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Abstract

Neuroimaging studies of the psychedelic state offer a unique window onto the neural basis of con-
scious perception and selfhood. Despite well understood pharmacological mechanisms of action, the large-
scale changes in neural dynamics induced by psychedelic compounds remain poorly understood. Using
source-localised, steady-state MEG recordings, we describe changes in functional connectivity following
the controlled administration of LSD, psilocybin and low-dose ketamine, as well as, for comparison, the
(non-psychedelic) anticonvulsant drug tiagabine. We compare both undirected and directed measures of
functional connectivity between placebo and drug conditions. We observe a general decrease in directed
functional connectivity for all three psychedelics, as measured by Granger causality, throughout the brain.
These data support the view that the psychedelic state involves a breakdown in patterns of functional organ-
isation or information flow in the brain. In the case of LSD, the decrease in directed functional connectivity
is coupled with an increase in undirected functional connectivity, which we measure using correlation and
coherence. This surprising opposite movement of directed and undirected measures is of more general inter-
est for functional connectivity analyses, which we interpret using analytical modelling. Overall, our results
uncover the neural dynamics of information flow in the psychedelic state, and highlight the importance of
comparing multiple measures of functional connectivity when analysing time-resolved neuroimaging data.

1 Introduction

Psychedelic drugs impact profoundly on conscious experiences of world and self, providing a unique opportu-
nity to examine the neural and cognitive bases of these subjective phenomena. The classical psychedelics, no-
tably LSD and psilocybin, have well-characterised pharmacological mechanisms of action. Both are serotonin
(5HT2AR) agonists, while ketamine - which at low (sub-anesthetic) doses also has psychedelic-like proper-
ties - is primarily an NMDA antagonist (Sleigh et al., 2014). Many studies now link the subjective effects of
psychedelics to altered activity at these receptors (Preller et al., 2018; Deco et al., 2018). However, despite these
links, the large-scale changes in neural dynamics that underlie the dramatic subjective effects of psychedelics
remain poorly understood.

One window onto large-scale neural dynamics is to measure functional connectivity (FC). FC between brain
regions refers to the existence of statistical dependencies in their activity (Seth et al., 2015). Several previous
FC analyses of the psychedelic state analyse resting-state fMRI data obtained from healthy volunteers under
either psilocybin or LSD. These studies have revealed a reorganisation of connectivity within and between
resting-state networks, generally showing decreased connectivity within resting-state networks and increased
connectivity across such networks (Carhart-Harris et al., 2012; Tagliazucchi et al., 2016; Carhart-Harris et al.,
2016; Müller et al., 2017, 2018; Kaelen et al., 2016), see also Preller et al. (2018). For example, decreased
connectivity within the default-mode network has been associated with subjective ego dissolution (Smigielski
et al., 2019), as has increased connectivity across normally functionally segregated networks (Tagliazucchi
et al., 2016).

Despite the insights provided by these studies there are inherent limitations on FC analysis of fMRI data
imposed by the poor temporal resolution of such data, induced both by low sampling frequencies and the slow
dynamics of the hemodynamic response. More fine-grained FC analysis is possible when analysing high-time
resolution electrophysiological data, as can be obtained using EEG or MEG. Importantly, because of the high
temporal resolution (as compared with fMRI), such data are particularly suitable for measuring and comparing
undirected and directed measures of FC. MEG, in particular, is highly suitable for such analysis since unlike
EEG it is not subject to confounds arising through volume conduction in the skull.
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The distinction between directed and undirected FC is critical in providing a comprehensive picture of
statistical dependencies between regional brain activities. Undirected measures, like correlation and coherence,
are symmetric by definition. These measures can be thought of as reflecting “shared information” between
variables, with mutual information being the most general case. Directed measures, such as Granger causality
(GC), are generally not symmetric; these measures reflect “information flow” between variables, with transfer
entropy (Schreiber, 2000; Paluš et al., 2001) being the most general case (Barnett et al., 2009; Barnett and
Bossomaier, 2013). Note that both are distinct from measures of “effective connectivity (EC)” [for example,
dynamic causal modelling (DCM, Friston et al., 2013)] which aim to describe the minimal causal circuit capable
of reproducing some observed dynamics [see Muthukumaraswamy et al. (2015a) for an application of DCM
to brain dynamics under ketamine]. Functional connectivity metrics, whether directed or undirected, describe
relationships between dynamical variables of a system, whereas effective connectivity uses dynamics to make
inferences about the underlying mechanisms in a system (Seth et al., 2015; Barnett et al., 2009; Barnett and
Seth, 2014; Friston et al., 2013).

A few studies have applied fine-grained FC analyses to neuroimaging data obtained in the investigations of
the psychedelic state. In an EEG study, Kometer et al. (2015) report increased (undirected) phase synchroni-
sation under psilocybin . Using MEG, Rivolta et al. (2015) find increased (directed) transfer entropy in thala-
mocortical networks under low-dose ketamine. Transfer entropy has also been applied to EEG data obtained
under ayahuasca (another serotonergic psychedelic), revealing alterations in anterior-to-posterior and posterior-
to-anterior information flow (Alonso et al., 2015). In an EEG study on the functional effects of sub-anesthetic
ketamine, Vlisides et al. (2017) report (undirected) theta phase locking between anterior and posterior regions
as measured by the weighted phase lag index, along with reduced anterior-to-posterior directed connectivity
as measured by the directed phase lag index (Stam and van Straaten, 2012). However, a comprehensive pic-
ture of how directed and undirected FC change together, under a range of psychedelics, and compared against
non-psychedelic controls, is still lacking.

We therefore set out to characterise the large-scale alterations in FC in the psychedelic state by analysing
source-localised MEG data, using both directed and undirected FC measures on the same data, and comparing
a range of psychedelics as well as a non-psychedelic control. These data had been previously obtained from
healthy volunteers under controlled intravenous infusion of one of LSD, psilocybin, ketamine, or tiagabine (the
control condition; tiagabine is a non-psychedelic GABA reuptake inhibitor, which is clinically employed as
an anticonvulsant). MEG was carried out on healthy volunteers in a non-task resting state, and each volunteer
underwent a placebo session as well as a drug session. We measured both undirected FC (correlation in the time
domain, coherence in the frequency domain) and directed FC (Granger causality, in both time and frequency
domains) on the same data. Our analyses were, where possible, fully conditional to control for indirect influ-
ences, which can affect inferences about FC in multivariate systems. Our primary question was whether the
psychedelics would elicit reliable changes in directed and undirected FC between and within cortical regions,
as compared with placebo, and as compared with the non-psychedelic drug (tiagabine) control. All analyses
were treated as exploratory.

Anticipating results, we find a decrease in directed FC generally between brain regions, for all psychedelic
compounds, but not for tiagabine (control). In some instances these decreases are accompanied by increases
in undirected FC. We interpret these results as suggesting decreased neural information flow in the psychedelic
state, consistent with perspectives that emphasise increasing disorder and functional disorganisation underlying
psychedelic experience (Carhart-Harris et al., 2012; Carhart-Harris, 2018; Carhart-Harris and Friston, 2019;
Schartner et al., 2017).

2 Materials and Methods

2.1 Experimental procedure, data acquisition and preprocessing

The MEG datasets for resting-state LSD, psilocybin (PSI), ketamine (KET) and tiagabine (TGB) used in this
article have all previously been analysed in published studies. For an overview of the respective MEG acqui-
sition and preprocessing procedures for the psychedelic compounds, see Schartner et al. (2017). Full details
are given in Carhart-Harris et al. (2016) [LSD], Muthukumaraswamy et al. (2013) [PSI], Muthukumaraswamy
et al. (2015b) [KET], and Nutt et al. (2015) [TGB]. The MEG data were source-localised to 90 cortical regions
according to the standard Automated Anatomical Labelling (AAL) brain atlas (Tzourio-Mazoyer et al., 2002).
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Label Name AAL sources
Cin Cingulate 31-36
Fro Frontal 3-16, 19-28
Lim Limbic 37-42
Occ Occipital 43-56
Par Parietal 59-70
Sen Sensorimotor 1-2,17-18,57-58
Sub Subcortical 71-78
Tem Temporal 29-30,79-90

Table 1: Large anatomical regions (ROIs).

For some analyses, the 90 AAL regions were grouped into the larger anatomical regions listed in Table 1. We
refer to the AAL regions as “sources”, and the larger regions in Table 1 as “ROIs”.

All analyses are based on resting-state recordings post-infusion of drug and of placebo. The recording
length varies by drug (7− 14 min for LSD, 5 min for PSI and TGB, and 10 min for KET). Originally sam-
pled at 600 Hz or 1200 Hz (depending on the study), the data was high-pass filtered at 1 Hz to suppress slow
transients, low-pass filtered at 150 Hz, and downsampled to 300 Hz (Barnett and Seth, 2011)1. Line noise was
suppressed by subtracting a least-squares-fit sinusoidal signal at 50 Hz and harmonics. The MEG time series
were segmented into 2 s epochs comprising 600 Hz× 2 s = 1200 observations, and artefacted epochs discarded
(see above refs. for details); the number of usable epochs thus varies with drug, subject and condition (i.e., drug
or placebo); numbers are given in Table 2. Epochs are analysed as stationary multi-trial (also known as “panel”)
data: the assumption is that all 2 s epochs for a given drug/subject/condition are realisations of the same un-
derlying stochastic process, and may therefore be pooled for statistical estimation. Although this assumption
is difficult to validate rigorously, in the present case treating the data as multi-trial yielded stable autoregres-
sive models (Section 2.2.2), indicating consistent statistical properties across epochs. It is also a reasonable
assumption given the relatively short length of the MEG recordings relative to the duration of the subjective
drug effects, which reliably extended long beyond the recording periods. With the exception of spectral power
estimation, epochs were normalised per drug/subject/condition by the pooled mean and variance. (We note
that, for multi-trial estimation, epochs should not be normalised individually by per-epoch mean and variance,
as this is known to induce statistical bias.)

2.2 Functional connectivity analysis

We applied both directed and undirected measures of functional connectivity. In the time domain we measured
correlation (undirected) and Granger causality (directed). In the frequency domain we measured coherence
(undirected) and spectral Granger causality (directed). These statistics all have information-theoretic interpre-
tations which are exact if the data are Gaussian (Barnett et al., 2009), and asymptotic otherwise (Barnett and
Bossomaier, 2013). (The marginal distributions of the normalised MEG data are, in our case, approximately
Gaussian.) Correlation equates to mutual information (Cover and Thomas, 1991), a measure of undirected
shared information, while Granger causality equates to transfer entropy (Schreiber, 2000; Paluš et al., 2001), a
measure of the rate of directed information flow between stochastic processes.

In multivariate situations, measures of FC can be confounded by indirect associations. That is, a variable
A may appear to be correlated with (or to Granger-cause) a variable B when only A and B are measured, but
may be revealed to be unrelated when a third (common influence) variable C is also included in the analysis.
Therefore, where appropriate, we used conditional (or “partial”) FC measures, which control for indirect asso-
ciations. (Note that it is not possible to control for indirect associations mediated by latent/unrecorded common
influences, although their presence may potentially be inferred; cf. Section 4.) Conditioning in a highly mul-
tivariate context generally requires large amounts of data to achieve statistical power; this was unproblematic
in the present analysis. Frequency-domain statistics are defined so that they may be integrated (averaged)
across a given frequency band (Section 2.2.3) to yield measures of FC in specific frequency ranges (Table 3).

1We assume frequencies above 150Hz are not biophysically relevant. In addition, downsampling improves some functional con-
nectivity measurements (Barnett and Seth, 2017).
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LSD (15) Psilocybin (14) Ketamine (19) Tiagabine (15)
201 193 137 150 298 277 148 144
208 205 144 99 277 295 146 147
209 209 148 115 280 277 148 144
192 161 135 145 256 267 133 104

76 207 149 149 295 287 135 140
207 196 145 135 261 261 138 122
204 204 127 139 282 286 148 144
202 207 146 84 290 293 147 139
201 207 126 82 288 281 138 114
210 210 146 143 281 187 136 147
194 196 150 150 292 268 119 140
210 208 123 86 291 298 144 148
206 208 142 79 289 291 118 150
205 201 145 135 287 196 139 130
208 209 275 256 150 142

270 208
250 269
269 265
283 295

Table 2: Number of epochs per drug by subject, after removal of artefacted epochs. Number in brackets is
number of subjects per drug. Left-hand columns: placebo epochs per subject, right-hand columns: drug epochs
per subject.

Band Frequency range (Hz)
δ 1− 4
θ 4− 8
α 8− 15
β 15− 30
γl 30− 50
γh 50− 100

Table 3: Standardised frequency bands. Frequencies above 100 Hz are omitted from γh as they are possibly
compromised by roll-off from 100 Hz low-pass filter, and in any case were not considered functionally relevant.
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LSD (15) Psilocybin (14) Ketamine (19) Tiagabine (15)
3 3 4 4 4 3 4 5
4 3 4 3 3 2 4 4
3 3 4 3 4 3 4 4
3 3 4 4 3 3 4 5
4 3 4 4 4 3 5 4
3 3 3 3 3 3 4 4
3 3 3 3 4 3 4 4
3 3 4 4 4 3 4 4
4 3 4 3 3 2 4 5
3 3 4 4 4 3 5 4
4 3 4 4 3 3 4 4
4 4 4 4 4 3 4 4
4 3 3 3 3 3 4 4
3 3 4 4 4 3 5 4
3 3 4 3 4 4

3 3
3 3
3 3
3 2

Table 4: Model orders by drug per subject. Number in brackets is number of subjects per drug (Table 2).
Left-hand columns: placebo, right-hand columns: drug.

For GC, the frequency-domain statistic integrates across the broadband spectrum to yield the corresponding
time-domain statistic.

For each drug, subject and condition we take each 2 s MEG epoch as a realisation of a stationary multivari-
ate stochastic process Xt = {Xit} where t indexes time steps and i indexes localised sources corresponding
to the 90 AAL regions. The information-theoretic and frequency-domain measures described below are es-
timated under Gaussian assumptions as 2nd-order statistics, based on vector-autoregressive (VAR) modelling
(Hamilton, 1994; Lütkepohl, 1993)2. Here, the (zero-mean) process Xt is modelled as a (finite-order, stable
and invertible) vector autoregression

Xt =

p∑
s=1

AsXt−s + εt (1)

with white noise (iid, serially-uncorrelated) residuals εt. The model parameters are the regression coefficients
matrices A1, . . . , Ap, and the variance-covariance matrix Σ = E

[
εtε

T
t

]
. For each drug, subject and condition, a

model order pmust first be selected; here we used a likelihood-ratio F-test (Hamilton, 1994); p generally varied
between 2 and 5 (Table 4). Model parameters were then identified from the normalised time-series data using
an LWR maximum-likelihood estimator due to Morf et al. (1978).

For both undirected and directed cases, in both time and frequency domains, we compute three types of
measure:

SRC: Per-source unconditional measures, which measure associations between a single source and all remain-
ing sources,

ROI: Per-ROI pairwise-conditional measures, which measure associations between pairs of ROIs, conditioned
on all other sources, and

GLO: Intra-ROI global-conditional measures, which measure the total statistical association of all sources
within an ROI, conditioned on all sources lying outside the ROI.

2As a cross-check, we also independently estimated the undirected measures (partial correlation/coherence) from standard
maximum-likelihood variance-covariance matrix estimates, and the cross-power spectral density (CPSD) matrix, estimated in sam-
ple by a multi-taper method with aggregation over epochs (Thomson, 1982; Bokil et al., 2010). Results were consistent with the VAR
results.
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The GLO measures may be interpreted in terms of “density” of within-ROI statistical associations, in the spirit
of (undirected) multi-information (Studený and Vejnarová, 1998) and (directed) causal density (Seth, 2009;
Seth et al., 2011), or global transfer entropy (Barnett et al., 2013).

2.2.1 Undirected measures: partial correlation and partial coherence

Given jointly-distributed multivariate random variables X,Y, Z, we have the conditional mutual information
I(X :Y |Z). Mutual information (Cover and Thomas, 1991) quantifies the degree to which two jointly-
distributed variables are statistically dependent. In the case that X and Y are univariate and X,Y, Z are jointly
multivariate-normally distributed, I(X :Y |Z) = log

[
1− ρ(X,Y |Z)2

]
, where ρ(X,Y |Z) is the conventional

partial correlation coefficient, so that I(X :Y |Z) is a monotonic function of the (squared) partial correlation3;
in this sense I(X :Y |Z) generalises partial correlation to multivariate (and non-Gaussian) variables. Under
Gaussian assumptions:

I(X :Y |Z) = log
|V (X|Z)| |V (Y |Z)|
|V (X,Y |Z)|

(2)

where V (X|Z), V (X,Y |Z), etc., denote partial variance-covariance matrices, |· · ·| denotes a determinant, and
“log” always denotes natural logarithm.

If X = {Xi} is multivariate, a conditional version of multi-information can be defined as I(X|Z). Multi-
information (Studený and Vejnarová, 1998) quantifies the degree to which a jointly-distributed set of variables
are mutually dependent. Under Gaussian assumptions, multi-information corresponds to the “partial total cor-
relation”:

I(X|Z) = log

∏
i V (Xi|Z)

|V (X|Z)|
(3)

which is the basis for the (undirected) global-conditional measure we use (GLO).
In the frequency domain, we use 2nd-order statistics as for the time-domain Gaussian case above, but based

on the cross-power spectral density (CPSD) matrices S(X;ω), etc., rather than the covariance matrices V (X),
where ω denotes frequency (in Hz) on the range ω ∈ [0, ν/2] with ν the sampling frequency. We thus consider
the measure

c(X :Y |Z;ω) = log
|S(X|Z;ω)| |S(Y |Z;ω)|
|S(X,Y |Z;ω)|

(4)

In case X,Y are univariate, c(X :Y |Z;ω) is the logarithm of the standard partial coherence measure. For
multivariate processes, we also have the global-conditional spectral measure [cf. (3)]

c(X|Z;ω) = log

∏
i S(Xi|Z;ω)

|S(X|Z;ω)|
(5)

2.2.2 Directed measures: Granger causality in time and frequency domain

Directed connectivity measured are based on Granger causality (GC) (Wiener, 1956; Granger, 1963, 1969;
Geweke, 1982), a 2nd-order statistic for stochastic time-series based on optimal linear prediction. We use
Geweke’s multivariate conditional form (Geweke, 1984) in time and frequency domains. Although the mathe-
matics of GC have been well described previously [see, e.g., Barnett and Seth (2014)], we specify our derivation
below in order to prevent ambiguity in interpretation, especially for the more complex cases of conditional GC
in the frequency domain.

Let Xt (target), Yt (source) and Zt (conditioning variable) be jointly-distributed, wide-sense stationary
(possibly multivariate) processes. The optimal linear predictor (in the least-squares or maximum-likelihood
sense) ofX based on the past histories ofX,Y, Z is given by the conditional expectation E

(
Xt|X−t , Y

−
t , Z

−
t

)
,

where X−t = [Xt−1, Xt−2, . . .], etc., denotes the history of a process up to the previous time step. The residual
prediction errors are then εt = Xt−E

(
Xt|X−t , Y

−
t , Z

−
t

)
; we denote the covariance matrix of residual errors—

a measure of predictive efficacy—by Σ = E
[
εtε

T
t

]
. Now consider the optimal predictor E

(
Xt|X−t , Z

−
t

)
of X

based on the histories of X and Z alone; i.e., omitting the source variable Y . The residuals of this “reduced”
3Unlike partial correlation, mutual information is not signed; in the multivariate case, this would not make sense in any case.
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predictor can be written as εR
t , and its covariance matrix as ΣR = E

[
εR
t ε

RT
t

]
. Then the (time-domain) GC from

source Y to target X conditional on Z is defined to be

F (Y →X|Z) = log

∣∣ΣR
∣∣

|Σ |
(6)

and may be interpreted intuitively as “the degree to which Y predicts the future ofX , over and above the degree
to which X already predicts its own future, controlling for Z”. In finite sample, the infinite histories X−t , etc.,
are replaced by [Xt−1, . . . , Xt−p], etc, where p is the selected model order [cf. (1)], and the statistic (6) becomes
a log-likelihood ratio.

Since GC, as a directed measure, is not symmetrical in the source and target variables, we have an inbound
and an outbound version of the unconditional form (SRC), corresponding respectively to system→ source
and source→ system information flow. For multivariate processes Xt = {Xti}, analogous to conditional
multi-information in the undirected case, a global-conditional measure (GLO) may be defined as the sum of
conditional causalities from X itself to each individual variable Xi (Barnett et al., 2013):

F (X|Z) :=
∑
i

F
(
X[i]→Xi

∣∣Z) (7)

where subscript [i] denotes omission of the ith index.
Geweke also introduced a spectral (frequency domain, conditional) GC statistic, written here as f(Y →X|Z;ω);

for details see Geweke (1982, 1984). A corresponding global-conditional measure f(X|Z;ω) can be defined
as
∑

i f
(
X[i]→Xi

∣∣Z;ω
)
.

For empirical data, we calculate GC in time and frequency domain from the estimated VAR parameters
using a state-space method (Hannan and Deistler, 2012; Barnett and Seth, 2015; Solo, 2016)4.

2.2.3 Frequency-band averaging

The relationship between time- and frequency-domain measures is underpinned by Szegö’s Theorem, which
yields (Rozanov, 1967):

1

ν

∫ ν

0
log |S(ω)| dω = log |Σ| (8)

where ν is the sampling frequency. As a corollary, spectral GC integrates across the broadband spectrum to
yield the corresponding time-domain measure (Geweke, 1984):

1

ν

∫ ν

0
f(Y →X|Z;ω) dω = F (Y →X|Z) (9)

This relation thus holds for the directed spectral measures5. In general, all the frequency-domain measures
(undirected and directed) can be integrated (averaged) over a frequency band [ω1, ω2] to yield a “band-limited”

measure (Barnett and Seth, 2011)
1

ω2 − ω1

∫ ω2

ω1

ϕ(ω) dω, where ϕ(ω) represents any of our spectral measures.

All frequency-domain results in Section 3 are presented as band-limited over the frequency bands in Table 3.

2.3 Statistical inference

All time-domain 2nd-order statistics take the form of log-likelihood ratios in finite sample, so that the classical
large sample theory (Neyman and Pearson, 1928; Wilks, 1938; Wald, 1943) applies, yielding asymptotic F or
χ2 distributions for their sample estimators. Sampling distributions for the frequency-domain statistics are gen-
erally not known analytically; we derive them empirically by subsampling/surrogate data methods. We used a
False Discovery Rate (FDR) correction to correct for multiple hypotheses per-drug/subject/condition/measure

4A subtlety is that reduced VAR model parameters must be calculated directly from the full model; separate full and reduced
regressions are known to induce strong biases, particularly in the frequency domain (Chen et al., 2006; Barnett and Seth, 2014; Barnett
et al., 2017). Here we used a hybrid technique involving just the full regression (1), with reduced model parameters calculated using
the state-space method of Barnett and Seth (2015).

5For partial coherence/correlation, the analogue of (9) does not hold in general, except in the unconditional case
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(Benjamini and Hochberg, 1995). For the directed FC measures, variation of empirical model order per-
drug/subject may introduce a source of bias; however, given the large number of sample observations per
subject/condition (i.e., number of epochs × MEG observations per epoch), bias and variance, estimated from
the corresponding χ2 distribution under the null hypothesis, were an order of magnitude smaller than typical
between-condition changes in the statistical measures, and could thus be safely ignored. Cross-subject statis-
tical comparisons of FC measures between conditions (drug vs placebo) were carried out using Wilcoxon’s
signed rank-test (Wilcoxon, 1945) (paired t-tests could not be used since sample estimators are non-Gaussian).
The rank correlation, defined as Wilcoxon’s W-statistic normalised by the total rank sum to lie between −1
and +1, is presented as an effect size in all results. Significance is presented at α = 0.05, with FDR multiple-
hypothesis adjustment.

3 Results

3.1 Spectral power

Before analysing FC, we first examine cross-subject changes in spectral power between drug and placebo. For
LSD, psilocybin (PSI), and ketamine (KET), results (Figure 1) are broadly consistent with Muthukumaraswamy
et al. (2013) [PSI] and Carhart-Harris et al. (2016) [LSD], and reveal a similar effect for sub-anesthetic ke-
tamine. For LSD, PSI, and KET there is a general decrease in spectral power across all frequency bands, but
especially in the δ–β bands. For tiagabine (TGB), by contrast, there is a slight increase in spectral power in
δ−α. Figure 2 plots spectral power for the 90 sources for a representative single subject for each drug. For the
psychedelics, there is a decrease in spectral power in the δ–β range against an approximately 1/f background,
and, in line with previous analyses (Muthukumaraswamy et al., 2013), there is also a slight shift of the α peak
to a higher frequency, most obviously for LSD [see Muthukumaraswamy and Liley (2018)].

3.2 Functional connectivity

We next examine changes in per-source undirected (MI) and directed (GC) time-domain FC for drug vs placebo.
Figure 3 shows changes in the unconditional per-source measures (SRC): undirected (top row), directed in-
bound (middle row) and directed outbound (bottom row).

For the directed measures, inbound and outbound, there are significant decreases in FC across all the
psychedelics (as compared with placebo), while for tiagabine there is an increase. Results for undirected
measures are less clear: for LSD and tiagabine there are significant increases in MI, while for psilocybin and
ketamine results are inconclusive. Notably, within the psychedelics, effect sizes for LSD are generally stronger
than for psilocybin or ketamine.

Figures 4-6 decompose the per-source time-domain results by frequency. For the undirected case, Figure 4
shows that the increase in MI in LSD is strongest in the γ-band (but see Section 4.4). While results for psilocy-
bin and ketamine are statistically weak, there is a suggestion of a slight increase in γ. For tiagabine the increase
is strongest in δ and θ. These observations suggest a distinct mechanism of action underlying increases in MI
in tiagabine as compared with the psychedelics. (We interpret the γ-band results cautiously, given potential for
confounds due to muscle artefact; see Section 4.4.)

Figures 5 and 6 reinforce the time-domain results for changes in the directed measures. For the psychedelics,
the decrease in GC is broadband, particularly for LSD (for psilocybin the decrease is stronger in α − γl). For
tiagabine, the increase in inbound GC is strongest in δ − θ, while for outbound GC it is evenly spread across
the spectrum.

We next examined the regional specificity of changes in directed and undirected FC. Figure 7 presents
results for the inter- and intra-ROI measures (ROI and GLO). The left-hand column displays changes between
drug and placebo for undirected (MI) measures. The right-hand column displays results for the directed (GC)
measures. For MI, differences for psilocybin and ketamine are again small (cf. Figures 3 and 4). For LSD,
the increase in MI is strongest between the occipital region and other ROIs, particularly the cingulate region.
For tiagabine, the increase in MI is pronounced between the parietal and frontal/limbic/occipital regions, again
suggesting a distinct mechanism. Intra-ROI changes in MI are weaker than inter-ROI changes. Turning to
directed measures, for LSD decreases in GC are cortex-wide, both within and between ROIs. For psilocybin,
the decrease is strongest between the parietal and other regions, although intra-region increases are only slight.
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Figure 1: Change in spectral power by source and frequency band. Spectral estimates are based on a multi-taper
method averaged over epochs (Section 3.2). In this and subsequent figures, colour indicates cross-subject effect
size (rank correlation; see Section 2.3): red indicates an increase in the measured quantity for drug vs placebo,
blue a decrease.
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Figure 2: Spectral power for representative single subjects: drug (blue) vs. placebo (red). Lines plot auto-power
for the 90 sources.
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Figure 3: Time domain, unconditional (SRC): change in undirected (MI) vs. change in directed (GC) FC
measures between single source and rest of brain. Top row: undirected; middle row: directed, inbound; bottom
row: directed, outbound.
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Figure 4: Frequency domain, unconditional (SRC): change in undirected FC (MI) between single source and
rest of brain.
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Figure 5: Frequency domain, unconditional (SRC): change in directed (inbound GC) FC between single source
and rest of brain.
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Figure 6: Frequency domain, unconditional (SRC): change in directed (outbound GC) FC between single
source and rest of brain.
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Figure 7: Time domain, inter-ROI pairwise-conditional (ROI) and intra-ROI global-conditional (GLO): change
in undirected vs. change in directed measures between ROIs (Table 1), conditioned on rest of brain. The top
row of each panel (GLO) shows effect sizes per column for the global-conditional intra-ROI measures (GLO).
The undirected plots are symmetrical; for the directed plots, row label references “to” ROI, column label “from”
ROI. White dots indicate a statistically significant cross-subject effect at α = 0.05, Wilcoxon signed-rank test,
with FDR correction (see Section 2.3).
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For ketamine, the strongest decreases are from other ROIs to the parietal and occipital regions, with significant
intra-ROI decreases in occipital, parietal and sensorimotor regions. For tiagabine, the increase in GC is fairly
evenly spread across the cortex, with the exception of the occipital region (there is also a significant decrease
in intra-ROI directed connectivity in the occipital region).

Summarising, comparing psychedelics with placebo reveals significant decreases in GC, widespread across
cortical regions and across frequency bands, and which are most pronounced for LSD. These decreases in
directed FC contrast with either little change, or increases, in undirected FC as measured by MI. The non-
psychedelic GABA reuptake inhibitor tiagabine shows increases in both GC and MI, compared with placebo.

To verify that these results reflect meaningful changes in directed and undirected FC, we conducted further
analyses to explore whether the observed changes in MI and GC could be accounted for by (i) changes in power
spectra, including effects of signal-to-noise ratio (SNR), and (ii) changes in residuals correlation in the VAR
modelling of the data.

3.3 Relation between changes in undirected and directed FC

A novel feature of our analysis is that we compare GC and MI on the same data, and we see in our empirical
results a variety of ways in which they relate to each other. Thus (Figure 3) we see the striking opposite
movement for LSD, same-direction movement for TGB, while for the other psychedelics (PSI and KET) the
decrease in GC is not obviously accompanied by increases in MI. To better understand the extent to which
GC and MI are reflecting distinct aspects of neural dynamics, we conducted further theoretical, modelling, and
empirical analyses.

3.3.1 Spectral power and signal-to-noise ratio

Existing functional analyses of the psychedelic state (Riba et al., 2004; Muthukumaraswamy et al., 2013;
Carhart-Harris et al., 2016; Pallavicini et al., 2019) have concentrated on changes in spectral power (Sec-
tion 3.1). We therefore wondered whether the decreased directed functional connectivity we observed might
have a straightforward explanation in terms of changes in spectral power. This possibility can be reasonably
rejected for the following reason: previously conducted power analyses have focused on auto-spectral power,
and have revealed generally broadband decreases in the psychedelic state - as we also find (Figures 1, 2). Such
broadband changes most likely reflect a rescaling of neural signals (but see below). Critically, Granger causal-
ity is scale invariant (Barrett and Barnett, 2013). In fact, more generally, Granger causality is invariant under
(invertible) filtering (Geweke, 1982; Barnett and Seth, 2011). Therefore, changes to auto-spectra are not by
themselves informative about how GC might be expected to change. Because GC depends on the full cross-
power spectrum—in complicated ways (Dhamala et al., 2008)—our results cannot be readily accounted for in
terms the observed changes in broadband auto-spectra.

Another possibility is that the decrease in directed FC between placebo and drug conditions might be due
to changes in signal-to-noise ratio (SNR). Previous studies (Muthukumaraswamy et al., 2013; Carhart-Harris
et al., 2016) indicate that the psychedelic drugs are associated with a decrease in SNR; this is corroborated by
our results for spectral power changes in the psychedelic conditions (Figures 1, 2). To test whether a reduction in
SNR might account for a reduction in directed FC, we investigated whether the addition of correlated, additive
broadband white noise [representing a mixture of highly correlated room noise plus uncorrelated sensor noise
(Vrba and Robinson, 2001)] to the placebo data could reproduce the time-domain FC results. Results, illustrated
in Figure 8, demonstrate that a sufficient level of additive noise (≈ 20 dB) to roughly emulate the decrease in
GC seen in Figure 3, also results in a strong decrease in MI6, in direct contrast to Figure 3. We thus conclude
that a decrease in SNR in the psychedelic state is highly unlikely to account for the observed changes in FC.

3.3.2 Empirical and theoretical relationship between GC and MI

The opposite movement of GC and MI seen in LSD—as well as the same-direction movement in tiagabine—
are striking and deserve further analysis. One might think, a priori, that directed and undirected measures of
FC should move together: that increased MI might imply increased information flow (as measured by GC).

6Preliminary mathematical analysis, which we intend to publish as a separate study, indicates that in general a decrease in SNR is
associated with a decrease in both GC and MI.
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Figure 8: Time domain, unconditional (SRC): change in undirected vs. change in directed FC measures be-
tween single source and rest of brain (psychedelic drugs) for placebo vs. placebo+additive, correlated noise.
Top row: undirected; middle row: directed, inbound; bottom row: directed, outbound. Additive noise was at a
level of ≈ 20 dB, with a Pearson correlation coefficient of ρ ≈ 0.9 between sources.

However, formally, mutual information and information flow are not directly related. That is, there is no
theoretical reason to expect that a decrease (due to LSD, for example) in GC between two ROIs should be
associated with an increase in MI, or vice-versa.

To probe the relationship between GC and MI in our data, we firstly performed the following empirical anal-
ysis. For each drug we investigated the correlation across subjects, between ∆GC = GC(drug)−GC(placebo)
and ∆MI = MI(drug) −MI(placebo), both inter- and intra-ROI. That is, we asked empirically whether larger
changes in undirected measures corresponded with larger changes in directed measures. As Figure 9 shows,
there is no evidence of consistent correlation between ∆GC and ∆MI. Indeed, for specific ROIs, change in the
measures were sometimes found to be correlated and sometimes anti-correlated – but statistical significance
was in any case generally negligible.

To further examine this issue we conducted a theoretical analysis, examining the relationship between MI
and GC for the stationary bivariate, VAR(1) model

Xt = aXt−1 + cYt−1 + εxt

Yt = bYt−1 + εyt
(10)

with unidirectional GC and residuals correlation ρ(εxt, εyt) = κ; see A for details.
Figure 10a and Figure 10b display heat maps of MI I(X :Y ) and GC F (Y →X) for κ = 0, fixed a, and

b, c varying within the model parameter space. The green arrows indicate the direction of steepest gradient
∇I(X :Y ), while the magenta arrows indicate the direction of steepest gradient ∇F (Y →X) for GC. At a
given point in parameter space, the angle θ between the gradients is given by (A)

cos θ =
∇I(X :Y ) • ∇F (Y →X)

‖∇I(X :Y ) ‖ ‖∇F (Y →X) ‖
(11)

The cosine is +1 when the gradients are in exactly the same direction,−1 when they point in opposite directions
and 0 when they are orthogonal (Figure 10c). For κ = 0, the gradients never point in opposite directions, but
(Figure 10d-f) this is not necessarily the case for κ 6= 0. Together, these figures show that there will always be
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Figure 9: Inter- and intra-ROI correlation between ∆GC = GC(drug)−GC(placebo) and ∆MI = MI(drug)−
MI(placebo). Correlation is calculated, per ROI pair (intra, ROI) or ROI (intra, GLO) as Kendall’s τ rank-
correlation statistic, in range [−1, 1]. Small circles indicate statistical significance at 95% confidence, with a
per-plot false discovery rate (FDR) correction for multiple hypotheses.
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Figure 10: Left column: heat maps of I(X :Y ) (a) and F (Y →X) (b) for the VAR model (10) with κ = 0,
for fixed a and b, c varying over parameter space. Green arrows indicate the direction of steepest gradient
∇I(X :Y ), while the magenta arrows indicate the direction of steepest gradient ∇F (Y →X). Fig. (c) displays
a surface plot of cos θ, where θ is the angle between the gradients of I(X :Y ) and F (Y →X) with κ = 0,
for fixed a and b, c varying over parameter space. cos θ is +1 when the gradients point in the same direction,
−1 when they point in opposite directions, and 0 when they are orthogonal. Right column: heat maps of the
gradient of F (Y →X) (d) and I(X :Y ) (e) with respect to κ plotted against causal strength c and residuals
correlation κ, for a = 0.3, b = 0.4. In Fig. (f), the region where I(X :Y ) increases and F (Y →X) decreases
with increasing κ is marked in grey.
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Figure 11: VAR residuals correlations, measured as multi-information of the residuals normalised by the multi-
information of a uniform random correlation matrix of the same size. The figure plots median residual correla-
tions across subjects, with error bars at ±1 mean absolute deviations.

directions in parameter space where MI and GC will be changing either in the same, or in opposite, directions.
Analysis of this minimal VAR model therefore further establishes that GC and MI can move independently
under variations in the underlying data generating process.

Given that GC and MI (i) need not change together, as established theoretically and via modelling, and
(ii) generally do not move together—at least not consistently—as shown by the heterogeneity in the relation
between GC and MI across the different drugs (Figure 9), what could explain the striking opposite movement
in the specific case of LSD?

One possibility relates to correlations between the residuals in the corresponding VAR models7. In our
minimal VAR model, the behaviour of the MI and GC gradients as residuals correlation κ changes is striking.

In A we derive explicit expressions for
∂

∂κ
F (Y →X) and

∂

∂κ
I(X :Y ). Extensive simulations show that, for

any values (except c = 0) in the (a, b, c, κ) parameter space, the signs of these quantities are always opposite.
Thus any change in residuals correlation always results in an opposite movement of MI and GC. For at least half
of the entire parameter space (in the minimal VAR model), increasing κ (i.e., increasing residuals correlation)
always leads to increasing MI coupled with decreasing GC, while for the other half, increasing κ leads to
decreasing MI coupled with increasing GC (Figure 10, right column). Therefore, even though a change in
residuals correlation is consistent with the empirical changes in MI and GC observed with LSD, it is less
consistent with PSI (where an increase in residuals correlation accompanies a decrease in GC but no significant
change in MI), and not at all with KET (where there is no change in residuals correlation), or with TGB (where
a decrease in residuals correlation leads to increases in both GC and MI). These analyses therefore indicate that
changes in residuals correlations cannot readily explain the pattern of empirical results across all drugs.

Figure 11 displays drug vs. placebo change in residuals correlation for the VAR models (i.e., the models
fitted to the MEG data, not the minimal VAR model discussed above). For LSD and psilocybin, there is a
statistically significant increase in residuals correlation in the drug condition, while for tiagabine there is a
statistically significant decrease. On the assumption that the minimal VAR model result—that any change
in residuals correlation between conditions leads to the opposite movement of directed and undirected FC—

7Preliminary investigations suggest that increased residuals correlation may potentially (but not conclusively) indicate the presence
of latent (unmeasured) common influences on the system dynamics; intuitively, linear modelling “sees” the effect of common—but
unmodelled—inputs as correlated noise.
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generalises to more complex network scenarios, it is unlikely that changes in residual correlation can explain
the relationship between directed and undirected FC that we observe across all drugs. (In addition, while for
KET there are hints of an increase in undirected FC to accompany the decrease in GC, there are no significant
changes in residuals correlation). Therefore, alterations in residuals correlation might account for the pattern of
results for LSD but cannot account for the pattern in general. We have not established the extent to which our
minimal VAR result generalises; but even in that model there are other possible structural mechanisms which
may drive the effect which do not involve residuals correlation (cf. Figure 10, left column).

Altogether, the mechanistic processes underlying the relative changes in directed and undirected FC in the
different drug conditions remain to be fully elucidated. Importantly, though, the changes we observe cannot
readily be explained away in terms of changes in power auto-spectra, signal-to-noise ratio, or residuals corre-
lation.

4 Discussion

In this exploratory study, we examined the effects of three psychedelic drugs on large-scale brain dynamics in
terms of directed functional connectivity (FC). Unlike more familiar undirected FC measures, such as corre-
lation and coherence, directed FC measures take into account temporal dependencies in the data, potentially
delivering fresh insights into alterations to neural dynamics, and more specifically into changes in information
flow both between and within brain regions.

We applied both directed FC measures (Granger causality/information flow) and undirected measures (cor-
relation/mutual information), in time and frequency domains, to source-localised MEG data obtained in resting
state conditions, contrasting placebo against three different psychedelics (LSD, psilocybin, low-dose ketamine),
as well as against a non-psychedelic control, tiagabine. Our main result revealed a consistent broadband de-
crease in information flow in psychedelic conditions, both between and within brain regions, broadly across
cortex. In the case of LSD, this decrease in information flow was accompanied by an increase in undirected
FC. By contrast, for the tiagabine control, we observed increases in both directed and undirected FC in the drug
condition.

Further empirical and theoretical analyses examined whether these changes in FC could be accounted for
by changes in power spectra, signal-to-noise ratio, or correlation between the residuals of the predictive VAR
models used to derive FC statistics. We verified that the observed changes in directed and undirected FC could
not readily be accounted for by these factors.

4.1 Power spectra

We first identified a substantial reduction in broadband spectral power in the psychedelic state. This is a rela-
tively well established effect, which has been described in several previous studies: see, e.g., Fink (1969) (LSD,
mescaline/EEG), Riba et al. (2004) (ayahuasca/EEG), Muthukumaraswamy et al. (2013) (psilocybin/MEG) and
Carhart-Harris et al. (2016) (LSD/MEG). Recently, Pallavicini et al. (2019) analysed spectral changes in LSD,
psilocybin and ketamine using the same MEG dataset as used in this study. They report region-specific patterns
of spectral power reduction in the alpha and theta bands common to LSD and psilocybin, as well as changes in
the beta band common to all three drugs. Our spectral analyses (Figure 1) are consistent with these findings, as
would be expected given we analyse the same data. Interestingly, accompanying these broadband reductions
in power, we also note a (small but significant) upward shift in the alpha peak frequency (Figure 2), which is
most evident for LSD (Walter, 1957; Carhart-Harris et al., 2016; Muthukumaraswamy and Liley, 2018). The
mechanisms and relevance of this peak shift remain unclear.

4.2 Functional connectivity and signal variability

By charting patterns of connectivity across brain regions, FC analyses offer a detailed picture of how neu-
ral dynamics are altered in psychedelic states. Our primary finding of decreased (directed) information flow
together with unchanged or increased (undirected) correlation speaks to a disintegration of communication be-
tween and within brain regions, which in turn implies a loosening of dynamical constraints on brain activity
in the psychedelic state. This loosening may correspond to an increased repertoire of dynamical states, in
line with theoretical proposals that link increased dynamical diversity to the characteristic subjective effects of
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psychedelics including unconstrained cognition, perception, and ego-dissolution (Carhart-Harris et al., 2014;
Atasoy et al., 2018; Carhart-Harris, 2018; Carhart-Harris and Friston, 2019).

Our results are most directly comparable to other studies of the psychedelic state using EEG or MEG. In
particular, in a previous analysis of the same dataset (except the tiagabine control), we found increased Lempel-
Ziv complexity for all psychedelics (compared with placebo), which can be considered as a measure of signal
diversity across time and/or space (Schartner et al., 2017). This increase in diversity is in line with an increased
repertoire of brain dynamics during the psychedelic state. However, unlike the present study, this previous
study did not analyse connectivity of any kind. Other EEG and MEG studies (Kometer et al., 2015; Alonso
et al., 2015; Rivolta et al., 2015; Pallavicini et al., 2019) have applied FC measures, but did not systematically
compare directed and undirected measures, and did not compare results across a range of psychedelics (see
Introduction).

fMRI studies of altered FC and signal variability in the psychedelic state are more common than M/EEG
studies. These fMRI studies have revealed a wide range of effects across a range of different psychedelics.
Some reported effects support an increased dynamical repertoire in the psychedelic state. Among these studies
are those which employ measures of signal variability. In a relatively early study, Tagliazucchi et al. (2014)
report a wider repertoire of connectivity states following psilocybin administration. Lebedev et al. (2016)
calculate voxel-level sample entropy from resting-state fMRI data, comparing LSD with placebo, and finding
increased entropy in sensory and higher networks across multiple time scales. Viol et al. (2017) estimate
functional brain networks from resting-state fMRI data recorded under ayahuasca, finding an increase in the
entropy of the network degree distribution (a measure of network complexity) in the drug state. Atasoy et al.
(2017) perform a “connectome-harmonic decomposition” of brain activity based on fMRI recordings under
placebo and LSD (connectome harmonics are identified as spatial patterns reflecting synchronisation of activity
at different spatial scales). They too report an expanded repertoire of active brain states under LSD. Collectively,
these studies point to increases in the repertoire of neural dynamics during the psychedelic state, which is
consistent with our finding of decreased FC in these states.

Other fMRI studies have focused on measures of undirected FC. These studies have revealed a range of
altered patterns in the psychedelic state, including decreased coupling between ’connectivity hub’ brain regions
(Carhart-Harris et al., 2012); changes in connectivity within and across resting state networks that correlate with
subjective effects (Carhart-Harris et al., 2016), and global increases in (undirected) FC in high-level association
cortices and the thalamus, correlating with subjective reports of ego dissolution (Tagliazucchi et al., 2016).
A number of fMRI studies have examined modifications of connectivity at sub-anesthetic doses of ketamine.
However, a confusing pattern emerges in these papers, with some showing increases in connectivity (Driesen
et al., 2013; Anticevic et al., 2015; Dandash et al., 2015), whereas others show decreases (Kraguljac et al., 2017;
Wong et al., 2016). This pattern may be related to the many different analytical techniques to both preprocess
and quantify FC in the BOLD data. These observations of increases and decreases in FC are difficult to directly
compare with the present results, given the slow temporal dynamics of the fMRI BOLD signal, but they are
by-and-large consistent with the idea of an increased repertoire of brain dynamics during the psychedelic state.
We note that directed measures of FC, such as Granger causality, remain controversial when applied to fMRI
because of the slow nature of the BOLD signal (Seth et al., 2013; Solo, 2016; Barnett and Seth, 2017).

4.3 Directed and undirected functional connectivity

A unique feature of the present analysis is the comparison of directed (Granger causality) and undirected (corre-
lation and coherence) on the same data. This comparison is permitted by the high-temporal resolution, accurate
source-localisation, and steady-state nature of the MEG recordings, which are ideally suited for the application
of rigorous and robust directed FC analyses.

As already mentioned, our primary finding of decreased directed FC across all psychedelics (but not
tiagabine) is in line with the notion of an increased repertoire of brain dynamics in the psychedelic state.
There is a broader relevance to this finding, highlighted by the independent movement of directed FC and undi-
rected FC (correlation and coherence) in our analyses. Had we examined only the more familiar measures of
undirected FC, we would have drawn very different conclusions about the influence of psychedelics on global
brain dynamics. In principle, directed FC measures (such as Granger causality) and undirected measures (such
as correlation and coherence) offer distinct and independent perspectives on neural dynamics. Our study shows
that this “in principle” difference also matters in practice. Future EEG/MEG studies of functional connectivity,
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both in the context of psychedelics and beyond, should therefore consider applying both directed and undirected
FC measures in order to gain a comprehensive picture of neural dynamics, especially for exploratory analyses.

It bears emphasising that FC analyses, whether directed or undirected, are distinct from EC analyses (EC;
Friston et al., 2013; Seth et al., 2015). At the most general level, FC describes statistical dependencies between
variables, whereas EC aims to identify the minimal causal circuit underlying some observed activity pattern
(Barrett and Barnett, 2013). Intuitively, FC provides a description of dynamics, while EC [as operationalised
by techniques such as dynamic causal modelling; see Friston et al. (2003)] provides an inference about un-
derlying mechanism. Although the FC statistics we employ, such as Granger causality, are frequently opera-
tionalised via parametric modelling, these stochastic process models do not stand as mechanistic descriptions
of neural dynamics, but as generic time-series models (Barnett et al., 2017). In FC approaches (both directed
and undirected) the metrics derived have information-theoretic interpretations (Barnett et al., 2009; Barnett and
Bossomaier, 2013), and since the generic models are comparatively low-dimensional, these approaches are well
suited to exploratory analysis of the type performed in this study.

4.4 Limitations

Our analysis has several limitations. First, it is difficult to completely exclude that artefacts due to fine muscle
movements may have affected the MEG signal differently in drug as compared with placebo conditions. This
concern applies in particular to LSD, where it applies primarily to higher frequency bands - notably the γ-band.
While caution should be therefore be applied to results in these high frequency bands, we note that our main
findings apply across all frequency bands, providing reassurance that muscle artefacts cannot readily explain
our data.

A second limitation, which again applies primarily to LSD, is that the MEG recordings represent only a
brief snapshot of an eight-hour psychedelic experience. Further research is needed to examine any possible
time-varying dynamics of information flow across an entire “trip”.

Thirdly, we note that tiagabine recordings (drug and placebo) were carried out with eyes closed, whereas
the other recordings were carried out with eyes open. However, comparisons between drug and placebo did
not mix eyes-open and eyes-closed conditions, reassuring that this difference is unlikely to have affected our
conclusions. Finally, inherent limitations on statistical power due to comparatively small sample sizes may
have prevented us characterising more fine-grained alterations in information flow engendered by psychedelics.

5 Summary

We measured directed and undirected functional connectivity in source-localised MEG data recorded while
healthy human volunteers experienced a psychedelic state (LSD, psilocybin, or low-dose ketamine), placebo,
or a control state (tiagabine). We found that the psychedelic state is associated with a general decrease in
directed functional connectivity (information flow), sometimes (in particular for LSD) accompanied by an
increase in undirected functional connectivity (correlation). These changes in directed functional connectivity
were not explainable by accompanying changes in spectral power, signal-to-noise ratio, or other features of the
underlying statistical models (residuals correlation). The generalised decrease in information flow we observed
is consistent with notions of an increased dynamical flexibility or repertoire in the psychedelic state (Carhart-
Harris et al., 2016; Carhart-Harris, 2018; Carhart-Harris and Friston, 2019).

The distinct and in some cases (LSD) opposite movement of directed and undirected measures suggests that
analyses of functional connectivity should, especially when exploratory, analyse both kinds of measure in order
to deliver a comprehensive picture of underlying neural dynamics. Future research would usefully probe how
directed and undirected FC measures behave with respect to each other in other contexts, besides psychedelics.
The methods described here provide a viable, statistically-sound pipeline for implementing such analyses given
epoched, multivariate neurophysiological data with reasonable temporal and spatial resolution.
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A Correlation and Granger causality (GC) for a minimal VAR model

We start by examining the simplest bivariate system:

Xt = aXt−1 + cYt−1 + εxt (12)

Yt = bYt−1 + εyt (13)

or
Ut = AUt−1 + εt (14)

where Ut ≡
[
Xt

Yt

]
is the bivariate vector process,A =

[
a c
0 b

]
the VAR coefficients matrix and Σ ≡ E

[
εtε

T
t

]
=[

1 κ
κ 1

]
the residuals covariance matrix. The AR operator and MA operator (transfer function) are, respectively

Φ(z) = I −Az =

[
1− az −cz

0 1− bz

]
(15)

Ψ(z) = Φ(z)−1 =
1

(1− az)(1− bz)

[
1− bz cz

0 1− az

]
(16)

In the time domain, z may be interpreted as the backshift (lag) operator, while in the frequency domain z = e−iω

lies on the unit circle in complex plane, where ω is the phase angle, measured in radians. The CPSD may be
calculated from the spectral factorisation (Wilson, 1972) S(z) = Ψ(z)ΣΨ(z)∗ as

S(z) =
1

|1− az|2|1− bz|2

[
|1− (b− κc)z|2 +

(
1− κ2

)
c2 [κ+ (c− κb)z](1− az̄)

[κ+ (c− κb)z̄](1− az) |1− az|2
]

on |z| = 1

(17)
(z̄ denotes complex conjugate) so that, in particular, the power spectral density of the sub-process Xt is

Sxx(z) =
|1− (b− κc)z|2 +

(
1− κ2

)
c2

|1− az|2|1− bz|2
on |z| = 1 (18)

We factor this as
Sxx(z) = ψ(z)vψ(z)∗ = v|ψ(z)|2 on |z| = 1 (19)

where ψ(z) ≡ ΨR
xx(z), v = ΣR

xx are, respectively, the MA operator and residuals variance for the reduced
linear representation of the sub-process Xt. By inspection, we try a reduced spectral factorisation with

ψ(z) ≡ 1− hz
(1− az)(1− bz)

(20)

which yields
v|1− hz|2 = |1− (b− κc)z|2 +

(
1− κ2

)
c2 on |z| = 1, (21)

or

v(1 + h2) = 2∆, ∆ ≡ 1
2

(
1 + b2 + c2 − 2κbc

)
(22)

vh = b− κc (23)

This yields the quadratic equation
v2 − 2∆v + (b− κc)2 = 0 (24)

for v, so that
v = ∆ +

√
∆2 − (b− κc)2 (25)

Note that we need the ‘+’ sign on the square root, since this yields correctly v = 1 when c = 0.
In the time domain, the mutual information between Xt and Yt is given by

I(X :Y ) = − log
[
1− ρ(X,Y )2

]
= log p+ log q − log

(
pq − r2

)
(26)
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where ρ(X,Y ) is the correlation between Xt and Yt, and Ω ≡ E
[
UtU

T
t

]
=

[
p r
r q

]
is the covariance matrix.

To calculate Ω, we need to solve the discrete-time Lyapunov equation (derived from the Yule-Walker equations)

Ω = AΩAT + Σ (27)

We find

p = a2p+ 2acr + c2q + 1 (28)

r = abr + bcq + κ (29)

q = b2q + 1 (30)

so

q =
1

1− b2
(31)

r =
bcq + κ

1− ab
=

R

(1− b2) (1− ab)
(32)

p =
c2(1 + ab)q + 2κac+ 1− ab

(1− a2) (1− ab)
=

P

(1− a2) (1− b2) (1− ab)
(33)

where

R = bc+ κ
(
1− b2

)
(34)

P = c2(1 + ab) +
(
1− b2

)
(1− ab+ 2κac) (35)

We then have

pq − r2 =
(1− ab)P −

(
1− a2

)
R2

(1− a2) (1− b2)2 (1− ab)2
=

Q

(1− a2) (1− b2) (1− ab)2
(36)

where
Q = c2 + (1− ab)2 + 2κc(a− b)− κ2

(
1− a2

) (
1− b2

)
(37)

The MI is thus
I(X :Y ) = logP − logQ+ log(1− ab)− log

(
1− b2

)
(38)

For the Granger causality from Y → X , since Σxx = 1, we have simply

F (Y →X) = log v (39)

(the GC from X → Y is trivially zero). We note that the Geweke “total linear dependence” measure (Geweke,
1982, 1984) is given by

L(X :Y ) = log ΣR
xx + log ΣR

yy − log |Σ| = log v − log
(
1− κ2

)
(40)

(note that ΣR
yy = 1). This also follows directly from Geweke’s decomposition of total linear independence

into directional and instantaneous terms. We see immediately that if κ = 0 (zero residuals correlation), then
F (Y →X) = L(X :Y ).

In the frequency domain, we have, from the definitions,

c(X :Y ;ω) ≡ log

[
Sxx(z)Syy(z)

Sxx(z)Syy(z)− |Sxy(z)|2

]
(41)

f(Y →X;ω) ≡ log

[
Sxx(z)

Sxx(z)− Σyy|x|Ψxy(z)|2

]
(42)

and straightforward calculation leads to

c(X :Y ;ω) = log
[
|1− βz|2 + c2

(
1− κ2

)]
− log |1− bz|2 − log

(
1− κ2

)
(43)

f(Y →X;ω) = log
[
|1− βz|2 + c2

(
1− κ2

)]
− log |1− βz|2 (44)
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where β ≡ b − κc. We see immediately that if κ = 0 then f(Y →X;ω) = c(X :Y ;ω) at any frequency ω.
Note that f(Y →X;ω) integrates to F (Y →X), while c(X :Y ;ω) integrates to L(X :Y ).

We are, in particular, interested in regions and directions in parameter (a, b, c, κ)-space along which I(X :Y )
and F (Y →X) move in opposite directions. To this end we may calculate the angle θ between the gradient
vectors ∇I(X :Y ) and ∇F (Y →X):

cos θ =
∇I(X :Y ) • ∇F (Y →X)

‖∇I(X :Y ) ‖ ‖∇F (Y →X) ‖
(45)

at a point (a, b, c, κ), where “•” denotes vector dot-product. The cosine is then +1 when the gradients are
in exactly the same direction, −1 when they point in opposite directions and 0 when they are orthogonal.

Gradients in the κ direction are of particular interest. Noting that
∂∆

∂κ
= −bc, we may calculate:

∂v

∂κ
= −c(bv − b+ κc)

v −∆
(46)

∂P

∂κ
= 2ac

(
1− b2

)
(47)

∂Q

∂κ
= 2

[
c(a− b)− κ

(
1− a2

) (
1− b2

)]
(48)

so that

∂

∂κ
F (Y →X) =

1

v

∂v

∂κ
(49)

∂

∂κ
I(X :Y ) =

1

P

∂P

∂κ
− 1

Q

∂Q

∂κ
(50)

Numerically, we may establish that (except at c = 0)
∂

∂κ
F (Y →X) and

∂

∂κ
I(X :Y ) always have opposite

sign; so, keeping the parameters (a, b, c) fixed, either increasing or decreasing κ always moves I(X :Y ) and
F (Y →X) in opposite directions. We stress, however, that we have not established that this necessarily applies
in a highly multivariate scenario.
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