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Abstract 
 

Mendelian randomization (MR) has provided major opportunities for understanding the causal 

relationship among complex traits. Previous studies have often evaluated MR methods based 

on simulations that do not adequately reflect the data-generating mechanism in GWAS and thus 

there is often discrepancies in performance of MR methods in simulation studies and in real 

datasets. We use a simulation framework that generates data on full GWAS for two traits under 

realistic model for effect-size distribution coherent with heritability, co-heritability and 

polygenicity typically observed for complex traits. We select instruments based on SNPs which 

reach genome-wide significance in the underlying study of one of the traits the causal effect of 

which to be tested on the other. Results show that the weighted mode method and MRMix are 

the only two methods which maintain correct type I error rate in a diverse set of scenarios. 

Between the two methods, MRMix tends to be more powerful for larger GWAS while the 

opposite being true for smaller sample sizes. Among other methods, random effect based IVW 

analysis, MR analyses based on robust loss function (MR-Robust) and robust profile-scores 

(MR-RAPS) tend to perform best in terms of maintaining low MSE when the InSIDE assumption 

is satisfied. However, when the InSIDE assumption is violated, all methods except weighted 

mode and MRMix can produce large bias and correspondingly large mean squared errors 

(MSE). In conclusion, the results show that relative performance of different methods depends 

heavily on sample sizes of underlying GWAS, proportion of valid instruments and validity of the 

InSIDE assumption.  
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Introduction 
 

Epidemiological associations are often biased by unobserved confounders. Mendelian 

randomization (MR) – a form of instrumental variable approach that uses genetic variants as 

instruments – has provided major opportunities for understanding the causal relationship across 

complex traits 1–3. Two-sample MR analysis 4,5	is particularly popular as these methods can be 

applied even if the genome-wide association study for the different traits are conducted on non-

overlapping samples. In recent years, the growing sample size of GWAS and volume of publicly 

available summary-level datasets have facilitated the popularization of MR. MR analyses have 

led to improved understanding of epidemiological associations, discovery of new drug targets 
3,6, and new insights into biological mechanisms through applications to large-scale omics data 
7–9. 

 

The validity of early MR methods relied on a crucial assumption that the genetic variants have 

no effects on the outcome that are not mediated by the exposure. This assumption can be 

violated in the presence of “horizontal pleiotropy”. Recent studies have found that pleiotropy is a 

wide-spread phenomenon 10–15, leading to concerns over the accuracy of Mendelian 

randomization analysis. To deal with this challenge, many methods have been proposed that 

take advantage of the multitude of genetic instruments to reduce the bias due to horizontal 

pleiotropy. Different methods deal with different kinds of pleiotropy and often rely on different 

assumptions. For example, the median and mode-based method take (weighted) median or 

mode of the ratio estimates 16,17. The former method requires that more than 50% of the 

instruments are valid and the latter requires a plurality. Egger regression was proposed to 

specifically deal with directional pleiotropy and requires the InSIDE assumption 18. Another type 

of methods is based on outlier detection and re-estimation of causal effects after removing 

outliers 13. Very recently, we proposed the method MRMix which uses an underlying mixture 

model to implicitly distinguish valid and invalid instruments and estimate the causal effect 

accordingly. Most recently, a variation of mixture-model based method has been proposed, 

called contamination mixture 19, which models the ratio estimates using normal-mixture with pre-

specified variance parameters. 
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Choosing a method for MR analysis can be challenging. While a number of previous studies 

have conducted various simulation studies to evaluate MR methods under alternative modelling 

assumptions, conclusions may be limited because these studies often do not incorporate 

realistic model for genetic architecture of complex traits as implied by recent studies of 

heritability/co-heritability 10,20–24 and effect-size distribution 25–28. Further, many simulation 

studies also directly simulate data on the instruments ignoring the process that instruments in 

reality are selected to be SNPs that reach genome-wide significance in an underlying genome-

wide association study - as a result of which there should be a close relationship between 

sample size, number of available instruments, their average effect-sizes and precision of their 

estimated effects. Previous MR studies have used a fixed number of IVs and a fixed sample 

size 4,13,19 or vary one of them without the other 16–18,29,30, and generate the effects of genetic 

instruments from a fixed distribution without varying with the sample size or the number of IVs. 

In addition, genetic effects on exposure and outcomes are often simulated using uniform 

distributions while clearly many studies have shown they more likely to follow a spike-and-slab 

type distributions 27,28,31. The magnitude of genetic effects simulated is also unrealistic in some 

studies such as only 25 SNPs explaining as much as 94% of variance of the exposure 18 or 

selected IVs explaining larger variance of the outcome than the exposure 32. Because of these 

issues, performance of MR methods, in absolute and relative terms, can be discrepant between 

simulation studies and real GWAS datasets. 

 

In this paper, we use a simulation framework that closely mirror real genome-wide association 

studies. In particular, we simulate data on genome-wide set of SNPs and select instruments 

based on SNPs which reach genome-wide significance in the underlying study of the exposure. 

We simulate genetic effects constrained by realistic values for heritability/co-heritability and 

models for effect-size distribution	10,20–28. We compare performance of a variety of existing 

methods under different sample sizes of underlying GWAS and correspondingly number of IVs 

and vary the proportion of valid instruments and mechanisms of pleiotropy. Results from these 

simulation studies provide comprehensive and realistic insights into strengths and limitations of 

existing methods. 

 

Methods 
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We begin by introducing a few notations. Let 𝑋 denote the exposure, 𝑌 denote the outcome and 

𝑈 denote a potential confounder. Let 𝐺% denote the genotype of SNP 𝑗. Throughout most MR 

literature 16–18,30,32, the simulations are conducted using the following model 

𝑈 = 𝜙%𝐺%

)

%*+

+ 𝜖.				(1) 

𝑋 = 𝛾%𝐺%

)

%*+

+ 𝜃.5𝑈 + 𝜖6				(2) 

𝑌 = 𝛼%𝐺%

)

%*+

+ 𝜃𝑋 + 𝜃.9𝑈 + 𝜖:				(3) 

Here 𝜙%, 𝛾%, 𝛼% denote the direct effect of SNP 𝑗 on 𝑈, 𝑋 and 𝑌, respectively. We also adopt this 

model in our simulations. But unlike most previous studies that simulate only the selected 

instruments, we generate data for all common variants in the genome. We are interested in 

estimating the causal effect (𝜃) of 𝑋 on 𝑌. The effects of the confounder 𝑈 on 𝑋 and 𝑌 are 

denoted by 𝜃.5 and 𝜃.9, respectively. The error terms 𝜖., 𝜖6 and 𝜖: are independent and 

normally distributed with mean 0. For convenience, we chose the variance of the error terms so 

that 𝑈, 𝑋 and 𝑌 all have unit variance. We generate genotypes 𝐺% by first simulating 𝐺%s 

independently from Binomial(2, 0.3) and then standardizing by 𝐺% =
=>?@×B.D

@×B.D× +?B.D
 to make them 

have mean 0 and variance 1. They represent SNPs with minor allele frequency 0.3 after 

standardization. We generated data from model (1)-(3) using 200,000 independent SNPs as 

representative of all underlying common variants. We generate 𝜙%, 𝛾%, 𝛼% from mixture normal 

distributions which have been shown to be appropriate for modeling effect-size distribution for 

complex traits in GWAS 25–28. Under the above model, when the confounder 𝑈 has heritable 

component, the InSIDE assumption18  is violated as direct and indirect effect of some SNPs on 

the outcome are correlated due to mediation by common factor 𝑈 .	  

 

Balanced Horizontal Pleiotropy with InSIDE Assumption Satisfied  

 

We first simulate settings where SNPs with direct effect on 𝑋 can also have direct effect on 𝑌, 

thus allowing horizontal pleiotropy, but we allow the InSIDE assumption to be satisfied by 

setting 𝜙% = 0 for all SNPs. We generate 𝛾% and 𝛼% across SNPs from the following distribution: 
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𝛾
𝛼 ∼ 𝜋+

𝑁 0, 𝜎5@
𝛿B

+ 𝜋@
𝑁 0, 𝜎5@

𝑁 0, 𝜎9@
+ 𝜋D

𝛿B
𝑁 0, 𝜎9@

+ 𝜋K
𝛿B
𝛿B

								(𝑀1) 

In the above, the first component is the set of valid IVs, i.e. the SNPs which have no horizontal 

pleiotropic effect on 𝑌. The second component is the set of SNPs with horizontal pleiotropic 

effect on 𝑌. However, because here we assume 𝛾% and 𝛼% are independent, in this setting the 

InSIDE assumption is satisfied. The third component is the set of SNPs that are only associated 

with 𝑌 and the fourth component is the set of SNPs that have no association with either trait. 

Mixture proportions are denoted by 𝜋+, 𝜋@, 𝜋D, 𝜋K and variance parameters are denoted by 𝜎5@ 

and 𝜎9@ (see Table 1 and Supplementary Table 1 for details on values used for the 

parameters). 

 

Balanced Horizontal Pleiotropy with InSIDE Assumption violated  

 

Next we allow the InSIDE assumption to be violated by allowing a fraction of SNPs to have an 

effect on the confounder 𝑈. Here we generate 𝜙%, 𝛾%, 𝛼% from the tri-variate normal mixture: 

𝛾
𝜙
𝛼

∼ 𝜋+
𝑁 0, 𝜎5@

𝛿B
𝛿B

+ 𝜋@
𝑁 0, 𝜎5@

𝑁 0, 𝜎M@

𝑁 0, 𝜎9@
+ 𝜋D

𝛿B
𝛿B

𝑁 0, 𝜎9@
+ 𝜋K

𝛿B
𝛿B
𝛿B

								(𝑀2) 

In the above, the first component corresponds to valid instruments which have only direct effect 

on 𝑋. The second component allows a set of SNPs that have effects on	𝑈 and thus creating 

horizontal pleiotropic effect with the InSIDE assumption violated. We also allow the same set of 

SNPs to have direct effects on 𝑋 and 𝑌, but the effect sizes are of smaller magnitude.  

 

Directional Pleiotropy 

 

In the above two settings, we assumed direct effects of the SNPs on the outcome 𝑌 have mean 

zero. Next to simulate directional pleiotropy, we generate 𝛼% from a distribution with non-zero 

mean (𝜇9). When the InSIDE assumption holds, we simulate from 

𝛾
𝛼 ∼ 𝜋+

𝑁 0, 𝜎5@
𝛿B

+ 𝜋@
𝑁 0, 𝜎5@

𝑁 𝜇9, 𝜎9@
+ 𝜋D

𝛿B
𝑁 𝜇9, 𝜎9@

+ 𝜋K
𝛿B
𝛿B

,				𝜙 = 0;								(𝑀3) 

when InSIDE does not hold, we simulate from 

𝛾
𝜙
𝛼

∼ 𝜋+
𝑁 0, 𝜎5@

𝛿B
𝛿B

+ 𝜋@
𝑁 0, 𝜎5@

𝑁 0, 𝜎M@

𝑁 𝜇9, 𝜎9@
+ 𝜋D

𝛿B
𝛿B

𝑁 𝜇9, 𝜎9@
+ 𝜋K

𝛿B
𝛿B
𝛿B

.								(𝑀4) 
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Simulating Data on Genome-wide Association Studies 

 

We simulate individual level data for independent genome-wide association studies for 𝑋 and 𝑌 

following the above model when sample size is not too large (𝑁 ≤ 100𝑘).  We first conduct 

association analysis for each of the 200k SNPs with 𝑋	using data from the underlying GWAS. 

SNPs which reach genome-wide significance (p-value < 5×10?U) are then selected as 

instruments and then we analyze association of each of these SNPs with 𝑌 using the underlying 

GWAS. However, for very large sample size, generation and analysis of individual level data 

can become computationally prohibitive and we simulate summary-level association statistics 

directly (addressed as summary-level simulations). We observe that the total effects of SNPs on 

𝑋 and 𝑌 are implied by model (1)-(3): 

𝛽%5 = 𝛾% + 𝜃.5𝜙%				(4) 

𝛽%9 = 𝛼% + 𝜃𝛽%5 + 𝜃.9𝜙%			(5) 

Thus, we simulate 𝛾%, 𝜙% and 𝛼%s as before and then directly generate summary statistics as 

𝛽%5 = 𝛽%5 + 𝑁 0, +
WX

, 𝛽%9 = 𝛽%9 + 𝑁 0, +
WY

 where the estimation error terms are generated with 

mean zero normal distribution with variances inversely proportional to 𝑛5 and 𝑛9, the sample 

size of the study associated with 𝑋 and 𝑌, respectively. We explore sample sizes (𝑁) varying 

from 50k to 1000k with 𝑛5 = 𝑁 and 𝑛9 = 𝑁/2, as well as other combinations of 𝑛5 and 𝑛9 

without fixing the ratio. Both individual and summary-level simulations are repeated 200 times. 

 

Choosing Parameters Values Reflecting Realistic Genetic Architecture 

 

We found previous studies for evaluation of MR methods have often not followed realistic model 

for genetic architecture of complex traits. In particular, a very recent study that evaluated a large 

number of methods for MR analysis following the basic setup described in (1)-(3), used highly 

unrealistic parameter settings32. The study, for example, assumes 10% of the variance of 𝑋 can 

be explained by the chosen instruments regardless of the number of instruments being 10, 30, 

100 or 500. Results from existing GWAS reveal that complex traits tend to be extremely 

polygenic and only a very large number of variants can explain 10% of the variance of a trait. 

For example, latest GWAS has shown that more than 1000 SNPs are needed to explain 10% 

variance of a trait like BMI 33. 
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Further, the same study generated the direct effects of the chosen instruments on the outcome 

(𝛼%)  to be so large that the instruments could explain more variability of 𝑌 than that of 𝑋. For 

example, under the scenario with balanced pleiotropy they considered, the proportion of 

variance explained by direct effects of the instruments on 𝑌 ranges from 20-35% for 30 SNPs 

and can go up to 90% for 500 IVs (Supplementary Table 2). Finally, the study fixes the sample 

size at 10,000 for both the exposure and the outcome – much smaller than the size of recent 

genome-wide association studies that have led to dozens or even hundreds of IVs for various 

traits. The study varies the number of instruments independently of the fixed sample size. In 

reality, sample size directly determines the number of instruments available and precision of 

their effects.  

 

We chose parameter values in our model so that they reflect realistic genetic architecture of 

complex traits and results from our simulated GWAS track that are typically observed in 

empirical studies. In Table 1, we show the parameter values chosen for different simulation 

settings and corresponding values of heritability of the two traits and their co-heritability due to 

horizontal and vertical pleiotropy. Further in Figure 1, we show how under simulation settings 

as the sample size for GWAS of 𝑋 increases, the number of available IVs and the amount of 

variance they explain for the two traits increase. These patterns closely correspond to that 

observed in GWAS of many traits, such as BMI. Further see Supplementary Table 1 for the 

exact choice of parameters. 

 

Existing Robust MR Methods 

 

We compare all nine methods investigated in the recent study indicated above 32. In addition, 

we include the inverse-variance weighted method with multiplicative random effects (IVW-r) in 

comparison 34. The methods can be classified into the following categories: 

 

A. Location parameter of ratio estimates 

• IVW-r: The IVW estimator with multiplicative random effects is a simple extension of the 

standard IVW. IVW-r computes the estimate of causal effect using the same weights as 

fixed-effect IVW, but incorporates an over-dispersion parameter into the variance to 

account for pleiotropy 34. 
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• Weighted median: The weighted median method takes the median of the ratio estimates 

after assigning to them probabilistic weights that are inversely proportional to their 

variances. The underlying assumption of that method is that >50% of the weight comes 

from valid IVs 16. 

• Weighted mode: The weighted mode estimator takes the mode of the smoothed 

empirical density function of the ratio estimates, using the same weights as the weighted 

median approach. The method requires the ZEro Modal Pleiotropy Assumption (ZEMPA) 
17. 

• MR-Egger: Egger regression fits the regression model 𝛽9 = 𝜃𝛽5 + 𝜃B, where 𝜃 is the 

estimated causal effect and 𝜃B is the estimated directional pleiotropy. Since IVW 

estimator is in effect the slope of a regression model through the origin, Egger 

regression is a direct extension of the method by allowing an intercept term accounting 

for directional pleiotropy. The method requires the Instrument Strength Independent of 

Direct Effect (InSIDE) assumption 18. 

 

B. Robust regression 

• MR-Robust: IVW is performed by fitting the regression using MM-estimation, which 

consists of an initial S-estimate followed by an M-estimate of regression35, combined 

with Tukey’s bi-weight loss function 29. 

• MR-Lasso: The IVW regression is augmented by adding SNP-specific intercept terms, 

which represents SNP-specific pleiotropy effects, and penalizing the intercept terms with 

L1 loss function 29. 

• MR-RAPS: Profile likelihood can be used for MR when there is no horizontal pleiotropy. 

The MR Adjusted Profile Score method incorporates random effect and robust loss 

functions into the profile score to account for systematic and idiosyncratic pleiotropy36. 

 

C. Outlier detection and removal 

• MR-PRESSO: The MR Pleiotropy Residual Sum and Outlier (MR-PRESSO) method 

uses the leave-one-out sum of squared residuals to detect global horizontal pleiotropy. It 

also detects and removes outliers that are in horizontal pleiotropy and conducts a 

distortion test of the influence of the invalid IVs. The MR-PRESSO outlier test requires 

that at least 50% of the variants are valid instruments and relies on the InSIDE 
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assumption 13. Due to long computational time, we only implements MR-PRESSO up to 

sample size 𝑁 = 200𝑘.  

 

D. Mixture model approach 

• MRMix: MRMix uses a mixture model for effect-size distribution assuming existence of a 

fraction of the genetic markers that are valid instruments. Causal effects are estimated 

based on a novel spike-detection algorithm: it fits the mixture model 𝛽9 − 𝜃𝛽5 ∼

𝜋B𝑁 0, 𝜎B@ + (1 − 𝜋B)𝑁(0, 𝜎@) and searches for the 𝜃 that maximizes the probability 

concentration at the null component 𝑁 0, 𝜎B@  corresponding to valid IVs. This approach 

requires ZEMPA and tends to be robust and efficient under large sample size 37. 

• Contamination mixture (addressed as Con-mix for simplicity): The contamination mixture 

approach also uses a mixture model to characterize a cluster of valid IVs and a cluster of 

invalid IVs. Unlike MRMix which models the genetic effect size, Con-mix models the ratio 

estimates using normal mixture with a pre-specified variance of the pleiotropic effects19. 

 

See Supplementary Table 3 for the software and tuning parameters used to implement the 

methods above. 

 
Summary of Simulation Results 

 

We calculate the type I error rate of all 10 methods at nominal significance threshold 𝑝 < 0.05, 

as well as the power of the methods that have well controlled or only moderately inflated type I 

error. We also calculate the mean squared error (MSE) as  

𝑀𝑆𝐸 =
1
200

𝜃` − 𝜃∗
@

@BB

`*+

, 

where 𝜃∗ is the true value of the causal effect. The MSE measures the accuracy of the point 

estimate combining bias and variance. We also use the mean and standard deviation of causal 

estimates across simulations to compare bias and efficiency separately. To investigate bias of 

the underlying standard error (SE) estimates in some of the MR methods, we compare the 

empirical standard deviation of the causal effect estimates and the average estimated SE 

calculated across simulations. For the contamination mixture method 19, we calculate the 

“standard error” as length of the 95% confidence set divided by 2×1.96, since the method 
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generates confidence sets based on the likelihood ratio test and does not report a standard 

error. 

 

Results 

 

We present main results under the simulation scheme that generate summary-level data directly 

as it allows exploration of GWAS of very large sample size (𝑁 > 100𝑘). Under smaller sample 

size where we did simulation with both individual and summary-level data, we see the results 

are very comparable across the two schemes (see Supplementary Figures 1 and 2).  

 

Under balanced pleiotropy and InSIDE assumption, the weighted mode estimator and MRMix 

controls type I error at the nominal level across different scenarios (Figure 2). The type I error 

rate of weighted mode usually falls far below the nominal value while that of MRMix generally 

remains fairly close to the nominal value. Among other methods, IVW-r, MR-Egger, MR-Robust 

and MR-RAPS are the most robust as they generally maintain the nominal type I error except 

when the number of invalid IVs are large or/and sample size is small. The least robust methods 

are MR-Lasso and Con-mix which often have extremely high type I error reaching even up to 

100% for the latter method when 𝑁 = 1000𝑘 and 70% of the instruments were invalid. When we 

compare the methods in terms of MSE (Figure 3), we find that IVW-r, weighted median, MR-

Robust, MR-Lasso, MR-PRESSO and MR-RAPS perform comparably to each other and have 

an advantage over the others. Among weighted mode and MRMix, which are the only two 

methods maintaining nominal type-I error, we find MSE for weighted mode could be much 

smaller than MRMix for smaller sample size (e.g 𝑁 = 50𝑘) but the latter method has a clear 

advantage when sample size becomes larger (𝑁 ≥ 200𝑘). 

 

Among the methods that have reasonably well controlled or only moderately inflated type I error 

rates, power tracks closely with the MSE (Supplementary Figure 3). IVW-r, MR-Robust, MR-

RAPS have the highest power; MRMix has similar power to these three methods when 𝑁 ≥

200𝑘 and lower power at smaller sample size. Weighted mode and Egger regression have lower 

power than the other methods throughout the scenarios. 

 

We also compared the different methods in terms of bias and variance separately. Under 

balanced pleiotropy and InSIDE assumptions, all MR methods generally show some bias when 

the sample size is small and gradually the bias diminishes as the sample size increases 
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(Supplementary Figure 4). The observed biases are generally towards the null except for Con-

mix which was often biased away from the null. When sample size is very large (𝑁 = 1000𝐾) 

and number of invalid IVs are correspondingly large, it appears that the Con-mix method 

completely fails and can create very large bias. When there is no causal effect, all methods give 

average estimates of causal effect close to 0 across wide range of sample sizes except for 

Egger regression with 𝑁 ≤ 100𝑘 and Con-mix with 𝑁 = 1000𝑘 and large number of invalid IVs. 

Comparing the empirical versus estimated standard errors of the methods we observe that the 

MR-Lasso and Con-mix produce severely underestimated standard errors (Supplementary 
Figure 5), while weighted median and MR-PRESSO has underestimated standard error when 

70% of the instruments are valid. This is likely to be the reason for type I error inflation. 

Throughout the settings IVW-r, MR-Egger, MR-Robust and MR-RAPS give accurate standard 

error estimation; weighted mode has overestimated standard error which is likely to be the 

reason for its overly conservative type I error rate. The standard error estimate of MRMix tends 

to be too large when 𝑁 ≤ 100𝑘, but converges to the truth when 𝑁 ≥ 200𝑘. 

 

When the InSIDE assumption is violated, we find all methods except weighted mode and 

MRMix could have extremely inflated type I error (Figure 4). As before while MRMix maintains 

type I error close to the nominal level, weighted mode is very conservative. Among other 

methods, Con-mix and MR-Egger are less biased, but even these methods have unacceptably 

high type I error in a variety of scenarios. When the methods are compared in terms of MSE 

(Figure 5), for smaller sample sizes (𝑁 ≤ 100𝑘), the methods IVW-r, weighted median, MR-

Robust, MR-Lasso and MR-PRESSO seem to be the best even though they may have 

appreciable bias. For larger sample size (𝑁 ≥ 200𝑘), MRMix generally has the smallest MSE; 

and had substantially higher power than weighted mode, which also controls the type I error 

(Supplementary Figure 6). When we inspected bias and variance separately, it is evident that 

when the InSIDE assumption is violated all methods, except weighted mode and MRMix, can 

have large bias, even when there is no causal effect, and this bias does not disappear with 

increasing sample size (Supplementary Figure 7). The patterns of bias in standard error 

estimation for the different methods are similar as what we described before when the InSIDE 

assumption is satisfied (Supplementary Figure 8). 

 

When we simulate unbalanced pleiotropy without and with violation of the InSIDE assumption, 

the patterns are fairly similar with corresponding scenarios for balanced pleiotropy setting 

except that the type I error for a number of methods increased somewhat in certain settings 
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(Supplementary Figures 9-14). In particular, the MRMix method now shows modestly inflated 

type I error when sample size is small and the number of invalid IVs is large (e.g. 70%), but the 

bias disappears with increasing sample size (Supplementary Figures 9 and 11). The weighted 

mode method maintains type I error in a conservative manner in all settings. All the other 

methods have extremely inflated type I errors in a range of scenarios, especially when sample 

size is large, the number of invalid IVs are large or/and the InSIDE assumption is violated.  

 

To further understand the role of sample size in MR analysis, we conducted additional 

simulations where the sample sizes of GWAS of 𝑋 and 𝑌 are allowed to vary freely without 

being held fixed at 2:1 proportion. It appears that the sample size of 𝑋 plays a bigger role but 

the sample size of 𝑌 can also play an important role on relative performance of the methods 

(Supplementary Figures 15 and 16). For example, when sample size for GWAS of 𝑋 is 

relatively large (𝑛5 = 200𝐾), but that for 𝑌 is small (𝑛9 = 25𝐾), MR-Lasso had the smallest MSE 

and is closely followed by a number of other methods including IVW-r, weighted median, MR-

Robust, MR-RAPS and MR-PRESSO. In this setting, MR-Egger and Con-mix have much higher 

MSE and those of weighted mode and MRMix are in between. In contrast, when the sample 

size for GWAS of 𝑌 increased, MRMix emerged clearly as the best performing method for 

intermediate sample size 𝑛9 = 50𝑘 to 100𝑘 and MR-Lasso again has the smallest MSE for even 

larger sample size 𝑛9 = 200𝑘 to 1000𝑘 and Con-mix follows closely. We further observe that 

when sample size for GWAS of 𝑋 is much larger than that of 𝑌 (𝑛5 = 1000𝑘 and 𝑛9 = 25𝑘), the 

MRMix method clearly has the smallest and Con-mix has the largest MSE among all methods. 

In the other extreme, when the sample size for GWAS of 𝑌 is very large and that for 𝑋 is small, 

the Con-mix also performed poorly. In this setting, the methods IVW-r, weighted median, MR-

Robust, MR-Lasso, MR-RAPS and MR-PRESSO had much smaller MSE and performed 

comparably to each other. The performance of weighted mode and MRMix is intermediate. 

 

Discussion 
 

In this paper, we evaluate a variety of methods for polygenic MR analysis using a simulation 

framework which generate data closely resembling patterns observed in empirical genome-wide 

association studies. Results reveal varying performance of the MR methods under different 

scenarios. When the sample size is large (e.g. 𝑛5 > 200𝑘, 𝑛9 > 100𝑘), MRMix appears to be 

best or close to be best, whether or not InSIDE assumption is satisfied, in terms of its ability to 
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control type I error rate and bias and yet maintaining relatively high power and low MSE. When 

the sample size is smaller (e.g. 𝑛5 ≤ 100𝑘, 𝑛9 ≤ 50𝑘), no method appears to be performing 

uniformly well across all scenarios. When the InSIDE assumption holds, IVW-r, MR-Robust and 

MR-RAPS lead to the smallest mean-squared errors and they usually have either well controlled 

or modestly inflated type I error rates. The weighted median method also performs well when 

the proportion of valid IVs is not too high (e.g. ≤ 30%) but suffers from more severe type I error 

when this proportion increases. When the InSIDE assumption is violated, only weighted mode 

and MRMix have well controlled type I error and all the other methods can have severely 

inflation in type I error. Between these two methods, weighted mode tends to be more efficient 

and powerful for moderate sample size (e.g. 𝑛5 ≤ 80𝑘, 𝑛9 ≤ 40𝑘). 

 

We observe that the type I error of a number of methods are significantly affected due to not 

only bias in point estimation but also that of the underlying standard error estimators. In 

particular, we found that the type I error of the weighted mode can often be substantially lower 

than the desired nominal level due to conservativeness of underlying standard error estimator 

(Supplementary Figure 5 and 8). Further for a number of other estimators, which did not have 

bias in point estimation at least when the InSIDE assumption is satisfied, have inflated type I 

error due to anticonservative standard error estimation. It is possible that in the future the type I 

error or/and power for some of these procedures can be improved through implementation of 

more robust standard error estimation procedures. 

  

Both similarities and differences exist between our simulation results and the results reported in 

a recent study also comparing most of the same MR methods 32. Both studies found that the 

weighted mode estimator has well controlled type I error rate; among the outlier-robust methods 

(MR-PRESSO, MR-Robust, MR-Lasso), MR-Lasso has the lowest MSE but MR-Robust has 

better controlled type I error rates. The biggest difference is observed for mixture model based 

methods. In our study, MRMix is shown to perform well under large sample size, especially 

when the InSIDE assumption is violated. The study by Slob and Burgess restricted their 

simulation studies with sample size 𝑛5 = 𝑛9 = 10,000. Under such small sample size, MRMix 

can be unstable because the performance of the method depends on the ability of the 

underlying mixture model to cluster valid and non-valid IVs based on underlying variance 

components. If the sample size is small and estimates of effect sizes for the IVs have large 

variability, then the two variance components are not well separable and the resulting estimates 

can have large uncertainty. When sample size increases, variance component associated with 
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valid IVs are expected to be smaller than those with the non-valid IVs and then the method 

allows robust estimation of causal effects.  

 

Another major distinction of our study with that of Slob and Burgess is that that these authors 

allow extremely large direct effects for a relatively small number of IVs on the outcome 𝑌, while 

we use a more realistic model that allows much larger number of invalid IVs, which individually 

has direct effects on 𝑌 of smaller magnitudes (see Table 1 and Supplementary Table 2). In our 

own simulation study, we find the alternative mixture model-based method, Con-mix can have 

smaller MSE than that of MRMix specially for smaller sample sizes, but the former method can 

have much higher type I error across a variety of scenarios with or without the InSIDE 

assumption violated. We also observed a numerical breakdown of Con-mix for very large 

GWAS (e.g 𝑛5 = 1000𝑘) for which the cause is not well understood. 

 

The simulation framework we propose can be broadly useful for future evaluation of emerging 

MR methods. We simulate data on genome-wide panel of SNPs and apply a p-value threshold 

to select IVs as is done in real studies. This procedure naturally reflects the relationship among 

sample size, number of IVs and instrument strength. We also use realistic distributions to 

generate genetic effect sizes based on recent work on heritability and effect size distributions 
10,20–28. We studied the performance of MR methods in a wide range of sample sizes and 

scenarios of violations of standard assumptions of MR analysis. We propose a framework for 

directly simulating summary-level data implied by the model for individual data for reducing the 

computational burden associated with simulating vary large GWAS.  

 

In summary, we conducted large-scale and realistic simulation studies to compare 10 methods 

for Mendelian randomization analysis. Our results show that while for GWAS with very large 

size the mixture model based method MRMix emerges as the most robust method, for medium 

to smaller sample sized studies there is no single method that performs uniformly well across all 

scenarios. Thus in real data analysis it is prudent to apply a few alternative methods with 

complimentary features and strengths and assess sensitivity of findings across all these 

methods.  

 

Software code availability 
The code for the simulation studies is available on GitHub:  

https://github.com/gqi/MR_comparison_simulations 
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Figures	and	Tables	
	
	
	

	

	
Figure	1.	Relationship	among	sample	size,	average	number	of	IVs	and	variance	of	traits	explained	by	
the	IVs	under	different	scenarios	of	simulation	studies.	The	true	causal	effect	from	!	to	"	is	0.2.	
Sample	size	of	the	study	associated	with	!	is	#;	sample	size	of	the	study	associated	with	"	is	#/2.	IVs	
are	defined	as	the	SNPs	which	reach	genome-wide	significance	(z-test	& < 5×10,-)	in	the	study	
associated	with	!.	Averages	are	calculated	over	200	simulations.	
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Figure	2.	Type	I	error	rates	for	alternative	MR	methods	in	simulations	with	balanced	pleiotropy	and	
InSIDE	assumption	satisfied.	There	is	no	true	causal	effect	from	!	to	".	Empirical	type	I	error	rates	are	

reported	over	200	simulations.	Sample	size	of	the	study	associated	with	!	is	#;	sample	size	of	the	study	

associated	with	"	is	#/2.	.:	the	average	number	of	IVs,	defined	as	the	SNPs	which	reach	genome-wide	

significance	(z-test	& < 5×10,-)	in	the	study	associated	with	!;	varX%:	average	percentage	of	variance	
of	!	explained	by	IVs;	varY%:	average	percentage	of	variance	of	"	explained	by	IVs.	The	red	dashed	line	
is	the	nominal	significance	threshold	0.05.		
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Figure	3.	Mean	squared	error	for	estimation	of	causal	effect	under	alternative	MR	methods	in	
simulations	with	balanced	pleiotropy	and	InSIDE	assumption	satisfied.	The	true	causal	effect	from	!	to	
"	is	0.2.	Mean	squared	errors	are	reported	over	200	simulations.	Sample	size	of	the	study	associated	

with	!	is	#;	sample	size	of	the	study	associated	with	"	is	#/2.	.:	the	average	number	of	IVs,	defined	as	

the	SNPs	which	reach	genome-wide	significance	(z-test	& < 5×10,-)	in	the	study	associated	with	!;	
varX%:	average	percentage	of	variance	of	!	explained	by	IVs;	varY%:	average	percentage	of	variance	of	
"	explained	by	IVs.	Bars	higher	than	the	upper	limit	of	the	panel	are	truncated	and	marked	with	the	true	

value.		
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Figure	4.	Type	I	error	rate	in	in	simulations	with	balanced	pleiotropy	and	InSIDE	assumption	violated.	
There	is	no	true	causal	effect	from	!	to	".	Type	I	error	rates	are	reported	over	200	simulations.	Sample	

size	of	the	study	associated	with	!	is	#;	sample	size	of	the	study	associated	with	"	is	#/2.	.:	the	
average	number	of	IVs,	defined	as	the	SNPs	which	reach	genome-wide	significance	(z-test	& < 5×10,-)	
in	the	study	associated	with	!;	varX%:	average	percentage	of	variance	of	!	explained	by	IVs;	varY%:	
average	percentage	of	variance	of	"	explained	by	IVs.	The	red	dashed	line	is	the	nominal	significance	

threshold	0.05.		
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Figure	5.	Mean	squared	error	in	in	simulations	with	balanced	pleiotropy	and	InSIDE	assumption	
violated.	Mean	squared	errors	are	reported	over	200	simulations.	Sample	size	of	the	study	associated	

with	!	is	#;	sample	size	of	the	study	associated	with	"	is	#/2.	.:	the	average	number	of	IVs,	defined	as	

the	SNPs	which	reach	genome-wide	significance	(z-test	& < 5×10,-)	in	the	study	associated	with	!;	
varX%:	average	percentage	of	variance	of	!	explained	by	IVs;	varY%:	average	percentage	of	variance	of	
"	explained	by	IVs.	Bars	higher	than	the	upper	limit	of	the	panel	are	truncated	and	marked	with	the	true	

value.	
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Table	1.	Choice	of	parameters	in	simulation	studies	where	the	true	causal	effect	of	!	on	"	is	0.2	and	50%	of	the	potential	IVs	are	valid.		

Setting	 #	of	causal	variants	 Heritability	of	X	 Heritability	of	Y	b	

Genetic	correlation	c	

due	to	

vertical/horizontal	

pleiotropy	

Balanced	pleiotropy,		

InSIDE	satisfied	

[Model	(M1),	Methods]	

200,000	independent	SNPs	

representing	the	common	

variants	in	the	genome.	

	

1)	2,000	SNPs	have	direct	effect	

on	#	but	not	$	(addressed	as	
potential	valid	IVs).		

2)	2,000	SNPs	have	direct	effects	

on	both	#	and	$	(addressed	as	
SNPs	in	horizontal	pleiotropy).	

3)	2,000	SNPs	have	direct	effects	

on	$	but	not	#.	
4)	The	remaining	194,000	SNPs	

have	no	effects	on	either	#	or	$.	

Total	20%:	10%	due	to	potential	valid	IVs;	

10%	due	to	SNPs	in	horizontal	pleiotropy.	

Total	20.8%:	0.8%	due	to	causal	effect	of	#;		
10%	due	to	SNPs	in	horizontal	pleiotropy;		

10%	due	to	SNPs	that	have	effects	on	$	but	not	#.	
0.196	/	0	

Balanced	pleiotropy,		

InSIDE	violated	

[Model	(M2),	Methods]	

Total	20%:	10%	due	to	potential	valid	IVs;	

8.2%	due	to	direct	effects	of	SNPs	in	

horizontal	pleiotropy;	1.8%	due	to	

confounder	%	a.	

Total	21.52%:	0.8%	due	to	causal	effect	of	#;		
2.52%	due	to	confounder	%	and	its	covariance	with	#;		
8.2%	due	to	direct	effects	from	SNPs	in	horizontal	

pleiotropy	that	are	not	mediated	by	%;		
10%	due	to	SNPs	that	have	effects	only	on	$.	

0.193	/	0.087	

Directional	pleiotropy,		

InSIDE	satisfied	

[Model	(M3),	Methods]	

Total	20%:	10%	due	to	potential	valid	IVs;	

10%	due	to	SNPs	in	horizontal	pleiotropy.	

Total	30.8%:	0.8%	due	to	causal	effect	of	#;		
15%	due	to	SNPs	in	horizontal	pleiotropy	(10%	

balanced	+	5%	directional	effect);		

15%	due	to	SNPs	that	have	effects	only	on	$.	

0.161	/	0	

Directional	pleiotropy,		

InSIDE	violated	

[Model	(M4),	Methods]	

Total	20%:	10%	due	to	potential	valid	IVs;	

8.2%	due	to	direct	effects	of	SNPs	in	

horizontal	pleiotropy;	1.8%	due	to	

confounder	%.	

Total	31.52%:	0.8%	due	to	causal	effect	of	#;		
2.52%	due	to	confounder	%	and	its	covariance	with	#;	
13.2%	due	to	direct	effects	from	SNPs	in	horizontal	

pleiotropy	that	are	not	mediated	by	%	(8.2%	balanced	
+	5%	directional	effect);		

15%	due	to	SNPs	that	have	effects	only	on	Y.	

0.159	/	0.072	

See	Supplementary	Table	1	for	the	exact	choice	of	parameters	in	all	settings.	
a	%	is	the	heritable	confounder.	
b	When	directional	pleiotropy	exists,	the	direct	SNP	effects	on	$	follow	distribution	& '(, *(+ ,	which	can	be	decomposed	into	& 0, *(+ + '( .	“Balanced	effects”	refer	those	from	the	first	component	
& 0, *(+ 	and	“directional	effects”	refer	to	those	from	the	second	component	'( .	
c	Genetic	correlation	between	two	traits	#	and	$	are	defined	as	ℎ/(/ ℎ/+ℎ(+ ,	where	ℎ/( 	is	the	covariance	of	the	genetic	components	of	#	and	$,	ℎ/+	and	ℎ(+ 	are	the	heritability	of	#	and	$	respectively.	
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