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ABSTRACT 42 

Simple multilinear methods, such as partial least squares regression (PLSR), are effective 43 

at interrelating dynamic, multivariate datasets of cell–molecular biology through high-dimensional 44 

arrays. However, data collected in vivo are more difficult, because animal-to-animal variability is 45 

often high, and each time-point measured is usually a terminal endpoint for that animal. 46 

Observations are further complicated by the nesting of cells within tissues or tissue sections, which 47 

themselves are nested within animals. Here, we introduce principled resampling strategies that 48 

preserve the tissue-animal hierarchy of individual replicates and compute the uncertainty of 49 

multidimensional decompositions applied to global averages. Using molecular–phenotypic data 50 

from the mouse aorta and colon, we find that interpretation of decomposed latent variables (LVs) 51 

changes when PLSR models are resampled. Lagging LVs, which statistically improve global-52 

average models, are unstable in resampled iterations that preserve nesting relationships, arguing 53 

that these LVs should not be mined for biological insight. Interestingly, resampling is less 54 

discriminatory for multidimensional regressions of in vitro data, suggesting it is unnecessary when 55 

replicate-to-replicate variance is low. Our work illustrates the challenges and opportunities in 56 

translating systems-biology approaches from cultured cells to living organisms. Nested resampling 57 

adds a straightforward quality-control step aiding the interpretability of in vivo regression models. 58 

  59 
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INTRODUCTION 60 

 Modern biology and physiology demand rich, quantitative, time-resolved observations 61 

obtained by different methods1. To analyze such datasets, statistical “data-driven” modeling2 62 

approaches have been productively deployed in vitro to examine network-level relationships 63 

between signal transduction and cell phenotype3–9. One class of models uses partial least squares 64 

regression (PLSR) to factorize data by the measured biological variables10. Linear combinations 65 

are iteratively extracted as latent variables (LVs) that optimize the covariation between 66 

independent and dependent datasets to enable input-output predictions. Highly multivariate data 67 

are efficiently modeled by a small number of LVs because of the mass-action kinetic processes 68 

underlying biological regulation11. 69 

 The success of PLSR at capturing biological function extends to nonlinear derivatives12 70 

and structured multidimensional data arrays13 (tensors) from cell lines. By contrast, in vivo 71 

applications of PLSR have not gone beyond qualitative classification of inputs or outcomes14–17. 72 

The gap is unfortunate, because in vivo studies are the gold standard to compare phenotypes across 73 

species18,19, disease models20,21, and laboratories22–26. Animal surrogates can offer insight into the 74 

(patho)physiologic function of individual proteins, but interpreting the consequences of in vivo 75 

perturbations is complicated27,28. Applying PLSR quantitatively to in vivo data may better identify 76 

the underlying networks that, when perturbed, yield clinically relevant phenotypes. 77 

 For predictive modeling, there are many hurdles to using PLSR- and other LV-based 78 

approaches with in vivo data. Unlike spectroscopy (where PLSR originated10) or experiments in 79 

cultured cells, variation among in vivo replicates is often large even within inbred strains29–31, and 80 

this uncertainty does not get transmitted to standard models built from global averages. Including 81 

all replicates fixes the problem but creates others related to crossvalidation32 and the nesting of 82 
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replicates in the study design33. In vivo data are typically grouped by replicate within a time point 83 

but are unpaired between time points, complicating model construction. An open question is 84 

whether the combinatorics of replicated, multivariate in vivo datasets can be tackled 85 

algorithmically within a multidimensional PLSR framework. 86 

 In this study, we apply computational statistics34 to the construction and interpretation of 87 

in vivo PLSR models built from multidimensional arrays (Fig. 1). Replicate-to-replicate 88 

uncertainty is propagated by resampling strategies that maintain the nesting relationships of the 89 

data acquisition. Nested resampling separates robust latent variables, which arise regardless of 90 

replicate configuration, from those that are statistically important in the global-average model but 91 

fragile upon resampling. Interpretations of robustness are more conservative when nested 92 

resampling is executed by bootstrapping (a leave-one-in approach) than by jackknifing (a leave-93 

one-out approach). By contrast, neither is especially informative at discriminating latent variables 94 

when applied to a highly reproducible35 multidimensional dataset collected in vitro, bolstering the 95 

claims of earlier studies with cultured cells3–9. By leveraging the structure of multidimensional 96 

arrays, nested resampling provides a rapid numerical means to incorporate the uncertainty of in 97 

vivo observations into data-driven models without violating their mathematical assumptions. 98 

 99 

RESULTS 100 

We sought an implementation of PLSR that robustly analyzes in vivo datasets comprised 101 

of temporal, multiparameter, and interrelated responses to perturbations. At the core of a PLSR 102 

model are its LVs (alternatively, principal components), which capture separable covariations 103 

among measured observations2,36. Interpreting LV features—for example, a “score” related to a 104 

condition or a “weight” (“loading”) related to a measured observation—is aided by computational 105 
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randomization approaches that build hundreds of null models from the same data but without any 106 

true structure13,37. Scores and loadings that are similar between the null model and the actual model 107 

indicate data artifacts (biases, batch effects, etc.) that should not be used for hypothesis generation. 108 

Thus, by systematically building many alternative models, the randomization approach 109 

contextualizes the meaning of the true model. 110 

We reasoned that a conceptually analogous approach might be useful for handling in vivo 111 

datasets that are inherently more variable than is typical for PLSR31,32. Iterative leave-one-out 112 

approaches such as jackknifing38 or crossvalidation10 are established approaches for omitting 113 

individual conditions during PLSR training and validation. Unexplored is whether there could be 114 

value in adapting such a strategy to replicates rather than conditions. To resample replicates by 115 

jackknifing, one biological replicate (i.e., animal) is randomly omitted from each condition. All 116 

observations from that replicate are removed as a group to reflect the nesting relationships within 117 

the dataset. After one replicate is left out, averages are recalculated and a resampled PLSR model 118 

is built. The distribution of hundreds of jackknifed iterations indicates the extent to which the 119 

global-average model requires all of the data available. 120 

Reciprocally, one could ask whether the global-average model is sufficiently reconstructed 121 

from any of the data by using bootstrapping instead of jackknifing. For bootstrap resampling, the 122 

nested observations from one biological replicate (animal) are randomly selected from each 123 

condition to build an n-of-one dataset that is modeled by PLSR. As with jackknife resampling, 124 

hundreds of iterations are compiled, yielding a bootstrap distribution of models and LVs based on 125 

a single instance of the data. Together, nested jackknife–bootstrap resampling should provide 126 

numerical estimates for the fragility and robustness of PLSR models constructed from global-127 

average data with high inter-replicate variance. 128 
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The premise of nested resampling was tested in three contexts. First, we used a 129 

multidimensional dataset from Bersi et al.39 to build a new PLSR model, which warranted 130 

reinterpretation after nested resampling. We next tested general applicability of the approach by 131 

repurposing in vivo data from Lau et al.14 to construct a second multidimensional PLSR model for 132 

nested-resampling analysis. Last, we asked whether the same tools were similarly informative 133 

when applied to an existing multidimensional PLSR model from Chitforoushzadeh et al.13, which 134 

was calibrated with highly reproducible data from cultured cells. The results collectively support 135 

nested resampling as a useful complement to PLSR models applied to in vivo settings when 136 

biological variability is large. 137 

 138 

Nested resampling uncovers PLSR model fragilities missed by randomization 139 

In the study by Bersi et al.39, ApoE-/- mice (used for their highly maladaptive hypertension-140 

induced vascular remodeling40) were continuously administered Angiotensin II (AngII) and 141 

evaluated for enzymatic, cellular, and mechanical changes in four regions of aortic tissue (Table 142 

1). Enzymatic–cellular (immuno)histology was collected at three time points and mechanical data 143 

at five time points over 28 days along with baseline controls (N = 2–7 animals; Fig. 2). For 144 

multidimensional PLSR modeling, data were separated by histological (input) and mechanical 145 

(output) data (Fig. 1) and standardized to predict mechanical metrics from histological and 146 

immunohistochemical data (see Methods). The working hypothesis of the model was that 147 

regionally disparate inflammatory and enzymatic changes in the aorta predictably drive differential 148 

changes in tissue mechanical properties. 149 

 LVs were iteratively defined for the multidimensional arrays by established 150 

approaches13,41, and the model root mean squared error (RMSE) of prediction was minimized with 151 
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four LVs (Fig. 3a). By leave-one-out crossvalidation, we found that standardized predictions of 152 

the four-LV model were accurate to within ~75% of the measured result when averaged across all 153 

conditions (Fig. 3b), suggesting good predictive capacity. The four LVs of the multidimensional 154 

PLSR model thereby parse the regional, temporal, and molecular–cellular–mechanical 155 

covariations in the global-average dataset (Supplementary Fig. S1). 156 

For LV interpretation and hypothesis generation from the Bersi et al.39 dataset, we 157 

compared existing randomization methods13,37 to nested resampling. Across the four LVs, nearly 158 

all mechanical observations were weighted beyond the standard deviation of random null models 159 

(Fig. 4a,b), supporting interpretation of the weights. For example, inner radius was positively 160 

weighted on LV3 (ir; Fig. 4b) whereas thickness measures were negatively weighted on LV3 (H 161 

and h; Fig. 4b), suggesting that LV3 may discriminate aneurysmal dilatation, which predisposes 162 

to aortic dissection and rupture42, and fibrotic thickening, which predisposes to myocardial 163 

infarction and stroke via increased arterial stiffness43. However, interpretations changed when 164 

biological variability of the underlying in vivo data was considered through nested resampling 165 

(Fig. 4c–f). Both jackknifed and bootstrapped resampling suggested that LV3 and LV4 were too 166 

unstable to justify interpreting any parameters in these LVs (Fig. 4d,f). LV1 and LV2 yielded 167 

nonzero weights that were more robust, even retaining certain thickness and outer-diameter 168 

observations that were excluded by randomization (H, od, and OD; Fig. 4c). However, nested 169 

resampling revealed considerable uncertainty in the weights of LV3 and LV4 (Fig. 4d,f), arguing 170 

against any quantitative comparison of mechanical observations along these LVs. In contrast to 171 

standard performance metrics for PLSR (Fig. 3 and 4a,b), nested resampling provisioned the Bersi 172 

et al.39 model as fragile in its lagging LVs compared to the robustness of LV1 and LV2. 173 
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One possible explanation for such high uncertainty is that some resampled models might 174 

switch the sign of an LV weight together with the associated LV score, which mutually offset as a 175 

degenerate solution (Fig. 1). We accounted for sign switching by looking for symmetric bimodal 176 

distributions about zero and flipping signs to the dominant mode when switching was evident. 177 

Some bimodal scores were asymmetrically distributed with a near-zero mode (e.g., the distribution 178 

of LV1–LV2 scores for the DTA condition; Supplementary Fig. S2), indicating that their LV 179 

assignments were heavily dependent on the resampling iteration. For LV3 and LV4, however, the 180 

distribution of scores was broad among resampling replicates and mostly indistinguishable from 181 

zero (Supplementary Fig. S2). Uncertainty in the trailing LVs may stem from model iterations 182 

requiring less than 4 LVs to explain the variance in that iteration. The analysis further supports 183 

that the lagging LVs of this model do not contain prevailing trends in the data but instead capture 184 

a specific replicate configuration of the animals used. 185 

 186 

Data pairing does not significantly alter results of nested resampling 187 

In the Bersi et al.39 study, inbred animals sacrificed at several time points were doubly used 188 

to collect enzymatic–cellular histology (X) and mechanical data (Y; Fig. 1). Possibly, the paired 189 

animal-by-animal covariation of histology and mechanics was greater than the condition-wide 190 

averages. We sought to evaluate the relative importance of within-animal pairing between 191 

independent and dependent datasets by applying nested resampling. To do so, we built a second 192 

PLSR model using only the time points with paired enzymatic–cellular and mechanical data:  0, 193 

4, 14, and 28 days (Fig. 2). For the second model, resampling was coupled between X and Y to 194 

retain the paired information of each animal selected by bootstrapping. The interpretation of 195 
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bootstrap-resampled time weights for the paired model was then compared with the original 196 

unpaired model to determine if conclusions were fundamentally different. 197 

 We found that the LV1–LV2 time weights obtained by paired sampling were 198 

indistinguishable from those obtained by unpaired sampling (Fig. 5, upper). Relative to their 199 

corresponding global-average model, both analyses indicated that the dynamics associated with 200 

LV1 and LV2 were robust, consistent with the prior assessment of mechanical weights for these 201 

LVs (Fig. 4). Histological time weights were similarly reliable for LV3 and LV4, but mechanical 202 

time weights were highly variable and largely overlapping with zero (Fig. 5, lower). No 203 

statistically significant differences were identified between paired and unpaired time weights in 204 

LV3 or LV4 (p > 0.25 following two-way ANOVA with Tukey’s post-hoc test for differences 205 

between paired–unpaired or independent–dependent time weights), indicating that pairing does 206 

not add statistical power to the trailing LVs for this dataset. More generally, the analysis suggests 207 

that unpaired in vivo designs may be sufficient for nested resampling to assess the stability of 208 

model components. 209 

 210 

Generality of nested resampling to other multidimensional in vivo and in vitro datasets 211 

The LV fragilities revealed by nested resampling could be specific to the Bersi et al.39 212 

dataset. We thus sought another in vivo study comprised of multiple molecular–cellular 213 

measurements, time points, and animals where nested replicate information could be recovered 214 

confidently. Raw data was obtained from Lau et al.14, who examined the molecular and cellular 215 

inflammatory response of the small intestine to the cytokine tumor necrosis factor α (TNFα). 216 

Animals (N = 5) were administered one of two doses of TNFα and sacrificed at one of six time 217 

points after administration. From each animal, two intestinal regions were analyzed for signaling 218 
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by Luminex phosphoproteomics, cell proliferation by immunohistochemistry, and overall cell 219 

death by western blotting (Table 2). The data were used previously to classify cell-fate 220 

responses14—we asked here whether cell proliferation and death were predicted quantitatively 221 

from the time-resolved phosphoproteomic observations. If so, then nested resampling could 222 

address how robust or fragile those predictions were to the animals included. 223 

 We organized and standardized the data (Supplementary Fig. S3), building a single PLSR 224 

model of the global averages along with 500 null models by randomization. For the Lau et al.14 225 

dataset, a three-LV model was optimal and yielded good predictive accuracy (Fig. 6). LV1 of the 226 

global-average model did not discriminate between tissues or outcomes, but LV2 separated cell 227 

proliferation (ph3) vs. death (cc3) readouts and LV3 stratified duodenal vs. ileal segments of the 228 

intestine (Supplementary Fig. S4). Furthermore, randomization suggested that the ph3–cc3 229 

distinction along LV2 was far outside chance expectation (Fig. 7a, left). Nested resampling, 230 

however, revealed a pronounced fragility of output weights when accounting for inter-replicate 231 

variability. Both jackknifing and bootstrapping eliminated any discrimination along LV2 (Fig. 7a, 232 

middle and right), undermining model interpretations based on it. Similarly, the time-dependent 233 

behavior associated with LV2 and LV3 (Fig. 7b) mostly reverted to near zero after bootstrap 234 

resampling (Fig. 7c). Therefore, as with the Bersi et al.39 study, the lagging components of this 235 

multidimensional PLSR model capture in vivo replicate instabilities instead of salient trends in the 236 

data. 237 

 It is possible that nested resampling excludes lagging LVs in any multidimensional dataset 238 

irrespective of its origin. To determine if fragility is tied to the higher biological variability of in 239 

vivo datasets, we reassessed an earlier multidimensional PLSR model built from global averages 240 

of in vitro measurements. The model of Chitforoushzadeh et al.13 predicts gene-expression cluster 241 
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dynamics from intracellular signaling in a colon-cancer cell line stimulated with combinations of 242 

cytokines and growth factors3,35,44. Cell extracts (N = 2–6) were collected at three or 13 time points 243 

and measured transcriptomically by microarray or for signaling by various methods (Table 3). The 244 

prior hypothesis was that quantitative predictions of gene-expression dynamics would uncover 245 

novel upstream signaling regulators of transcriptional programs13. 246 

 After obtaining the original dataset and confirming the nested replicate structure, we 247 

modeled the mean dataset (Supplementary Fig. S5) standardized as before13. The global-average 248 

model was optimally decomposed with four LVs, and randomizing 500 null models reproduced 249 

all the meaningfully weighted parameters (e.g., gene-cluster weights) described in the original 250 

study (Fig. 8a,b). Remarkably, when nested resampling was applied to this PLSR model, the 251 

conclusions were largely unaltered. Cluster weights were retained in ~90% of LV2 and LV3 and 252 

even ~56% of LV4 (Fig. 8c–f), bolstering prior interpretations of this PLSR model along with 253 

others built upon highly reproducible in vitro data3–9,13. 254 

 Using all three models resampled here, we plotted RMSE as a function of increasing LV 255 

for the global-average model compared to its mean jackknife or bootstrap replication. For the 256 

Chitforoushzadeh et al.13 model built from in vitro data, jackknife and bootstrap resamplings were 257 

superimposable with the global average (Fig. 9a). However, for the two in vivo studies, the 258 

resampled variants were consistently less accurate than the corresponding global average (Fig. 259 

9b,c). Taken together, the results indicate that nested resampling is an effective strategy—distinct 260 

from prevailing methods—to benchmark meaningful LVs extracted from in vivo datasets. 261 

 262 

DISCUSSION 263 
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When applied to in vivo PLSR models, nested resampling is an effective way to hone in on 264 

latent variables that are robust to the replicate fluctuations of individual inbred animals. For high-265 

variance observations, the method gives information complementary to that obtained by condition-266 

specific jackknifing38 or crossvalidation10. In building hundreds of instances around the global-267 

average model, nested resampling does not rely on any further assumptions to execute. However, 268 

it is important to recognize the nesting relationships within a study design and ensure that they are 269 

retained during resampling. The diversity of study designs33 precludes a universal software for 270 

nested resampling, but we provide code for the specific implementations here, which can readily 271 

be adapted for other in vivo datasets (Supplementary File S1). 272 

 Normally, direct use of replicated data in PLSR is discouraged, because replicates inflate 273 

the number of observations and reduce the stringency of crossvalidation32. Resampling avoids data 274 

inflation but is minimally effective for latent-variable assessment when replicates are highly 275 

reproducible. The in vitro model13 resampled here uses data with a median coefficient of variation 276 

of ~11% (Ref. 44), which is too small to impact the latent variables of the model. In mice, however, 277 

phenotypic variability within inbred strains is typically 3–5 times greater31, competing with the 278 

biological effect size of many studies. Replicates are essential for more reliable central estimates 279 

and statistical power45. This work shows how replicates can be repurposed to reflect better the 280 

internal variability of in vivo datasets and identify the robust vs. fragile components of regression 281 

models that are ordinarily limited to using replication indirectly. 282 

 The in vivo datasets modeled here used inbred strains of mice to minimize genotypic 283 

differences. Modeling outbred strains of animals31 or diverse human populations46 will involve 284 

very different approaches. Rather than averaging (followed by jackknife–bootstrap resampling), 285 

each individual will be better handled as a separate observation if the independent and dependent 286 
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data can be reliably paired to that individual. Data pairing may be particularly difficult when X 287 

and Y observations are collected at multiple time points. The paired-vs.-unpaired resampling 288 

comparison involving the Bersi et al.39 dataset (Fig. 5) provides a useful guide for determining 289 

when less conservative experimental designs (i.e., averaging without pairing) are acceptable. 290 

 The nested methods proposed here differ from prior resampling approaches that focus on 291 

defining observation sets for proper model selection47. Numerical Monte-Carlo simulations have 292 

a rich history in PLSR originating in chemometrics48,49. However, applications to replicated data 293 

have not been considered previously, likely because of the high reproducibility of measured 294 

chemical spectra. In nested resampling, the bootstrap and jackknife gauge different ends of latent-295 

variable robustness. Bootstrapping is highly conservative, evaluating whether any random draw of 296 

replicates yields essentially the same model. Latent variables that survive bootstrapping capture 297 

large, reproducible effect sizes and thus are highly robust. Conversely, jackknifing is a much 298 

weaker test of model fragility. Global-average relationships that disappear with jackknifing are 299 

severely underpowered and should be ignored or followed up with more replicates. Together, these 300 

established tools from computational statistics34 enable formal examination of data qualities that 301 

would otherwise be inaccessible by PLSR alone. 302 

 The concepts put forth here generalize to other data-driven approaches besides PLSR. For 303 

example, when classifying observations by support vector machines50, the handling of replicated 304 

observations is often heuristic. Heinemann et al.51 investigated the effects of replicate 305 

downsampling on classification by metabolomics data with small or large variance, but nesting of 306 

replicates within observations was not considered as we did. Nested resampling of PLSR models 307 

shares conceptual analogies with the method of random forests52 for decision tree classifiers. 308 

Individual decision trees are unstable in their predictions, but robustness is improved when training 309 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 16, 2019. ; https://doi.org/10.1101/703470doi: bioRxiv preprint 

https://doi.org/10.1101/703470
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 
 

data are randomly resampled to make ensemble classifications. Biological data in vivo are typically 310 

noisy and the number of observations is often limited, suggesting that some form of nested 311 

resampling would be beneficial for many data-driven methods seeking to identify molecular–312 

cellular drivers of organismal phenotypes. 313 

 A primary motivation for applying PLSR in biological systems is to simplify complex 314 

observations and generate testable hypotheses2,36. The latter goal is impossible when chasing latent 315 

variables that are statistically significant overall but fragile upon replication. By using all of the in 316 

vivo data available, nested resampling identifies where PLSR stops modeling effect sizes and starts 317 

fitting biologically noisy averages. It contributes to the ongoing effort to improve the 318 

reproducibility of models53 and preclinical research26,54. 319 

 320 

MATERIALS AND METHODS 321 

Experimental models 322 

 Three studies were selected in which an inflammatory agent was administered in vivo or in 323 

vitro and subsequent temporal and/or spatial analyses were performed13,14,39. First, source data 324 

were obtained from Bersi et al.39 in which male ApoE-/- mice were infused with Angiotensin II 325 

(AngII, 1000 ng/kg/min) via an implantable osmotic mini-pump for 4, 7, 14, 21, or 28 days. 326 

Following treatment, the aorta was harvested and separated into four regions: 1) the ascending 327 

thoracic aorta (ATA) spanning from the aortic root to the brachiocephalic artery, 2) the descending 328 

thoracic aorta (DTA) spanning from the left subclavian artery to the 4th or 5th pair of intercostal 329 

arteries, 3) the suprarenal abdominal aorta (SAA) spanning from the diaphragm to the left renal 330 

artery, and 4) the infrarenal abdominal aorta (IAA) spanning from the left renal artery to the iliac 331 

trifurcation. Vessels were cleaned, sutured, and mounted on an opposing glass cannula and 332 
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subjected to passive biomechanical testing without contribution from smooth muscle as previously 333 

described55. Briefly, vessels were preconditioned to minimize viscoelastic behavior of the material 334 

and then subjected to three fixed-length, pressure-diameter inflation tests and four fixed-pressure, 335 

force-length extension tests. Following testing, vessels were fixed in 10% neutral buffered 336 

formalin, embedded in paraffin, and sectioned and stained with Movat’s pentachrome, Picrosirius 337 

red, or Elastica van Gieson to quantify layer-specific matrix content. Additional slides were stained 338 

for CD3, CD45, CD68, MMP2, MMP12, or MMP13 expression. Details regarding region- and 339 

layer-specific matrix, inflammatory cell, and enzyme content can be found in the original 340 

publication39. Animal housing and experimental procedures were carried out in compliance with 341 

regulations and protocols approved by the Institutional Animal Care and Use Committee at Yale 342 

University. 343 

Passive mechanical properties of the tissue were quantified using a microstructurally-344 

motivated strain energy function assuming hyperelasticity. The analytical methods for determining 345 

mechanical metrics have been described in detail previously55. Briefly, biaxial Cauchy wall 346 

stresses were calculated as 347 

 𝐭 = 	−𝑝𝐈 + 2𝐅 *+
*𝐂
𝐅- (1) 348 

where 𝐭 is the Cauchy stress tensor, 𝑝 is the Lagrange multiplier enforcing incompressibility, 𝐈 is 349 

the second-order identity matrix, 𝐅 is the deformation gradient mapping spatial coordinates from 350 

a reference to deformed configuration, 𝐂 is the right Cauchy-Green deformation tensor (𝐂 = 𝐅-𝐅), 351 

and 𝑊 is a microstructurally-motivated strain energy density function reflecting contributions of 352 

matrix constituents to material behavior. Linearized biaxial material stiffnesses were determined 353 

in terms of the second derivative of 𝑊 with respect to deformations. These metrics, along with 354 
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associated loaded geometry, were evaluated at group-specific blood pressures and at estimated in 355 

vivo axial stretch values. 356 

 For the second study, source data were obtained from Lau et al.14 in which male C57BL/6J 357 

mice were injected with 5 or 10 µg TNFα by retro-orbital injection for 0.5, 1, 2, 4, or 8 hours. 358 

Following treatment, mice were euthanized, and two regions of the small intestine were harvested: 359 

1) the duodenum consisting of the 1 cm of area immediately distal to the stomach, and 2) the ileum 360 

consisting of the 3 cm of area immediately proximal to the cecum. Tissue samples were rinsed in 361 

PBS and lysed and homogenized in Bio-Plex lysis buffer or fixed in formalin for 362 

immunohistochemical analysis. Data characterizing apoptosis and proliferation were obtained by 363 

quantitative immunoblotting for cleaved caspase 3 (cc3) and by immunohistochemistry for 364 

phosphorylated histone 3 (ph3), respectively. Signaling data were obtained via Bio-Plex signaling 365 

analysis. The targets included pIκβα, pJnk, pMek1, pErk1/2, pRsk, pp38, pc-Jun, pAtf2, pAkt, 366 

pS6, pStat3, and Mek1, totaling 12 signaling targets. Details regarding the quantification of 367 

apoptosis, proliferation, and signaling are in the original publication14. Animal housing and 368 

experimental procedures were carried out in compliance with regulations and protocols approved 369 

by the Subcommittee on Research Animal Care at Massachusetts General Hospital. 370 

For the third study, source data were obtained from Chitforoushzadeh et al.13 in which HT-371 

29 cells were pretreated with interferon γ (IFNγ; 200 U/mL) for 24 hours and subsequently treated 372 

with various combinations and concentrations of TNFα, insulin, and epidermal growth factor 373 

(EGF) for 5 min, 15 min, 30 min, 1 hours, 1.5 hours, 2 hours, 4 hours, 8 hours, 12 hours, 16 hours, 374 

20 hours, or 24 hours. Signaling metrics included 12 proteins that were evaluated via kinase 375 

activity, protein phosphorylation, total protein, phospho-total ratio, zymogen amount, or cleaved 376 

amount. Proteins included ERK, Akt, JNK1, IKK, MK2, pMEK, pFKHR, pIRS1, caspase 8, 377 
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caspase 3, and EGFR. The combination of 12 proteins and multiple possible proteoforms (e.g., 378 

phosphorylated protein and total protein) yielded a total of 19 signaling metrics. Additionally, 379 

microarray profiling of HT-29 cells was performed on Affymetrix U133A arrays and organized 380 

by Cluster Identification via Connectivity Kernels (CLICK). Briefly, cells were pretreated with 381 

IFNγ (200 U/mL) for 24 hours before stimulation with TNFα (0, 5, or 100 ng/mL), insulin (0, 5, 382 

or 500 ng/mL), and EGF (0, 1, or 100 ng/mL) for 4, 8, or 16 hours. CLICK clustering of microarray 383 

data yielded 9 clusters for each condition and time point13. 384 

 For all studies, global averages were calculated as the mean among replicates. 385 

 386 

Multidimensional partial least squares modeling 387 

 Multidimensional PLSR was performed in MATLAB using version 2.02 of the NPLS 388 

Toolbox56 after dividing each study into independent and dependent datasets according to the 389 

stated hypothesis. Model variables for the three studies are listed in Tables 1–3 with associated 390 

abbreviations, methods of acquisition, sample sizes, and input–output classifications. The 391 

algorithm for PLSR has been described in detail previously with specific application to multi-392 

linear frameworks13,57. Briefly, PLSR is a simultaneous decomposition of two matrices where the 393 

scores of each decomposition are linearly related (Fig. 1). Various options exist for exact 394 

algorithms. The algorithm applied in this study is detailed below:  395 

1) Organize independent data into an i x j x k array X, where i is the number of experimental 396 

conditions, j is the number of time points, and k is the number of variables in the 397 

independent dataset. In parallel, organize the dependent data into an i x l x m array Y where 398 

l is the number of time points, and m is the number of variables in the dependent dataset. 399 
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Note that the algorithm requires the first dimension of each matrix to be equal but numbers 400 

of variables and time points need not be equal. 401 

2) Standardize the data by mean centering and/or variance scaling the data. Different 402 

standardization techniques can yield markedly different results58. For Bersi et al.39, only 403 

variance scaling across mode 3 was performed, and time 0 values were subtracted for a 404 

given condition and variable from all other corresponding time points within the same 405 

condition and variable such that regional differences are not considered at baseline. For 406 

Lau et al.14 and Chitforoushzadeh et al.13, variance scaling across modes 2 and 3 was 407 

performed. 408 

3) Initialize an i x 1 vector for the nth latent variable for the dependent condition scores, u, 409 

and the independent condition scores, t. Here, u is initialized by performing principal 410 

components analysis on the standardized residual Y matrix (which equals the original 411 

scaled Y matrix for the first LV) and setting u = principal component 1. The vector t is 412 

randomly initialized. 413 

4) Calculate variable and time weights for the independent data, w, by back projecting the 414 

independent data, X, onto u,  415 

  w = XTu (3) 416 

Back projection requires unfolding X into an i x (j*k) matrix, X. 417 

5) Update independent condition scores, t, by projecting X onto w, 418 

 t = Xw (4) 419 

6) Calculate variable and time weights for the dependent data, q, by back projecting the 420 

residual of the Y matrix onto t,  421 

 q = YTt (5) 422 
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Back projection requires unfolding Y into an i x (l*m) matrix, Y.  423 

7) Update dependent condition scores, u, by projecting the residual of Y onto q, 424 

 u = Yq (6) 425 

8) Calculate the difference in magnitude between the updated t from step 5 and the original t 426 

from step 3 (or the previously calculated t if on iteration 2 or more) and return to step 4 as 427 

long as the change in magnitude remains above a critical threshold (here, 10-10).  428 

9) Calculate the regression coefficient between the independent and dependent condition 429 

scores, 430 

 B = (TTT)-1TTU (7) 431 

where B is an n x n matrix where n is the number of the current LV. If the calculation is 432 

for the first LV, then B becomes a scalar calculated as b = (tTt)-1tTu. 433 

10) Calculate the residuals of X and Y by subtracting the decomposed matrices from the 434 

previous residual matrices. 435 

11) Complete steps 4 – 10 for the desired number of LVs using X and Yres. 436 

Statistical significance of variable weights was determined by calculating a null PLSR 437 

model in which raw data were shuffled within mode 1 (i.e., time and variable data were shuffled 438 

within each condition) and re-standardized, and the scores and weights recalculated according to 439 

the previously mentioned algorithm. Average scores and weights were calculated for 500 iterations 440 

of reshuffling, and meaningful scores–weights were considered to be those exceeding one standard 441 

deviation from the mean. The PLSR model was cross-validated using a leave-one-out approach in 442 

which predictions for one condition are calculated from parameters derived from the remaining 443 

conditions. The root mean squared error (RMSE) for the cross-validated predictions was calculated 444 
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with the addition of each LV, and the optimal number of LVs was determined by the number of 445 

LVs that minimized the RMSE in the global-average model. 446 

 447 

Nested resampling 448 

 Data subsets were generated by sampling individual replicates for each condition and time 449 

point by using a jackknifing (leave-one-out) approach or bootstrapping (leave-one-in) approach, 450 

and PLSR models were developed for each sampled dataset. Data were resampled 500 times with 451 

or without retention of data pairing by animal if pairing information was available. Replicate sizes 452 

per condition per time point are denoted in Tables 1–3. From Bersi et al.39, the majority of the 453 

histological samples were paired to one of the biomechanical datasets and were chosen based on 454 

the nearness of the unloaded thickness to the mean within each condition (aortic region) and time 455 

point. For ph3 data in Lau et al.14, source data for individual replicates was not available because 456 

of blinding in the original study.  Therefore, sets of 5 individual samples for each condition 457 

(intestinal region and TNFα dose) and time point were simulated from published means and 458 

standard deviations by assuming the data were normally distributed. 459 

 For each randomly generated dataset, scores and weights were calculated using the number 460 

of LVs required for the corresponding mean dataset to facilitate comparison to the global-average 461 

model. Each model was cross-validated using the leave-one-out approach as previously described, 462 

and scores, weights, and cross-validated predictions were summarized and compared to the 463 

corresponding values derived from the model of the mean dataset. 464 

  465 
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TABLES AND FIGURES 619 

Table 1. Symbols, metrics, methods of acquisition, and sample sizes per condition per time point 620 
(N =) for the PLSR model of Bersi et al.39. Histological stains used for matrix quantification 621 
include Elastica van Gieson (elastin – black stain), Movat’s Pentachrome (smooth muscle cells – 622 
red stain, GAGs – blue stain), and Picrosirius Red (collagen). Output samples were whole aortic 623 
sections from one mouse which were formalin-fixed after testing. Input samples were slides from 624 
output samples chosen for sectioning and staining based on their proximity to the mean thickness 625 
of their associated groups. Inputs were averages of three sections per slide. 626 

Symbol Variable Name (Mode 3) Method N = Input/Output 

elnm Elastin - media Histology 2 Input 

colm Collagen - media Histology 2 Input 

SMCm Smooth muscle cells - media Histology 2 Input 

GAGm Glycosaminoglycans - media Histology 2 Input 

cola Collagen - adventitia Histology 2 Input 

CD3m Cluster of differentiation 3 - media Immunofluorescence 2 Input 

CD45m Cluster of differentiation 45 - media Immunofluorescence 2 Input 

CD68m Cluster of differentiation 68 - media Immunofluorescence 2 Input 

CD3a Cluster of differentiation 3 - adventitia Immunofluorescence 2 Input 

CD45a Cluster of differentiation 45 - adventitia Immunofluorescence 2 Input 

CD68a Cluster of differentiation 68 - adventitia Immunofluorescence 2 Input 

MMP2m Matrix metalloproteinase 2 - media Immunofluorescence 2 Input 

MMP12m Matrix metalloproteinase 12 - media Immunofluorescence 2 Input 

MMP13m Matrix metalloproteinase 13 - media Immunofluorescence 2 Input 

MMP2a Matrix metalloproteinase 2 - adventitia Immunofluorescence 2 Input 

MMP12a Matrix metalloproteinase 12 - adventitia Immunofluorescence 2 Input 

MMP13a Matrix metalloproteinase 13 - adventitia Immunofluorescence 2 Input 
     

OD Unloaded outer diameter Biaxial testing 4 - 7 Output 

H Unloaded thickness Imaging 4 - 7 Output 

od Systolic outer diameter Biaxial testing 4 - 7 Output 

h Systolic thickness Biaxial testing 4 - 7 Output 

ir Systolic inner radius Biaxial testing 4 - 7 Output 

λz,iv In vivo axial stretch Biaxial testing 4 - 7 Output 

σθθ Circumferential stress Biaxial testing 4 - 7 Output 

σzz Axial stress Biaxial testing 4 - 7 Output 

Cθθθθ Circumferential stiffness Biaxial testing 4 - 7 Output 

Czzzz Axial stiffness Biaxial testing 4 - 7 Output 

W Stored strain energy Biaxial testing 4 - 7 Output 

Dist Distensibility Biaxial testing 4 - 7 Output 
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Table 2. Symbols, metrics, methods of acquisition, and sample sizes per condition per time point 628 
(N =) for the PLSR model of Lau et al.14 All input and output samples represent mice per time 629 
point and one intestinal segment each. qWB – Quantitative western blotting, IHC – 630 
Immunohistochemistry. 631 

Symbol Variable Name (Mode 3) Marker Method N = Input/Output 

pIκβα Inhibitor of nuclear factor κβ-α Phospho Ser32/36 Bio-Plex 5 Input 

pJnk c-Jun N-terminal kinase Phospho Thr183/Tyr185 Bio-Plex  5 Input 

pMek1 MAPK and ERK kinase 1 Phospho Ser217/221 Bio-Plex  5 Input 

pErk1/2 Extracellular signal- 
related kinase 1/2 

Phospho Thr202/Tyr204 

(1), Thr185/Tyr187 (2) Bio-Plex  5 Input 

pRsk Ribosomal S6 kinase Phospho Thr359/Ser363 Bio-Plex  5 Input 

pp38 p38 mitogen-activated  
protein kinase Phospho Thr180/Tyr182 Bio-Plex  5 Input 

pc-Jun c-Jun Phospho Ser63 Bio-Plex  5 Input 

pAtf2 Activating transcription factor 2 Phospho Thr71 Bio-Plex  5 Input 

pAkt Akt/Protein kinase B Phospho Ser473 Bio-Plex  5 Input 

pS6 Ribosomal protein S6 Phospho Ser235/236 Bio-Plex  5 Input 

pStat3S727 Signal transducer and 
activator of transcription 3 Phospho Ser727 Bio-Plex  5 Input 

pStat3Y705 Signal transducer and 
activator of transcription 3 Phospho Tyr705 Bio-Plex  5 Input 

      
cc3 Cleaved caspase 3 Cleaved levels qWB 5 Output 

ph3 Phosphorylated histone 3 Number positive cells IHC 5 Output 
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Table 3. Symbols, metrics, methods of acquisition, and sample sizes per condition per time point 633 
(N =) for the PLSR model of Chitforoushzadeh et al.13. All input and output data represent cell 634 
extracts per time point. Ab – antibody, µ-array – microarray, qWB – Quantitative western blotting, 635 
CLICK – Cluster Identification via Connectivity Kernels. 636 

Symbol Variable Name (Mode 3) Marker Method N = Input/Output 

ERK Extracellular signal- 
related kinase Kinase activity Kinase assay 3 - 6 Input 

Akt Akt/Protein kinase B Kinase activity Kinase assay 3 - 6 Input 

pAktAb Akt/Protein kinase B Phospho Ser473 Ab μ-array 3 - 6 Input 

pAktWB Akt/Protein kinase B Phospho Ser473 qWB 3 - 6 Input 

tAkt Akt/Protein kinase B Total amount Ab μ-array 3 - 6 Input 

ptAkt Akt/Protein kinase B Phospho/total ratio Ab μ-array 3 - 6 Input 

JNK1 Jun N-terminal kinase 1 Kinase activity Kinase assay 3 - 6 Input 

IKK IκB kinase Kinase activity Kinase assay 3 - 6 Input 

MK2 MAP kinase-activated  
protein kinase 2 Kinase activity Kinase assay 3 - 6 Input 

pMEK MAPK and ERK kinase 1 Phospho Ser217/221 qWB 3 - 6 Input 

pFKHR Forkhead in 
rhabdomyosarcoma Phospho Ser256 qWB 3 - 6 Input 

pIRS1636 Insulin receptor substrate 1 Phospho Ser636 qWB 3 - 6 Input 

pIRS1896 Insulin receptor substrate 1 Phospho Tyr896 qWB 3 - 6 Input 

proC8 Caspase-8 Zymogen amount qWB 3 - 6 Input 

cc8 Caspase-8 Cleaved amount qWB 3 - 6 Input 

proC3 Caspase-3 Zymogen amount qWB 3 - 6 Input 

pEGFR Epidermal growth  
factor receptor Phospho Tyr1068 Ab μ-array 3 - 6 Input 

tEGFR Epidermal growth  
factor receptor Total amount Ab μ-array 3 - 6 Input 

ptEGFR Epidermal growth  
factor receptor Phospho/total ratio Ab μ-array 3 - 6 Input 

      

c1 - c9 Gene clusters 1-9 Transcription level μ-array + 
CLICK  2 Output 
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 638 

Figure 1. A three-mode structure efficiently models dynamic, multivariate data as multi-639 
dimensional arrays. Data were organized as multidimensional arrays (X and Y) with mode 1 640 
(indexed as i) delineating experimental conditions, mode 2 (indexed as j) delineating time course 641 
of experimental endpoints, and mode 3 (indexed as k) delineating variables measured for each 642 
experiment. Independent and dependent variables were selected according to the original datasets 643 
as detailed in Tables 1–3. PLSR derives condition scores (U) for the dependent data that are 644 
linearly related by regression coefficients (B) to the scores for the independent data (T).  645 
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 647 

Figure 2. Time-resolved profiling of cellular infiltration, extracellular matrix production–648 
turnover, and aortic geometry and mechanics during pharmacologically-induced hypertension. 649 
Mice were treated with AngII and tissue harvested at the indicated time points for subsequent 650 
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histological and mechanical analysis (Table 1). Data are separated by independent (left) and 651 
dependent data (right) and aortic region (rows). Standardized differential changes (see Methods) 652 
from the 0-day baseline value are shaded red (increase) or blue (decrease).  653 
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 655 

Figure 3. A four-component multidimensional PLSR model predicts AngII-induced evolution of 656 
aortic geometry and mechanics from matrix production and turnover, proteolytic enzyme 657 
expression, and inflammatory cell infiltrate. (a) Root mean squared error (RMSE) of cross-658 
validated predictions is minimized with four LVs. (b) Pearson (R) and Spearman (ρ) correlation 659 
coefficients of the four-LV PLSR model for all aortic regions and time points. Cross-validated 660 
predictions were made by leaving out one entire aortic region at a time. ATA – ascending thoracic 661 
aorta, DTA – descending thoracic aorta, SAA – suprarenal abdominal aorta, IAA – infrarenal 662 
abdominal aorta.  663 
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 664 

Figure 4. Resampling PLSR distinguishes robust dependent variable weights (qmn) in a four-LV 665 
model of AngII-induced hypertension. (a, b) Generation of a null PLSR model via data 666 
randomization of data to identify parameters of interest. Dependent variable weights (qmn) in the 667 
original PLSR model lying outside of a single standard deviation of the null PLSR model are 668 
labeled in black (see Table 1 for abbreviations). Solid gray lines denote the mean of N = 500 669 
reshufflings within mode 1 (i.e., time and measured variables were shuffled within each aortic 670 
region). Dotted-gray lines denote mean ± standard deviation of weights. (c, d) Replicate 671 
resampling (N = 500) by jackknifing (“leave one out”) changes confidence of predictions for 672 
parameters compared with randomization. Black dots denote variable weights with error bars that 673 
do not intersect with zero (i.e., parameters weight consistently in a single region). Gray error bars 674 
denote errors that intersect with zero. (e, f) Replicate resampling (N = 500) by bootstrapping 675 
(“leave one in”) decreases confidence of parameters compared to jackknifing and yields no 676 
significant identifications in LV3 or LV4. Color delineations are identical to those in (c, d). The 677 
top row depicts results for LV1 and LV2, and the bottom row depicts results for LV3 and LV4. 678 
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 680 

Figure 5. Bootstrapping PLSR with paired data shows similar performance to bootstrapping with 681 
unpaired data. Time weights (wjn, qln) from a PLSR model using (a) unpaired (blue) and (b) paired 682 
(orange) bootstrapping of histological and biomechanical data were generated 500 times for 683 
unpaired and paired sampling each. Note that paired sampling required omission of the 7 and 21 684 
day time points in the dependent variables because histological data were not collected for those 685 
time points. Paired data were available for only two samples per aortic region and time point, both 686 
of which were chosen based on the proximity of the thickness value to the mean thickness value 687 
for the corresponding region and time point. 688 
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 690 

Figure 6. A three-component multidimensional PLSR model predicts TNFα-induced apoptosis 691 
and proliferation of intestinal cells from cell signaling in the duodenum and ileum. (a) Root mean 692 
squared error (RMSE) of cross-validated predictions is minimized with three LVs. (b) Pearson (R) 693 
and Spearman (ρ) correlation coefficients of the three-LV PLSR model for all intestinal regions 694 
and time points. Cross-validated predictions were made using the leave-one-out approach. duo – 695 
duodenum, il – ileum, 5µgTNF – 5 µg TNFα treatment, 10µgTNF – 10 µg TNFα treatment. 696 
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 698 

Figure 7. Bootstrapping PLSR of a second in vivo dataset reveals poor repeatability in trailing 699 
LVs. (a) Dependent variable weights (qmn) for LV2 vs. LV3 following randomization, jackknifing, 700 
and bootstrapping. LV1 is omitted for clarity. Graphs are labeled as in Fig. 4. (b) Time weights 701 
for the global-average model delineating temporal behaviors of each LV. (c) Bootstrapped time 702 
weights (N = 500) show good agreement with the mean dataset on LV1 and LV3 with less 703 
agreement on LV2. Data are presented as mean ± standard deviation, with black markers indicating 704 
error bars that do not intersect with zero and gray markers indicating error bars that intersect with 705 
zero.   706 
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 707 

Figure 8. Resampling PLSR validates the robustness of higher-order LVs in multidimensional 708 
arrays. (a, b) Generation of a null PLSR model via randomization (N = 500 reshufflings within 709 
mode 1) identifies parameters of interest as variable weights in the original PLSR model (black 710 
dots) lying outside of a single standard deviation of the null PLSR model. (c, d) Replicate 711 
resampling (N = 500) by jackknifing (“leave one out”) increases confidence of most LV 712 
parameters. (e, f) Replicate resampling (N = 500) by bootstrapping (“leave one in”) yields very 713 
similar results to jackknifing, as expected given the N = 2 sample size for output data (Table 3). 714 
Graphs are labeled as in Fig. 4.  715 
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 716 

Figure 9. Nested resampling PLSR vets the robustness of in vivo multidimensional arrays. Root 717 
mean squared error (RMSE) as a function of total included LVs is reported for PLSR models of 718 
mean datasets (solid lines and filled circles; reprinted from Fig. 3a, 6a, and Chitforoushzadeh et 719 
al.13), mean predictions from jackknifed models (solid lines and open circles), and mean 720 
predictions from bootstrapped models (dotted lines and open circles).  721 
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