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Summary
Complex networks of regulatory relationships between protein kinases comprise a major
component of intracellular signaling. Although many kinase-kinase regulatory relationships
have been described in detail, these are biased towards well-studied kinases while the major-
ity of possible relationships remains unexplored. Here, we implement data-driven, unbiased
methods to predict human kinase-kinase regulatory relationships and whether they have acti-
vating or inhibiting effects. We incorporate high-throughput data, kinase specificity profiles,
and structural information to produce our predictions. The results successfully recapitulate
previously annotated regulatory relationships and can reconstruct known signaling pathways
from the ground up. The full network of predictions is relatively sparse, with the vast ma-
jority of relationships assigned low probabilities. However, it nevertheless suggests denser
modes of inter-kinase regulation than normally considered in intracellular signaling research.

Introduction
Cells continually respond and adapt to environmental stimuli. They employ sophisticated
protein networks to propagate, amplify and subsequently quench these signals efficiently. A
common mechanism of relaying information from one protein to another is through reversible
post-translational modifications (PTMs). Protein phosphorylation by kinases is one of the
principal and best-studied PTMs. It plays a major role in cellular processes such as growth,
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division and differentiation (Acosta-Jaquez et al., 2009; Basson, 2012; Rhind and Russell,
2012).

Many protein kinases are themselves regulated by phosphorylation, giving rise to complex
networks of kinase-kinase regulatory relationships. An accumulation of biochemical knowl-
edge has produced consensus maps of several protein-kinase signaling pathways, which have
been deposited in databases such as Reactome (Fabregat et al., 2018), KEGG (Kanehisa et
al., 2016) and SIGNOR (Perfetto et al., 2015). Kinase-kinase and other kinase-substrate rela-
tionships have also been annotated in databases such as PhosphoSitePlus and Phospho.ELM
(Dinkel et al., 2011; Hornbeck et al., 2015). However, bias in the study of kinase regulatory
relationships has left the majority of the kinase-kinase interaction space largely unexplored
(Invergo and Beltrao, 2018). Similar biases have been reported for protein-protein interaction
databases (Gillis, Ballouz, and Pavlidis, 2014) . Subsequent, unbiased analyses have found
protein interactions to be ultimately more evenly spread across the proteome than previously
indicated (Rolland et al., 2014), and the same is likely to be true for kinase signaling.

These biases can have serious impacts on systems-level analyses of signaling pathways. There
is, therefore, a clear need for new, unbiased methods for finding kinase-kinase regulatory re-
lationships. Existing methods for data-driven reconstruction of signaling networks are gen-
erally designed for data that has been produced for the study of a specific pathway (e.g. via
perturbation experiments) and typically benefit from the incorporation of prior knowledge
about that pathway into the model (see, e.g., Hill et al. (2016) and Invergo and Beltrao
(2018)). Given the study bias inherent to this approach, these methods are less likely to
provide insight into broader patterns of protein kinase regulation, especially of understudied
kinases or cross-module signaling. However, recent advances in high-throughput phospho-
proteomics, through liquid-chromatography tandem mass-spectrometry (LC-MS/MS) and
other technologies, show promise in the inference and analysis of signaling networks (Babur
et al., 2018; Rudolph et al., 2016; Terfve et al., 2015).

Alternatively, computational methods can be used to prioritize future experiments in an
unbiased manner. Here, we propose a machine-learning approach to estimate the probability
of a regulatory relationship between two kinases, as well as to predict the sign (inhibiting or
activating) of the regulation. We produced the predictions by combining phosphoproteomic
and transcriptomic data with kinase substrate-sequence specificity models and a recently
produced predictor of phosphosite functional impact (Ochoa et al., 2019). Together, these
data allow us to make inferences even for kinases that lack any substrate annotations. The
resulting network of predicted kinase-kinase regulatory relationships is highly modular and
partitions into several clusters that reflect known functional associations, while suggesting
denser modes of inter-regulation and feedback than typically assumed.
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Results

Regulatory relationships can be identified by similar phosphorylation
patterns at functional phosphosites and kinase coexpression

Since many protein kinases are regulated by phosphorylation, we first measured correlations
in phosphorylation at regulatory phosphosites between kinases. If regulatory sites on two
kinases show similar patterns of phosphorylation, one of the kinases might be responsible
for regulating the other’s activity. We assessed correlations of phosphosite quantifications
in two large-scale phosphoproteomic experiments (Mertins et al., 2016; Wilkes et al., 2015).
Regulatory functionality has only been assigned to a small subset of kinase phosphorylation
sites, so to improve coverage, we employed a recently produced computational predictor of
phosphosite functionality (Ochoa et al., 2019). This provided us with a score from 0.0 to
1.0 for each site, with higher values indicating a stronger prediction of functional impact of
phosphorylation (“functional sites”).

We found that kinase-kinase regulatory pairs often exhibit co-phosphorylation patterns at
functional phosphosites. For example, mitogen-activated protein kinase 3 (MAPK3) is known
to regulate the activity of ribosomal protein S6 kinases (Mérienne et al., 2000; Smith et al.,
1999; Zhao, Bjorbaek, and Moller, 1996). Indeed, we found strong correlation between
functional sites T202 on MAP kinase 3 and T577 on S6K-alpha-3 (RPS6KA3); meanwhile,
no such correlation was found for atypical MAP kinase 4 (MAPK4), which has no known
regulatory relationship with S6 kinases (Figure 1a). We quantified this relationship for each
pair of sites between two kinases by producing a phosphosite “coregulation score”, in which
the log-transformed p-value of the correlation is scaled by the two sites’ functional scores
(Figure 1a). In both phosphoproteomic experiments, kinase-kinase regulatory pairs tend
to exhibit higher maximum coregulation scores than pairs with no previously annotated
relationship (Figure 1b).

We next used two RNA-seq data sets (GTEx Consortium, 2013; Uhlén et al., 2015) to test
whether kinase coexpression is indicative of regulatory relationships. For example, if we
consider the regulation of tyrosine-protein kinase BTK by Src-family protein kinases, we see
a clear positive correlation between BTK expression and that of LYN (encoding tyrosine-
protein kinase Lyn, a known regulator) (Cheng, Ye, and Baltimore, 1994; Park et al., 1996;
Rawlings et al., 1996). No such correlation exists for YES1 (tyrosine-protein kinase Yes,
which is not known to regulate BTK) (Figure 1c). In general, we found higher coexpression
between pairs of kinases where a regulatory relationship exists than for those without any
annotated relationship in both expression data sets (Figure 1b).

We also found that tissue specificity, as represented by the skewness of expression values
across tissue samples, is further indicative of kinase regulatory relationships. Continuing
from the previous example, we can see that BTK and LYN both have skewed expression
profiles (high expression in a few tissues), whereas YES1 has relatively even expression across
tissues (Figure 1d). If we consider the absolute difference between tissue specificities for pairs
of protein kinases, we find that pairs with regulatory relationships tend to have more similar
expression profiles than those with no annotated relationship (Figure 1b).
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Figure 1: Correlations in phosphorylation at regulatory sites or in tissue expression patterns
are predictive of kinase-kinase regulatory relationships. a) Top: Kinase MAPK3 exhibits sig-
nificant cophosphorylation patterns at functional sites with RPS6KA3, a known substrate.
The same patterns are not observed for MAPK4. Gray cells indicate missing values. Bottom:
Combining cophosphorylation significance and site functional scores provides an estimator
of coregulation. b) Phospho-coregulation, tissue coexpression and tissue specificity can dis-
criminate known cases of kinase-kinase regulation from unannotated cases. c) The RNA
transcripts encoding SRC-family kinase LYN and known substrate BTK show similar pat-
terns of expression, while the expression of SRC-family kinase YES1, not known to regulate
BTK, is unrelated. d) Top: Kernel-density estimates of the distributions of expression values
across tissue samples for BTK, LYN and YES1. Bottom: Tissue-specificity of RNA expres-
sion was quantified as the skewness of the kernel-density distributions. Here, YES1 is more
broadly expressed than the tissue-specific LYN and BTK.
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Linking sequence specificity to phosphosite functional impact iden-
tifies direct regulation of protein kinase activity

Kinases show preferences for phosphorylating some substrates over others, determined by the
specific phosphoacceptor residue and a surrounding amino-acid sequence. By characterizing
this specificity in a position-specific scoring matrix (PSSM), we can score a kinase’s potential
for directly phosphorylating a putative substrate. However, we also wanted to determine, in
an unbiased way, whether high-scoring substrate sites also tend to have regulatory effects.
To achieve this, we employed the discounted cumulative gain (DCG) metric often used in
the evaluation of information retrieval systems (Järvelin and Kekäläinen, 2002), wherein we
treated a PSSM as a phosphosite “search function” and the functional score as a phosphosite
“relevance metric.”

Only 140 protein kinases had sufficient numbers of known substrate sites to build confi-
dent PSSMs. We have recently shown that proteins within the same kinase family tend to
show similar specificity, which can be attributed to conserved specificity-determining residues
(SDRs) within their protein-kinase domains (Bradley, Vieitez, et al., 2018; Bradley and Bel-
trao, 2019). We thus investigated this as a means to assign PSSMs to kinases with insufficient
substrate annotations. We first estimated the minimum residue similarity necessary across
10 kinase SDRs to make accurate PSSM assignments. We found that a SDR similarity of
at least 0.8 (based on the BLOSUM62 amino-acid substitution matrix) is needed to make
assignments that are significantly better than a random assignment (Figure 2a). Never-
theless, this method of assignment did not substantially improve upon simply assigning a
family-wise, composite PSSM (Figure 2b). Based on these results, we increased the coverage
of kinases with PSSMs by assigning to under-annotated kinases a family-wise PSSM where
available (n = 208) or otherwise one via SDR similarity (n = 14), bringing the total number
of protein kinases with specificity profiles to 362 (Figure 2c).

Linking PSSM predictions to phosphosite functional scores via the DCG is best illustrated
by an example. RAC-alpha serine/threonine-protein kinase (AKT1) has several phospho-
sites, a few of which have high functional scores. We consider two potential regulators:
3-phosphoinositide-dependent protein kinase 1 (PDPK1), a known regulator; and protein ki-
nase C gamma type (PRKGC), not known to regulate AKT1. Some of AKT1’s sites with the
highest functional scores also score highly with PDPK1’s PSSM, whereas PRKCG’s PSSM
favors sites with low functional scores (Figure 2d). These relationships can be quantified and
visualized via the DCG: substrate sites are ranked by PSSM score and a cumulative sum of
their functional scores is calculated, wherein each successive site contributes a smaller frac-
tion of its functional score (Figure 2e). We can see that, although the two protein kinases
achieve similar maximum PSSM scores, only PDPK1 produces a high DCG (Figure 2f).

As would be expected, we found that the PSSMs of known regulators tend to score highly
for at least one of their substrate’s phosphosites (Figure 2g, left panel). Furthermore, simply
having a substrate site with a high functional score, indicating that the substrate is amenable
to regulation by phosphorylation, can be predictive of a regulatory relationship (Figure 2g,
center panel). Linking these two metrics across all sites on the substrate via the DCG,
we produced a score that could discriminate true regulatory relationships (Figure 2g, right
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panel).

Protein sequence and structure discriminate phosphosites that in-
duce or inhibit kinase activity

Phosphorylation events can lead to different regulatory outcomes for the substrate kinase,
potentially inducing or inhibiting its enzymatic activity. Knowing these regulatory effects
is essential to understanding the flow of information across complex networks of regulatory
relationships. Thus, we sought to infer the “signs” (activating or inhibiting) of regulatory
relationships from data.

To do so we first evaluated how phosphorylation at a specific site is likely to affect a given ki-
nase’s activity. We found particular discrimination for sites within phosphorylation hotspots
of the protein-kinase domain (Strumillo et al., 2019): sites within hotspots tend overwhelm-
ingly to be activating (i.e. within the kinase activation loop) (Figure 3a, 1st panel). Interest-
ingly, when considering the sites’ positions within the domain, we found that most inhibitory
sites are N-terminal (Figure 3a, 2nd panel), whereas they tended to be more C-terminal in
the overall protein (Figure 3a, 3rd panel). Lastly, we also observed that activating sites
tend to be in more structured regions of the protein and inhibitory sites are more likely to
be disordered, although 50% of all inhibitory sites still were predicted to be in structured
regions (Figure 3a, 4th panel).

We then trained a predictor of phosphosite regulatory sign using these features (Table S1)
via the Bayesian Additive Regression Trees (BART) method. Cross-validation of the model
showed consistently good performance, with a maximum mean Matthew’s correlation coeffi-
cient of 0.42 at a cutoff of 0.58 (posterior probabilities lower than the cutoff are declared to
reflect inhibitory functionality), indicating overall good sign-classification performance (Fig-
ure 3b). Adjusting these posterior probabilities by the highest-performing cutoff provided
us with a sign score for all phosphosites in our data set, with negative scores indicating a
prediction of inhibition of activity and positive scores predicting activation (Table S2).

Kinase regulatory sign can be inferred from phosphosite sign and
interaction evidence

With phosphosite sign predictions in hand, we aimed to predict the signs of kinase-kinase
regulatory interactions. Returning to the coregulation of functional phosphosites, we tested
the consistency of the observed phosphoproteomic correlation with the sign of the phos-
phorylating kinase’s regulatory site. If phosphorylation of an inhibitory site on a kinase
is anticorrelated with that of an activating site on a putative substrate, then the evidence
would suggest that the kinase positively regulates the substrate’s activity. On the other
hand, no direct-regulation scenario would explain a positive correlation between these sites.

For example, cyclin-dependent kinase 1 (CDK1) shows strong evidence of negative coregula-
tion with dual specificity mitogen-activated protein kinase kinase 2 (MAP2K2), reflecting its
role in inhibiting MAP kinase kinases (Rossomando et al., 1994) (Figure 3c). CDK1 also ac-
tivates Mitogen-activated protein kinase 6 (MAPK6 ) (Tanguay, Rodier, and Meloche, 2010)
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Figure 2: Kinase-kinase regulatory relationships can be predicted from sequence specificity
and phosphosite functional scores. (Continued on the following page)
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Figure 2: (continued) a) Similar kinase specificity-determining residues also indicate similar
PSSMs. The red line indicates the 97.5th percentile of the distribution of distances between
cross-validation PSSMs using different subsets of a kinase’s annotated substrates. At an SDR
similarity of at least 0.8, over 50% of assigned PSSMs are less than this distance from their
true values. b) Assigning family-wise, composite PSSMs to unannotated kinases achieves
similar, if not better, performance than SDR-based assignment. c) Numbers of PSSMs by
source (own annotations = 140, by family = 208, by SDR similarity = 14). d) PSSMs locate
functional sites on substrates with differing performance. Here, the PSSM of PDPK1, a
known regulator of AKT1, scores highly for sites with high functional scores, while that
of PRKCG does not. e) Discounted cumulative gain (DCG) quantifies the potential for a
kinase to phosphorylate a putative substrate at its functional sites. f) Although both PDPK1
and PRKCG have similar maximum PSSM scores for phosphorylating AKT1, only PDPK1
achieves a high DCG. g) Maximum PSSM score, maximum substrate-site functional score
and DCG all discriminate known regulatory relationships from unannotated ones.

and, indeed, we find a strong positive correlation between two activating sites on these kinases
(Figure 3c). Overall, we found that the signed coregulation score was able to discriminate
between activating and inhibitory kinase regulatory relationships in both phosphoproteomic
datasets (Figure 3d, first and second panels).

We also adapted our DCG methodology after applying our sign predictions to the site func-
tional scores. Thus, we now asked whether a kinase’s PSSM tends to find relevant activating
sites or inhibitory sites. For example, dual specificity mitogen-activated protein kinase ki-
nase 1 (MAP2K1) is activated by serine/threonine-protein kinase B-raf (BRAF) (Alessi et
al., 1994; Macdonald et al., 1993; Papin et al., 1995) and is inhibited in negative feedback
by its downstream substrate, mitogen-activated protein kinase 3 (MAPK3) (Eblen et al.,
2004). We found that, indeed, B-raf has specificity towards MAP2K1’s activating sites while
MAPK3 is specific towards the inhibitory sites (Figure 3e). We then calculated a DCG
on the signed functional scores, taking the most extreme value visited by the sum (Figure
3f). This method provides a positive value for BRAF and a negative value for MAPK3,
as expected. Overall, both the signed functional score and the signed DCG score could
discriminate well between activating and inhibitory relationships. However, predictions for
inhibitory relationships overall were less reliable (Figure 3d, third and fourth panels).

Predicting a global network of kinase regulatory relationships

We combined the above evidence into two predictors via machine learning. The edge pre-
dictor predicts whether a kinase-kinase regulatory relationship exists. The sign predictor
predicts whether a given relationship induces or inhibits the substrate’s kinase activity.

For training and validating the edge predictor, we retrieved from the OmniPath meta-
database (Türei, Korcsmáros, and Saez-Rodriguez, 2016), a list of annotated relationships
with at least two source databases supporting them, comprising 825 interactions in all. Be-
cause it is more difficult to prove the absence of a regulatory relationship, there is a lack of
annotations for genuinely false relationships. We assumed that, in the space of all possible
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Figure 3: Evidence of regulatory sign (activating vs. inhibiting) can be uncovered in a
data-driven manner. (Continued on the following page)
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Figure 3: (continued) a) The regulatory sign of a single phosphosite can be discriminated
by using structural information: whether the site is in a phosphorylation hotspot; where
the site is within the protein-kinase domain (N = N-terminal, C = C-terminal); the relative
position of the site within the protein (N = N-terminal, C = C-terminal); and whether the
site is in a disordered region;. b) Matthews correlation coefficients for different posterior-
probability cutoffs for the predictor of phosphosite regulatory sign. The cutoff (above which
a site or relationship would be declared to be “activating”) that maximizes the coefficient
discriminates best between inhibitory and activating sites or relationships. Error bars rep-
resent 95% confidence intervals. c) Modifying the phospho-coregulation score to account
for predicted phosphosite sign and correlation sign can produce protein-level predictions of
regulatory sign. Here, CDK1 is shown to have an activating relationship with MAPK6 and
an inhibitory relationship with MAP2K2. Gray cells indicate missing or removed values. d)
The signed variants of the coregulation score, functional score, and DCG all discriminate
between inhibitory and activating kinase-kinase regulatory relationships. e) Accounting for
predicted phosphosite sign can assess the propensity of a kinase to phosphorylate activat-
ing or inhibiting sites: BRAF’s PSSM scores highly for activating sites on MAP2K1, while
MAPK3 scores highly for inhibitory sites. f) A modified DCG for signed functional scores
correctly assigns BRAF as an activator of MAP2K1 and MAPK3 as an inhibitor. Because
there are more inhibitory sites on MAP2K1, a full DCG would be negative in most cases
(dotted lines). Instead, we take the most extreme value visited by the sum (solid lines).

kinase-kinase interactions, regulatory relationships are rare. Therefore, a randomly selected
pair of kinases is unlikely to show any regulatory relationship. We thus assessed the features
described above for their predictive power on a validation set consisting of the annotated
positive cases and random “negative” subsets of the remaining space of putative interactions.

Overall, each of the edge-predictor features (Table S3) exhibited limited but measurable
predictive power. We visualized this by the receiver operating characteristic (ROC) curve,
comparing true-positive and false-positive rates as the score-cutoff for declaring a regulatory
relationship is lowered; and by similarly assessing precision and recall across cutoffs (Figure
4a). Maximum PSSM score performed the best, with a mean area under the ROC curve
(AUC) of 0.742 (σ = 0.007, n = 100) (Figure S1a). The remaining features had mean AUC
values of less than 0.7. We also noted that the precision decayed rapidly with lower cutoffs.

We then combined these features into the edge predictor using the BART method (Chipman,
George, and McCulloch, 2010) (Table S4). We first performed 3-fold cross-validation on the
model 20 times using different random iterations of the training set (Figure 4a). The resulting
models had a mean AUC of 0.884 (σ = 0.009, n = 60), representing a significant improvement
over the individual features (Figure S1a). The robustness of the cross-validation results also
assured that the model was not over-fitting the training set.

We applied the same BART method to the regulatory sign features (Table S5) produce
the sign predictor (Table S4). We trained the model using regulatory signs annotated in
OmniPath and evaluated it through cross-validation. Overall, performance was similar to the
underlying site-level predictor described above, with a mean maximum Matthews correlation
coefficient of 0.42, however confidence intervals over the cross-validation were narrower for
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kinase-level predictions than they were for site-level predictions (Figure 4b). The maximum
correlation occurred at a cutoff of 0.484 (i.e., the probability above which we would declare
regulation to activate the substrate).

We next considered whether known, annotated relationships tend to rank highly among
our edge predictions for each kinase. We found that 50% of kinases had a known regulatory
relationship within the top 10 of our predictions (Figure 4c). The top ranks were significantly
better than expected, based on random, per-kinase permutations of the scores (one-sided
Wilcoxon rank sum test, regulator: W = 5818.5, p < 1 × 10−6 ; substrate: W = 7385.5,
p < 1× 10−6).

To further evaluate our model, we looked at how well it predicted interactions that were
not included in the positive set due to being supported by only one source in OmniPath
(n = 293). This provided a completely new, external validation set. These interactions
had significantly higher prediction scores than unannotated regulatory interactions, however
they were generally lower than the high-confidence set (one-sided Wilcoxon rank sum test vs.
unannotated: w = 6× 107, p < 1× 10−6, vs. high-confidence set: W = 87073, p < 1× 10−6;
Figure 4d).

We also noted several high-probability predictions that, while not being annotated in Om-
niPath, have direct or plausible support in the literature. For example, we predict recep-
tor tyrosine-protein kinase erbB-2 (ERBB2/HER2) to activate ephrin type-A receptor 2
(EPHA2) (edge probability 0.94, sign probability 0.79). These two oncogenic kinases form a
complex and in a mouse model of breast cancer they appear to cooperate to promote tumor
progression (Brantley-Sieders et al., 2008), however no direct regulatory relationship has yet
been described. We also predict that the closely related tyrosine protein kinases Fer (FER)
and Fes/Fps (FES) activate HGF receptor (MET) with equal probabilities (edge probabil-
ities 0.92, sign probabilities 0.80). In fact, activation of MET by FER has previously been
reported (Fan et al., 2016), however this relationship is not annotated in OmniPath and thus
was not present in our training and validation set. As a final example, we predict tyrosine
protein kinase ABL1 to activate focal adhesion kinase 1 (PTK2/FAK1) (edge probability
0.92, sign probability 0.81). While, to our knowledge, no such regulatory relationship has
been described previously, FAK1 plays an important role in acute lymphoblastic leukemia
characterized by constitutively active ABL1, and its phosphorylation was speculated to be
“likely augmented by the direct action of activated ABL1 itself” (Churchman et al., 2016).

We next assessed the topology of regulatory relationships using a sub-network of high-
confidence predictions (probability greater than 0.5), consisting of 340 kinases and 4339
regulatory relationships (representing less than 2% of all possible relationships). We first
applied a cluster-detection algorithm to an undirected variant of this network (retaining the
higher-probability relationship when two kinases were predicted to regulate each other, pro-
ducing 3716 undirected edges). Four clusters consisting of more than 10 kinases each were
detected (103, 45, 105 and 87 kinases, respectively; Table S6). This division of the network
had a modularity of 0.325, which was significantly higher than expected given the modu-
larity of randomized networks with the same degree distribution (µ = 0.197, σ = 0.00339;
p < 0.001; Figure S1b). To determine if these clusters reflected known biological associa-
tions, we tested each one for enrichment in pathway annotations from Reactome (Fabregat
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et al., 2018). Each cluster was enriched in annotations for at least one distinct Reactome
pathway, indicating that the network successfully identified clusters of physiologically re-
lated kinases (Figure 4e; Table S7). We also assessed how related the pathways associated
with each cluster were, using the average number of reactions between the proteins of two
pathways as a proxy for relatedness. We found that the pathways associated with the same
cluster were more closely related to each other than to those associated with other clusters
(p < 1× 10−6, W = 5.8× 105, Wilcoxon rank sum test; Supplemental Figure S1c).

Because we set out to overcome the study bias inherent to signaling pathway annotations,
we checked for relationships between kinase connectivity on the high-confidence network
and kinase publication counts (Figure 4f; kinase publication counts were retrieved from
Invergo and Beltrao (2018)). Interactions between kinases in the top three publication-
count deciles (more than 95 publications) accounted for only 31% of the network. Conversely,
589 regulatory relationships were predicted between pairs of kinases in the bottom 50% of
publication counts (fewer than 40 publications each).

Overall, only 7% of the relationships in the high-confidence network are annotated in databases.
Although the number of previously annotated interactions is dwarfed by novel predictions, a
significant proportion of this can be accounted for by the relative sparsity of annotated rela-
tionships for under-studied kinases. Restricting the network to highly-studied kinases largely
resolves this (Figure S2a). However, this can also be explained in part by the persistence of
study bias in our results, as can be seen in a significant correlation between publication count
and top prediction-rank of known relationships (Figure S2b; Spearman’s rank correlation,
as regulator: ρ = −0.34, p < 1× 10−6; as substrate: ρ = −0.29, p < 1× 10−6).

Reconstructing signaling pathways from kinase regulatory predic-
tions

We next investigated whether our data-driven, signed kinase-kinase regulatory predictions
were able to reconstruct known pathways. We applied an edge probability cutoff of 0.5 and
a sign cutoff of 0.5. We started by choosing well-studied kinases that are functionally related
to AKT1 (Figure 5a). Between these kinases, we successfully recovered all but one annotated
relationship, the regulation of ribosomal protein S6 kinase beta-1 (RPS6KB1). Six predicted
relationships are not present in database annotations. Sign predictions generally fail on a
per-substrate basis. For example we predict all regulations of RPS6KB1 to be inhibitory,
while those that have been annotated are activating. Our predictions perform even better
when considering MAPK signaling, again recovering all but one previously annotated edge,
but with only one erroneous prediction of an annotated sign (Figure 5b).

If we begin to include other paralogs of these kinases, which tend to be less well-studied, we
quickly accumulate predictions for previously undescribed relationships. For example, we
predict many modes of inter-regulation between S6 kinases and glycogen synthase kinases.
On the other hand, we fail to predict several regulatory relationships involving RAC protein
kinases AKT2 and AKT3 (Figure 5c). Expanding the MAPK signaling network is more
successful again, with the core signaling events being recovered between RAFs, MAP2Ks and
MAPKs, including correct sign prediction, while also filling in the network of interactions
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Figure 4: Combining data-driven predictors of kinase-kinase regulatory relationships. a)
ROC and precision-recall curves of each feature and the final edge predictor. See also Figure
S1a. b) Matthews correlation coefficients for different posterior probability cutoffs for the
sign predictor. Error bars represent 95% confidence intervals. c) Annotated regulatory
relationships for each kinase tend to rank highly among the predictions, when considering
the kinase as either a regulator or a substrate. Lines indicate quartiles. 50% of kinases had
a known regulatory relationship in the top ten predictions, which is significantly better than
random expectation. See also Figure S2b. d) Previously annotated relationships supported
by only one source in OmniPath score similarly to those supported by two or more sources
(used in our training set), further validating our predictions. e) Clusters identified on the
regulatory sub-network at a posterior probability cutoff of 0.5 are significantly enriched in
annotations for unique sets of pathways. See also Figures S1b–c. f) The predicted network
expands upon the annotated network, especially for understudied protein kinases. See also
Figure S2a.
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Figure 5: Our data-driven predictor reconstructs known signaling pathways “from scratch”.
a) A reconstruction of AKT1 signaling at a probability cutoff of 0.5 and “activating” sign
cutoff of 0.5. Black edges are correctly recovered. Red edges failed to be predicted. Gray
edges are unvalidated predictions. Arrowheads indicate the predicted regulatory sign: arrows
indicate activation and bars indicate inhibition. Black arrows are correctly predicted, red
arrows are incorrectly predicted and gray arrows are unvalidated. Node colors indicate
the number of publications associated with the kinase. b) Similar performance is seen in
reconstructing MAP kinase signaling from our predictions. c–d) Including more kinases,
particularly understudied kinases, greatly increases the number of unvalidated edges while
also predicting complex modes of regulatory feedback.

for the less well-studied A-Raf (ARAF) and MAP2K3 (Figure 5d). Both of these examples
demonstrate that the predicted networks quickly become difficult to assess when more than a
few kinases are included, particularly those with fewer annotations. However, extrapolating
from the overall performance and the success on smaller networks, our results suggest that
this complexity is inherent to kinase signalling networks.

Discussion
The task of experimentally testing all possible kinase-kinase relationships in order to produce
an unbiased network is daunting. We have thus taken a data-driven approach to predict these
regulatory relationships. We do not suggest that these predictions can replace established
methods for confirming regulatory relationships. However, they can be used to reduce the
vast space of possible relationships under consideration in order to form credible hypotheses
and to prioritize experiments, particularly for under-studied kinases.

Previous efforts to produce kinome-scale inferences have depended on scaffolding data-driven
predictions to existing protein networks. For example, Rudolph et al. (2016) derived sig-
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naling pathways through a network diffusion technique with phosphoproteomic data on a
literature-derived protein-protein interaction network. However, such analyses are strongly
impacted by the biases present in the existing networks (Gillis, Ballouz, and Pavlidis, 2014;
Rolland et al., 2014). To our knowledge, there has only been one other attempt to predict
kinase regulatory sign (Hernandez et al., 2010). The authors inferred signs from quantita-
tive phosphoproteomic data on a literature-derived kinase network, in which the method in
part depended upon the connectivity of the kinases on this network. However, missing or
erroneous annotated relationships could have major impacts on the results. By building our
network from the ground up with data, we largely removed these biases from our predictions
and were nevertheless successful in reconstructing known, signed regulatory networks. We
only retain study bias from using annotated substrates in the construction of our kinase-
specificity models. This could be resolved with high-throughput methods to measure kinase
specificity profiles (see, e.g. Imamura et al. (2014)).

Many factors can affect the nature of a kinase-kinase regulatory relationship and each such
relationship will be unique, owing to the particular properties of the kinases involved. Thus,
making generalized predictions about them is inherently difficult. Nevertheless, some fea-
tures are fundamental, such as regulation by phosphorylation. To this end, the performance
of the predictions via identifying patterns of phosphorylation will improve with more data.
Given the importance of PSSMs in our results, there is a clear need for producing robust
PSSMs for every kinase in order to prune indirect regulatory effects. As for correlative meth-
ods on phosphoproteomic data, many conditions are needed to confidently discriminate the
phosphoregulation of over 500 kinases. Importantly, large-scale phosphoproteomics exper-
iments are needed across a more diverse array of tissues or cell lines to properly capture
the activities of more tissue-specific kinases. Because we only used data from experiments
using the breast cancer cell line MCF7, many kinases were not represented in the phospho-
proteomic data. Furthermore, the use of data derived from cancer cell lines might introduce
errors in the resulting network since cancer initiation and progression disrupt intracellular
signaling (Deribe, Pawson, and Dikic, 2010).

We assumed in the construction of our predictor that the true network is sparse, and indeed
we assign to 75% of all possible relationships posterior probabilities of less than 0.09, far below
any probability cutoff that we considered. Nevertheless, even at stringent cutoffs, isolating a
subnetwork of more than a few kinases produces a denser topology of regulatory relationships
than is typically considered for kinase signaling. It is possible that this is an artifact of not
considering cellular context (e.g. protein expression or cellular localization). There is also
an unavoidable accumulation of false-positives as more predictions are considered. Despite
these caveats, our results suggest that the kinase regulatory network is richer in feedback and
cross-module regulation than expected based on the current, biased view of kinase pathways.
Further developments in experimental approaches for unbiased kinase regulatory network
reconstruction are needed to confirm the predicted modularity and density of regulatory
relationships in kinase signalling networks.
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Methods

Data

We defined the human kinome as the list of 504 human proteins identified as protein ki-
nases in the UniProt/Swiss-Prot Protein Knowledgebase, pkinfam (accessed 8 November
2017 at https://www.uniprot.org/docs/pkinfam Quantitative phosphoproteomic data was
retrieved from two publications. The first included phosphosite quantifications of 213 phos-
phosites for 100 kinases across 22 kinase-inhibitory conditions in MCF7 cells (Wilkes et
al., 2015). The second quantified 1537 phosphosites on 193 kinases across 83 breast tumor
samples (Mertins et al., 2016). Tissue RNA expression data for protein kinases were re-
trieved from the GTEx project (GTEx Consortium, 2013) as provided by Expression Atlas
(E-MTAB-5214, timestamp 26 April 2018) (Papatheodorou et al., 2018). We furthermore
retrieved tissue RNA expression data from the Human Protein Atlas project (accessed from
https://www.proteinatlas.org/ 1 December 2017) (Uhlén et al., 2015). Lists of human phos-
phosites, kinase substrates and kinase regulatory sites were retrieved from the Phospho-
SitePlus database (accessed 1 May 2018) (Hornbeck et al., 2015). Amino acid frequencies in
the human proteome were derived from the UniProt proteome database (UniProt Consor-
tium, 2018).

Protein kinase specificity models

Constructing kinase specificity models

We estimated kinase specificity through the construction of position-specific scoring matrices
(PSSMs) from the amino acid sequences around known substrate sites (+/-7 residues), omit-
ting autophosphorylation sites. We required at least 10 known substrates in order to build
a PSSM for a given kinase, resulting in PSSMs for 140 protein kinases. In order to reduce
the influence of redundant sequences on the construction of the matrices, we employed a
position-based sequence-weighting method (S. Henikoff and J.G. Henikoff, 1994).

Given a set of n ≥ 10 substrate amino-acid sequences, S = {S1, S2, ..., Si, ..., Sn−1, Sn} , where
Si = {Si1, Si2, ..., Si14, Si15} and Sij represents the amino acid at position j of sequence i, we
give a weight to each of amino acid a at position j as follows:

w(a, j) =
1

cj
∑n

i=1(Sij = a)

where cj is the number of unique amino acids found in position j among the substrates in
S. Next, a weight is calculated for each sequence as the sum of its position-specific residue
weights:

W (Si) =
15∑
j=1

w(Sij, j)

Finally, each sequence weight was normalized by the sum of all sequence weights:
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Ŵ (Si) =
W (Si)∑n
k=1W (Sk)

A 20× 15 PSSM can then be constructed as follows. First, we construct matrix r, such that
entry raj contains the weighted count of amino acid a at position j across the sequences in
S:

raj = n
n∑

i=1

V (Sij, a)

V (Sij, a) =

{
Ŵ (Si), if Sij = a

0, otherwise

There is a non-zero probability of observing each residue at a position in the sequence, how-
ever at small sample sizes, we are unlikely to accurately estimate low-probability occurrences.
To overcome this, we added pseudocounts based on proteome-wide amino-acid frequencies in
a position-specific manner (Henikoff and Henikoff, 1996). For each column j in the PSSM,
we select a number of pseudocounts, Bj, to add:

Bj = m× cj

where m is a tune-able parameter and cj is defined as above. Thus, empirically constrained
positions (e.g. the +1 position for proline-directed kinases) will receive fewer pseudocounts,
and thus lower baseline probabilities of observing other residues, than highly variable posi-
tions. We found that our results were not strongly dependent on m, so we fixed it at 1. A
20× 15 matrix of pseudocounts, b, was then calculated as follows:

baj = Bj × fa

where fa is the occurrence frequency of amino acid a in the proteome. This allows us to
derive an empirical matrix of probabilities, p, of observing amino acid m at position j:

p(a, j) =
baj + raj

Bj +
∑

a raj

The final PSSM was arrived at by calculating the log2 fold-change of paj versus the proteome-
wide amino acid frequencies:

PWMaj = p̂(a, j) = log2

(
p(a, j)

fa

)
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Assigning PSSMs to protein kinases

In order to increase our coverage of specificity profiles to include protein kinases with few or
no known substrates, we assigned to them either composite, family-wise PSSMs or PSSMs
of protein kinases with similar specificity determining residues (SDRs) (Bradley, Vieitez, et
al., 2018). For each protein kinase family, we constructed a family-wise PSSM as described
above using known substrates of all kinases in the family, as defined by the KinBase resource
(http://kinase.com/web/current/kinbase/). This family-wise PSSM was then assigned to
any member of the family for which we could not construct a unique PSSM. PSSMs were
assigned to 209 protein kinases in this manner.

Finally, for the remaining protein kinases for which no family-wise PSSM was available, we
attempted to assign a PSSM based on SDR similarity. Towards this end, 10 kinase domain
positions were selected, representing residues known to covary with kinase specificity and that
are proximal (<4Å distance) to the kinase substrate at the active site (Bradley, Vieitez, et
al., 2018). For a given pair of kinases, sequence similarity across the 10 SDRs was calculated
by summing BLOSUM62 substitution scores for each position. An ‘SDR similarity’ score
was then calculated by dividing this sum by the maximum possible score across the 10 SDRs,
such that identical kinases would yield a similarity score of 1.0.

As represented in Figure 2a, the relationship between SDR similarity and PSSM distance
was explored systematically to decide upon an SDR similarity threshold to use for PSSM
assignment. For this purpose, SDR similarity scores and PSSM distances were calculated for
all possible pairwise comparisons of kinases with known specificity. Here, similarity between
PSSMs was quantified using the Frobenius distance, which represents the sum of squared
element-wise distances between matrix values, followed by taking the square-root (Ellis and
Kobe, 2011). For reference, pairwise Frobenius distances were also calculated for PSSMs
of the same kinase by subsampling known target sites of a given kinase, using a sample
size of 25 targets sites (corresponding to the median number of target sites used for PSSM
construction). The distribution of all possible pairwise distances among these ‘duplicate’
PSSMs had a median of 1.00 and a 97.5th percentile of 1.10 (Figure 2a, red line). We
interpret PSSM distances below the 97.5th percentile to represent kinases with the same
active site specificity. An SDR similarity threshold of 0.8 was therefore selected as more
than half of kinase pairs above this value have PSSM distances below the 1.10 threshold.
For PSSM assignment, targets from the most similar kinase(s) in the human kinome were
selected, provided the SDR similarity score was above 0.8. We assigned PSSMs to a further
14 kinases through this method. For all PSSM comparisons, the phospho-acceptor column
(P0: S/T/Y) was not used when calculating the Frobenius distance.

The predictive performance of family-based and SDR-based PSSM predictions was compared
in Figure 2b. For every kinase of known specificity, a PSSM was assigned using the family-
based and SDR-based approaches described above, and then the Frobenius distance between
empirical and predicted PSSMs was calculated for both prediction methods.
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Scoring phosphosites with PSSMs

For each directed protein kinase-kinase relationship, we scored each known phosphosite on
the substrate kinase using the upstream kinase’s PSSM. For the +/-7 motif sequence around
a given phosphosite (omitting the phosphosite itself), we calculated the PSSM score, s, as:

s =
∑
j 6=8

p̂(a, j)

In order to make scores comparable between kinases, we then calculated a normalized score,
s, against the minimum and maximum scores attainable with the PSSM:

smin =
∑
j 6=8

p̂(arg min
a

p̂(a, j), j)

smax =
∑
j 6=8

p̂(arg max
a

p̂(a, j), j)

ŝ =
s− smin

smax − smin

Phosphosite functional scores

Predictions of functional relevance of phosphosites were retrieved from Ochoa et al. (2019).
The predictions were made on a variety of phosphosite structural, evolutionary and biochem-
ical features. As the predictions were originally made on a strictly defined set of phosphosites
derived from a reanalysis of a set of high-throughput phosphoproteomics experiments, not
all of the phosphosites available in the PhosphoSitePlus database were represented. We
log10 -transformed the raw scores and normalized them against the minimum and maximum
values to arrive at functional scores valued between 0.0 and 1.0, with larger scores reflecting
a greater expectation of a functional impact of phosphorylation at that site.

Linking PSSMs to phosphosite functional scores via Discounted Cu-
mulative Gain

We assessed a kinase’s potential to phosphorylate a putative substrate at sites of likely
functional relevance by linking the kinase’s PSSM to the substrate’s phosphosite functional
scores via a Discounted Cumulative Gain calculation (DCG). In effect, we treat the PSSM
as a “search function” and we employ the functional scores as relevance scores to deter-
mine how well a PSSM “finds” functional sites. For each substrate phosphosite with a
functional score available, we calculate the PSSM score s as above. Next, the n sites
are ranked by s in descending order, producing an associated ordering of functional scores
F = {F1, F2, ..., Fi, ..., Fn−1, Fn}. The DCG for this kinase-substrate pair is then calculated
as:
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DCG =
n∑

i=1

Fi

log2(i+ 1)

Sites with higher PSSM scores, and thus lower rank i, contribute larger fractions of their
functional scores to the sum. The DCG will be highest, then, if sites with high functional
scores tend to have high PSSM scores.

In order to make DCG scores comparable between different kinase-substrate pairs, we nor-
malized each score by the minimum and maximum possible DCG scores for the substrate.
The minimum DCG for a substrate can be found by sorting the sites in ascending order of
their functional scores; likewise, the maximum can be found by sorting the sites in descending
order of their functional scores. Thus, the normalized DCG is:

nDCG =
DCG−DCGmin

DCGmax −DCGmin

Protein kinase coexpression and expression specificity

Coexpression of protein kinases across tissues in the GTEx and Protein Atlas RNA expression
datasets was calculated via Spearman’s correlation after setting missing values to 0.0.

The tissue specificity of each kinase was calculated by assessing the skewness of its distri-
bution of Protein Atlas expression values (in transcripts per million, or “TPM” ) across the
samples, defined as

b1 =
m3

s3
=

1
n

∑n
i=1(xi − x̄)3√

1
n−1

∑n
i=1(xi − x̄)2

3

where x is the kinase’s set of expression values across all tissues, x is the sample mean
expression value, s is the sample standard deviation, and m3 is the third central moment
of the distribution. Skewness was calculated using the “e1071” package for R (https://cran.
r-project.org/package=e1071).

Correlation between phosphorylation levels across different samples
and conditions

We assessed coregulation of a pair of protein kinases by measuring the correlation between
phosphorylation of their regulatory phosphosites across conditions (Wilkes et al., 2015) or
tissue samples (Mertins et al., 2016) of phosphoproteomic experiments. Both experiments
consisted of a table of log2 fold-changes for each quantified phosphosite across the conditions
or samples, measuring the relative intensities of the phosphosite as detected by mass spec-
trometry under each condition or sample versus a reference. The data for each experiment
was quantile normalized by condition or sample (Bolstad et al., 2003).

20

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 16, 2019. ; https://doi.org/10.1101/703157doi: bioRxiv preprint 

https://cran.r-project.org/package=e1071
https://cran.r-project.org/package=e1071
https://doi.org/10.1101/703157
http://creativecommons.org/licenses/by/4.0/


Within an experiment, for each pair of phosphosites on two protein kinases, we calculated
the correlation between fold-changes of the sites across all conditions or samples for which
a quantification was available, where at least five such conditions or samples existed. We
first removed any conditions in which one of the kinases was under chemical inhibition. The
correlation was calculated using Spearman’s rho and a p-value estimated for the correlation
via the asymptotic t approximation. p-values were then −log10 -transformed; in the case
that the estimated p was 0, we set the final value to 6. This value was then scaled by the
functional scores of both sites such that only two sites with high functional scores and a
high phosphorylation correlation would have a high final coregulation score. We then took
the maximum such score across all site pairs as the final coregulation score for the kinase
pair. Finally, the coregulation scores for all kinase pairs were normalized according to the
maximum and minimum values of all pairs.

Prediction of regulatory relationships

Training and validation set

We retrieved a high-confidence set of known, directed kinase-kinase regulatory relationships
from OmniPath (Türei, Korcsmáros, and Saez-Rodriguez, 2016) (fetched Jan 22, 2018 via
the Python API). To ensure the quality of the relationships we only used those that were
supported by at least two sources, providing a “positive” set of 825 relationships. It is
more challenging to define a “negative” set of regulatory relationships, given the difficulty in
unequivocally demonstrating a lack of regulation under all conditions. However, we assume
that regulatory relationships are rare and that, given a random pair of kinases, there is
unlikely to be a regulatory relationship between them. Working under this assumption, we
constructed negative sets by randomly sampling from the space of possible relationships. To
further reflect the presumed sparsity of the true network, we chose to construct a negative
set that was 8 times larger than the positive set, which provided a slight improvement
in prediction performance. This value was arbitrarily chosen to balance the diminishing
performance boost from increasing negative set size with the rapidly increasing memory
resources required to perform the training computations.

Feature validation

We evaluated the performance of the following features for predicting protein kinase reg-
ulatory relationships: maximum PSSM score, maximum substrate phosphosite functional
score, DCG, phosphoproteomic coregulation scores, tissue RNA coexpression, and regulator
and substrate tissue expression specificity. Each feature was evaluated 100 times against a
randomly sampled two-thirds of the positive set and an 8-fold larger randomized negative
set.

Model Training and Prediction

In order to build a final predictive model of kinase-kinase regulatory relationships, we em-
ployed the Bayesian Additive Regression Trees (BART) method (Chipman, George, and
McCulloch, 2010). Briefly, BART is a “sum of trees” method, in which a series decision trees
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are fit to the data and used to classify data. Each tree consists of binary decision nodes
reflecting a decision based on one of the features, e.g. “max. PSSM score > 0.75” or “GTEx
coexpression < 0.3” . The terminal nodes of the tree contain values which, once selected,
contribute to the final classification value; in a sum-of-trees model, the decision values from
each tree are summed to produce a value upon which this final classification is made. The
BART method, in particular, uses a fixed number of trees, on which it places regularizing
priors that ensure that each tree is a “weak learner” , i.e. each tree contributes a small
fraction of the final classification value. It does this by restricting the tree depth, shrinking
terminal leaf nodes to the median, and adding noise to avoid over-fitting. Trees are fit to
the data through Bayesian approaches to estimating the parameters, such as Markov-Chain
Monte Carlo (MCMC) back-fitting (Chipman, George, and McCulloch, 2010).

We applied the BART model to our data as implemented in the R package “bartMachine”
version 1.2.3 (Kapelner and Bleich, 2016). A notable extension of the original method pro-
vided by bartMachine is to incorporate data missingness into predictions (Kapelner and
Bleich, 2015). For example, a missing phosphoproteomic coregulation value might be in-
formative as it would indicate that phosphosites on the two kinases were never detected in
the same conditions by the mass spectrometer, and thus a decision tree node asking “is the
coregulation score missing?” can contribute to the final classification. We used this feature
by enabling the “use_missing_data” and “use_missing_data_dummies_as_covars” param-
eters and disabling the “replace_missing_data_with_x_j_bar” and
“impute_missingness_with_x_j_bar_for_lm” parameters. These settings in effect disable
any imputation of missing data and produce new “dummy” variables that indicate whether a
value is missing, which can then be incorporated in the decision trees. Model hyperparame-
ters including the number of trees were determined using the built-in 5-fold cross-validation
routine provided by the “bartMachineCV” function.

In addition to the quantitative features listed in the previous section, we also included the
kinase types (serine/threonine versus tyrosine) for the regulating kinase and the substrate
kinase as additional features. We evaluated the BART model on these features using the full
“positive” training set and random “negative” training sets as outlined above. To this end,
we performed 20 iterations of 3-fold cross-validation, using a different random “negative” set
each iteration. We evaluated the true-positive rate, false-positive rate, the precision (positive
predictive value) and the recall (sensitivity) of the model based on the calculated posterior
probabilities assigned to the validation set. Performance metrics were calculated using the
R package ROCR (Sing et al., 2005).

In order to produce our final classifications, we trained 100 different BART models to the
training set, each with a different random instantiation of the “negative” set. Each model was
then used to produce a posterior probability of a regulatory relationship for all kinase-kinase
pairs. Finally, we took the mean of the 100 posterior probabilities for each relationship as
the final classification score.
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Network clustering and pathway enrichment

The resulting network was divided into clusters using the method of Blondel et al. (2008)
as implemented by the R package “igraph” in the function “cluster_louvain” (Csárdi and
Nepusz, 2006). This is a heuristic method that identifies clusters by optimizing modularity.
The algorithm can be divided into two steps: first, a cluster is assigned to each node in the
network. Next, one node i is iteratively re-assigned to each of its neighbors’ clusters and the
impact on the network’s modularity is assessed. Node i is then re-assigned to the cluster
where its inclusion results in the greatest gain in modularity. This process is repeated until
no gain in modularity can be achieved, that is, a local maximum has been found. In the
second step, a new network is constructed from the identified clusters. Edge weights between
the nodes, including self-loops, are computed by summing over the weights of the links that
connect nodes in each cluster. The first step is then reapplied on the resulting network.
These two steps are then repeated iteratively to improve the cluster assignments.

Our aim is to predict regulatory relationships between kinases and as a result our network is
directed, that is up to two directed edges connect each pair of kinases, one for each direction
of regulation. As this method only clusters networks with at most one edge connecting each
node pair, we retained the higher-probability edge of the two linking each pair of nodes. Prior
to clustering, we removed regulatory relationships with posterior probabilities less than 0.5
in order to only retain high confidence predictions. The remaining probabilities were then
max-min scaled to derive edge scores on the scale 0.0 to 1.0.

In order to determine if the derived clusters reflected known physiological relationships, we
tested the clusters for enrichment in pathway annotations from the Reactome database (Fab-
regat et al., 2018). For the clusters with 10 or more kinases, we tested the relative frequency
of pathway annotations of the kinases assigned to the cluster relative to the frequency of
those annotations for the entire set of 504 kinases using the hypergeometric test as imple-
mented by the ReactomePA package for R (Yu and He, 2016). We adjusted test p-values
using the Benjamini-Hochberg method for controlling the false-discovery rate (Benjamini and
Hochberg, 1995) and we set a critical value of 0.05 for testing significance. 311 kinases were
annotated in Reactome V. 62 (accessed from: http://reactomecurator.oicr.on.ca/download/
archive/62.tgz, 13 March 2019) with 6771 pathway annotations altogether.

Comparison of distances between pathway annotations within and
across clusters

We extracted the human protein-protein interaction network from IntAct (version: Oct.
2018) (Orchard et al., 2014). Additionally, on this network, we integrated the human phos-
phorylation events extracted from SIGNOR, PhosphoSitePlus and OmniPath (Perfetto et
al., 2015; Hornbeck et al., 2015; Türei, Korcsmáros, and Saez-Rodriguez, 2016), resulting in
a network containing 17089 nodes and 166757 edges. Given a pair of pathway annotations,
we computed the mean of all shortest path distances between the proteins annotated for the
pair.

These distances were divided into two sets: distances between pathways that are enriched
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in the same cluster (n = 811) and distances between enriched pathways across clusters
(n = 1019). Furthermore, we excluded distances between pathways that shared kinases,
which reduced our within-cluster set to 67. We used the Wilcoxon rank sum test to determine
if there was a significant difference in distance between the two sets.

Comparison of Modularity between Our and Random Networks

To assess the modularity of our network we compared it to a set of randomly generated
networks. Our reference network was generated by discarding all edges with probability
lower than 0.5. The remaining edges were then min-max scaled to get an edge weight
distribution of values between 0 and 1. A set of randomized networks (n = 1000) with the
same degree distribution as the reference network were generated with the “sample_degseq”
function in the igraph package. The “vl” method was used for network generation (Viger
and Latapy, 2005). At each randomization, the edge weights of the reference network were
shuffled and assigned to the randomized network. These were then clustered as described
above. The modularity of the of the clustering was calculated with “modularity.igraph” as
implemented in igraph (Clauset, Newman, and Moore, 2004; Csárdi and Nepusz, 2006):

Q =
1

2m

(∑
ij

(
Aij −

kikj
2m

)
δ(ci, cj)

)

Where m is the number of edges in the network, A is the adjacency matrix, k denotes the
degree of the nodes in question and δ is an indicator function returning 0 if nodes i and j
are both members of cluster c , and 1 otherwise. Applying this procedure to the random
networks provided us with an empirical distribution of modularity values from which we
derived an empirical p-value for the modularity of the reference network.

Prediction of phosphosite functional sign

As a prerequisite for predicting the sign (activating versus inhibiting) of regulatory relation-
ships, we first built a model to classify individual phosphosites as having either an inhibitory
or activating effect on the substrate protein. As features, we used: the percentage position
of the site relative to the start and end of the protein kinase domain (i.e. between 0 and
1 for sites that fall within the domain); the percentage position of the site along the pro-
tein’s length; the domain (if any) in which the phosphosite lies, including, but not limited
to, protein kinase domains; the phosphosite residue (serine/threonine or tyrosine); whether
or not the substrate is a tyrosine kinase; an estimate of secondary sequence disorder, as
calculated by DISOPRED (Ward et al., 2004); and the −log10p-value of the site being in a
phosphorylation hot-spot (Strumillo et al., 2019).

To train and validate our model, we fetched a list of human protein kinase phosphosites
annotated as inducing or inhibiting activity from PhosphoSitePlus (Hornbeck et al., 2015).
We built our model using BART as described above. We evaluated model performance via
20 iterations of 3-fold cross-validation on a training/validation set of 50 activating and 50
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inhibiting phosphosites, sampled randomly each iteration. The final model was trained using
the full training set and posterior probabilities of a phosphosite being an activating site were
calculated.

We next found the probability cutoff that maximizes the Matthew’s Correlation Coefficient
(MCC) for classifying sites as either activating or inhibiting:

MCC =
TA× TI − FA× FI√

(TA+ FA)(TA+ FI)(TI + FA)(TI + FI)

where TA , TI , FA , and FI are the numbers of true activating, true inhibiting, false
activating and false inhibiting predictions at a given cutoff. Values above the cutoff were
taken as “activating” predictions and those below were “inhibitory” predictions. The cutoff
that maximizes the MCC was then subtracted from all predicted probabilities, yielding a
score of less than zero for “inhibitory” predictions and greater than zero for “activating”
predictions. Finally, these scores were rescaled so that the largest absolute value was 1 while
maintaining a midpoint at zero.

Prediction of regulatory sign

We followed a similar procedure for classifying kinase-kinase regulatory relationships as being
activating or inhibiting. The predictive features that we used were: the regulator and sub-
strate protein kinase types (serine/threonine versus tyrosine kinases); the signed functional
score; a signed formulation of the DCG; and a signed coregulation score. To derive a signed
functional score, we simply assigned the sign of the phosphosite sign prediction (negative for
“inhibiting” , positive for “activating”) to the site’s functional score. We then used the signed
formulation of the substrate’s highest functional score as the final feature.

Signed Discounted Cumulative Gain

We modified the DCG calculation to determine whether a regulating kinase tends to “find”
inhibitory or activating phosphosites on the substrate kinase. To achieve this, we applied a
DCG-like calculation to the signed functional scores, where a positive sum would indicate
an activating relationship and a negative sum would indicate an inhibitory one.

If the substrate phosphosites with the highest PSSM scores tend to have high functional
scores with the same sign, the initial steps of the DCG cumulative sum will move in one
direction. However, if the substrate has many sites and the predicted signs of the sites are
unevenly distributed, the sheer number of sites alone would overcome the initial signal from
the high PSSM-scoring sites. For example, if the substrate has 3 predicted inhibitory sites
which all have high PSSM scores for the regulator and 10 predicted activating sites that have
low PSSM scores (but high functional scores), the final DCG on the signed functional scores
would ultimately be positive regardless of the site-ordering by PSSM. Thus, we formulated
the signed DCG in terms of the most extreme value reached by the sum.

We begin, as with the standard DCG, by ranking the n substrate sites according to decreasing
PSSM scores (s, as described above). This produces an ordered set of their signed functional
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scores, F ∗ = {F ∗1 , F ∗2 , ..., F ∗i , ..., F ∗n−1, F ∗n} . We then calculate a partial DCG on this set, up
to the index that produces the largest absolute sum:

DCG∗ =

j∑
i=1

F ∗i
log2(i+ 1)

j = arg max
k

(∣∣∣∣∣
k∑

i=1

F ∗i
log2(i+ 1)

∣∣∣∣∣
)
≤ n

We then normalize DCG∗ against the most extreme value of the same sign possible for
that substrate, retaining the sign. That is, if DCG∗ < 0 we rank the substrate sites by
increasing signed functional score to find DCG∗min, the most extreme negative sum possible
for the substrate; and otherwise we rank the sites by decreasing signed functional score to
find DCG∗max, the most extreme positive sum possible. Thus,

nDCG∗ =

{
DCG∗/DCG∗max DCG∗ > 0

−DCG∗/DCG∗min DCG∗ < 0

Signed coregulation score

In order to produce a signed coregulation score, we followed the same procedure described
above for the coregulation score. However, rather than using the p value of the correlation
test, we used the signed correlation statistic (Spearman’s rho). In order to make the test
statistics comparable in spite of differing numbers of data points (i.e. number of conditions or
samples in which two phosphosites have both been quantified), we z-transformed the scores:

z =

√
n− 3

1.06
× artanh(r)

where n is the number of coquantified conditions/samples for the pair of sites and r is the
estimated correlation coefficient. In order to isolate correlations between likely regulatory
sites, we then scaled z by the signed functional scores of the two sites. Finally, for a given
pair of protein kinases, we took the most extreme scaled z value as their signed coregulation
score.

In calculating these signed coregulation scores, we encountered cases that are inconsistent
with a direct regulatory relationship between one protein kinase and another that is governed
by a functional phosphosite on the regulator. In particular, in a direct regulatory relationship,
the sign of the functional site on the regulator must be the same as the sign of the correlation.
For example, if a phosphosite on the regulator is inhibitory (negative), a positive correlation
of phosphorylation state with a substrate functional site could only occur through the activity
of a third protein kinase (although we note that in kinases with more complicated rules of

26

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 16, 2019. ; https://doi.org/10.1101/703157doi: bioRxiv preprint 

https://doi.org/10.1101/703157
http://creativecommons.org/licenses/by/4.0/


multi-site regulation, such correlations might be possible). In order to better discriminate
strong signals of coregulation, we therefore removed site pairs in which the sign of regulator’s
site was incoherent with the sign of the correlation.

Training and validation of the sign predictor

We built a predictive model of regulatory sign from these features using BART as described
above. As a training and validation set, we gused 503 signed regulatory relationships (394
activating, 109 inhibitory) between protein kinases from the OmniPath database that were
supported by at least two data sources. The model was validated via 20 iterations of 3-
fold cross-validation, where each iteration used a different random sample of 109 activating
relationships for the training/validation set.

We built 20 iterations of the final model using similar random instantiations of the training
set. Finally, for each directed kinase-kinase pair, we assigned the mean posterior probability
produced by these 20 models as a final regulatory sign score, where a higher value would
indicate an activating relationship and a lower score would predict an inhibitory relationship.
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• Table S1: Features used to predict phosphosite regulatory signs (Related to Figure 3a)

• Table S2: Phosphosite regulatory sign scores (Related to Figure 3b)

• Table S3: Features used to predict regulatory relationships (Related to Figures 1 and
2)

• Table S4: Kinase-kinase regulatory relationship and regulatory sign predictions (Re-
lated to Figures 4 and 5)

• Table S5: Features used to predict kinase-kinase regulatory sign (Related to Figure 3)

• Table S6: Protein kinase cluster assignments (Related to Figure 4e)
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• Table S7: Network cluster pathway enrichment (Related to Figure 4e)
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Figure S1: a) Area Under the ROC Curve (AUC) distributions for the edge features and
the final predictor across all iterations of cross-validation. b) The modularity of the network
(red, dashed line) was significantly higher than expected given random networks with the
same degree distribution (cumulative distribution, blue line; the black dashed line shows
a cumulative probability of 0.95). c) Pathways associated with the network clusters via
statistical enrichment are more closely related to other pathways within the same cluster
than with pathways associated with the other clusters.
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Figure S2: a) Network predictions are dominated by relationships involving under-studied
protein kinases. Filtering the network to include only kinases with higher numbers of associ-
ated research articles significantly reduces the numbers of novel predictions. b) A correlation
between the top rank of a known relationship in the predictions and the number of citations
linked to a protein kinase indicates that some study bias is retained.
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