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1 Abstract 1

Priors and payoffs are known to change perceptual decision-making, but little is understood 2

about how they influence confidence judgments. Human observers performed an orientation- 3

discrimination task with varied priors and payoffs. We investigated the subsequent placement 4

of discrimination and confidence criteria by comparing behavior to several plausible Signal 5

Detection Theory models. A normative account of behavior uses optimal discrimination 6

criteria. Optimal confidence criteria are yoked to the accuracy-maximizing criterion (i.e., are 7

not affected by payoffs). Additionally, in a normative account, the criterion shifts predicted 8

for asymmetric payoffs and priors should sum when both are varied. We found that observers 9

were conservative in discrimination-criterion placement and that criterion shifts due to priors 10

and payoffs did not sum. For confidence judgments, observers exhibited one of two sub- 11

optimal behaviors. One subset of observers used fixed confidence criteria independent of 12

priors and payoffs. The other group of observers always shifted their confidence criteria with 13

the gains-maximizing discrimination criterion. Such metacognitive mistakes about one’s 14

perceptual choices could have negative consequences outside the laboratory setting. 15

Keywords: decision-making, metacognition, confidence, Signal Detection Theory. 16
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2 Introduction 17

In making a perceptual decision, it is wise to consider information beyond the available 18

sensory evidence. To maximize expected gains, one should consider both the baseline prob- 19

ability of each possible world state, i.e. priors, as well as the associated risks and rewards 20

for choosing or not choosing each response alternative, i.e., payoffs. In the Signal Detection 21

Theory (SDT) framework, priors and payoffs alter the threshold amount of evidence required 22

to choose one alternative versus another, that is, a shift in the criterion for reporting option 23

“A” versus option “B” in a binary task. For example, a radiologist may be trying to detect 24

a tumor from an x-ray. The radiologist should be more likely to report a positive result 25

for a suspicious shadow if the patient’s file indicates they are a smoker, as this means they 26

have a higher prior probability of cancer. Similarly, the high cost of waiting to treat the 27

cancer should also bias the radiologist towards declaring a positive result. In both real and 28

laboratory environments, observers have been found to factor in priors and payoffs when set- 29

ting the decision criterion (Maddox and Bohil, 1998, 2000; Maddox and Dodd, 2001; Wolfe 30

et al., 2005; Ackermann and Landy, 2015; Horowitz, 2017), with some caveats we will discuss 31

shortly. 32

Decisions about the state of the world (cancer or not cancer, cat or dog, clockwise or 33

counter-clockwise of vertical) are based on the stimulus alone and are classified as stimulus- 34

conditioned responses or Type 1 decisions in the literature. These differ from Type 2 decisions 35

(or response-conditioned responses), which are judgments about the correctness of Type 1 36

decisions (Clarke et al., 1959; Mamassian, 2016). In layman’s terms, Type 2 responses are 37

the observer’s confidence about a decision they’ve made, which are often operationalized in 38

binary decision-making experiments as a subjective estimate of the probability the Type 1 39

response was correct (Pouget et al., 2016). Confidence plays a broad role in guiding behavior, 40

subsequent decision-making, and learning in a multitude of scenarios for both humans and 41

animals (Metcalfe and Shimamura, 1996; Smith et al., 2003; Beran et al., 2012). 42

How does an ideal-observer radiologist modify confidence judgments in response to vary- 43

ing priors or payoffs? Intuitively, a radiologist should be more confident in a positive diag- 44

nosis when the patient is a smoker, given the prior scientific literature on the health risks 45
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of smoking that the radiologist has read. Additional confirmatory information should boost 46

confidence in that positive diagnosis, and contrary evidence should reduce confidence, be- 47

cause priors (smoker or non-smoker) and sensory evidence (cancerous-looking shadow) are 48

both informative about the likelihood over possible world states. However, this is not the 49

case for payoffs. Incentivizing the different responses with rewards or costs does not change 50

the uncertainty about the world state. The radiologist should not be more or less sure of a 51

cancer diagnosis if the type of cancer would be deadly or benign, even though this should 52

affect their initial diagnosis. In fact, sometimes payoffs will lead the decision-maker to choose 53

the less probable alternative and this should be reflected by low confidence in the decision. 54

Little is known about how human observers adjust confidence in response to prior-payoff 55

structures. In one perceptual study, the prior probabilities of target present versus absent 56

affected the placement of the criteria for Type 1 and 2 judgments (Sherman et al., 2015), 57

with some evidence that confidence better predicts performance for responses congruent with 58

the more probable outcome than those that are incongruent. In the realm of social judg- 59

ments, prior probabilities have been shown to modulate the degree of confidence, with higher 60

confidence assigned to more probable outcomes (Manis et al., 1980). However, others have 61

found counter-productive incorporation of priors, with over-confidence for low-probability 62

outcomes and under-confidence for high-probability outcomes (Dunning et al., 1990). In 63

regards to payoffs, early work on monetary incentives in perceptual categorization did col- 64

lect confidence ratings, however they were not included in any analyses (Lee and Zentall, 65

1966). Consideration of payoff structures is ubiquitous in animal studies of confidence that 66

employ post-decisional wagering methods (Smith et al., 2003). For example, in the opt-out 67

paradigm, to distinguish between low and high confidence, the animal chooses between a 68

small, certain reward and a risky alternative with either high reward or no reward, for cor- 69

rect and incorrect perceptual responses respectively (Kiani and Shadlen, 2009). However, 70

because animals are motivated by their expected gain and not explicit verbal instructions, 71

it is impossible to isolate decision confidence unconfounded with the subjective value of the 72

reward. 73

Here, we seek to characterize how human observers adjust perceptual decisions and confi- 74

dence in response to joint manipulation of priors and payoffs. First, we defined a normative 75
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model of confidence judgments that factors in the prior-payoff structure of the environ- 76

ment. Then, we measured how well this model explains human behavior in an orientation- 77

discrimination task, as compared to several sub-optimal decision models. We found that 78

all observers made sub-optimal confidence judgments, but fell into two distinct groups de- 79

pending on their strategy. These results highlight the importance of considering the effect of 80

priors and payoffs on confidence, particularly in applied or real-world scenarios where they 81

are likely to be non-uniform across the decision alternatives. 82

3 The Decision Models 83

In this section we describe the rationale and background for the modeling of Type 1 and 84

Type 2 decision-making. We follow the example of a left-right orientation judgment followed 85

by a binary low-high confidence judgment to match the experimental paradigm used in the 86

present study. First the range of Type 1 models are identified, which assess the placement 87

of the discrimination decision criterion under different prior-payoffs scenarios. Then the 88

Type 2 models are outlined, describing the different potential relationships between the 89

decision criteria for confidence and the criterion for discrimination. 90

3.1 The Type 1 Decision 91

To make the Type 1 decision, observers must relate a noisy internal measurement, x, of the 92

stimulus, s, where s ∈ {sL, sR}, to a binary response, which in the context of our experiment 93

is “tilted left” (say “s = sL”) or “tilted right” (say “s = sR”). This is done by a comparison 94

to an internal criterion, k1, such that if x < k1, the observer will respond with“tilted left”, 95

and otherwise “titled right” (Figure 1a). The only component of the Type 1 model where 96

the observer has any control is deciding where to place the criterion. The optimal value of k1 97

(kopt) maximizes the expected gain, ensuring the observer makes the most points/money/etc. 98

over the course of the experiment. The value of kopt depends on three things: 99

(i) The sensitivity of the observer, d′. In the standard model of the decision space, 100

P (x|sL) ∼ N(µL, σL) and P (x|sR) ∼ N(µR, σR), with µL = −µR and σL = σR = 1. 101
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Under this transformation, the sensitivity d′ corresponds to the distance between the 102

peaks of the two internal measurement distributions. 103

(ii) The prior probability of each stimulus alternative, P (sL) and P (sR) = 1− P (sL). 104

(iii) The rewards for the four possible stimulus-response pairs, Vr,s, which are the rewards 105

(positive) or costs (negative) of responding r when the stimulus is s. 106

An ideal observer that maximizes expected gain (Green and Swets, 1966) uses criterion 107

kopt =
ln βopt
d′

, (1)

where the likelihood ratio βopt at the optimal criterion is a function of priors and payoffs: 108

βopt =
P (sL)

P (sR)

VL,L − VL,R
VR,R − VR,L

. (2)

In our experiment, 0 points are awarded for incorrect answers, allowing us to simplify: 109

ln βopt = ln
P (sL)VL,L
P (sR)VR,R

= ln
P (sL)

P (sR)
+ ln

VL,L
VR,R

. (3)

Thus, kopt = kp+kv, where kp is the optimal criterion location if only priors were asymmetric 110

and kv is the optimal criterion if only the payoffs were varied. As can be seen in Eq. 3, 111

the effects of priors and payoffs sum when determining the optimal criterion (illustrated in 112

Figure 1b). When the priors are more similar, or the payoffs are closer to equal, kopt is closer 113

to the neutral criterion kneu = 0. Note that in the case of symmetric payoffs, kopt maximizes 114

both expected gain and expected accuracy, whereas when asymmetric payoffs are involved, 115

kopt maximizes expected gain only (i.e., kopt 6= kp). This is because to maximize expected 116

gain, from time to time the observer is incentivized to choose the less probable outcome 117

because it is more rewarded. 118

3.2 Conservatism 119

Often, human observers use a sub-optimal value of k1 when the prior probabilities or payoffs 120

are not identical for each alternative. A common observation is that the criterion is not 121
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adjusted far enough from the neutral criterion towards the optimal criterion, kneu < k1 < kopt 122

or kneu > k1 > kopt, a behavior referred to as conservatism (Green and Swets, 1966; Maddox, 123

2002). It is useful to express conservatism as a weighted sum of the neutral and optimal 124

criterion: 125

k1 = (1− α)kneu + αkopt = αkopt, (4)

with 0 < α < 1 indicating conservative criterion placement. The degree of conservatism is 126

greater the closer α is to 0 (Figure 1c). Several studies have contrasted the conservatism for 127

unequal priors versus unequal payoffs, typically finding greater conservatism for unequal pay- 128

offs (Lee and Zentall, 1966; Ulehla, 1966; Healy and Kubovy, 1981; Ackermann and Landy, 129

2015) with few exceptions (Healy and Kubovy, 1978). This may result from an underlying 130

criterion-adjustment strategy that depends on the shape of the expected gain curve (as a 131

function of criterion placement) and not just on the position of the optimal criterion max- 132

imizing expected gain (Busemeyer and Myung, 1992; Ackermann and Landy, 2015) or a 133

strategy that trades off between maximizing expected gain and maximizing expected accu- 134

racy (Maddox, 2002; Maddox and Bohil, 2003). Given that the effects of priors and payoffs 135

sum in Eq. 3, we will consider a sub-optimal model of criterion placement that has separate 136

conservatism factors for payoffs and priors: 137

k1 =
1

d′

[
αp ln

P (sL)

P (sR)
+ αv ln

VL,L
VR,R

]
= αpkp + αvkv. (5)

The conservatism factors, αp and αv, scale these individually before they are summed to 138

give the final conservative criterion placement, taking into account both prior and payoff 139

asymmetries. This formulation allows for differing degrees of conservatism for priors and 140

payoffs. 141

3.3 Type 1 Decision Models 142

We consider four models of the Type 1 discrimination decision in this paper, including the 143

optimal model (i) and three sub-optimal models that include varying forms of conservatism 144

(ii-iv): 145
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(i) Ω1,opt : k1 = kopt = kp + kv 146

(ii) Ω1,1α : k1 = αkopt = α (kp + kv) 147

(iii) Ω1,2α : k1 = αpkp + αvkv 148

(iv) Ω1,3α :


k1 = αpvkopt if kp 6= 0 and kv 6= 0 (i.e., both asymmetric)

k1 = αpkp if kv = 0 (i.e., payoffs symmetric)

k1 = αvkv if kp = 0 (i.e., priors symmetric).

149

Thus, we consider models with no conservatism (Ω1,opt), with an identical degree of conser- 150

vatism due to asymmetric priors and payoffs (Ω1,1α), or different amounts of conservatism 151

for prior versus payoff manipulations (Ω1,2α). In the fourth model, we drop the assumption 152

(that was based on the optimal model) that effects of payoffs and priors on criterion sum, 153

i.e., that behavior with asymmetric priors and payoffs can be predicted from behavior with 154

each effect alone (Ω1,3α). We consider this final model because the additivity of criterion 155

shifts (Eq. 3) has not yet been experimentally confirmed with human observers (Stevenson 156

et al., 1990). 157

In all models, we also consider an additive bias term, γ, corresponding to a perceptual 158

bias in perceived vertical. The bias is also included in the neutral criterion kneu = γ. For 159

clarity, however, we have omitted it from the mathematical descriptions of the models. Note 160

that any observer best fit by Ω1,opt but with a γ significantly different from 0 would no longer 161

be considered as having optimal behavior. 162

3.4 Confidence Criteria 163

Confidence judgments should reflect the belief that the selected alternative in the discrimi- 164

nation decision correctly matches the true world state. Generally speaking, the further the 165

internal measurement is from a well-placed decision boundary, the more evidence there is for 166

the discrimination judgment. This is instantiated in the extended SDT framework by the 167

addition of two or more confidence criteria, k2 (Maniscalco and Lau, 2012, 2014). There are 168

two such criteria for a binary confidence task and more confidence criteria when more than 169
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Figure 1: Illustration of the full SDT model. a) On each trial, an internal measurement of
stimulus orientation is drawn from a Gaussian probability distribution conditional on the true
stimulus value. The Type 1 criterion, k1, defines a cut-off for reporting “left” or “right”. The
ideal observer in a symmetrical priors and payoffs scenario is shown. b) The ideal observer’s
criterion placement with both prior and payoff asymmetry. This prior asymmetry encourages
a rightward criterion shift to kp and the payoff asymmetry a leftward shift to kv. The optimal
criterion placement that maximizes expected gain, kopt, is a sum of these two criterion shifts.
For comparison, the neutral criterion, kneu is shown. As the prior asymmetry is greater than
the payoff asymmetry, 3:1 vs 1:2, kopt 6= kneu. c) A sub-optimal conservative observer will not
adjust their Type 1 criterion far enough from kneu to be optimal. The parameter α describes
the degree of conservatism, with values closer to 0 being more conservative and closer to
1 less conservative. d) In the case of symmetric payoffs and priors, the Type 2 confidence
criteria, k2, are placed equidistant from the Type 1 decision boundary, carving up the internal
measurement space into a low- and high-confidence region for each discrimination response
option. e) For the normative Type 2 model, the confidence criteria are placed symmetrically
around a hypothetical Type 1 criterion that only maximizes accuracy (k∗1 = kp). This figure
shows the division of the measurement space as per the prior-payoff scenario in (b). As a left-
tilted stimulus is much more likely, this results in many high-confidence left-tilt judgments
and few high-confidence right-tilt judgments. Note that left versus right judgments still
depend on k1. f) The same as in (e) but with small δ value. Note the low-confidence
region where confidence should be high (left of the left-hand k2). This happens because in
this region the observer will choose the Type 1 response that conflicts with the accuracy-
maximizing criterion, hence they will report low confidence in their decision. Note that the
displacements of the criteria from the neutral criterion in this figure are exaggerated for
illustrative purposes.
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two confidence levels are provided. We restrict our treatment to the binary case, which can 170

be trivially extended to include more gradations of confidence. 171

As illustrated in Figure 1d for the case of symmetric payoffs and priors, there is a k2 172

confidence criterion on each side of the k1 decision boundary. If the measurement obtained 173

is beyond one of these criteria relative to k1, then the observer will report high confidence, 174

and otherwise will report low confidence. Stated another way, the addition of the confi- 175

dence criteria effectively divides the measurement axis into four regions: high-confidence 176

left, low-confidence left, low-confidence right, and high-confidence right. The closer to the 177

discrimination decision boundary that the observer places k2, the more high-confidence re- 178

sponses they will give. We denote this distance as δ. δ is not always assumed to be identical 179

for both confidence criteria (e.g. Maniscalco and Lau, 2012), but we assumed a single value 180

of δ for model simplicity. Type 2 judgments were not incentivized in our experiment. Thus, 181

there is no explicit cost function to constrain the distance parameter δ, so the precise set- 182

ting of δ will not factor into the evaluation of how well the normative model fits observer 183

behavior. 184

3.5 The Counterfactual Type 1 Criterion 185

The above description of how confidence responses are generated is well suited to cases where 186

the payoffs are symmetric. This is because the optimal decision criterion maximizes both 187

gain and accuracy. For an internal measurement at the discrimination boundary, it is equally 188

probable that the stimulus had a rightward versus leftward orientation. Expressed another 189

way, the log-posterior ratio at kopt is 1. Thus, the distance from the discrimination boundary 190

is a good measure for the probability that the Type 1 response is correct (i.e., confidence 191

as we defined it above). This, however, is not the case when payoffs are asymmetric (k1 = 192

kp + kv = kopt where kv 6= 0), as the ideal observer maximizes gain but not accuracy. The 193

log-posterior ratio is not 1 at kopt but rather it is equal to 1 at kp. 194

To extend the SDT model of confidence to asymmetric payoffs, we introduce a new 195

criterion. The counterfactual criterion, k∗1, is the criterion the ideal observer would have used 196

if they ignored the payoff structure of the environment and exclusively maximized accuracy 197

and not gain (i.e., k∗1 = kp). It is around this criterion that the observer symmetrically places 198
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confidence criteria in our normative model (Figure 1e). Whenever payoffs are symmetrical, 199

k1 = k∗1. Figure 1f illustrates a situation unique to this model that may occur when payoffs 200

are asymmetrical. Here, the value of δ is sufficiently small that both k2 criteria fall on the 201

same side of k1. As a result, the region between k1 and the left-hand k2 criterion results in a 202

low-confidence response despite being beyond the k2 boundary (relative to k∗1). This occurs 203

because this region is to the right of k1 and thus, due to asymmetric payoffs, the observer will 204

make the less probable choice, thus resulting in low confidence in that choice. Effectively, 205

the left-hand confidence criterion is shifted from k2 to k1. Here, we rely on the assumption 206

that the confidence system is aware of the Type 1 decision (for further discussion of this 207

issue, see Fleming and Daw, 2017). 208

The notion of an observer computing additional criteria for counterfactual reasoning is 209

not new. For example, in the model of Type 1 conservatism of Maddox and Bohil (1998), 210

where observers trade off gain versus accuracy, k1 is a weighted average of the optimal 211

criteria for maximizing expected gain (kopt) and for exclusively maximizing accuracy (kp). 212

In Zylberberg et al. (2018), observers learned prior probabilities of each stimulus type by an 213

updating decision-making mechanism that computes the confidence the observer would have 214

had if they had used the neutral criterion (kneu) for their Type 1 judgment. We suggest that 215

for determining confidence in the face of asymmetric payoffs, optimal observers compute 216

the confidence they would have reported if they had instead used the kp criterion for the 217

discrimination judgment. 218

3.6 Type 2 Decision Models 219

In addition to the normative model we just described (i), we considered four sub-optimal 220

models (ii-v) for the counterfactual Type 1 criterion about which the Type 2 criteria are 221

symmetrically arranged: 222

(i) Ω2,acc : k∗1 = kp 223

(ii) Ω2,acc+cons : k∗1 = αpkp 224

(iii) Ω2,gain : k∗1 = kopt 225

10
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(iv) Ω2,gain+cons : k∗1 = k1 226

(v) Ω2,neu : k∗1 = kneu 227

All of these models are characterized by the placement of the counterfactual criterion, k∗1; 228

the distance δ is the only free parameter for all models. In the normative model (Ω2,acc), the 229

confidence criteria are systematically shifted so that they are centered on the discrimination 230

criterion that maximizes accuracy. We also consider a model in which confidence criteria 231

are centered on the criterion that maximizes gain (Ω2,gain), which is incorrect behavior in 232

the case of asymmetric payoffs. In the neutral model (Ω2,neu), confidence criteria remain 233

fixed around the neutral Type 1 criterion regardless of the prior or payoff manipulation. 234

Finally, for the models that shift in response to priors and payoffs, we consider that con- 235

servatism in the discrimination criterion placement also affects k∗1, either for the accuracy 236

model (Ω2,acc+cons) or the gain model (Ω2,gain+cons). In the latter model, k∗1 is identical to 237

k1. For the other models, some combinations of priors and payoffs will decouple k∗1 from k1. 238

For the Ω2,acc+cons model, the decoupling only occurs for asymmetric payoffs. For the other 239

models, this decoupling occurs whenever priors or payoffs are asymmetric. 240

Our models assume that δ are placed symmetrically around k∗1. However, the ability to 241

identify the underlying Type 2 model will not be affected by this assumption. Consider an 242

observer whose low-confidence region to the left of k∗1 was always greater than their low- 243

confidence region to the right of k∗1, such that k∗1 − k2− > k2+ − k∗1. Then, the estimate of δ 244

would be similar because the experiment design tested the mirror prior-payoff condition (i.e., 245

for fixed k2, one condition would have k∗1 attracted to neutral and the other repelled, which is 246

not the behaviour of k∗1 in any Type 2 model). Thus, the best-fitting model would be unlikely 247

to change when δ is asymmetric, but it would fit less well. Alternatively, an asymmetry in 248

δ could be mirrored about the neutral criterion (e.g., the low confidence region closest to 249

the neutral criterion is always smaller). Then, the δ asymmetry would be indistinguishable 250

from a bias in the conservatism parameters. Ultimately, the confidence criteria are yoked to 251

k∗1, and it is the patterns of criteria shift from all conditions jointly that are captured by the 252

model comparison. 253
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4 Methods 254

4.1 Participants 255

Ten participants (5 female, age range 22-43 years, mean 27.0 years) took part in the ex- 256

periment. All participants had normal or corrected-to-normal vision, except one amblyopic 257

participant. All participants were naive to the research question, except for three of the 258

authors who participated. On completion of the study, participants received a cash bonus 259

in the range of $0 to $20 based on performance. In accordance with the ethics requirements 260

of the Institutional Review Board at New York University, participants received details of 261

the experimental procedures and gave informed consent prior to the experiment. 262

4.2 Apparatus 263

Stimuli were presented on a gamma-corrected CRT monitor (Sony G400, 36 x 27 cm) with 264

a 1280 x 1024 pixel resolution and an 85 Hz refresh rate. The experiment was conducted in 265

a dimly lit room, using custom-written code in MATLAB version R2014b (The MathWorks, 266

Natick, MA), with PsychToolbox version 3.0.11 (Brainard, 1997; Pelli, 1997; Kleiner et al., 267

2007). A chin-rest was used to stabilize the participant at a viewing distance of 57 cm. 268

Responses were recorded on a standard computer keyboard. 269

4.3 Stimuli 270

Stimuli were Gabor patches, either right (clockwise) or left (counterclockwise) of vertical, 271

presented on a mid-gray background at the center of the screen. The sinusoidal grating 272

had a spatial frequency of 2 cycle/deg, a peak contrast of 10%, and a Gaussian envelope 273

(SD: 0.5 deg). The phase of the grating was randomized on each trial to minimize contrast 274

adaptation. 275

4.4 Experimental Design 276

Orientation discrimination (Type 1, 2AFC, left/right) and confidence judgments (Type 2, 277

2AFC, low/high) were collected for seven conditions defined by the prior and payoff struc- 278
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Figure 2: Experimental methods. a) Trial sequence including an outline of the initial con-
dition information screen (see part (b) for details) and final (mock) leaderboard screen.
Participants were shown either a right- or left-tilted Gabor and made subsequent Type 1
and Type 2 decisions before being awarded points and given auditory feedback based on the
Type 1 discrimination judgment. b) Sample condition information displays from a double-
asymmetry condition. Below: Example Gabor stimuli, color-coded blue for left- and orange
for right-tilted. The exact stimulus orientations depended on the the participant’s sensi-
tivity. c) Condition matrix. Pie charts show the probability of stimulus alternatives (25,
50, or 75%) and dollar symbols represent the payoffs for each alternative (2, 3, or 4 pts).
Squares are colored and labeled by the type of symmetry. d) Timeline of the eight sessions.
The order of conditions was randomized within the single- and within the double-asymmetry
conditions.
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ture. The probability of a right-tilted Gabor could be 25, 50, or 75%. The points awarded 279

for correctly identifying a right- versus a left-tilt could be 4:2, 3:3, or 2:4. In the 3:3 pay- 280

off scheme, a correct response was awarded 3 points. In the 2:4 and 4:2 schemes, correct 281

responses were awarded 2 or 4 points depending on the stimulus orientation. Incorrect re- 282

sponses were not rewarded (0 points). The prior and payoff structure was explicitly conveyed 283

to the participant before the session began (Fig. 2b) and after every 50 trials. Condition 284

order was randomized within condition type (Fig. 2c): no asymmetry (50%, 3:3), single 285

asymmetry (50%, 4:2; 50%, 2:4; 25%, 3:3; 75%, 3:3), or double asymmetry (25%, 4:2; 75%, 286

2:4). Note that two of the possible double asymmetry conditions (25%, 2:4; and 75%, 4:2) 287

were not tested because these conditions incentivized one response alternative to such a de- 288

gree that they would not be informative for model comparison. Participants first completed 289

the full-symmetry condition, followed by the single-asymmetry conditions in random order, 290

and finally the double-asymmetry conditions, also in random order (Fig. 2d). Each condition 291

was tested in a separate session with no more than one session per day. 292

4.5 Thresholding Procedure 293

A thresholding procedure was performed prior to the main experiment to equate difficulty 294

across observers to approximately d′ = 1. Observers performed a similar orientation discrim- 295

ination judgment as in the main experiment. Absolute tilt magnitude varied in a series of 296

interleaved 1-up-2-down staircases to converge on 71% correct. Each block consisted of three 297

staircases with 60 trials each. Participants performed multiple blocks until it was determined 298

that performance had plateaued (i.e., learning had stopped). Preliminary thresholds were 299

calculated using the last 10 trials of each staircase. At the end of each block, if none of the 300

three preliminary thresholds were better than the best of the previous block’s preliminary 301

thresholds, then the stopping rule was met. As a result, participants completed a minimum 302

of two blocks and no participant completed more than five blocks. A cumulative Gaussian 303

psychometric function was fit by maximum likelihood to all trials from the final two blocks 304

(360 trials total). The slope parameter was used to calculate the orientation corresponding 305

to 69% correct for an unbiased observer (d′ = 1; Macmillan and Creelman, 2005). This 306

orientation was then used for this subject in the main experiment. Thresholds ranged from 307
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0.36 to 0.78 deg, with a mean of 0.59 deg. 308

4.6 Main Experiment 309

Participants completed seven sessions, each of which had 700 trials with the first 100 treated 310

as warm-up and discarded from the analysis. All subjects were instructed to hone their 311

response strategy in the first 50 trials to encourage stable criterion placement. The trial 312

sequence is outlined in Fig. 2a. Each trial began with the presentation of a fixation dot for 313

200 ms. After a 300 ms inter-stimulus interval, a Gabor stimulus was displayed for 70 ms. 314

Participants judged the orientation (left/right) and then indicated their confidence in that 315

orientation judgment (high/low). Feedback on the orientation judgment was provided at the 316

end of the trial by both an auditory tone and the awarding of points based on the session’s 317

payoff structure. Additionally, the running percentage of potential points earned was shown 318

on a leaderboard at the end of each session to foster inter-subject competition. Participants’ 319

cash bonus was calculated by selecting one trial selected at random from each session and 320

awarding the winnings from that trial, with a conversion of 1 point to $1, capped at $20 over 321

the sessions. Total testing time per subject was approximately 8 hrs. 322

4.7 Model Fitting 323

Detailed description of the model-fitting procedure can be found in Supplementary Infor- 324

mation (Sections 1 and 2). Briefly, model fitting was performed in three sequential steps: 325

fitting of d′, Type 1 models, then Type 2 decisions. Each session provided one measure- 326

ment of d′, which we used in a hierarchical Bayesian model to estimate each participant’s 327

true underlying d′ value across the entire experiment. For Type 1 and Type 2 models, we 328

calculated the log likelihood of the data given a dense grid of parameters (e.g., α, γ, and 329

δ) using multinomial distributions defined by the stimulus type, discrimination response, 330

and confidence response. All seven conditions were fit jointly. We then calculated model 331

evidence by marginalizing over all parameter dimensions and then normalizing to account 332

for grid spacing. 333
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Figure 3: Model comparison for the Type 1 and Type 2 responses. a) The protected ex-
ceedance probabilities (PEPs; see text for details) of the four Type 1 models. b) PEPs of the
five Type 2 models. Note that model comparisons were performed first for Type 1 and then
for Type 2 responses, using the best-fitting Type 1 model and parameters, on a per-subject
basis, in the Type 2 model evaluation. c) Best-fitting models for each participant.

5 Results 334

We sought to understand how observers make perceptual decisions and confidence judg- 335

ments in the face of asymmetric priors and payoffs. Participants performed an orientation- 336

discrimination task followed by a confidence judgment. To account for the behavior, we 337

defined two sets of models, which were fit in a two-step process. Type 1 models defined the 338

contribution of conservatism to the discrimination responses. Type 2 models defined the role 339

of priors and payoffs in the confidence reports. 340

5.1 Model Fits 341

Type 1 models were first fit using the discrimination responses alone. Four models were 342

compared: optimal criterion placement (Ω1,opt), equal conservatism for priors and payoffs 343

(Ω1,1α), different degrees of conservatism for priors and payoffs (Ω1,2α), and a model in which 344

there was a failure of summation of criterion shifts in the double-asymmetry condition (Ω1,3α). 345

Fitting the Type 1 models also provided an estimate of response bias, γ. We performed a 346

Bayesian model selection procedure using the SPM12 Toolbox (Wellcome Trust Centre for 347
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Neuroimaging, London, UK) to calculate the protected exceedance probabilities (PEPs) 348

for each model (Figure 3a). The exceedance probability (EP) is the probability that a 349

particular model is more frequent in the general population than any of the other tested 350

models. The PEP is a conservative measure of model frequency that takes into account the 351

overall ability to reject the null hypothesis that all models are equally likely in the population 352

(Stephan et al., 2009; Rigoux et al., 2014). Overall, an additional parameter in the double- 353

asymmetry conditions was needed to explain Type 1 criterion placement, indicating a failure 354

of summation of criterion shifts (i.e., the best-fitting model was Ω1,3α). 355

In the second step, the Type 2 models were fit using each participant’s best Type 1 model 356

and the associated maximum a posteriori (MAP) parameter estimates. The Type 2 models 357

differed in the placement of the Type 2 criteria, which split the internal response axis into 358

“high” and “low” confidence regions, for each “right” and “left” discrimination response. 359

We modeled the two Type 2 criteria as shifting to account for only the prior probability, 360

maximizing accuracy with the confidence response (Ω2,acc; the normative model), shifting 361

the confidence criteria in response to payoff manipulations (Ω2,gain; a sub-optimal model), or 362

failing to move the confidence criteria away from neutral at all (Ω2,neu; a sub-optimal model). 363

We also tested models where the conservatism found in the Type 1 decisions carried over into 364

the confidence decision (Ω2,acc+cons and Ω2,gain+cons; both sub-optimal). We again compared 365

the models quantitatively with PEPs (Figure 3b). The favored model, Ω2,gain+cons, shifts 366

the confidence criteria in response to both prior and payoff manipulations. Furthermore, 367

the conservatism that participants exhibited in the Type 1 decisions carried over into the 368

placement of the confidence criteria. 369

Figure 3c shows the best-fitting models for individual participants, according to the 370

amount of relative model evidence (here the marginal log-likelihood). Each of the Type 1 371

models except the optimal (Ω1,opt) was a best-fitting model for at least one of the ten partici- 372

pants. Similarly, no one was best fit by the normative Type 2 model either (Ω2,acc). Overall, 373

there is no clear pattern between the pairings of Type 1 and Type 2 models. 374
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Figure 4: Visualization of the raw and predicted response rates for two example participants.
Grids are formed of the seven conditions (rows) and the eight possible stimulus-response-
confidence combinations (columns). See Figure S3 in the Supplement for condition order.
The fill indicates the proportion of trials for that condition and stimulus that have that
combination of response and confidence. Top row: Raw response rates of two example
subjects. Subsequent rows, columns 1 and 3: Predicted response rates for each Type 2
model using the best-fitting parameters of the best-fitting Type 1 model for that individual.
Columns 2 and 4: Difference between raw and predicted response rates. Green boxes:
winning models (Subject 7: Ωgain+cons; subject 9: Ωneu).
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of two example observers. The k∗1 was calculated as the midpoint between the two empirical
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the Type 1 and Type 2 criteria (d′ = 1; either Ω1,opt or Ω1,1α with α = 0.5). Grey and
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best-fitting parameters, plotted as vectors. Arrowheads: residuals greater than plot bounds.
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5.2 Model Checks 375

We performed several checks on the fitted data to ensure that parameters were capturing 376

expected behavior and that the models could predict the data well (reported in detail in 377

Section 3 of the Supplementary Information). The quality of a model is not only dependent 378

on how much more likely it is than others, but it is also dependent on its overall predictive 379

ability. To visualize each model’s ability to predict the proportion of each response type 380

(“right” vs. “left” x “high” vs. “low”), we calculated the expected proportion of each 381

response type given the MAP parameters for each model and participant. We compared the 382

predicted response proportions to the empirical proportions (Figure 4). Larger residuals are 383

represented by more saturated colors. For the best-fitting models, the residuals are small 384

and unpatterned. 385

We also compared the Type 1 criteria and the counterfactual confidence criteria (Fig- 386

ure 5). We constrained the empirical counterfactual confidence criterion to be the midpoint 387

between the two Type 2 criteria (i.e., k∗1 ≡ (k2− + k2+)/2). Using k∗1, the predictions made 388

by the Type 2 models are highly distinguishable. In the left-most column, predicted k1 and 389

k∗1 for each session are shown for each model, assuming d′ = 1 and either Ω1,opt or Ω1,1α 390

where α = 0.5. In the top row, empirical criteria from the same two example participants 391

as in Figure 4 are shown. Empirical criteria are calculated with the standard SDT method 392

(detailed in Section 1 of the Supplementary Information, see Figure S1). 393

The visualization in the top row and left-most column of Figure 5 illustrates several 394

behavioral phenomena. The response bias, γ, results in a shift in all criteria in the same 395

direction, translating all data points parallel to the identity line. Conservatism is represented 396

by an attraction of all data toward the origin on the x-axis for Type 1 and the y-axis for 397

Type 2 judgments. The Type 2 models predict qualitatively different arrangements of the 398

data points. If the prior and payoff asymmetries affect the placement of the Type 1 criterion 399

but not the Type 2 criteria (Ω2,neu), the data are clustered along a single value on the y-axis. 400

If the prior and the payoff affect the placement of the Type 1 and Type 2 criteria equally, 401

(Ω2,gain), then the data fall on the identity line. With normative behavior (Ω2,acc), the prior 402

asymmetry conditions (grey triangles) fall on the identity line because confidence tracks the 403

prior, while in the payoff asymmetry conditions (blue squares), the data have the same k2 404
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midpoint as in the neutral condition (grey squares) because confidence does not track the 405

payoff. 406

Vectors in all 10 of the bottom right polar plots represent the difference (i.e., the residual) 407

between the empirical and the predicted criteria from the model fits. While the model 408

prediction column is based on fixed parameters, the predicted data used for the 10 polar 409

plots uses parameters that best fit the participant’s data using that model. It is immediately 410

clear that the normative model (second row) does a poor job of describing participants’ 411

behavior, and that conservatism is a necessary component of the models. 412

5.3 Conservatism 413

We first measured the relative magnitude of conservatism due to priors and payoffs. Figure 6a 414

shows fitted αp and αv under the most complex conservatism model (Ω1,3α) and Figure 6b 415

shows them under the best-fitting model for each observer. In these figures, eight of the 416

ten participants were conservative in their criterion placement for both prior and payoff 417

manipulations, as indicated by data points in the gray regions. Of the eight participants 418

that displayed conservatism, five were significantly more conservative for payoff asymmetries 419

than prior asymmetries (αv < αp), whereas only one was significant in the opposite direction 420

(αp < αv). At the group level, however, we did not find a significant difference between the 421

best fitting αv and αp, either for the best-fitting Type 1 model or the winning model (paired 422

t-tests, p > 0.05). Note that the negative α values derive from a participant who shifted 423

criteria consistently in the opposite direction expected from a rational observer in response 424

to manipulations of payoffs and priors. 425

An additional implication of SDT is that an ideal observer’s criterion shift due to pay- 426

offs and due to priors should sum when both asymmetries are present as in Figure 1b: 427

kpv = kp + kv (Stevenson et al., 1990). Figure 6c shows the prediction of this additive rule. 428

Although the difference between the predicted and actual criterion shift is marginally signif- 429

icant (t = 2.41, p = .039), this effect is driven by the four observers best fit by Ω1,3α. Each of 430

these four observers had 95% CIs that did not overlap with the identity line. We show the 431

criterion placement in the double-asymmetry cases in Figure 6d. Most observers did not shift 432

their criterion far enough from neutral to the optimal placement, kopt. Three observers, how- 433
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Figure 6: Conservatism for Type 1 decision making. a) A comparison of the extent of
conservatism under payoff versus prior asymmetries. Each data point represents the best-
fitting conservatism parameters of a single observer when fit by Ω1,3α. These parameters
are only contingent on the conservatism in the single-asymmetry conditions. In this model,
conservatism in the double-asymmetry conditions is captured by a separate model parameter.
Darker marker fill: additional conservatism parameters were required to fit to that observer’s
data. Dashed line: equality line. Dark grey region: conservatism greater for prior than payoff
manipulations (i.e., αp < αv). Light grey region: conservatism is greater for payoffs (i.e.,
αp > αv). Data points outside these regions are not consistent with conservative criterion
placement. b) Same as (a) using fit parameters from the best-fitting Type 1 model for each
observer. c) Test of summation of criterion shifts using the Ω1,3α model fits. Observers who
required a third α to capture their data (i.e., were best fit by Ω1,3α) had criterion shifts for
the double-asymmetry conditions that were not well predicted as the sum of the shifts in the
single-asymmetry conditions. d) Criterion placement in the double-asymmetry conditions.
These are the same data as in the y-axis of (c), but extended to more easily compare the
actual criterion placement with potential other task-relevant criteria. Horizontal criteria
lines assume d′=1.
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ever, placed their criterion beyond kopt, with two stopping short of the accuracy-maximizing 434

criterion kp. 435

In summary, we find that conservatism for priors and conservatism for payoffs do not sum, 436

as traditional SDT predicts. Conservatism applied to priors and payoffs in the discrimination 437

decision was also incorporated into the confidence decision. Participants further deviated 438

from normative behavior by shifting their confidence criteria in response to asymmetric 439

payoffs, which do not inform the probability of a correct discrimination response. 440

6 Discussion 441

6.1 Type 1 Judgments 442

We conducted an orientation-discrimination task in which the prior probability of response 443

alternatives and the payoff matrix varied across sessions. Binary confidence reports were 444

collected after each discrimination judgment to gauge the observer’s subjective appraisal of 445

the probability they were correct in their judgment. Observers were found to be conserva- 446

tive in the placement of the discrimination criterion, k1, as revealed by the Type 1 model 447

comparison. Instead of placing the criterion at the optimal location, as determined by the 448

priors and payoffs, they had the tendency to place k1 between the optimal criterion and the 449

neutral criterion. While we did find evidence of different degrees of conservatism for payoff 450

versus prior asymmetries at the individual-subject level, we found no evidence at the group 451

level that conservatism was stronger when the payoffs were asymmetrical than when the pri- 452

ors were asymmetrical. Differences in conservatism were more apparent in previous studies 453

(Lee and Zentall, 1966; Ulehla, 1966; Healy and Kubovy, 1981; Maddox, 2002; Ackermann 454

and Landy, 2015), but not all (Healy and Kubovy, 1978). Several factors may be contribut- 455

ing to the observed conservatism of individual observers. Candidate explanations include 456

the hypothesis that observers trade off between maximizing gains and maximizing accuracy 457

(Maddox and Bohil, 1998), as it may be hard for the observer to sacrifice accuracy for ex- 458

pected gain. Alternatively, conservatism could depend on the criterion-adjustment strategy 459

(Busemeyer and Myung, 1992), which may be differentially influenced by subjective factors 460

such as subjective probability and subjective utility (Ackermann and Landy, 2015). This 461
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explanation suggests that it is effortful to shift the criterion far from the neutral criterion 462

for an inconsequential gain. Another possibility is that it may be a combination of the two, 463

as suggested by Maddox and Bohil (2003). 464

In additional analyses we explored the nature of conservatism further, both by fitting 465

Type 1 models with varying levels of complexity as well as testing the predictions of several 466

possible models for the case of both prior and payoff asymmetries. All participants were best 467

described by a model with some form of conservatism, with the majority best fit with two 468

or three separate conservatism parameters. In the extreme case, where three conservatism 469

parameters were needed, we find cases where additivity of criterion shifts was not obtained, 470

as predicted by Healy and Kubovy (1981). By additivity we mean that the criterion shifts 471

induced by priors or payoffs sum when both are present. In our sample population, additivity 472

was not found for 40% of observers, which provides a similarly inconclusive follow-up to 473

previous attempts at testing additivity (Stevenson et al., 1990). Yet, the Bayesian Model 474

Selection procedure indicated that this was the winning model. Taking into account the 475

evidence for each model, as well as penalizing model complexity, we find that the most 476

complex Type 1 model does the best job of describing the behavior of our sample population. 477

Without any sizeable, systematic deviation from additivity (Figure 6c), it is reasonable to 478

suggest this third conservatism parameter is capturing something else, relating to strategy 479

or noise, on the part of the observers. 480

How consistent is additivity with the various explanations of unequal conservatism for 481

priors and payoffs? In Sect. 1.4 of the Supplementary Information, we demonstrate that the 482

gain-accuracy trade-off strategy is equivalent to our Ω1,2α model, for which additivity holds. 483

Therefore, observers best fit by this model may be simply trading off between maximizing 484

gain and maximizing accuracy. Turning to the criterion-adjustment strategy explanation of 485

conservatism, behavior might deviate from additivity depending on whether conservatism, 486

which acts as a scale factor on criterion shifts, is applied before or after the individual shifts 487

for priors and the payoffs are combined. If conservatism is applied to these components 488

individually, and then the resulting criteria are summed, this is equivalent to the Ω1,1α or 489

Ω1,2α models. If, however, the criterion is adjusted after both the priors or payoffs have been 490

applied, then the rate of change in reward based on the objective or subjective gain functions 491
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is in no way constrained to match that of the single-asymmetry cases. Yet, we found that 492

the discrimination criterion in the double-asymmetry cases was placed beyond the optimal 493

criterion for 30% of observers, which is not consistent with a reluctance to shift the criterion 494

sufficiently from neutral. In fact, these criteria are biased in the direction of the accuracy- 495

maximizing criterion, as would be expected under the gain-accuracy trade-off hypothesis. 496

However, we cannot distinguish the trade-off hypothesis from a liberal criterion placement 497

in the double-asymmetry case because, in our task, the prior odds ratio was always more 498

asymmetric than the rewards ratio, always placing the optimal criterion on the same side of 499

the neutral criterion as the accuracy-optimizing criterion. 500

So far, we have considered explanations of conservatism that are a result of prior and 501

payoff factors. An alternate metacognitive source of conservatism proposed by Kubovy 502

(1977) implicates the d′ component of Eq. 5. Observers likely form an estimate of their overall 503

performance from experience with the task. If they happen to overestimate performance (i.e., 504

d̂′ > d′), then it follows from Eq. 5 that k1 < kopt, and vice versa for underestimation. Note 505

that this is not a form of confidence in the response for a given trial, but a more general 506

metacognitive appraisal of the difficulty of the task. According to this hypothesis, most of the 507

observers would have been overestimating performance, with the one observer with liberal 508

criterion placement underestimating their performance. While it is not uncommon to find 509

overestimation of performance in the metacognitive literature (Mamassian, 2008, 2016), this 510

explanation alone is insufficient as we find differences in the degree of conservatism for priors 511

versus payoffs for some participants. Thus, we conclude that the conservatism observed in 512

this task is likely due to a combination of possible factors, including noisy behavior, strategies 513

to trade off gain versus accuracy, sub-optimal criterion adjustment, and bias in participants’ 514

judgments of their own d′. 515

6.2 Type 2 Judgments 516

We now turn to the Type 2 results, i.e., how observers form confidence judgments about 517

the discrimination decision. Five Type 2 models were characterized by the placement rule 518

for the counterfactual Type 1 criterion, k∗1, around which the confidence criteria, k2, were 519

symmetrically placed. We tested whether this counterfactual criterion coincided with the 520
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accuracy-maximizing criterion, the gain-maximizing criterion, either of these options with 521

the Type 1 conservatism applied, or whether it remained fixed at the neutral criterion. We 522

found no observer was best fit by the accuracy-maximizing optimal model (Ω2,acc), with 523

the majority split between the gain-maximizing-with-conservatism model (Ω2,gain+cons) or 524

the fixed neutral model (Ω2,neu). One participant was best fit by the accuracy-maximizing 525

with conservatism model (Ω2,acc+cons). Overall, Bayesian model selection favored the gain- 526

maximizing model with conservatism. When considering the best-fitting Type 1 model, we 527

find no clear pattern between the number of conservatism parameters required to explain 528

behavior and the placement strategy for confidence criteria. 529

We first turn our focus to the subset of observers who were best fit by the model in which 530

confidence criteria remained fixed around neutral (Ω2,neu). In this model, the perceived 531

magnitude of the tilt was all that was used to compute confidence. These observers correctly 532

did not allow the payoff structure of the environment to affect confidence, unlike the other 533

top-winning model. However, it is sub-optimal not to include the additional information 534

provided via the priors for the response alternatives but the lack of adaptability should not 535

be taken as evidence of an inability to adapt. It is possible that these observers ignored the 536

prior-payoff structure entirely for confidence, and instead opted for a criterion-placement 537

strategy that would work best for all conditions of the experiment. Future experiments 538

could incentivize accurate confidence judgments to test this hypothesis. 539

In the winning Type 2 model, observers placed k∗1 at the gain-maximizing Type 1 criterion 540

kp, with an adjustment for conservatism (Ω2,gain+cons). By adjusting the confidence criteria 541

so that the counterfactual Type 1 criterion tracks the actual Type 1 criterion, payoffs are 542

inappropriately incorporated into confidence judgments. As a consequence, higher relative 543

reward or cost will make a person more likely to select that alternative and, on average, more 544

confident about reporting that outcome when they do. In effect, this is a näıve optimism 545

for selecting the highly rewarded outcome and disproportionate pessimism for selecting the 546

costly outcome: “this highly rewarding perceptual alternative that I have selected is certainly 547

the state of the world” or “it is costly to me, so it cannot be true”. This bias for higher 548

confidence with greater reward value (or smaller loss value) is consistent with what has been 549

reported previously in the perceptual lottery tasks of Lebreton et al. (2018). Yet, we note 550
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that a failure to understand the task instructions could have produced the bias we found. 551

It is possible that observers did not report the probability they were correct, as per the 552

experimenter instructions, but instead reported something about the expected gain of the 553

trial when reflecting on their confidence. 554

An inability to appropriately dissociate Type 1 and Type 2 responses, in both subsets of 555

observers, is compelling. If this is a true inability for sensory decision-making, then there is 556

a trade-off between maximizing gains for discrimination and accuracy for confidence. That 557

is, if observers cannot selectively decouple their k1 and k∗1 for asymmetric payoffs, then 558

perhaps they reach a compromise by sacrificing some gains in the Type 1 task by shifting 559

k1 toward the accuracy-maximizing criterion kp, thereby shifting k∗1 in a manner that yields 560

confidence reports more consistent with the objective probability of being correct. Consider, 561

for example, judging whether an aircraft is heading for collision with an upcoming mountain 562

peak. The high cost of collision should bias heading judgments toward predicting a collision, 563

so corrective actions can be taken. But you wouldn’t want to be confident in that judgment 564

just because it results in high cost, so you reduce the bias and are a bit more confident 565

you’ll pass by unscathed. The ideal trade-off between incorporating the payoff structure 566

versus accurately and confidently making a decision will of course depend on the decision at 567

hand. Subsequent laboratory experiments can attempt to shift this trade-off by using more 568

complex reward structures that incorporate both Type 1 and Type 2 judgments. 569

Finally, we turn to the result that the best-fitting Type 2 model had conservatism ap- 570

plied to the counterfactual criterion k∗1. It is currently a matter of debate whether the same 571

internal measurement of the sensory event is used by both the perceptual and the metacogni- 572

tive decision-making systems (e.g., Resulaj et al., 2009; Fleming and Daw, 2017). The SDT 573

framework used here assumes the same internal measurement is used for both judgments. 574

The Type 2 judgment is thought to include additional noise (Maniscalco and Lau, 2012; 575

Fleming and Lau, 2014; Bang et al., 2018), and as such, we incorporated reduced metacogni- 576

tive sensitivity in our modeling. Additionally, our results suggest several possible scenarios 577

about how the decision boundaries during Type 1 and Type 2 decisions are related. The 578

Type 1 and Type 2 processes may be computed jointly using the same information, but there 579

is considerable evidence that neural processing occurs in distinct regions for perceptual and 580
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metacognitive decision-making (Shimamura, 2000; Fleming and Dolan, 2012; Rahnev et al., 581

2016; Shekhar and Rahnev, 2018). The Type 1 system may convey information to the Type 2 582

system about its decision boundary, or convey only relative information. Additionally, the 583

processes responsible for conservatism are also applied to the counterfactual criterion in the 584

Type 2 system. Given the complexity of the conservatism we observed, it would appear un- 585

likely for the Type 2 system to recreate the phenomenon of conservatism with information 586

acquired independently from the Type 1 system. Thus, we favor the interpretation that the 587

exact effects of priors and payoffs in perceptual decision-making are also propagated to the 588

metacognitive system. Given that a subset of observers were able to dissociate k1 and k∗1 589

by keeping the latter fixed at the neutral criterion, it is less likely that the Type 2 system 590

receives an internal measurement that is coded relative to the discrimination criterion k1. 591

Yet, if this is the case, why weren’t observers able to reduce the influence of the payoff struc- 592

ture at the second processing step? Further work is required to understand why optimal 593

metacognitive behavior was not achieved. 594

6.3 Conclusion 595

By manipulating priors and payoffs in a perceptual task, we found sub-optimal decision 596

making at the Type 1 and Type 2 levels. Discrimination judgments were conservative, 597

with no strong tendency for greater conservatism for payoffs than priors. There was also 598

evidence against additivity of criterion shifts for asymmetric priors and payoffs. Confidence 599

judgments were sub-optimal in one of two ways: 1) observers did not consider the role of 600

priors or 2) they incorporated payoffs. Both of these strategies hinder decision-making. 601

For example, a radiologist who ignores prior probabilities when assigning confidence might 602

hesitate recommending further tests for a patient who is a heavy smoker. Similarly, a 603

radiologist who inappropriately incorporates payoffs may be more confident in a positive 604

diagnosis if he receives kickbacks from the imaging center to encourage future scans. The 605

patterns of behavior found in this task point to explanations of why humans may consider 606

trade-offs between maximizing gain and maximizing accuracy, as well as provide new insights 607

about the role of the decision boundary in Type 1 versus Type 2 computations. 608
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