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Abstract

The demands on machine learning methods to cater for ultra high dimen-
sional datasets, datasets with millions of features, have been increasing in
domains like life sciences and the Internet of Things (IoT). While Random
Forests are suitable for “wide” datasets, current implementations such as
Google’s PLANET lack the ability to scale to such dimensions. Recent im-
provements by Yggdrasil begin to address these limitations but do not extend
to Random Forest . This paper introduces CursedForest , a novel Random
Forest implementation on top of Apache Spark and part of the VariantSpark
platform, which parallelises processing of all nodes over the entire forest.
CursedForest is 9 and up to 89 times faster than Google’s PLANET and
Yggdrasil , respectively, and is the first method capable of scaling to millions
of features.

1 Introduction

The ongoing digital revolution is causing a dramatic increase in data collected
about almost every aspect of life [12]. These datasets are not only growing
by capturing more events (samples) but also by capturing more information
about these events (features). The challenge of “big” and “wide” data is
especially pronounced in the biomedical space where, for example, whole
genome sequencing technology enables researchers to extract over 3 billion
features from the human genome for analysis [13]. Other domains are also
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seeing a rapid increase in the number of features processed by statistical or
machine learning applications [1].

While statistical linear models can deal with such wide datasets by ana-
lyzing each feature independently [7], there is a growing demand for more re-
alistic approaches that can discover interacting features using machine learn-
ing [10]. In the life-science space, this would allow modeling the interactions
between genes that result in complex traits like height [9] or diseases like
obesity [11]. In particular, Decision Tree [10] based models have been suc-
cessfully applied to uncover interactions between features [18].

As Decision Trees fitting algorithms are greedy and may yield an estimate
with a high variance, Breiman developed an ensemble approach for improv-
ing accuracy by aggregating over a large number of Decision Trees , called
Random Forest [5]. Random Forest models are particularly well suited for
datasets that are wide and there is a need to capture interactions for two
reasons:

• Wide datasets, particularly when there are more features than sam-
ples, cause other machine learning methods to overfit easily, whereas
Random Forest models are more resistant to this “curse of dimension-
ality” [2, 4]

• There is significant scope for parallelization in Random Forest algo-
rithms allowing forests to be grown efficiently even on large datasets.

The first implementations of Random Forest in R (randomForest) were
based on the original Fortran code by Breiman [5]. Later ranger [17] pro-
vided a C++ implementation of Random Forest with an R interface, which
also covers the loading and pre-processing. H2O [8] provides another R in-
terfacing implementation with Scala back end. In terms of parallelization,
all of these implementations are optimized for a high performance computing
(HPC ) machine (a single computing node). However, the Random Forest
algorithm allows for parallelization on a distributed computing platform.

Apache Spark is particularly suitable for such massively parallel inter-
connected calculations as it offers a distributed computing architecture that
enables communication beyond compute-node boundaries in a standardized
approach [13]. In the Spark cluster, there are several Workers and a Master
each of which is a computing node in the network. The Driver program (run
on the Master node) coordinates the job flow by controlling the Executors
(run on the Worker nodes).
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Table 1: Methods evaluated

Evaluated Methods
Implemented

Language
Computational

Platform
Reference

CursedForest Scala Spark Cluster Our work
Google’s PLANET (Spark MLlib) Scala Cluster Spark [3]
Yggdrasil Scala Spark Cluster [1]
H2O Scala & R Proprietary Cluster [8]
randomForest Fortran & R HPC [5]
ranger C++ & R HPC [17]

Google’s PLANET [3] is a MapReduce implementation of Random Forest
and the first to parallelize processing each node of a tree in a distributed fash-
ion. Hence, the ideas from Google’s PLANET are now used in many “Big
Data” machine learning libraries, such as Spark MLlib and XGBoost [6].
Google’s PLANET partitions data by samples with Workers holding all fea-
tures for a fraction of samples. However, this solution produces an approxi-
mate split and limits the depth of tree for high dimensional datasets [1].

Yggdrasil [1] overcomes this limitation by flipping the dataset and parti-
tioning it by features rather than samples. The Driver aggregates the best
local splits computed on the Executors , identifies the best global split, and
updates the Executors accordingly. However, the work is limited to Decision
Trees and does not implement bootstrapping or mtry (number of features
considered at each node), which are essential components in a Random For-
est .

CursedForest extends Yggdrasil ’s approach to Decision Trees to Random
Forest models. CursedForest also introduces a novel method of paralleliza-
tion in the tree growing process such that nodes of different trees are pro-
cessed in parallel. This enables highly accurate multivariate models to be
built on large datasets with millions of features. For more details see Sec-
tion 2.3.

In this paper we evaluated different implementations of Random Forest ,
including Google’s PLANET , for their ability to scale to large datasets (Sec-
tion 3.1). Section 3.2 and Section 3.3 tests the limits of CursedForest and
Section 3.4 benchmarks CursedForest against Yggdrasil . Details of Cursed-
Forest are elaborated in Section 2.3.
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Table 2: Datasets used for evaluations

Dataset Description Samples Features
80M 1000 Genomes Phase 3 chr1 to chr22 2,540 81,047,467
20M 1000 Genomes Phase 3 chr1 to chr3 2,504 19,328,051
6M 1000 Genomes Phase 3 chr1 2,504 6,450,364
1M 1000 Genomes Phase 3 chr22 2,504 1,103,548

500K 1000 Genomes Phase 1 chr 22 1,092 490,036

2 Methods

2.1 Datasets

For the evaluation, well-known genomic datasets (1000 Genomes Project [14])
along with a synthetic dataset are used. The genomic dataset is subsetted
to create 5 datasets of different size (see Table 2). Each dataset includes the
genomic profile as well as the ethnicity of a few thousand individual humans.
In our evaluation, the person’s ethnicity (response variable) is predicted from
his or her genomic profile and evaluated against the known ethnicity. The
genomic profile is a set of features taking the values 0/0, 0/1 or 1/1 which
we encode as 0, 1 and 2 respectively.

For the synthetic dataset, we use the method provided by Wright and
Ziegler [17]. The synthetic dataset consists of n samples and p features where
p >> n and values for each feature are ordinal with three levels represented
as numbers 0, 1 and 2 (which correspond to an additive effect encoding of ge-
nomic variation) randomly generated from a uniform distribution with equal
probabilities. For all synthetic dataset, the response variable is a function of
five randomly selected features.

The model parameters we use for simulations are wi = 1/
√

2i − 1 for
i = 1, · · · , 5 and we set z =

∑5
i=1wixi. We let σ2

ε = Var(z)(1−θ)/θ where θ is
a parameter controlling the fraction of variance explained by the informative
features, and in our study we chose θ = 0.125. Then y = z + ε where
ε ∼ N(0, σ2

ε ). The dichotomous response is generated by thresholding y at
the 0.5 quantile:

ÿ =

{
0 for y ≥ Q2(y)

1 for y > Q2(y).
(1)
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Table 3: Computational resources used in our experiment

Description Number of
Executors

Total
Memory
(GB)

C1 A Spark 1.6.1 cluster with 12 worker nodes
each with 16 Intel Xeon E5-2660@2.20GHz
CPU cores and 128 GB of memory

32 32×8

C2 A Spark 1.6.1 cluster with 12 worker nodes
each with 16 Intel Xeon E5-2660@2.20GHz
CPU cores and 128 GB of memory

130 130×8

C3 An Amazon aws emr cluster with r4.2xlarge
machine as master and8 r4.4xlarge machines
as worker nodes

8×16 8×61

2.2 Computational resources

Computational platform described in Table 3 are used in our experiments.

2.3 CursedForest implementation

CursedForest implements the original algorithm of Breiman [5]. Given the
dataset of n samples and p features, in our implementation, the dataset is par-
titioned by features and each partition is allocation in an Worker such that
the ith Worker holds pi features for all samples where

∑
i pi = p. To build

each tree, the Driver first bootstrap samples thus different bootstrapped set
of samples are used to build each tree. Then, for each node of each tree mtry
different features are randomly picked from the dataset to compute Gini Im-
purity (parallelized over all Executors). Since features are partitioned across
Workers , Each Executor (assume one per Worker) randomly pick mtry× pi
features and finds the best split locally for the node. The Driver aggregates
all local best split for each node finds the global best split and updates all
Executors about the global best split. This process is carried out across rbs
trees in parallel where rbs is set by the user. Hence multiple nodes of multiple
trees are processed in parallel.

We keep track of the change in Gini Impurity scores after splitting at
each node in each tree. This information is used to calculate the Importance
Score which is used as a metric to quantify the contribution of each feature
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in classifying the samples.
This implementation avoids communication bottlenecks between the Driver

and the Executors as information exchange is minimal allowing it to build
large numbers of trees efficiently. Furthermore, CursedForest has memory ef-
ficient representation of genomics data, optimized communication patterns,
and computation batching. It also provides an efficient implementation of
Out-Of-Bag (OOB) error calculation, which substantially simplifies param-
eter tuning over the more computationally expensive alternative of cross-
validation.

CursedForest is available as a Github repository
The GitHub repository (https://github.com/aehrc/VariantSpark) holds
information for setting up on any local or cloud-based computing environ-
ment supporting Apache Spark , such as Amazon Web Services and Google
Cloud Platform. In addition, CursedForest can also be accessed through a
notebook interface hosted at Databricks
(https://aehrc.github.io/VariantSpark/notebook-examples/VariantSpark_
HipsterIndex.html). Note that, in addition to VCF and CSV file format,
CursedForest also works with the ADAM16 data schema, implemented on
top of Avro and Parquet, as well as the HAIL API (https://github.com/
hail-is/hail) for variant pre-processing.

2.4 Usage of the Gini Impurity score as a data split-
ting criterion

The current implementation of CursedForest uses a Gini Impurity criterion
to choose the feature for splitting at each node. This was introduced for
Decision Tree in Breiman et al. [10]. For each node A in each tree, except
leaf nodes, the program finds the feature (between randomly selected mtry
features) that best splits samples in A into two child node L and R. Assume
node A includes m samples each of which labelled with q, where q ∈ 1, ..., Q.
Given fq as the fraction of samples in the R which are labeled as q, then the
Gini Impurity of the node A (GiniR)is computed as,

GiniR = 1−
Q∑
q=1

fq
2. (2)

Assume l and r are the fractions of samples in A which are moved to
L and R respectively (l + r = 1) after splitting node A with feature t.
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The Information Gained by feature t (IGt) at node A is computed as Gini
Impurity of A minus weighted average of Gini Impurity of L and R using
equation,

IGt = GiniA − (x×GiniL + y ×GiniR) (3)

The feature that results in the highest Information Gained is selected as
the local best split for the node by Executor . When the Driver collects all
local best splits it looks for the one that maximizes Information Gained and
chooses it as the best global split.

Feature t might be selected as the best split for multiple nodes of multiple
trees. The raw Importance Score of feature t is defined as the mean of IGt

across all node in the Random Forest where t is chosen as best split.

2.5 Out-of-Bag training and testing procedure

The Random Forest algorithm builds each tree on a subset of individuals
(approximately two thirds), leaving the other third out. The algorithm then
tests each tree against the held-out samples, giving an estimate of the error
for each tree. Averaging the error for each tree returns the OOB error for
the model. According to Breiman [10], the out-of-bag estimate is as accurate
as using a test set of the same size as the training set.

3 Results and discussion

3.1 CursedForest outperforms existing methods for multi-
class classification

Figure 1a shows the execution time of all methods on different sized datasets.
Note that not all programs were able to process all datasets due to out of
memory errors and time-out. CursedForest is faster than all other meth-
ods for all dataset except for the smallest dataset (500K) where ranger R
implementation is faster (70 seconds vs. 110 seconds). The ranger R is
the second fastest implementation of Random Forest but cannot process the
largest dataset (80M features). CursedForest is 4.5, 5.3 and 4.2 times faster
than ranger R processing 1M, 6M, and 20M dataset respectively. Google’s
PLANET is the only other Spark implementation of Random Forest but
cannot process dataset larger than 6M features. CursedForest is 9.3 and
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Figure 1: Comparison of speed and accuracy of CursedForest with other
published methods. SparkML refers to Google’s PLANET . Crossed cicles
(⊗) mark the last successfully process dataset by the respective methods.

26.4 times faster than Google’s PLANET processing 1M and 6M dataset
respectively.

CursedForest is the only method able to scale to the largest dataset (80M
features). This demonstrates that although Google’s PLANET was designed
to handle many samples, it is unable to efficiently cope with a large number
of features. Extrapolating from this, the dotted line in Figure 1a shows that
all current implementations would require between 27 hours and 11 days to
finish analyzing the largest dataset (80M), while CursedForest completes the
task in about 3 hours on a small cluster set-up (C1).

Figure 1b compares accuracy and speed of the different Random Forest
implementations on the largest dataset they successfully complete. The ac-
curacy is measured in terms of out-of-bag error rate (lower is better) and the
speed is computed as million variants per second (higher is better). Cursed-
Forest is the fastest implementation and delivers the most accurate result as
it was the only method able to utilize the whole genome (80M).

The runtime of CursedForest can be substantially improved due to its
ability to efficiently utilize large numbers of commodity computers. Table 4
shows the runtime when utilizing a large Spark cluster (C2) (see Section 2.2)
to run the same analysis as above. We can observe that the speed-up im-
provement grow with data set size, with up to 5-fold speed-up for 80M (from
11, 760 to 2, 214 seconds). Also, noteworthy is the reduction in error when
the whole data set is utilized.
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Table 4: Accuracy and scalability of a multi-class classification with 50 trees
using CursedForest

.

Dataset
Error Rate

(OOB)
Runtime (min)

Speed up
C2 C1

1M 0.06 1.6 4.0 2.5
6M 0.04 4.2 19.3 4.6
20M 0.02 10.8 56.7 5.2
80M 0.01 36.9 196.0 5.3

3.2 CursedForest is linearly scalable with samples, fea-
tures and CPUs

Here, we explore the performance of CursedForest in more detail by testing
its ability to scale beyond the real dataset size. We hence generate synthetic
datasets with up to 50 million features (i.e., p = 50,000,000), with up to
10,000 samples (see Section 2.1).

We measured the runtime to build a binary Random Forest model of 100
trees with a fixed mtry fraction of 0.25 using our C2 computer (see Sec-
tion 2.2) with these different synthetic datasets. CursedForest scales linearly
with increase in feature sizes p and sublinearly with the increase in sample
size n (see Figure 2a). CursedForest also scales well when increasing the num-
ber of CPUs making cloud-application with on-demand cluster sizes possible
(see Figure 2b). As shown in Table 4 the 80M dataset can be processed in
about 37 minutes. With increase in the number of executors the execution
time can further decreases.

3.3 Wide data and the choice of mtry and ntree

CursedForest is a partial implementation of the original algorithm of [5]. As
such the choice of ntree and mtry follows the same logic. However, the origi-
nal choices of the default values of these parameters was based on Breiman’s
experience with a number of data sets [5]. CursedForest may be operating
in regions where a different set of heuristics may be needed to guide the
parameter settings.

In this section, we test the limits of CursedForest in association and clas-
sification analysis on high-dimensional data. For this purpose, we generated
a synthetic dataset with 2.5 million features (i.e., p = 2,500,000), of which 5
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(a) Runtime as a function of increasing
number of samples and/or features

(b) Scalability with increasing number of
cores

Figure 2: Performance in response to varying ntree and mtry

are designed to be related to the response variable, with 5,000 samples (i.e.
n = 5,000) (see Section 2.1). We use our C2 computer (see Section 2.2) for
this analysis.

We fit the Random Forest model and estimate the classification accuracy
by capturing the OOB error. We also measure the feature selection per-
formance by capturing the rank-biased overlap (RBO) measure [16]. RBO
assesses whether CursedForest is able to retrieve the 5 features in order of
their association weight as a scale from 0 (no feature recovered) to 1 (fully
recovered).

See Figure 3a for plots of these two measures for this example. Note that,
for the parameter mtry , the plot shows the proportion, mtry/p, which means
that the default value of 1581 is shown as 1581/p ≈ 0.0006. The default value
for mtry does not result in a good classification performance for this large
feature dataset. The OOB for this value of mtry does not drop below 0.5, even
when the number of trees is increased. Increasing mtry in combination with
ntree yields the best performance with the OOB error essentially constant
around 0.4 across a large range of mtry and ntree values. This is in contrast to
the feature-selection performance, where the RBO measure heavily depends
on ntree and gives better results with lower values of mtry (Figure 3b).

This may be because a large mtry leads to more correlated trees as the
same important features have a higher chance of being selected in all trees,
which does not yield good performance outcomes. This issue is less pro-

10

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 15, 2019. ; https://doi.org/10.1101/702902doi: bioRxiv preprint 

https://doi.org/10.1101/702902


(a) OOB classification error (b) RBO feature selection error

Figure 3: Accuracy performance in response to varying ntree and mtry . mtry
is given as a fraction of p.

nounced for classification error where random features can mimic the re-
sponse variable, hence resulting more in a performance plateau. Increasing
the number of trees, on the other hand, improves performance especially
when the trees are kept diverse (small mtry) but appropriate for large fea-
ture datasets (mtry larger than default). The ability of CursedForest to build
decision trees in parallel at the compute node level hence caters perfectly to
the requirement of large feature datasets as more trees can be built given a
fixed time budget.

3.4 CursedForest tree-building method is faster than
Yggdrasil

Here we compare the tree building implementation of CursedForest to Yg-
gdrasil . Both methods partition the data by features to parallelize Gini com-
putation, which was demonstrated to yield a better performance for wide data
than Google’s PLANET , which partitions by samples [1]. Since CursedForest
is an ensemble method, we approximate the single Decision Tree function-
ality of Yggdrasil by (1) disabling bootstrapping, (2) setting mtry = p, (3)
setting nTree = 1.
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The largest dataset we were able to process with Yggdrasil is dataset 1M.
It took 102 seconds (average over two runs) for Yggdrasil to build a Decision
Tree for this dataset, compared to 3 seconds for CursedForest (average over
two trees, mtry = p and without bootstrapping). This shows nearly 33
times speed up over Yggdrasil . Enabling parallel tree-building reduces the
runtime for CursedForest to an average of 1.14 second to build each tree,
which represents a 89-fold speed-up over the Yggdrasil implementation. The
time mentioned above only include the actual training process, not data
loading and other auxiliary steps. For this experiment we use C3 cluster as
described in Table 3.

4 Conclusion

The challenge of “big” and “wide” data is especially pronounced in the
biomedical space where dataset acquisition is predicted to far outpace that
of traditional “Big Data” disciplines [15]. Catering for this, we extended
Random Forest to cope with extremely high dimensional data using a novel
parallelization approach enabled by Spark . Compared to Google’s PLANET
and other non-Spark implementations, as well as the purpose-designed Yg-
gdrasil , CursedForest can scale to millions of features. It also offers the
fastest trainings method for Random Forest on a wide range data-sets sizes
compared to the other tools tested.
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