed greatly to our present knowledge concerning genetic and 

environmental contributions to individual differences in psychological traits (e.g., Plomin, 

Defries, Knopik, and Neiderhise, 2016; Turkheimer, 2002; Plomin and Deary, 2016) and 

multivariate and longitudinal extensions of the classical twin design (Martin and Eaves, 1977) 

have provided insights into the etiology of comorbidity and stability of traits and disorders. 

However, the interpretation of results from the uni- or multivariate model depend on its 

model assumptions. The main assumptions of the CTD that are often evoked concern 

genotype-environment covariance (assumed to be absent), genotype-environment interaction 

(assumed to be absent), the equal environment assumption (the influence of shared 

environment assumed to be equal in MZ and DZ twins), and parental mating (assumed to be 

random for the trait that is analyzed). Given these assumptions, the results from the CTD can 

provide unbiased estimates of additive genetic (A), unshared environmental (E), and shared 

environmental (C) or dominance (D) variance components. The effect of violations of these are 

well understood (Verhulst & Hatemi, 2013; Purcell, 2002; Keller et al. 2009), so that estimates 

of variance components obtained in the twin model may be interpreted in the light of possible 

model violations. For instance, a significant estimate for C in the CTD may the results of 

assortative mating,  or of positive A-C correlation. A correlation between A and E contributes 

to the A variance component.       

 Many papers have been devoted to the detection and accommodation of  model 

violations, either within the CTD (e.g., Purcell, 2002, Molenaar, et al. 2012, Eaves & Erkanli, 

2003, Carey, 1986; Dolan, et al. 2014; Beam & Turkheimer, 2013), or in extended designs (e.g., 

Plomin, Loehlin, and DeFries, 1985; Narusyte, et al, 2008; Fulker, 1988; D’Onofrio, et al, 2003; 

Keller et al, 2009; Heath et al., 1985, Maes, et al, 2006). The aim of the present paper is to 

demonstrate that incorporating polygenic scores in the classical twin design in principle allows 

us to estimate the covariance between A and C and between A and E. In developmental 

psychology, such covariance terms are viewed as plausible, stemming from processes giving 

rise to passive, active or evocative genotype-environment covariance (Plomin, DeFries, and 

McClearn, 1977; Scarr and McCartney, 1983). Knafo & Jaffee, 2013; Kendler, 2012; Rutter and 

Silberg, 2002).  Beyond demonstrating the principle, we explore the statistical power to 

estimate rGE under alternative models. 

 The idea of incorporating measured genetic information, either genetic variants or 

polygenic scores, in the twin design is not new. Previous approaches concerned measured 
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genetic markers in non-parametric linkage analysis (e.g., Haseman and Elston, 1977; Nance 

and Neale, 1989) or combined linkage-association analysis (e.g., Fulker, Cherny, Sham, Hewitt, 

1999). Van den Oord and Snieder (2002) presented an extended twin model with measured 

genetic variable to test association in the presence of stratification and to test causal 

relationships. In a longitudinal study of attention problems, van Beijsterveldt et al. (2012) 

incorporated measured candidate gene information in a common factor twin model to test the 

association with the latent phenotype attention problems. Minică et al. (2018) presented an 

integration of the CTD and Mendelian randomization method, in which polygenic scores 

featured as genetic instruments. Bates et al. (2018) and Kong et al. (2018) proposed the use of 

polygenic scores based on transmitted and non-transmitted alleles specifically to detect 

genotype-environment covariance in the genetically informative trio design of parents and 

offspring. This method may obviously be applied in the extended twin design, including twins 

and their parents. To the best of our knowledge, the incorporation of polygenic scores in the 

twin design specifically to estimate A-E and A-C covariance has not been considered before.  

 The outline of this paper is as follows. First, we present the twin model, and the twin 

model extended with polygenic scores. Second, given the model for PGS in MZ and DZ twin 

pairs, we address the issues of parameter identification and power using exact data 

simulation. Third, we present the results of our power study. We conclude with a discussion. 

 

The twin model with polygenic scores 

 

Let Y denote the phenotypic outcome variable of interest, and let GVk denote the k-th genetic 

variant (GV) contributing to the variance of Y, where k = 1 ....K, and K is the number of GVs 

contributing to individual differences in Y. We limit ourselves to an additive model, i.e., the 

GVs are additively coded (e.g., in the case of an di-allelic GV, 0, 1, or 2). The question how 

much of the variance in Y is explained by the GVk (k = 1,…,K) is addressed in the following 

regression model: 

 

Yi = b0 + ∑ 𝑏𝑘
𝐾
𝑘=1 GVki + E*

i 

where b0 is the intercept, bk is the k-th regression coefficient, subscript i denotes person, and 

E* is the residual.  Given a set of L of measured GVs, which are associated with the phenotypic 

Y, and the complementary set M unmeasured GVs (L + M = K), we have  

Yi = b0 + ∑ 𝑏𝑙
𝐿
𝑙=1 GVli + ∑ 𝑏𝑚

𝑀
𝑚=1 GVmi + E*

i 
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Given estimates of the regression coefficients (bl) obtained in an independent GWA study, the 

polygenic risk score equals PGSi =  ∑ 𝑏𝑙
𝐿
𝑙=1 GVli  (e.g. Purcell et al. 2009; Dudbridge, 2013). The 

set L need not necessarily include GVs, which pass the genome-wide -level. To ease 

presentation, we assume GVs are in linkage equilibrium (uncorrelated), so that the  

decomposition of phenotypic variance is 

2
Y = ∑ 𝑏𝑙

2𝐿
𝑙=1 2

GVl + ∑ 𝑏𝑚
2𝑀

𝑚=1 2
GVm + 2

E. 

In the classical twin design, the ACE decomposition is: 

2
Y = 2

A + 
2

C + 
2

E, 

where we have partitioned the residual environmental variance 2
E* into 

2
C and 

2
E. Given the 

presence of the polygenic scores, we can decompose the additive genetic variance 2
A into the 

observed component 2
AL  and the latent  components  2

AL:    

2
A = 2

AL +2
AM, 

where 2
AL = ∑ 𝑏𝑙

2𝐿
𝑙=1 2

GVl (the variance of the polygenic scores, i.e., 2
AL = 

2
PGS), and 2

AM =

 ∑ 𝑏𝑚
2𝑀

𝑚=1 2
GVm. The information in the classical univariate twin model, i.e., the 2x2 MZ and DZ 

covariance matrices, is sufficient to obtain unique estimates of the variance components 2
A,  

2
C, and 

2
E. Figure 1 depicts the standard (ACE) twin model.  

The twin model including the polygenic scores is depicted in Figures 2 and 3 (to avoid clutter). 

Figure 2 depicts the model with A-C covariance parameter AC, and Figure 3 depicts the model 

with the A-E covariance parameter AE. The parameter R2 is the proportion of additive genetic 

variance attributable to PGSi (∑ 𝑏𝑙
𝐿
𝑙=1 GVli), i.e., 2

AL/2
A or 2

PGS/2
A. Limiting the model 

presentation to the covariance structure, we note that the standard ACE model (Figure 1) has 

three parameters (variance components 2
A , 

2
C , and 

2
E), whereas the extended twin model 

has 6 parameters, i.e., the three variance components 2
A , 

2
C , and 

2
E , two covariance terms 

AE and AC, and the parameter R2. The role of these parameters are shown in Table 1. Below 

we define effect sizes in terms of correlations, i.e., rAC = AC / (A*C) and rAE = AE / (A*E). 

Identification and resolution 

The model is identified if the observed data provide sufficient information to obtain unique 

estimates of the unknown parameters when the likelihood of the data is maximized. In the 

present case, the observed information are the 3x3 MZ and the 4x4 DZ covariance matrices, 

containing the variances of, and the covariance among, the phenotype and the polygenic 
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scores obtained in the twins. The MZ covariance matrix is 3x3, as MZ twins, being genetically 

identical, have identical polygenic scores.  

 As the parameterization of the phenotypic means is irrelevant to the issue of the 

identification of the covariance structure model, we simply estimate each mean with a 

separate free parameter, and do not discuss them further. Let the vector  contain the 

parameters of the covariance part of the model: 

  

=[2
A 2

C 2
E AC  

AE R2].  

 

The vector does not include 2
AL and2

AK explicitly, because these equal R2*2
A  and (1-

R2)*2
A, respectively. Local identification implies that different points in the vicinity of a given 

point in the admissible 6 dimensional parameter space  are associated with different 

expected covariance matrices ΣMZ() and ΣDZ() (Bollen and Bauldry, 2010; Bekker et al 1994). 

That is, we require that a change in the numerical value of one or more of the components in 

give rise to a change in the matrices matrices ΣMZ() and ΣDZ(). We evaluated local 

identification analytically using symbolic algebra in Maple (Heck, 2003). The local identification 

check centers on the rank of the Jacobian matrix (Bekker et al 1994). The Jacobian matrix 

contains the first-order derivatives of the elements in the matrices ΣMZ() and ΣDZ() with 

respect to the parameters in . If the Jacobian is full column rank (as established using Maple), 

the model is locally identified. The advantage of this method is that it is necessary and 

sufficient; it does not depend on arbitrary numerical values of the parameters to establish 

local identification. We refer to Derks et al. (2006) and Minică et al. (2018) for other 

applications of this method in the context of twin modeling.   

 Having investigated  local identification analytically, we proceeded to address the 

question of resolution by considering the statistical power to detect the parameters of 

interest. The issue of power is important, as formal local identification means that we can 

obtain unique parameter estimates, but tells us nothing about their precision. Specifically, the 

model may be formally identified, but empirically underidentified for certain sets of parameter 

values. We addressed the issue of power by conducting power analyses using exact data 

simulation (van de Sluis et al. 2008). We considered three parameter settings relating to the 

variance components, and combined them with various parameter R2 values and covariance 

parameters rAC and rAE (see Tables 2-4). We chose the values R2 = .15  and R2 =.05, and set the 

values of rAC and rAE to equal 0, .15, or .25. The percentage of phenotypic variance due to the 

polygenic score is included in the Tables (2-5). For instance , in a model with 2
A =.333, 2

C 
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=.333, and 2
E =.333 (see Table 2A,B), the polygenic score variance components equal  

.333/.15=.05 or .333/.05=0.0167. As the total  phenotypic variance equals 1.333, the polygenic 

scores account for equals 100*(.05/1.333) = ~3.75% (R2=.15) or 100*(.0167/1.333) (R2=.05). 

The percentage of phenotypic variance explained polygenic score necessarily varies as a 

function of the parameter settings. That is, given a fixed value of R2, this percentage will vary 

as a function of the other parameter values. We test the A-C covariance and A-E covariance in 

isolation and simultaneously in 36 additional parameter settings (see Tables 2, 3, and 4). As 

the effects of C are generally absent in adults (e.g., in intelligence, personality, 

psychopathology), we also considered the detection of AE ≠ 0 in an AE model (i.e., with 2
C=0 

and rAC=0). The parameter settings are shown in Table 5. 

 In all cases, we set the sample sizes equal to Nmz=1000 and Ndz=1000 (in total 2000 

pairs), and we adopted an  of 0.05. We used normal theory maximum likelihood estimation 

throughout, and based our power calculations on the non-centrality parameter associated 

with the chi-square distribution (Martin, et al. 1978).  The power analyses were done using 

OpenMx (Boker et al 2011; Neale et al 2016) in the R program (R core team, 2018). The 

OpenMx script is available (supplemental material), so that readers may calculate the power in 

other settings.  

 

Results 

 

The analytical check using Maple demonstrated that the model is identified, on the basis of 

the 3x3 MZ and the 4x4 DZ phenotypic covariance matrices, ΣMZ() and ΣDZ(). That is, we can, 

at least in principle, obtain unique estimates of =[2
A 2

C 2
E AC  

AE R2].  Tables 2A, 3A, and 

4A shows the power given our parameter settings (associated non-centrality parameters are 

given in the supplemental material). The power varies considerably in Table 2A (2
A =.333, 2

C 

=.333, 2
E =.333), from .092 to .999. We observe power greater than the (arbitrary) value of 

.70 is observed in 6 cases. Of these 6, 5 are associated with the omnibus (2 df) test rAC=0 and 

rAE = 0. The 6th case involves the (1 df) test of rAE = 0, given rAC = 0 (consistent with the model 

in which rAC = 0). Unsurprisingly, in all 6 cases, the R2 (i.e., 2
PGS/2

A) equals .15, rather than 

.05. In these cases the polygenic scores explain between 3.7 and 4.29% of phenotypic 

variance.  In Table 3A (2
A = .5, 2

C= .25, 2
E=.25), we see only three scenarios with power 

greater than .7. These again concern the 2df test (rAE=0 & rAC=0) and a test of rAE = 0, given rAC = 

0 (fixed to zero, consistent with the model) in the R2= .15 conditions. The results in Table 4A 

(2
A  = .25, 2

C = .5, 2
E=. 25) largely resemble those of Table 2A. As the number of cases with 
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power >.70 are limited, we conclude that the method may be underpowered given Nmz = Ndz 

= 1000 and =.05.  

 By way of exploration, we considered the power given a known value of the 

parameter R2, that is, we assume that we know how much the polygenic scores explain of the 

total additive genetic variance, for example from a large study in a comparable population. 

Tables 2B to 4A shows the power in the same parameter settings as given in Tables 2A to 4A, 

but with the parameter R2 fixed to its true value. The power is greatly improved by this 

measure. In Tables 2B, 3B, and 4B, we see 12, 11, and 16 cases, respectively, with power > .70.  

To obtain some insight into this finding, we calculated the correlations among the parameter 

estimates in case 2.12 (see Tables 2A and 2B), i.e., given  2
A =.333, 2

C =.333, 2
E =.333, 

R2=.15, and rAC = rAE = .25. This correlation is available in the OpenMx output (i.e., the OpenMx 

vcov() function). We know from Table 2A and 2B that the power to reject rAC=0 is low at .369 

(Table 2A, R2 estimated) or .561 (Table 2A, R2 fixed), and the power to reject rAE=0 is .408 

(Table 2A, R2 estimated) or .873 (Table 2B, R2 fixed). The low power to reject rAC=0 (.369) is due 

in part to the relatively large correlation between the parameter estimates rAC  and rAE (-.82), 

implying that the effect of fixing one parameter (to zero) will be compensated by the other. 

We note that the correlation between the estimates of the A and C variance terms (2
A and 

2
C) is also large (-.90), as is well-known. Having fixed the R2 parameter, we find that the 

correlations among the parameters rAC  and rAE are appreciably lower -0.61. Interestingly, the 

correlation between the estimates of 2
A and 2

C is only -.21, which implies  that the inclusion 

of polygenic scores in the twin model will greatly increase the power to detect C variance. The 

power to detect C in the standard ACE model is known to be low in general (Visscher, Gordon, 

and Neale, 2008). 

 Table 5 shows the power to detect rAE (in the absence of rAC) in the AE model. With R2 

estimated, we see 7 cases (of the 20 considered) with power greater than .7. The largest 

power (.978) is associated with A
2 = .4, E

2 = .6. R2=.15 and rAE = .25. We repeated the 

analyses with the R2 parameter fixed to its true value. The power in all cases exceeds .97 (see 

Table 5 column 7). To provide more insight into the variation in the power over the parameter 

settings considered, we repeated the analyses with Nmz=Ndz=250 (retaining =0.05). Given 

Nmz=Ndz=250, we observe 10 cases with power greater than .7. 

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 20, 2019. ; https://doi.org/10.1101/702738doi: bioRxiv preprint 

https://doi.org/10.1101/702738
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 | P a g e  
 

Discussion 

 

We addressed the question of whether incorporating polygenic scores into the classical twin 

model rendered the A-C and A-E correlations (or covariances) identified. Based on the 

analytical results relating to the column rank of the model's matrix of partial derivatives 

(Jacobian) matrix and given the estimation of correct numerical values in exact data simulation 

(van der Sluis et al, 2008), we established that both parameters, simultaneously estimated, are 

identified. The power to demonstrate that these correlations are greater than zero, in isolation 

(1df test) or together (2df test), given NMZ=NDZ=1000 and =0.05, varied greatly as a function 

of the parameter settings. Overall, in view of the results in Tables 2A to 4A, we found the 

likelihood ratio tests to be underpowered in many cases. Fixing the R2 parameter to its true 

value helped greatly to remedy this lack of power (see Tables 2B to 4B). This solution is not too 

outlandish, as in practice, we often know the heritability of the phenotype of interest quite 

accurately (see Polderman et al. 2015), and the percentage of phenotypic variance explained 

by the polygenic scores. Based on that information, one can arrive at an approximate value of 

R2. Also, in practice, one may vary the fixed R2 values to gauge the sensitivity of the estimates 

of rAC and rAE to the value of R2.  

  We considered a polygenic score effect size that was expressed in terms of R2, the 

proportion of total additive genetic variance attributable to the polygenic score. The values .05 

and .15 are arbitrary, but not overly large. As shown in the Tables (2-4), these values imply 

that the polygenic scores account for between 1.25 (R2=.05) and 4.55 (Table 2A), between 1.85  

(R2=.05) and 6.78 (Table 3A), and between 1.06  (R2=.05) and 3.49 % (Table 4A) of the 

phenotypic variance. If polygenic scores of the phenotype of interest at present do not reach 

these levels, they will likely do so in the future, given the results of ever larger genome wide 

association meta-analyses.  

 We have focused on the test of rAC and rAC in the basic univariate twin model. Clearly 

the incorporation of polygenic scores may facilitate detection and modeling of rAC and rAE in 

other models. From a developmental point of view, a longitudinal study of cognitive ability 

would benefit greatly by the incorporation of polygenic scores to determine whether age-

related changes in the A and C variance components of intelligence (e.g., the decrease in C 

variance) are dependent on age-related changes in rAC (Haworth et al.  2010, Tucker-Drob & 

Bates, 2016). While we have focused on covariance, we note that polygenic scores have wider 

applications in the study of genotype-environment interplay. Polygenic scores are already 

being used to study interaction (e.g., Colodro-Conde et al 2018; Peyrot, et al. 2014). Assigning 
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polygenic scores the role of moderator in the twin moderation model (Purcell, 2002) will 

facilitate the study of AxE and AxC interaction, allowing for the developmentally important 

distinction of AxC and AxE. By comparison, the method proposed by Molenaar et al (2012) is 

computationally more complex and likely to be less powerful, as it is based on the phenotypic 

twin data without polygenic scores.   

 In conclusion, the incorporation of polygenic scores in the twin model provides new 

possibilities to study interplay, as manifested in A-C and A-E covariance. We found that the 

present approach was often underpowered, given Nmz = Ndz =1000 and =0.05, if the 

parameter R2 was estimated along with the other parameters in the model. To improve power, 

we proposed to fix R2 to a well-informed value (based on knowledge of the variance explained 

by the polygenic score). We suspect that in the coming years polygenic scores will gain 

statistical power, as their effect sizes  (in terms of the amount of additive genetic variance 

explained) will increase, and their standard errors will decrease (due to larger sample sizes), so 

that ultimately this "fix" will not be necessary.        
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Table 1: Covariance terms (see Figures 2 and 3).  

Covariance terms   parameterization 

 

MZ and DZ twins 

cov(AL1,E1) = cov(AL2,E2)   R2 AE 

cov(AM1,E1) = cov(AM2,E2)  (1-R2) AE  

cov(AL1,C1) = cov(AL2,C2)   R2 AC 

cov(AM1,C1) = cov(AM2,C2)  (1-R2) AC 

cov(AL1,C2) = cov(AL2,C1)    R2 AC 

cov(AM1,C2) = cov(AM2,C1)   (1-R2) AC 

 

MZ twins 

cov(AL1,AL2)    2
AL 

cov(AM1,AM2)    2
AM 

cov(AL1,E2) = cov(AL2,E1)    R2  AE 

cov(AM1,E2) = cov(AM2,E1)    (1-R2) AE 

 

DZ twins 

cov(AL1,AL2)    ½*2
AL 

cov(AM1,AM2)    ½*2
AM 

cov(AL1,E2) = cov(AL2,E1)    ½ R2 AE 

cov(AM1,E2) = cov(AM2,E1)   ½(1-R2) AE 

 
 

2
AL is the additive genetic variance due to the polygenic score 

2
AM is the residual additive genetic variance 

R2 equals 2
AL /2

A, , where  2
A = 2

AL + 2
AM. 

AE and AC are the A-E and A-C covariance terms. 
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Table 2A. 2
A =.333, 2

C =.333, 2
E =.333   

set R2 rAC rAE % rAC=0 rEC=0 rAC=0 & rAC=0 | rAE=0 | 
     - - rAE = 0 rAE=0 rAC=0 
     1 df 1df 2 df 1 df  1df 

     power power power  power power  
2.1 .05 .15 0 1.52 .092  - .134   .092  - 
2.2 .15 .15 0 4.55 .183  - .339   .183  - 
2.3 .05 .25 0 1.43 .165  - .285  .165 - 
2.4 .15 .25 0 4.29 .410 - .733 .410 -  
2.5 .05 0 .15 1.52 -  .093  .142  - .183 
2.6 .15 0 .15 4.55 -  .187  .366  - .461   
2.7 .05 0 .25 1.43 - .164  .311  - .398   
2.8 .15 0 .25 4.29 - .409  .776  - .855   
2.9 .05 .15 .15 1.39 .088  .092  .372  - -   
2.10 .15 .15 .15 4.17 .173  .186  .858  - -   
2.11 .05 .25 .25 1.25 .150  .164  .761  - -   
2.12 .15 .25 .25 3.75 .369  .408  .999  - - 
 

 = 0.05; df = degrees of freedom; % = percentage of phenotypic viance due to the polygenic 
score; Nmz=Ndz=1000. rAE=0 |rAC=0 denotes the test of rAE=0, where rAC is fixed to zero 
(consistent with the model). (rAC=0 |rAE=0 defined in the same way).
  

Table 2B. 2
A =.333, 2

C =.333, 2
E =.333 

   
set R2 rAC rAE  % rAC=0 rEC=0 rAC=0 & rAC=0 | rAE=0 | 
     - - rAE = 0 rAE=0 rAC=0 
     1 df 1df 2 df 1 df  1df 
     power power power  power power  
2.1 .05 .15 0 1.52 .151  - .134   .151  - 
2.2 .15 .15 0 4.55 .293  - .339   .293  - 
2.3 .05 .25 0 1.43 .317  - .285  .632 - 
2.4 .15 .25 0 4.29 .632 - .733 .632 -  
2.5 .05 0 .15 1.52 -  .454  .429  - .531 
2.6 .15 0 .15 4.55 -  .487  .388  - .692   
2.7 .05 0 .25 1.43 - .848  .848  - .909   
2.8 .15 0 .25 4.29 - .878  .956  - .979   
2.9 .05 .15 .15 1.39 .141  .450  .624  - -   
2.10 .15 .15 .15 4.17 .268  .483  .923  - -   
2.11 .05 .25 .25 1.25 .280 .842  .963  - -   
2.12 .15 .25 .25 3.75 .561  .873  1.00  - -
 

 = 0.05; df = degrees of freedom; % = percentage of phenotypic viance due to the polygenic 
score;  Nmz=Ndz=1000, R2 fixed to true value. rAE=0 |rAC=0 denotes the test of rAE=0, where rAC 
is fixed to zero (consistent with the model). (rAC=0 |rAE=0 defined in the same way).  
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Table 3A.2
A = .5, 2

C= .25, 2
E=.25.   

 set R2 rAC rAE  % rAC=0 rEC=0 rAC=0 & rAC=0 | rAE=0 | 
     - - rAE = 0 rAE=0 rAC=0 
     1 df 1df 2 df 1 df  1df 

     power power power  power power  

3.1 .05 .15 0 2.26 .081 - .110   .081  - 
3.2 .15 .15 0 6.78 .151  -  .262   .151  -  
3.3 .05 .25 0 2.12 .136  -  .219   .136  - 
3.4 .15 .25 0 6.37 .328  - .597   .328  - 
3.5 .05 0 .15 2.26 - .082  .117  -   .148 
3.6 .15 0 .15 6.78 - .154  .284  -   .366 
3.7 .05 0 .25 2.12 - .135  .238  -   .309 
3.8 .15 0 .25 6.37 - .326  .644  -   .743  
3.9 .05 .15 .15 2.06 .078  .082  .283  -  - 
3.10 .15 .15 .15 6.19 .142  .153  .736  - - 
3.11 .05 .25 .25 1.85 .124  .134  .617  -  - 
3.12 .15 .25 .25 5.54 .292  .325  .988  - - 
 

 = 0.05; df = degrees of freedom; % = percentage of phenotypic viance due to the polygenic 
score;  Nmz=Ndz=1000. rAE=0 |rAC=0 denotes the test of rAE=0, where rAC is fixed to zero 
(consistent with the model). (rAC=0 |rAE=0 defined in the same way). 
 

Table 3B.2
A = .5, 2

C= .25, 2
E=.25.    



 set R2 rAC rAE % rAC=0 rEC=0 rAC=0 & rAC=0 | rAE=0 | 
     - - rAE = 0 rAE=0 rAC=0 
     1 df 1df 2 df 1 df  1df 

     power power power  power power  
3.1 .05 .15 0 2.26 .129 - .110   .129  - 
3.2 .15 .15 0 6.78 .259  -  .262   .259  -  
3.3 .05 .25 0 2.12 .260  -  .219   .260  - 
3.4 .15 .25 0 6.37 .566  - .597   .566  - 
3.5 .05 0 .15 2.26 - .526  .474  -   .578 
3.6 .15 0 .15 6.78 - .539  .583  -   .687 
3.7 .05 0 .25 2.12 - .907  .888  -   .937 
3.8 .15 0 .25 6.37 - .916  .953  -   .977  
3.9 .05 .15 .15 2.06 .121  .523  .613  -  - 
3.10 .15 .15 .15 6.19 .237  .536  .874  - - 
3.11 .05 .25 .25 1.85 .229  .903  .961  -  - 
3.12 .15 .25 .25 5.54 .496  .912  .999  - - 



 = 0.05; df = degrees of freedom; % = percentage of phenotypic viance due to the polygenic 
score;  Nmz=Ndz=1000, R2 fixed to true value. rAE=0 |rAC=0 denotes the test of rAE=0, where rAC 
is fixed to zero (consistent with the model). (rAC=0 |rAE=0 defined in the same way). 
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Table 4A. 2
A  = .25, 2

C = .5, 2
E=. 25.  

 
set R2 rAC rAE % rAC=0 rEC=0 rAC=0 & rAC=0 | rAE=0 | 
      - - rAE = 0 rAE=0 rAC=0 
      1 df 1df 2 df 1 df  1df 

     power power power  power power  
4.1 .05 .15 0 1.13 .122  -  .170   .122  -  
4.2 .15 .15 0 3.39 .281  -  .451  .281  -  
4.3 .05 .25 0 1.06 .250  -  .384  .250  -  
4.4 .15 .25 0 3.19 .620  -  .868  .620  -  
4.5 .05 0 .15 1.16 - .092 .123  -   .157 
4.6 .15 0 .15 3.49 -  .185  .301  -   .386 
4.7 .05 0 .25 1.11 -  .163  .261  -   .337 
4.8 .15 0 .25 3.33 -  .405  .681  -   .776 
4.9 .05 .15 .15 1.06 .117  .092  .394  -  - 
4.10 .15 .15 .15 3.18 .265  .185  .877  -  - 
4.11 .05 .25 .25 0.96 .226  .162  .794  -  - 
4.12 .15 .25 .25 2.88 .573  .404  .999  -  - 



 = 0.05; df = degrees of freedom; % = percentage of phenotypic viance due to the polygenic 
score;  Nmz=Ndz=1000. rAE=0 |rAC=0 denotes the test of rAE=0, where rAC is fixed to zero 
(consistent with the model). (rAC=0 |rAE=0 defined in the same way). 
 

Table 4B. 2
A  = .25, 2

C = .5, 2
E=. 25. 

 
set R2 rAC rAE  % rAC=0 rEC=0 rAC=0 & rAC=0 | rAE=0 | 
     - - rAE = 0 rAE=0 rAC=0 
     1 df 1df 2 df 1 df  1df 

     power power power  power power  
4.1 .05 .15 0 1.13 .199  -  .170   .199  -  
4.2 .15 .15 0 3.39 .420  -  .451  .420  -  
4.3 .05 .25 0 1.06 .435  -  .384  .435  -  
4.4 .15 .25 0 3.19 .815  -  .868  .815  -  
4.5 .05 0 .15 1.16 - .445 .402  -   .501 
4.6 .15 0 .15 3.49 -  .478  .528  -   .633 
4.7 .05 0 .25 1.11 -  .839  .821  -   .889 
4.8 .15 0 .25 3.33 -  .871  .928  -   .962 
4.9 .05 .15 .15 1.06 .188 .442  .636 -  - 
4.10 .15 .15 .15 3.18 .392  .475  .933  -  - 
4.11 .05 .25 .25 0.96 .396  .836  .968  -  - 
4.12 .15 .25 .25 2.88 .762 .868  1.00  -  - 



 = 0.05; df = degrees of freedom; % = percentage of phenotypic viance due to the polygenic 
score;  Nmz=Ndz=1000, R2 fixed to true value. rAE=0 |rAC=0 denotes the test of rAE=0, where rAC 
is fixed to zero (consistent with the model). (rAC=0 |rAE=0 defined in the same way).
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Table 5. Parameter settings, power to reject rAE=0 (1 df likelihood ratio test), and the non-

centrality parameter values. ( = 0.05). Column 7 and 8  "power R2 fixed" is the power to 
reject rAE=0, given R2 fixed to the true value, shown in column 4.  "%" is the percentage of 
phenotypic variance due to the polygnic score. 
 

set 2
A 2

E   R2 rAE % power1  power  
R2 fixed1  

power  
R2 fixed2   

5.1 0.3 0.7 0.05 0.15  1.32 0.336 0.993 0.599 

5.2 0.3 0.7 0.15 0.15 3.96 0.778 0.997 0.657 

5.3 0.3 0.7 0.05 0.25 1.22 0.686 1.000 0.937 

5.4 0.3 0.7 0.15 0.25 3.66 0.992 1.000 0.963 

5.5 0.4 0.6 0.05 0.15 1.74 0.287 0.996 0.631 

5.6 0.4 0.6 0.15 0.15 5.23 0.703 0.998 0.673 

5.7 0.4 0.6 0.05 0.25 1.61 0.604 1.000 0.952 

5.8 0.4 0.6 0.15 0.25 4.82 0.978 1.000 0.968 

5.9 0.5 0.5 0.05 0.15 2.17 0.243 0.996 0.628 

5.10 0.5 0.5 0.15 0.15 6.52 0.617 0.997 0.663 

5.11  0.5 0.5 0.05 0.25 2.00 0.519 1.000 0.953 

5.12  0.5 0.5 0.15 0.25 6.00 0.950 1.000 0.966  

5.13  0.6 0.4 0.05 0.15 2.62 0.201 0.992 0.592 

5.14  0.6 0.4 0.15 0.15 7.85 0.522 0.995 0.624 

5.15  0.6 0.4 0.05 0.25 2.41 0.432 1.000 0.937 

5.16  0.6 0.4 0.15 0.25 7.23 0.897 1.000 0.953  

5.17  0.7 0.3 0.05 0.15 3.08 0.162 0.980 0.518 

5.18  0.7 0.3 0.15 0.15 9.23 0.417 0.987 0.551  

5.19  0.7 0.3 0.05 0.25 2.85 0.342 1.000 0.895 

5.20  0.7 0.3 0.15 0.25 8.54 0.801 1.000 0.917  

 
1NMZ=NDZ=1000, 2NMZ=NDZ=250. 
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Figure 1: standard ACE twin model (rA = 1 in MZs and rA= .5 in DZs) 
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Figure 2: ACE twin model with polygenic scores (AL1, AL2), including A-E covariance (AE) 
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Figure 3: ACE twin model with polygenic scores (AL1, AL2), including A-C covariance (AC) 
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