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Abstract. Recent advances in statistical machine learning techniques have

led to the creation of probabilistic programming frameworks. These frame-

works enable probabilistic models to be rapidly prototyped and fit to data
using scalable approximation methods such as variational inference. In this

work, we explore the use of the Stan language for probabilistic programming
in application to phylogenetic models. We show that many commonly used

phylogenetic models including the general time reversible (GTR) substitution

model, rate heterogeneity among sites, and a range of coalescent models can
be implemented using a probabilistic programming language. The posterior

probability distributions obtained via the black box variational inference en-

gine in Stan were compared to those obtained with reference implementations
of Markov chain Monte Carlo (MCMC) for phylogenetic inference. We find

that black box variational inference in Stan is less accurate than MCMC meth-

ods for phylogenetic models, but requires far less compute time. Finally, we
evaluate a custom implementation of mean-field variational inference on the

Jukes-Cantor substitution model and show that a specialized implementation

of variational inference can be two orders of magnitude faster and more accu-
rate than a general purpose probabilistic implementation.
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Introduction

Markov chain Monte Carlo (MCMC) algorithms have become the workhorse
of Bayesian phylogenetic inference since they were introduced in the late 1990’s
(Mau and Newton, 1997; Larget and Simon, 1999). Recent advances in comput-
ing hardware and corresponding software implementations have allowed these type
of methods to handle increasingly large datasets (Flouri et al., 2014; Ayres et al.,
2019). However the quantity of sequence data being generated every year has been
growing exponentially, which, when combined with practitioner’s desires to conduct
inference on increasingly rich statistical models, makes MCMC algorithms difficult
to apply in practice because they are too slow to compute. Unlike some statisti-
cal models, phylogenetic models have a structure that makes approximating their
posterior distribution especially difficult. Specifically, the combination of depen-
dencies among discrete-valued (e.g. the tree topology) and continuous variables
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(e.g. branch lengths, rates, etc) means that many recently developed methods to
accelerate Bayesian inference can not be directly applied to phylogenetic models.

Attempts to accelerate MCMC. The tree topology is arguably the most dif-
ficult part of the model to estimate. The number of possible topologies for binary
trees grows super-exponentially in the number of sequences (tips). As a result, so-
phisticated MCMC proposals are required to efficiently explore the enormous space
of this parameter. Typically, MCMC samplers propose a new topology using sim-
ple rearrangements of the current topology such as nearest neighbor interchange
(NNI) and subtree pruning regrafts (SPR). However these relative small, local
moves through the state space can lead to inadequate sampling, especially when
the posterior is multimodal (Whidden and Matsen IV, 2015). Several advances
in tree topology sampling have been proposed, such as the use of a conditional
clade probability distribution to guide proposals (Höhna and Drummond, 2011).
Another recently proposed approach involved an extension of Hamiltonian Monte
Carlo, which uses gradient information to guide proposals, to work in the discrete
state space of tree topologies (Dinh et al., 2017).

When it comes to continuous parameters, the simplest proposals update a single
parameter at a time (e.g via a multiplier or sliding window proposals). This comes
at the expense of ignoring correlation among parameters. Building upon research
on adaptive MCMC (Haario et al., 2001; Roberts and Rosenthal, 2009), recent
efforts have implemented multivariate proposals to update blocks of continuous
phylogenetic model parameters (Baele et al., 2017). While Baele et al. (2017)
showed that this proposal is statistically more efficient than standard proposals in
terms of effective sampling size (ESS) per unit of time, this proposal is currently not
available for updating branch lengths in the BEAST packages (Suchard et al., 2018;
Bouckaert et al., 2019). Finally, in order to increase the efficiency of an MCMC
sampler, Aberer et al. (2015) developed an independence sampler to update branch
lengths in an informed way. Unfortunately, none of these approaches provide the
magnitude of improvement required to carry out Bayesian phylogenetic inference
on the datasets of 1000s of sequences which have now become commonplace.

Variational inference: an alternative to MCMC. One alternative to MCMC
that has been proposed for Bayesian inference of model parameters is variational
Bayes (Jordan et al., 1999; Wainwright et al., 2008). Like MCMC, variational
Bayes (VB) is a technique used to approximate intractable integrals. The main
idea behind variational inference is to transform the posterior approximation of
an intractable model into an optimization problem using a family of approximate
densities that are tractable. The aim is to find the member of that family with
the minimum Kullback-Leibler (KL) divergence to the posterior distribution of in-
terest. Although variational inference does not provide the guarantee that MCMC
would of generating samples from the true posterior distribution, variational in-
ference tends to be much faster than MCMC since it relies on fast optimization
methods. It is common for VB inference to require 100-fold less compute time
than MCMC to approximate the same posterior distribution, although the quality
of the approximation may not be as good. Variational inference has become pop-
ular in machine learning, as evidenced by the large number of software libraries
implementing it (e.g. Stan (Carpenter et al., 2017), PyMC (Salvatier et al., 2016),
TensorFlow (Abadi et al., 2015), Edward (Tran et al., 2016)).
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VARIATIONAL BAYESIAN INFERENCE IN PHYLOGENETICS 3

To date, variational Bayes has received relatively little attention in the field of
phylogenetics, possibly due to the presence of discrete model components such as the
tree topology which can not be inferred using standard VB algorithms. However, in
recent years interest in VB for phylogenetics has begun to grow. Using the Jukes-
Cantor (JC69) nucleotide substitution model and fixed topologies, Fourment et al.
(2018) employed VB to approximate the marginal likelihood of fixed topologies.
Zhang and Matsen IV (2019) have recently shown that VB is a superior method to
infer phylogenetic tree posteriors in the classical case of unrooted trees with branch
lengths and the JC69 substitution model. Dang and Kishino (2019) used variational
inference to approximate the CAT-Poisson model for amino acid data (Lartillot
and Philippe, 2004). In that work the authors used a partial Gibbs sampling
strategy to update the topology and therefore only the continuous parameters were
approximated with VB.

In the present work, we describe implementations of several phylogenetic models
for nucleotide datasets using the Stan language (Carpenter et al., 2017). These mod-
els are substantially richer than those described in previous studies of variational
inference for phylogenetics as they include more general nucleotide substitution
models, such as the general time reversible (GTR) substitution model, and rate
heterogeneity across sites. We also implemented molecular clock and coalescent
models to infer the substitution rate and divergence times of heterochronous and
homochronous sequence data. As with previous studies, we consider the topology
to be fixed (Fourment et al., 2018) or updated using a MCMC algorithm (Dang
and Kishino, 2019). Despite this limitation, implementing the type of model we
describe here under a fixed tree is a useful step forward toward fast Bayesian in-
ference of complex phylogenetic models, as it helps us understand the quality and
speed of posterior approximation that can be achieved using a generic modelling
language like Stan. We compared the performance of the variational approxima-
tions to that obtained with the widely used MCMC-based phylogenetic software
package BEAST (Suchard et al., 2018; Bouckaert et al., 2019). Because our models
are implemented in the Stan language, we are able to carry out inference using
any of the inference engines available in Stan, and so we used the No-U-Turn Sam-
pler (NUTS) (Hoffman and Gelman, 2014) to further validate our phylogenetic
model implementations. Finally, we compared the mean-field approximations ob-
tained with phylostan to those obtained with a highly specialised implementation
of mean-field variational inference in the C language software physher (Fourment
and Holmes, 2014; Fourment et al., 2018).

Methods

We have implemented phylogenetic models in a Python software package called
phylostan. phylostan accesses the Stan package through the pystan API (Stan
Development Team, 2019). When executed, the phylostan command line program
generates and runs a Stan script with the selected phylogenetic model. Table 1
shows a summary of different types of models available in phylostan. The code
and the associated datasets are available from https://www.github.com/4ment/

phylostan

Variational inference. The main idea behind variational inference is to transform
posterior approximation into an optimization problem using a family of approximate
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Type Model
Substitution models JC69, HKY, GTR
Rate heterogeniety across sites Proportion of invariant sites, Weibull and discrete distributions
Clock model clock-free, strict, relaxed (hierarchical): autocorrelated, uncorrelated
Coalescent constant, skyride, skygrid

Table 1. Models implemented in phylostan.

densities. The aim is to find the member of that family with the minimum Kullback-
Leibler (KL) divergence to the posterior distribution of interest:

φ∗ = argminφ∈ΦKL(q(θ;φ) ‖ p(θ | D, τ)),

where q(θ;φ) is the variational distribution parameterized by a vector φ ∈ Φ, while
θ are the model parameters (e.g. branch lengths), D are the aligned sequence data,
τ is a fixed tree topology, and KL is defined as

KL(q ‖ p) =

∫
θ

q(θ;φ) log
q(θ;φ)

p(θ | D, τ)
.

To minimize the KL divergence, we first rewrite the KL equation:

KL(q(θ;φ) ‖ p(θ | D, τ)) = E[log q(θ;φ)]− E[log p(θ | D, τ)]

= E[log q(θ;φ)]− E[log p(θ, D | τ)] + log p(D | τ),

where the expectations are taken with respect to the variational distribution q. The
third term log p(D | τ) on the right hand side of the last equality is a constant with
respect to the variational distribution so it can be ignored for the purpose of the
minimization. After switching the sign of the other two terms, the minimization
problem can be framed as a maximization problem of the evidence lower bound
(ELBO) function

ELBO(φ) = E[log p(θ, D | τ)]− E[log q(θ;φ)].

The ELBO is easier to calculate than the KL divergence as it does not involve com-
puting the intractable posterior normalisation term p(D | τ). We entertained two
classes of variational distributions: mean-field and full-rank Gaussian distributions.
The mean-field approximation assumes a complete factorisation of the distribution
over each of the N parameters of the model (e.g. branch lengths, GTR parameters)
and each factor is governed by its own variational parameters φi:

q(θ1, . . . , θN ;φ) =
N∏
i=1

q(θi;φi),

where q(θi;φi) is a Gaussian density and φi = (µi, σi).
The full-rank approximation is

q(θ1, . . . , θN ;φ) = N (θ;φ),

where the term φ = (µ,Σ) concatenates the mean vector µ and covariance matrix Σ
of a multivariate Gaussian distribution. The mean vector and the covariance matrix
contribute respectively N and N(N + 1)/2 parameters to the full-rank variational
model.
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When provided with a model definition via phylostan, the Stan software is able
to estimate the variational parameters by applying stochastic gradient ascent in a
black box approach (Ranganath et al., 2014; Kucukelbir et al., 2015).

Models with clocks. The simplest phylogenetic models do not distinguish between
evolutionary rate and time, and for those models the only constraint on the branch
lengths of a tree is that they must be non-negative. Since our models assume that
branches are independent, the non-negativity is easily accommodated in a Stan
model via Stan’s application of a log transform on the branch length parameters.

On the other hand, trees in molecular clock models are constrained so that parent
nodes must be older than any of their descendent nodes. Here we consider that
time is going backwards: the earliest taxon was sampled at time 0 and the age of
every internal node is greater than 0. In the case of homochronous sequence data
(i.e. every sequence was collected at the same time), the age of an internal node
can be reparameterized as a proportion of the age of its parent, except for the root
age. For each internal node i (excluding the root), the height hi of the node is
reparameterized as hi = pihpa(i) where the subscript pa(i) denotes the parent of
node i and 0 < pi < 1. The height of the root is constrained to be non-negative.

In the case of heterochronous sequence data, the age of the sequence data at the
tips of the tree must to be taken into account. For each internal node i (excluding
the root), the height hi of the node can be reparameterized as hi = hd(i)+pi(hpa(i)−
hd(i)) where the subscript d(i) denotes the earliest taxon in the set of descendant
nodes of node i. The height of the root is now constrained to be greater than the
earliest taxa.

The reparameterized model consists of a vector of proportions p = (p1, . . . , pN−2),
which Stan automatically transforms using a log-odds transform.

This reparametrization of the node heights is also used in the PAML software
package (Yang, 2007). In our case, the transformation of the node ages requires an
adjustment to the joint density with the absolute value of the Jacobian of the inverse
of the transforms. The Jacobian of homochronous data is a triangular matrix for

which the determinant is
∏N−2

i=1 hpa(i). For heterochronous data, the Jacobian is

also triangular for which the determinant is
∏N−2

i=1 hpa(i) − hd(i).

Rate heterogeneity among sites. The gamma distribution is commonly used to
model rate heterogeneity across sites in phylogenetic models (Yang, 1994, 1996).
However, it is currently not possible to use the quantile approximation of the gamma
distribution proposed by Yang (1994) since the Stan language does not provide in-
verse cumulative density functions (CDF). Instead we opted to use the Weibull
distribution to describe rate heterogeneity across sites. The Weibull distribution
has the closed-form inverse CDF F−1(p | λ, k) = λ(− ln(1−p))1/k. Fixing the scale
parameter λ to 1, the shape of the Weibull distribution is determined by the shape
parameter k. When k ≤ 1 the Weibull distribution is skewed, suggesting strong
rate heterogeneity. When k > 1 the distribution is bell shaped, suggesting no or
low rate heterogeneity. Since the mean of the Weibull distribution must be equal
to 1 in order to preserve branch length interpretation (i.e. expected number of

substitutions per site) we rescale the rates r1 . . . rK such that
∑K

i=1 piri = 1. Such
rescaling is also necessary when a proportion of invariant sites is included in the
model.
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We also implemented rate heterogeneity across sites using a general discrete
distribution with 2K − 2 parameters, by specifying K rates 0 ≤ r1 < r2 · · · <
rK and probabilities pi = Pr{r = ri} with

∑K
i=1 piri = 1 and

∑K
i=1 pi = 1

(Kosakovsky Pond and Frost, 2004). The values of ri are constrained to be or-
dered from smallest to largest merely for the sake of model identifiability in Stan.
This distribution is parameter rich compared to the discretized Weibull distribution
scheme and as a result it may be more difficult to fit to data.

Datasets and validation. To evaluate the accuracy of variational inference we ap-
plied phylostan to three empirical datasets and compared the posterior approxima-
tions to those obtained with BEAST2 (Bouckaert et al., 2019). The first dataset is
made of 69 human influenza virus haemagglutinin nucleotide sequences isolated be-
tween 1981 and 1998. The dataset was analysed under the Hasegawa, Kishino and
Yano (HKY) substitution model allowing for rate variation among sites (Weibull
distribution with four rate classes). We used a strict clock and a constant size
coalescent prior on the tree. The topology was drawn randomly from a sample of
trees generated by BEAST2 without topological constraints.

The second dataset comprises 63 RNA sequences of type 4 from the E1 region
of the hepatitis C virus (HCV) genome that were isolated in 1993. As in previous
studies (Pybus et al., 2001; Faulkner et al., 2018), the substitution rate was fixed
to 7.9× 10−4 substitutions per site per year. We used the GTR substitution model
with Weibull distributed rate heterogeneity (four categories). We used the Bayesian
skyride tree prior and a Gaussian Markov random field prior for the effective pop-
ulation size trajectory (Minin et al., 2008). The topology used in phylostan was
also drawn randomly from a sample of trees generated by BEAST (Suchard et al.,
2018) without topological constraints. We assigned a gamma prior with rate and
scale equal to 0.005 on the precision parameter.

The last dataset consists of twenty-seven 18S rRNA sequences of length 1949.
This dataset, commonly referred to as DS1, has been studied several times and
has become a de facto standard dataset for evaluating MCMC methods (Hedges
et al., 1990; Lakner et al., 2008; Fourment et al., 2018; Whidden and Matsen IV,
2015; Whidden et al., 2018). DS1 was analyzed under the Jukes Cantor substitu-
tion model (JC69) without a clock. In (Fourment et al., 2018), the authors used
very long runs of MrBayes (Ronquist et al., 2012) to estimate the posterior dis-
tribution of the tree topologies (see corresponding paper for more details). Akin
to that study, we focused on the 42 tree topologies contained in the 95% credible
set and renormalized their posterior probabilities so that they sum to one. For
each topology we then estimated its ELBO under the mean-field approximation
using either Stan or physher (Fourment and Holmes, 2014), and converted these
approximations of the marginal likelihood to a posterior probability. Specifically,
we use the ELBO estimate p̂ELBO(D | τ) := maxφ∈Φ ELBO(φ) to approximate the
marginal likelihood of a topology. Finally, we compare the ELBO-based posterior
estimates to the MCMC-based estimates from MrBayes, which we consider as the
ground truth. We placed independent exponential priors on branch lengths with a
prior expectation of 0.1 substitutions.

In every analysis the gradient of the ELBO is evaluated with one sample and
the ELBO is computed using 100 samples.
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Results

We analyzed three datasets to evaluate the accuracy of the approximations to the
posterior distribution provided by the variational framework on phylogenetic mod-
els. First, we analyzed a set of heterochronous influenza A virus sequences under
the strict clock model with BEAST2 and phylostan. In figure 1 we show the pos-
terior distributions of every parameter approximated by BEAST2 and phylostan

using either mean-field variational inference or the NUTS algorithm. Although
the mean-field-based variational approach tends to approximate the posterior dis-
tributions correctly, the between-run variability is high relative to other methods.
Apart from two very divergent replicates, the full-rank variational approximation
appears to be more precise than the mean-field approximation (Figure 2). The two
replicates that do not correctly approximate the posterior distributions have a sub-
stantially lower ELBO (-4475.75 and -4481.07) than the other replicates for which
the ELBO are between -4430 and -4432, so in practice these poorly converged runs
could be identified and removed by comparing the results of multiple replicates.
The distributions inferred by BEAST2 using Metropolis Hastings closely match
the posterior approximations given by the NUTS algorithm implemented in Stan,
providing evidence that we have implemented the models in phylostan correctly.
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Figure 1. Posterior approximation of phylogenetic model param-
eters using mean-field variational inference (phylostan), NUTS
(phylostan), and Metropolis-Hastings (BEAST2) algorithms on
the influenza A virus dataset. Mean-field variational inference
(blue lines) was replicated 10 times while the NUTS (red line)
and the Metropolis-Hastings (histogram) methods were run once.
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Figure 2. Posterior approximation of phylogenetic model pa-
rameters using full-rank variational inference (phylostan), NUTS
(phylostan), and Metropolis-Hastings (BEAST2) algorithms on
the influenza A virus dataset. Full-rank variational inference (blue
lines) was replicated 10 times while the NUTS (red line) and the
Metropolis-Hastings (histogram) methods were run once.

Next we evaluated the ability of the variational framework to approximate the de-
mographic history of a set a hepatitis C viruses (HCV) using the skyride model (Minin
et al., 2008) and a fixed substitution rate. In figure 3, we present the demographic
history approximations from the replicate with the highest ELBO for the mean-field
and full-rank models. The trajectories of the population size estimated from the
variational distributions match the estimates from BEAST and NUTS (Figure 3).
The 95% confidence intervals computed from the variational distributions are nar-
rower than the MCMC-based intervals. This can, at least in part, be explained by
the zero-forcing nature of the reverse KL divergence. Although the mean-field vari-
ational approximation consistently recovers the population size trajectory across
replicates, the full-rank approximation fails to converge to the correct posterior in
9 out of the 10 replicates.
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Figure 3. Posterior medians (solid black lines) of effective popula-
tion sizes and associated 95% credible intervals (blue shaded areas)
for the HCV dataset using BEAST and phylostan. Variational-
based approximations shown in this figure are from the replicates
with the highest ELBO. Variational-based approximations for ev-
ery replicate can found in Supplementary Figure S1 and S2.

In the final analysis we compare the accuracy and speed of mean-field variational
inference as implemented phylostan against an implementation in the physher

software when using the Jukes-Cantor model. We find that physher is two orders
of magnitude faster than phylostan with a mean computing time of 1.2 seconds per
topology for the former and 332 secs/topology for the latter. Although it is much
faster, the physher implementation of mean-field variational inference currently
is specific to the Jukes-Cantor model and lacks the generality of phylostan to
carry out inference under a range of models. Another important aspect that may
contribute to the speed differences is how each program initializes its variational
parameters. Whereas Stan initializes the variational parameters to random points
in the parameter space, physher initializes these parameters deterministically with
near optimal values using the Laplus method (Fourment et al., 2018). For each
branch length parameter, the Laplus approximation takes its maximum a posteriori
estimate and second derivative with respect to the log-likelihood and finds the
parameters (µ and σ) of the log-normal distribution by matching modes and second
derivatives of the approximating and posterior distributions of the branch length.
The procedure is described in more detail in (Fourment et al., 2018). Since we
use a log-transform on the branch length parameter, the two parameters µ and σ
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are used to initialize the location and scale parameters of the normal variational
distribution.

phylostan
KL = 1.31e−01

Time = 336.5 secs

phylostan
KL = 1.41e−01

Time = 311.9 secs

phylostan
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Figure 4. The approximate posterior probabilities of the topolo-
gies in DS1 versus the ground truth posterior probabilities from
MrBayes, plotted on the log scale for clarity. The mean time
per topology and the Kullback-Leibler divergence are reported for
each replicate. Panels are ordered in decreasing order by Kullback-
Leibler divergence.

Discussion

We have developed a tool based on the Stan package for Bayesian phylogenetic
inference, which to our knowledge is the first application of variational Bayes to
time trees with coalescent models. Although we have focused on inferring phylo-
genetic models with a fixed topology due to the complexity and discrete nature of
the topology space, recent research on subsplit Bayesian networks (SBN) has made
a significant step toward modeling topological uncertainty in the variational frame-
work (Zhang and Matsen IV, 2018, 2019). A promising area for future research
will be to investigate combinations of the parameter rich models we have presented
in this study with the SBN approach, for which only the JC69 model has been
implemented.

In our tests, we have found the variational inference engine of Stan to be con-
siderably faster than the NUTS algorithm. We then showed using the DS1 dataset
that a manually coded implementation of variational inference can be two orders of
magnitude faster and somewhat more accurate than the automatic differentiation
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variational inference produced via Stan. This finding makes it clear that the mod-
elling flexibility and ease of use afforded by a general purpose language like Stan
comes with significant tradeoffs in computational efficiency and accuracy. Opportu-
nities exist to combine the flexibility of a general purpose modelling language with
an inference engine that is specialized for phylogenetic models. Implementation of
variational inference within phylogenetic packages such as BEAST, MrBayes, and
RevBayes (Höhna et al., 2016) would be a significant step forward. Although calcu-
lating the gradient of each parameter analytically is in theory possible, this tedious
task could be circumvented by adopting the automatic differentiation framework
used in modern probabilistic programming languages (e.g. Stan, Edward).

In this study we have presented and evaluated a subset of the functionalities
available in phylostan. In addition to the models evaluated here we have also
implemented the coalescent skygrid model (Gill et al., 2012) and more flexible
molecular clock models such the relaxed clock using a hierarchical prior and an
autocorrelated clock rate. A list of model features available in phylostan is given
in Table 1.

Another promising avenue for future research would be to capture dependencies
between latent variables that, by definition, are ignored by the mean-field approx-
imation. To this end, Tran et al. (2015) have proposed to augment the mean-field
variational distribution with a copula, while recent studies (Rezende and Mohamed,
2015; Kingma et al., 2016) have proposed to improve the posterior approximation
though a normalizing flow. Although the full-rank approximation can in principle
capture some of these dependencies, in practice it seems that phylogenetic models
can not be reliably fit with the full-rank approximation, at least not with the black
box approach implemented in Stan. We speculate that the failure to fit the full-rank
approximation on, e.g. the hepatitis C virus dataset shown above, is a result of the
high dimension of the covariance matrix. One possible remedy would be the use of
a sparse covariance matrix to reduce the number of parameters. It is reasonable to
assume that some variables have low or no correlation (e.g. guanine frequency and
root height, or pairs of branch lengths for distant tree branches). It may also be
possible to apply a low-rank Gaussian distribution (Miller et al., 2017) to alleviate
the computational burden associated with the full-rank distribution.

Expected applications to biological data analysis. Although the methods we
have introduced are limited to analysis of a single fixed tree topology, and have much
room for improvement, there is still scope for them to be usefully applied to biologi-
cal data analysis. Phylogenetic methods have proven especially useful in the context
of infectious disease research. In particular, systems such as Nextstrain (Hadfield
et al., 2018) provide a fast way to incorporate data into a visualization environ-
ment that enables exploration of phylogeny and other key aspects such as sample
collection time and geographical location. Nextstrain computes a phylogeny for
input sequences using maximum likelihood-based methods. In order to reconstruct
temporal information, it then takes the single maximum likelihood tree and applies
the TreeTime software (Sagulenko et al., 2018) to infer divergence times and evo-
lutionary rates. TreeTime provides a fast and highly scalable means to carry out
approximate maximum likelihood inference on those model parameters. Although
the current implementation may not run as fast as TreeTime, phylostan could
offer a drop-in replacement to something like TreeTime in this application context.
phylostan would have the advantage of carrying out joint Bayesian inference of all
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continuous model parameters, and being able to report the uncertainty associated
with estimates of each model parameter.
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BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis.
PLoS Computational Biology, 15(4):e1006650.

Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt,
M., Brubaker, M., Guo, J., Li, P., and Riddell, A. (2017). Stan: A probabilistic
programming language. Journal of statistical software, 76(1).

Dang, T. and Kishino, H. (2019). Stochastic variational inference for Bayesian phy-
logenetics: A case of CAT model. Molecular Biology and Evolution, 36(4):825–
833.

Dinh, V., Bilge, A., Zhang, C., and Matsen IV, F. A. (2017). Probabilistic path
Hamiltonian Monte Carlo. In Proceedings of the 34th International Conference
on Machine Learning-Volume 70, pages 1009–1018. JMLR. org.

Faulkner, J. R., Magee, A. F., Shapiro, B., and Minin, V. N. (2018). Locally-
adaptive bayesian nonparametric inference for phylodynamics. arXiv preprint
arXiv:1808.04401.

Flouri, T., Izquierdo-Carrasco, F., Darriba, D., Aberer, A. J., Nguyen, L.-T., Minh,
B., Von Haeseler, A., and Stamatakis, A. (2014). The phylogenetic likelihood
library. Systematic Biology, 64(2):356–362.

Fourment, M. and Holmes, E. C. (2014). Novel non-parametric models to es-
timate evolutionary rates and divergence times from heterochronous sequence
data. BMC Evolutionary Biology, 14(1):163.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 15, 2019. ; https://doi.org/10.1101/702944doi: bioRxiv preprint 

https://doi.org/10.1101/702944
http://creativecommons.org/licenses/by/4.0/


14 M. FOURMENT, A. E. DARLING

Fourment, M., Magee, A. F., Whidden, C., Bilge, A., Matsen IV, F. A., and Minin,
V. N. (2018). 19 dubious ways to compute the marginal likelihood of a phyloge-
netic tree topology. arXiv preprint arxiv:1811.11804.

Gill, M. S., Lemey, P., Faria, N. R., Rambaut, A., Shapiro, B., and Suchard, M. A.
(2012). Improving Bayesian population dynamics inference: a coalescent-based
model for multiple loci. Molecular biology and evolution, 30(3):713–724.

Haario, H., Saksman, E., Tamminen, J., et al. (2001). An adaptive Metropolis
algorithm. Bernoulli, 7(2):223–242.

Hadfield, J., Megill, C., Bell, S. M., Huddleston, J., Potter, B., Callender, C.,
Sagulenko, P., Bedford, T., and Neher, R. A. (2018). Nextstrain: real-time
tracking of pathogen evolution. Bioinformatics, 34(23):4121–4123.

Hedges, S. B., Moberg, K. D., and Maxson, L. R. (1990). Tetrapod phylogeny
inferred from 18S and 28S ribosomal RNA sequences and a review of the evidence
for amniote relationships. Molecular Biology and Evolution, 7(6):607–633.

Hoffman, M. D. and Gelman, A. (2014). The No-U-Turn sampler: adaptively
setting path lengths in Hamiltonian Monte Carlo. Journal of Machine Learning
Research, 15(1):1593–1623.
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Figure S1. Posterior medians (solid black lines) of effective pop-
ulation sizes and associated 95% credible intervals (blue shaded
areas) for the HCV dataset using the mean-field variational distri-
bution in phylostan. 10 independent replicates are shown.
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Figure S2. Posterior medians (solid black lines) of effective pop-
ulation sizes and associated 95% credible intervals (blue shaded
areas) for the HCV dataset using the full-rank variational distri-
bution in phylostan. 10 independent replicates are shown.
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