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While functional magnetic resonance imaging (fMRI) studies typically measure 

responses across the whole brain, not all regions are likely to be informative for a given 

study. Which voxels should be considered? Here we propose a method for voxel 

selection based on the reliability of the data. This method isolates voxels that respond 

consistently across imaging runs while maximizing the reliability of multi-voxel patterns 

across the selected voxels, and is suitable for designs with at least 15 conditions. In two 

example datasets, we found that this proposed method defines a set of voxels that has 

a higher average multi-voxel pattern reliability compared to another common method, 

activity-based voxel selection. Broadly, this method has the advantage that there is no 

need to define regions or statistical thresholds a priori and puts the focus on data 

reliability as the first step in analyzing fMRI data. 
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1. INTRODUCTION 

As functional magnetic resonance imaging reaches into its third decade of use in 

cognitive neuroscience, researchers continue to develop new ways to analyze patterns 

of activity in the brain. Current tools range from univariate contrasts to Representational 

Similarity Analysis (Kriegeskorte, 2008), decoding (Cox & Savoy, 2003; Hanson et al., 

2004; Norman et al., 2006), encoding models (Mitchell et al., 2008; Huth et al., 2012), 

clustering (Lashkari et al., 2010), and more. These analyses vary in complexity and the 

types of questions they answer. But in all cases, the researcher must first answer the 

same question: where in the brain should these analyses be done? 

 

The possible answers to this question fall along a spectrum between focusing on 

specific regions of interest (ROIs) and considering every voxel in the brain. ROI-based 

research (e.g., Johansen-Berg et al., 2004; Saxe et al., 2006) typically restricts all 

analyses to an area of cortex defined using separate functional or anatomical localizers. 

ROI approaches make two assumptions: that these voxels are interesting regions of 

cortex to investigate, and that they might make up a homogenous unit, serving the 

same cognitive functions (though careful researchers have tested this second 

assumption before arguing that an ROI is a fundamental theoretical unit; e.g., Duncan & 

Owen, 2000; Jiang & Kanwisher, 2003). As a benefit, targeted ROI analyses circumvent 

the statistical challenge of correcting for multiple comparisons, which occurs when 

analyses are done at the whole-brain level. 
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In contrast to an ROI-based approach, whole-brain approaches (e.g. whole-brain 

contrasts, information mapping techniques, and searchlight analyses; Norman et al., 

2006; Kriegeskorte et al., 2006) have the advantage of not relying on pre-conceived 

ideas about where in the brain one might expect an effect. However, these analyses 

require stringent corrections for multiple comparisons, which can obscure all but the 

strongest effects, running counter to the goal of obtaining and analyzing data at a fine 

spatial scale. Additionally, searchlight analyses, which are effectively roving ROI 

analyses using spheres of voxels (Norman et al., 2006; Kriegeskorte et al., 2006), also 

require implicit pre-conceived hypotheses about neural coding: researchers must have 

a hypothesis about the spatial scale at which an effect will be observed, and also make 

the assumption that these mini-regions-of-interest are spherical.  

 

One additional challenge for whole-brain approaches is that they do not address the 

issue of variable signal quality over the brain. It is well known that the signal measured 

in fMRI varies significantly over the cortex, and in some cases carries a troubling 

amount of noise (Eklund et al., 2016). Further, the quality of the signal may depend 

upon the task – for example, areas in the fronto-parietal attention network might 

respond more consistently during an attentionally-demanding task than when freely 

viewing an image. Therefore, another approach that sits between the ROI-based and 

whole-brain extremes is to isolate a relatively broad swathe of cortex with a high-quality 

signal, such as visually-responsive voxels within occipito-temporal cortex.  

 

Unlike more classic regions of interest, a broad swathe approach does not assume 

that these selected voxels make up a singular functional unit per se; rather, it assumes 

that responses in these voxels are more relevant to the researcher’s analysis plan and 

hypothesis than the rest of the brain. Within these broad regions, analyses can be done 

to assess population coding (Haxby et al., 2011; Haxby, 2012), or to characterize the 

large-scale structure of response preferences (e.g., Hasson et al., 2002; Hasson et al., 

2003; Orlov et al., 2010; Konkle & Oliva, 2012), or to evaluate encoding models (e.g.  

Mitchell et al., 2008). The benefit of this approach is that the cortex under consideration 

is more extensive than a small ROI, while still being relevant to the theoretical questions 

at stake. However, a challenge for this approach is that it is not obvious how to select 

these high-quality voxels in the first place. Different researchers have approached this 

challenge in different ways.  

 

First, one popular method is to select the voxels that are most “active” in response to 

the stimuli (Kriegeskorte et al., 2008; Konkle & Oliva, 2012; Mur et al., 2013; Jozwick et 

al., 2016; Kay et al., 2017). This responsiveness is often measured with a contrast 

between all stimulus conditions and rest: voxels with a t-value greater than some pre-

set bound (e.g., t>2) are considered “active.” In other words, this method isolates 

regions that respond positively on average across stimulus conditions, relative to 

baseline. Given that this is a popular choice in many recent fMRI papers – especially 
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those studying the visual cortex, as we do – we treat the activity-based voxel selection 

method as the main comparison for the reliability-based method described here. 

Activity-based voxel selection is sensitive to the signal strength of a given voxel 

because it is based on t-values, which are low if noise is high; however, this method is 

not sensitive to systematic differences across conditions, as voxels that respond equally 

across all conditions could still be considered active. 

 

Another voxel-selection approach identifies voxels that maximize the variance 

among conditions (Pereira et al., 2009), or that are well-fit by a candidate feature model 

(Nishimoto et al., 2011; Naselaris et al., 2012, Guclu & van Gerven, 2015; Huth et al., 

2016). This approach makes sense within a modeling framework, but in most cases 

requires a pre-specified threshold for “well-fit” voxels.  Relatedly, other researchers 

have focused on selecting voxels that respond stably across conditions. For example, 

Mitchell et al. (2008) used a cross-validation procedure to isolate voxels that respond 

similarly across folds of the data. Similarly, Norman-Haignere et al. (2015) selected 

voxels that were both active (showed a significant response to sounds vs. silence) and 

responded consistently across scans. These selection methods are sensitive to the 

activation profile of each voxel, but are also limited because they rely on a pre-set 

statistical threshold or require independent datasets for voxel selection and model 

testing.  

 

The current paper introduces a procedure for voxel selection that starts from a 

similar logic as this last method, but instead selects voxels based on their reliability 

across scans. Specifically, in the first step, the reliability of every voxel is computed 

based on their response profiles over conditions in two halves of the data. Next, a range 

of voxel-reliability thresholds are considered, and the stability of the multi-voxel patterns 

within the voxels that survive each threshold is assessed for each condition. Finally, the 

researcher can select a reliability cutoff to select the final set of voxels, while explicitly 

being able to balance the tradeoffs between maximizing spatial coverage on one hand 

and multi-voxel pattern reliability on the other. This forms the first step in an fMRI 

analysis: once the reliable voxels are selected, all subsequent analyses can be 

conducted in only these voxels.  

 

Our method differs from previous stability-based approaches in two key ways. First, 

the process of identifying an acceptable reliability threshold is done based on the data, 

without specifying a parameter value a priori. Second, our method selects voxels whose 

responses vary across conditions; that is, voxels that respond more to some conditions 

than to others. This contrasts with the method used in Norman-Haignere et al. (2015), 

which includes regions that respond similarly to all conditions. Thus, our method is 

especially well-suited to analyses that leverage the variance in the data, for example to 

predict brain responses or representational dissimilarities using feature models.  
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Here, we illustrate the use of this reliability-based voxel selection procedure on a 

typical set of condition-rich fMRI data: whole-brain responses to 60 everyday actions 

(Tarhan & Konkle, 2019). In order to demonstrate the consequences of using this 

method, we compare the set of voxels selected using our method with those selected 

based on their overall activity. To preview, we find that reliability-based selection results 

in a smaller set of voxels with higher overall multivoxel condition-pattern reliability 

compared to activity-based selection. These results replicated in a separate dataset of 

responses to 72 everyday objects (Magri et al., 2019). 

 

 

 

2. MATERIALS AND METHODS 

 

2.1  Dataset Description 

The primary dataset used in this paper consists of whole-brain functional responses 

to 60 everyday action videos, collected from 13 human subjects (Figure 1a). 

Participants completed four functional runs, during which they freely viewed the 2.5-

second videos and detected an occasional red frame to maintain alertness. Functional 

and anatomical data were pre-processed using Brain Voyager QX software (Brain 

Innovation, Maastricht, Netherlands). General linear models (GLMs) were fit to data 

from odd and even functional runs with a regressor for each condition (one video). Each 

voxel’s timecourse was first z-transformed within an fMRI run, then corrected for 

temporal autocorrelations. The beta weights were extracted from whole-brain GLMs, 

yielding estimates of each voxel’s response to each condition. This was done separately 

for each participant, in addition to a whole-brain random effects GLM to quantify 

responses at the group-average level. More information can be found in Tarhan & 

Konkle (2019). For replication purposes, we also included a supplementary dataset 

collected from 11 human subjects viewing still images of 72 everyday objects (Magri et 

al., 2019). These data were pre-processed following similar procedures. Both datasets 

can be downloaded from the Open Science Framework (https://osf.io/m9ykh/). In order 

to perform reliability-based voxel selection, the only necessary components of these 

data are odd- and even-run beta values for each condition in every voxel.  
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Figure 1: Summary of the Reliability-Based Voxel Selection Procedure. (a) Schematic of the 

experimental design for the main dataset: participants viewed 60 everyday action videos while detecting 

an occasional red frame to maintain attention. (b) Split-half reliability was computed for all voxels by 

correlating their beta weights for all 60 conditions across even and odd runs. Condition-pattern reliability 

was computed for all conditions (videos) by correlating beta weights over all voxels across even and odd 

runs. (c) Whole-brain map of split-half voxel reliability in this dataset. (d) Curve showing the pattern 

reliability for each condition (y-axis) at a range of possible voxel inclusion thresholds (x-axis). Red line 

indicates the final threshold selected for this dataset (r = 0.30). Inset figure shows the same graph as in 

(d) but computed for individual subjects. Each line is the reliability curve for the average pattern reliability 

across conditions for one participant. (e) Voxels that survived the final inclusion threshold are shown in 

red.  

 

2.2 Reliability-Based Voxel Selection 

Reliability-based voxel selection proceeded in two steps, summarized in Figure 1. 

First, split-half reliability was calculated separately for each voxel in the brain by 

correlating each voxel’s response profile (the vector of beta weights in response to each 

condition) across even and odd functional runs (Figure 1b). This produced a whole-
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brain reliability map, with one r-value for each voxel in the cortex (Figure 1c). Second, 

to determine which voxels to include in subsequent analyses, we considered a 

continuum of possible thresholds (from r>0 to r>0.95). At each threshold, we calculated 

the reliability of each condition pattern (i.e. the multi-voxel pattern in response to a 

single condition) in voxels that survived that threshold. Condition pattern reliability was 

calculated by correlating each condition’s multi-voxel response pattern across even and 

odd functional runs. This was computed separately for each condition, and then 

averaged across conditions. This analysis produced a smooth curve, where the average 

condition-pattern reliability increases as more reliable voxels are included in the 

selection (Figure 1d).  

 

This curve also illustrates a natural tradeoff between the coverage and the stability 

of the data – simply choosing the threshold that produces the highest possible 

condition-pattern reliability limits coverage to a tiny fraction of the cortex (Figure 1d). 

While the data in that fraction will be highly reliable, this strategy runs counter to the 

aims of studying the large-scale structure of the cortex. On the other hand, a threshold 

that is too lax may include regions with erratic responses. Therefore, an optimal 

threshold for voxel inclusion balances coverage and the stability of the data, but its 

exact value depends on the goals of the experimenter. This curve serves as a guide to 

balance these tradeoffs. In our case, across datasets we observed that this curve has a 

plateau – after some critical point, increasing the inclusion threshold only minimally 

increases the data’s reliability but continues to limit coverage. Therefore, we took this 

plateau point to be an appropriate inclusion threshold.  

 

How should one select this point? To automatically detect its location, one could 

locate the point where the curve’s second derivative equals zero, which intuitively is 

when the slope begins to level off. However, we recommend following a more heuristic 

method. We selected the plateau point by eye, and then considered a range of nearby 

thresholds to select one that provides good coverage of our general regions of interest 

while minimizing small, extraneous groups of voxels (“speckles”).  

 

Critically, notice that this threshold decision is made independently of any 

hypotheses about how any region or voxel will respond to the conditions. Instead, this 

voxel selection procedure only depends on the fact that voxels respond consistently 

across scans but vary in how much they respond across conditions; it depends not at all 

on which conditions it responds to the most. Because of this, reliability-based voxel 

selection is independent of any particular hypotheses regarding the relationship among 

conditions. Thus, the entire dataset can be used to select reliable voxels; a separate 

validation dataset is not required (as is also true in similar methods, e.g., Mitchell et al., 

2008).  

 

In addition, it is important to note that reliability-based voxel selection is not sensitive 

to differences between voxels in overall response magnitude, because it uses a 
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correlation measure. For example, one voxel’s response profile may be higher on 

average than another voxel’s, but this difference in overall magnitude will not affect 

either voxel’s reliability. Similarly, some conditions may drive the selected voxels more 

than other conditions (their condition pattern may be higher overall), but this also will not 

affect the measure. Instead, this procedure reflects where the relative patterns of 

activity across voxels are stable.  

 

Finally, this method can be applied at the level of the group (Figure 1d) or individual 

subjects (Figure 1d, inset). Interestingly, in both datasets we found that the reliability 

plateaued at a very similar point across participants, even though that cutoff yielded a 

different number of reliable voxels for each participant. Therefore, we selected a 

reliability cutoff based primarily on the group-level data, then applied that cutoff to the 

single-subject data to define reliable voxels separately in each subject. Code 

implementing these procedures can be downloaded from the Open Science Framework 

(https://osf.io/m9ykh/). 

 

 

3. RESULTS 

 

3.1 Reliability based voxel selection 

We performed reliability-based voxel selection on our primary sample fMRI dataset, 

in which participants viewed short videos of people performing a wide range of actions. 

Based on the reliability curve shown in Figure 1d, we selected an inclusion threshold of 

r = 0.30. Figure 1e displays the voxels that survive this threshold. The selected voxels 

reveal extensive coverage of both the ventral and dorsal visual streams as well as 

primary somatosensory and motor cortices, while excluding less-reliable regions in the 

anterior and superior temporal lobe and the pre-frontal cortex. 

 

3.2 Comparing Reliability- and Activity-Based Voxel Selection  

For comparison with this reliability-based selection method, we also considered a 

voxel-selection method based on overall activity. First, a t-test was conducted over the 

contrast of all 60 conditions > rest in every voxel. Second, voxels with a t-value greater 

than 2.0 were selected (Figure 2a, blue voxels). Researchers employ different t-

thresholds to define active voxels. While some choose an arbitrary cutoff such as 2.0 

(Long et al., 2018) or 0 (Kay et al., 2017), others select the n voxels with the highest t-

value, where n is a somewhat arbitrary size such as 100 (Kriegeskorte et al., 2008; Mur 

et al., 2013; Jozwick et al., 2016). Based on a student’s t-distribution, t=2.0 roughly 

corresponds to a significance level of p < 0.05 without corrections for multiple 

comparisons, making it a relatively liberal threshold.  

 

 To compare the data selected by the reliability- and activity-based methods, we 

asked two questions. First, do these methods result in coverage of different brain 

regions?  Figure 2a shows both voxel selections, including active voxels (blue), reliable 
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voxels (red), and their overlap (purple). In general, the reliability-based selection method 

isolated a smaller set of voxels that are more localized to the occipito-temporal cortex. 

This is quantified in Figure 2b (t(12) = 7.12, p < 0.001). Second, does the average 

multi-voxel pattern reliability for individual conditions differ between the two methods?  

Figure 2c shows that these patterns are more reliable within the reliable-voxel subset 

than active-voxel subset (t(12) = 15.8, p < 0.001).  
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Figure 2: Comparison between the Data Selected Using Reliability and Activity. (a) Selected voxels 

from both methods are plotted on an example subject’s inflated cortex. Red voxels are reliable, blue 

voxels are active, and purple voxels are reliable and active. Voxel selection is shown for the group data. 

(b) Comparison of the total number of voxels selected by each method. (c) Comparison of the average 

condition-pattern reliability among selected voxels for each method. For (b) and (c), horizontal lines inside 

each box indicate the median value across subjects, top and bottom edges indicate the 25th and 75th 

quartiles, and whiskers extend to outlier subjects. Asterisks indicate significant paired t-tests. 
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Given that the choice to use an activity threshold of t > 2.0 was arbitrary, it is natural 

to ask whether these results change if active voxels are defined using a different 

threshold. In other words, is there an activity threshold such that active and reliable 

voxels cover the same regions? After considering a range of thresholds between t > 0 

and t > 3.0, we found that the degree of overlap between active and reliable voxels 

followed a roughly logarithmic curve that plateaus around 80% at t > 2.0 (Supplemental 

Methods; Figure S1). Thus, in this dataset, choosing a different activity threshold 

would not meaningfully improve the degree of overlap between reliable and active 

voxels beyond what we observe here. In summary, selecting reliable voxels isolates a 

more restricted set of regions with higher condition-pattern reliability than active voxels. 

 

3.3 How many conditions are necessary? 

Reliability-based voxel selection is well-suited to condition-rich fMRI designs, which 

expose subjects to many conditions. With very few conditions, the estimates for a 

voxel’s split-half reliability will not be stable, as a correlation based on only a few points 

is not a robust measurement of a linear relationship (Bonnett & Wright, 2000). How 

many conditions must one test to employ this voxel selection method?  

 

To answer this question, we performed a simulation analysis based on our example 

data. We asked how robust the split-half reliability calculation is at a range of numbers 

of conditions (from 1 to 60). For each possible number of conditions c, we randomly 

selected responses to c conditions, then calculated each voxel’s split-half reliability. 

After doing so 100 times, we calculated the standard deviation of each voxel’s split-half 

distribution. Figure 3 shows the average standard deviation across voxels for each 

number of conditions c. In general, stability improves (standard deviation falls) as the 

number of conditions grows. However, the pattern is not linear: at a certain point, adding 

more conditions does not confer additional benefits to stability. In our data, this point 

occurred at 15 conditions. This suggests that the reliability-based voxel selection 

method is appropriate for a design measuring responses to 15 or more conditions.  Note 

that this value is lower than the standard recommendation that a correlation should be 

performed over 25 or more data points (Pearson, 1931; Dunlap, 1931; Gayen, 1951). 
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Figure 3: Estimating the Minimum Number of Conditions for Reliability-Based Voxel Selection. 

Average stability of the voxel reliability calculation is plotted for every number of conditions c from 1 to 60. 

For each c, we selected a random subset of whole-brain responses to c conditions. We then calculated 

the split-half reliability for every voxel within those subsetted data. This procedure was repeated over 100 

iterations. Stability was calculated for each voxel as the standard deviation of split-half reliability over the 

100 iterations, then averaged across voxels. Crosshairs indicate the approximate point at which the 

tradeoff between number of conditions and instability begins to plateau (15 conditions), meaning that this 

is the minimum number of conditions needed to use this reliability-based voxel selection method. 

 

 

3.4 Replication 

 These findings replicated in an independent dataset of responses to 72 real-

world objects (Figure 4a). Figure 4b shows the split-half reliability for this dataset over 

the brain. Based on the reliability curve shown in Figure 4b, we selected a reliability 

cutoff of r > 0.30. Although it is striking that we found the same cutoff in both datasets, 

we assume that this is mere coincidence. As we found in the first dataset, reliable 

voxels surviving this cutoff were less extensive than active voxels (t(10) = 3.89, p < 

0.01; Figure 4c). In the temporal, parietal, and lateral occipital cortices, reliable voxels 

were primarily a subset of active voxels. Whereas for the most part reliable voxels were 

a subset of active voxels in the action video dataset, in this dataset early visual regions 

in the medial occipital cortex contained extensive reliable voxels but very few active 

voxels. Reliable voxels also had higher condition-pattern reliability than active voxels 

(t(10) = 21.65, p < 0.001; Figure 4c). Finally, split-half reliability estimates began to 
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stabilize around 15 conditions, further indicating that this is a good estimate of the 

minimum number of conditions necessary to employ reliability-based voxel selection. 

 

 
Figure 4: Replication. (a) Schematic of the experimental design for the replication dataset: participants 

viewed images of 72 everyday objects while detecting an occasional red frame to maintain attention. (b) 

Whole-brain map of split-half voxel reliability in this dataset and curve showing the pattern reliability for 

each condition (y-axis) at a range of possible voxel inclusion thresholds (x-axis). Red line indicates the 

final threshold selected for this dataset (r = 0.30). (c) Comparison of the voxels selected based on 

reliability and activity. Selected voxels from both methods are plotted on an example subject’s inflated 

cortex. Red voxels are reliable, blue voxels are active, and purple voxels are reliable and active. Voxel 

selection is shown for the group data. Plots compare the total number of voxels selected by each method 

(left) and the average condition-pattern reliability among selected voxels for each method (right). 

Horizontal lines inside each box indicate the median value across subjects, top and bottom edges 

indicate the 25th and 75th quartiles, and whiskers extend to outlier subjects. Asterisks indicate significant 

paired t-tests.  

 

3.4 Relationship with Classification Accuracy 

 Our method is intended as a first analysis step, prior to any analyses targeting 

the research question (e.g. voxel-wise encoding or classification tests). Given this, are 
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these selected voxels actually “good” ones for the critical analysis, or would another set 

have produced a better outcome? To get a sense of this, we conducted a specific 

analysis – pairwise classification — at a range of voxel-reliability thresholds. In this 

analysis, we calculated our ability to distinguish any two action conditions from each 

other using their multivoxel patterns (averaged across all pairs of 60 actions; see 

Supplemental Methods).  

 

Figure 5 shows the average classification accuracy as a function of voxel-

reliability threshold. Accuracy increased when restricting the analysis to voxels with 

higher reliability up to a threshold of r = 0.60 (accuracy = 87.2%), and interestingly then 

began to fall around r = 0.7. Note that this drop in accuracy is not due to a catastrophic 

loss of coverage – over 1,000 voxels survived the threshold at r = 0.7 (see inset). For 

comparison, the red dashed line indicates our reliability-based voxel-selection threshold, 

which is at or near the point where this accuracy curve plateaus. This pattern replicated 

in the second dataset (responses to 72 real-world objects; Supplemental Figure 2). 

Thus, reliability-based voxel selection can yield a reasonable classification performance, 

even though the outcome measure is not directly leveraged during voxel selection.  

Figure 5: Classification Accuracy. Results of the pairwise action classification analysis are plotted at a 

range of reliability thresholds. The black curve indicates average performance across action pairs, and 

error bars indicate the standard error of the mean. Brain figures show the reliable coverage for the group 

data at three sample thresholds: r = 0.1, 0.4, and 0.7. Red dashed line indicates the final reliability 

threshold selected for this dataset (r = 0.3). 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 16, 2019. ; https://doi.org/10.1101/703603doi: bioRxiv preprint 

https://doi.org/10.1101/703603
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 
 

 

4. DISCUSSION 

 

The method we have outlined here introduces a new way to select voxels from 

the whole brain that respond systematically to experimental variations. We found that 

this method selects voxels with more limited coverage and higher multi-voxel condition-

pattern reliability than activity-based selection. In addition, this method is straightforward 

to implement and is informed by the data, rather than by a priori parameters that specify 

a statistical cut-off or a fixed region size. Once selected, reliable voxels could be 

entered into a wide range of hypothesis-driven analyses; therefore, we suggest that 

reliability-based voxel selection is a promising first step to make subsequent fMRI 

analyses more robust.  

 

4.1 What properties differentiate reliable and active brain regions? 

Given that activity- and reliability- based voxel selection result in different sets of 

voxels, are there interesting differences in the neural signals present in these regions? 

One possibility is that, while activity-based voxel selection takes noise into account to 

some extent, some active voxels are still more noisy than reliable voxels. Another 

possibility is that “active” regions are less sensitive to the condition structure in the data. 

Whereas reliability requires some variance among conditions, a region can be “active” 

even if it responds with equal magnitude to all conditions. Therefore, if a researcher 

predicts that equal response magnitudes across all conditions would be meaningful – 

for example, if she hypothesizes that a scene-processing region will respond equally 

across all outdoor and indoor scenes – overall activity might be a reasonable way to 

select voxels. In contrast, a researcher using an analysis that leverages the variance in 

the data, such as encoding models, representational similarity analysis, or most 

univariate analyses, should select regions whose responses vary across conditions.  

 

4.2 Comparison with Outcome-Based Methods 

 Apart from activity-based selection, one of the main alternatives to reliability-

based voxel selection is to identify voxels based on the outcome of an analysis; for 

example, to identify voxels where a model is well-fit. While such outcome-based 

methods are a useful tool in some situations, reliability-based selection offers three 

advantages that make it more generally applicable. First, reliability-based selection may 

identify regions that have sufficient variance to be included in the analysis, but 

nevertheless do not show the hypothesized effect. This is informative because it allows 

researchers to conclude something about the representations in both the regions where 

the effect exists (they match the prediction), and those where it doesn’t (they have some 

other format, which is still reliable). In contrast, with an outcome-based voxel selection 

method it would be impossible to conclude anything about the unselected regions: they 

could show no effect, or they could simply contain bad data. Second, reliability-based 

voxel selection makes it easy to select regions for multiple kinds of analyses. For 

example, if a researcher plans to use model comparisons to determine which candidate 
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features fit the data the best, which model should she use to select her voxels? 

Reliability-based voxel selection avoids this situation by divorcing the selection 

procedure from the analysis outcome. Finally, reliability-based voxel selection allows 

researchers to select voxels using the same dataset that will be used for the critical 

analyses; in contrast, outcome-based measures require separate datasets for selecting 

well-fit voxels and testing the fit of those voxels.  

 

 

4.3 Double-dipping 

 If all the data are used to select voxels, do we run the risk of double-dipping 

(Kriegeskorte et al., 2009)? Double-dipping occurs when the voxel selection procedure 

biases subsequent analyses in the direction of the hypothesis by capitalizing on 

favorable noise. For example, if an ROI is defined based on the contrast viewing 

pictures of faces > viewing pictures of objects, then the estimate of how much more this 

ROI responds to faces than objects will be biased if assessed with the same data that 

were used to define the ROI. In such a case, it is important to use separate datasets to 

define and test the ROI, to avoid inflating or even fabricating effects due to noise in the 

direction of the hypothesis. In contrast, our method merely finds voxels that reliably 

respond more to some conditions than others, without any reference to which conditions 

those are (e.g., Norman-Haignere et al., 2015; Mitchell et al., 2008). This is also true of 

activity-based voxel selection – many researchers who use this method define their 

voxels and analyze their responses in the same dataset (e.g., Long et al., 2018). Thus, 

any subsequent assessment that involves comparing condition responses is not biased 

by our voxel selection procedure.  

 

To illustrate this more intuitively, suppose participants saw images of many 

different objects. As experimenters, we may be interested in whether any voxels 

respond parametrically based on the real-world size of the objects, or how graspable 

the objects are, or how aesthetically pleasing the objects are. We could reasonably use 

the whole dataset to define a set of reliable voxels in which to run such an analysis, 

because there is no guarantee that the selected voxels will respond according to our 

dimensions of interest. Some might respond more to big than small objects, and others 

might respond more to redder than bluer objects. The selection procedure does not bias 

an analysis searching for hypothesized representations. Thus, researchers can 

leverage the entire data set and use reliability-based voxel selection as a first step after 

collecting condition-rich fMRI data; and this step can be completely separate from any 

subsequent hypothesis-driven analyses.  

 

 Alternatively, it is possible to use a variant of this method to find the threshold 

that maximizes the outcome of an analysis (e.g. in our pairwise classification analysis, 

choosing a threshold of r > 0.4 would have produced higher overall accuracy than our 

selected threshold of r > 0.3.) However, choosing a voxel cut-off based on the overall 

outcome would be an example of circularity. Instead, in this variant of the method, the 
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threshold should be first selected within a training dataset; then, classification accuracy 

can be computed from independent data. This avoids both circularity (by not biasing the 

outcome through the selection process) and p-hacking (by not cherry-picking parameter 

settings, such as the number of voxels to use). In general, when selecting voxels to 

optimize for a particular outcome measure, the data should be split into independent 

sets; however, when selecting a threshold based on the reliability alone, this step can 

be avoided.  

 

 

4.4 Novel Applications 

This voxel selection method also allows for several variants, which highlight the 

many facets of reliability. Data can be reliable over different sources of variation – while 

we calculated split-half reliability between odd and even fMRI runs (variation in time), 

one could split the data in other ways to isolate meaningfully-different brain regions. For 

example, if an experiment includes two stimulus sets – perhaps set 1 contains 

photographs of real-world objects and set 2 contains drawings of the same objects – 

one could use this method to find regions that respond reliably across the two sets. This 

would isolate regions that are robust to low-level variations in stimuli, suggesting that 

their responses reflect higher-level properties of the stimuli, such as object shape or 

identity. One could also calculate reliability across subject groups – for example, to 

identify regions that respond consistently to hearing the names of object in blind and 

sighted participants. This variant of the method would imply that the responses of the 

selected regions in the sighted may not solely be related to visual responsiveness. In a 

different vein, one could improve the reliability of region-of-interest analyses by 

selecting the reliable voxels that lie within a region of interest or functional parcel 

(Federenko et al., 2010; Julien et al., 2012). It is also possible to calculate the reliability 

of distances between conditions, within a representational similarity framework 

(Thornton & Mitchell, 2017). In general, requiring reliable responses over different 

manipulations—be they at the stimulus, task, or subject group level—can help to isolate 

the most relevant brain regions for the theoretical question at hand.  

 

4.5 Selecting Voxels at the Single-Subject and Group Levels 

In our data, we found voxel inclusion thresholds that were highly consistent across 

subjects and the group data. However, this does not guarantee that reliable voxels 

surviving those thresholds will overlap perfectly across subjects. In the primary dataset 

examined here, subjects’ reliable coverage using the same cut-off varied from 1,596 to 

6,879 voxels with a 3x3x3 mm resolution. Thus, the choice to use this voxel selection 

method at the level of single subjects or the group depends upon the kind of question 

being asked.  

 

For example, in a single-subject approach, one could define reliable voxels 

separately in each subject, and then perform single-subject analyses in those voxels. 

This approach is particularly useful if the question concerns the link between an 
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individual’s experience, traits, or judgments and their neural responses. However, this 

approach may force the experimenter to analyze different brain regions in different 

subjects. An alternative approach is to do a group-level analysis, defining reliable voxels 

based on the group data, then only analyze the group data.  

 

In many cases, a hybrid analysis scheme may be appropriate: the voxels are defined 

using the group data, and all single-subject analyses can be performed within that set of 

voxels. This approach guarantees that the same regions will be examined across 

subjects, enabling the researcher to compare response maps between subjects. 

However, some of the data will inevitably come from unreliable voxels. Therefore, it is 

important to interpret each subject’s results in light of their reliable coverage. 

 

5. CONCLUSIONS 

In summary, reliability-based voxel selection is a principled method for isolating 

regions of the brain for further analysis that is informed by the stable structure in the 

dataset. The strengths of this method are that (i) it is straightforward to implement, 

making it easy to adopt into a variety of fMRI analysis settings, (ii) it is agnostic to a 

priori hypotheses about which conditions drive which cortex where, and (iii) it puts the 

emphasis on data reliability as an early step in fMRI data analysis processing. 
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Extended Methods 
 
Activity-based Voxel Selections with Different Thresholds 

In the main analysis, the activity-based threshold was set at t > 2.0. Here, we 

considered a range of additional thresholds between t > 0 and t > 3.0. At each 

threshold, we evaluated the match between the reliable and active voxel selections by 

calculating the number of voxels that were categorized in the same way (either selected 

by both methods or ignored by both methods). We then calculated the percent of voxels 

in the gray matter that met this criterion (Figure S1).  

 

Classification Analysis 

To determine the effect of reliability-based voxel selection on the outcome of an 

analysis, we performed pairwise classification of individual conditions at a range of 

reliability thresholds. We considered every threshold from r > 0 to 0.95 at intervals of 

0.05, but only analyzed data for thresholds that were survived by at least 10 voxels. 

Reliable voxels were defined using the group average data. At each threshold, we 

iteratively trained a linear support vector machine classifier to distinguish between all 

condition pairs on 80% of the data, then tested the classifier on the remaining 20% of 

the data by calculating the percentage of the test responses that were correctly 

classified. The data for each condition consisted of odd- and even-run responses from 

each subject. This was done across 100 iterations. Average classification accuracy 

(averaged across both condition pairs and iterations) is plotted at every threshold in 

Figure 5 for the primary dataset and Figure S2 for the replication dataset.   
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Figure S1: Comparing Selections at Different Activity Thresholds. Results of the analysis 
comparing reliability- and activity-based voxel selections at a range of possible t-thresholds. At 
each threshold, the percentage of voxels in the gray matter that were categorized in the same 
way (selected or not selected) by both voxel selection methods is plotted. Blue line indicates the 
threshold used to define active voxels in the main analyses (t = 2.0) 
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Figure S2: Replication of the Classification Analysis. Results of pairwise object 

classification analysis (decoding responses to 72 object images in the replication dataset) are 

plotted at a range of reliability thresholds. The black line indicates average performance across 

object pairs, and error bars indicate standard error of the mean. Brain figures show the reliable 

coverage in the group data at three sample thresholds: r = 0.1, 0.4, and 0.7. Red dashed line 

indicates the final reliability threshold selected for this dataset. 
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