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Abstract  

Background:  

Skeletal muscle is comprised of a heterogeneous population of muscle fibers which can be classified by 

their metabolic and contractile properties (fiber “types”). Fiber type is a primary determinant of muscle 

function along with fiber size (cross-sectional area). The fiber type composition of a muscle responds to 

physiological changes like exercise and aging and is often altered in disease states. Thus, analysis of fiber 

size and type in histological muscle preparations is a useful method for quantifying key indicators of muscle 

function and for measuring responses to a variety of stimuli or stressors. These analyses are near-

ubiquitous in the fields of muscle physiology and myopathy, but are most commonly performed manually, 

which is highly labor- and time-intensive. To offset this obstacle, we developed Myosoft, a novel method to 

automate morphometric and fiber type analysis in muscle sections stained with fluorescent antibodies. 

Methods:  

Muscle sections were stained for cell membrane (laminin) and myofiber type (myosin heavy chain isoforms). 

Myosoft, running in the open access software platform FIJI (ImageJ), was used to analyze myofiber size 

and type in transverse sections of entire gastrocnemius/soleus muscles.  

Results:  

Myosoft provides accurate analysis of muscle histology >50-times faster than manual analysis.  We 

demonstrate that Myosoft is capable of handling high-content images even when image or staining quality 

is suboptimal, which is a marked improvement over currently available, comparable programs. 

Conclusions:  

Myosoft is a reliable, accurate, high-throughput, and convenient tool to analyze high-content muscle 

histology. Myosoft is freely available to download from Github at https://github.com/Hyojung-

Choo/Myosoft/tree/Myosoft-hub. 
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Introduction 

Skeletal muscle is the most abundant tissue and is responsible for movement and posture [1, 2]. 

The human musculature comprises over 600 skeletal muscles, which generate a diverse range of 

contractile forces due to differences in the compositions of their constituent muscle fibers [3, 4]. Muscle 

fibers are broadly classified by contractile kinetics (slow or fast twitch, referred to as type I or type II, 

respectively). Type II fibers may be further categorized according to metabolic activity (oxidative or 

glycolytic) [5, 6]. According to this method of classification, there are four general fiber types: type I fibers 

(slow twitch/oxidative metabolism), type IIa (fast twitch/oxidative metabolism), and types IIx and IIb (faster 

and fastest twitch/glycolytic metabolism) [5, 7]. Each fiber type contains different myosin heavy chain 

(MyHC) isoforms, which differ with respect to ATPase activity and contraction speed. The contractile 

properties of a muscle fiber can be inferred by its size (generally reported as its cross-sectional area, CSA) 

and type [4, 5]. The sizes and types of fibers in a given muscle collectively contribute to its functional output 

[8-10].  

The distributions of fiber size and type display plasticity in response to physiological pressures like 

aging and exercise and are altered in cases of neuromuscular disease [11-15]. Thus, analysis of fiber size 

and type in histological muscle preparations can be a useful method for quantifying key indicators of muscle 

function and for measuring responses to a variety of stimuli or stressors. However, despite the value of 

such analysis, it is often performed manually, which is both labor-intensive and time-consuming. To offset 

this obstacle, several groups have developed software that automates analysis of muscle histology [16-19].  

Unfortunately, these methods may incur a significant learning curve for the investigator. Additionally, all 

current methods consist of a single round of image segmentation and depend on performing sequential 

transformations on the original image. This puts greater emphasis on the quality of the stain and 

appearance of the image to achieve accurate analysis. Machine learning offers unprecedented potential in 

resolving these present limitations in automated image analysis [20]. Recently, machine learning based 

tools for image segmentation, like the Trainable Weka Segmentation (TWS) tool, have been developed, 

offering a novel avenue for image analysis. A TWS classifier can be trained to recognize and distinguish 

between the muscle fiber boundary and intra-fiber space after a few simple manual annotations that 
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instantiate these two features. Then, given an image, the classifier predicts the muscle fiber boundary and 

intra-fiber space.  The results of this prediction are represented as a probability rendering of the original 

image, where darker pixels represent higher probabilities for the boundary, and lighter pixels represent 

lower probabilities. Since the classifier is trained specifically to segment images of muscle tissue, it can 

“learn” to account for and clarify flaws in an immunostained image that would otherwise confound the 

analysis or necessitate additional segmentation methods. 

Here, we present Myosoft, a novel tool to analyze muscle histology that synergizes machine 

learning-based image segmentation with thresholding-based object extraction and quantification. Myosoft 

uses pre-trained machine learning classifiers to delineate muscle fiber boundaries and subsequently 

extracts the size, type, and relevant morphometric features of the fiber. Additionally, Myosoft is run in the 

open-access image analysis software FIJI (Fiji is Just ImageJ) which is widely used to analyze cellular 

histology [21, 22]. Altogether, Myosoft is a high-throughput, quick, accurate, and convenient solution to 

analyzing large sections of muscle tissue, capable of circumventing the error, bias, and labor incurred by 

manual annotation. 

Methods 

Mice and muscle tissue preparation  

All experiments involving animals were performed in accordance with approved guidelines and 

ethical approval from Emory University’s Institutional Animal Care and Use Committee.  C57BL/6 and 

Dmd<mdx-4Cv> mice were purchased from Jackson Laboratories. Six-month-old male mice were used for 

all experiments. Mice were euthanized via inhalation overdose of isoflurane, the skin was removed from 

the hindlimbs, and gastrocnemius muscles were excised.  Gastrocnemius muscle tissues were mounted in 

OCT freezing medium (Triangle Biomedical Sciences), snap-frozen in liquid N2-cooled 2-methylbutane and 

stored at -80°C for cryo-sectioning.  Tissue cross sections of 10 μm thickness were collected every 400 μm 

using a Leica CM1850 cryostat.   

Immunofluorescent staining 
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For immunostaining specific types of myosin heavy chain and laminin, tissue sections were first 

treated with mouse-on-mouse reagents (M.O.M. Kit, Vector Laboratories Inc.) to block endogenous Fc 

receptor binding sites followed by a 1 hour incubation with 5% goat serum, 5% donkey serum, 0.5% BSA, 

0.25% Triton-X 100 in PBS (blocking buffer). Sections were then labeled with an undiluted 1:1:1 mixture of 

mouse monoclonal antibodies BA-D5 (anti-MYH7, fiber type I), SC-71 (anti-MYH2, fiber type IIa), and BF-

F3 (anti-MYH4, fiber type IIb) (hybridoma supernates, Developmental Studies Hybridoma Bank) 

supplemented with rabbit polyclonal anti-laminin antibody (2 μg/ml, Sigma) overnight at 4°C. Control 

sections were incubated with species-matched non-immune IgGs.  Sections were then incubated with 

isotype-specific Alexa Fluor (AF) conjugated secondary antibodies: anti-mouse IgG2b-AF647, anti-mouse 

IgG1-AF488, anti-mouse IgM-AF350, and anti-rabbit IgG-AF594 (Invitrogen, Molecular Probes) to mark 

type I, IIa, IIb fibers and laminin, respectively. Sections were mounted using ProLong Diamond anti-fade 

mountant (ThermoFisher Scientific).  

Image acquisition 

All images were obtained using a Nikon Eclipse Ti-E inverted epifluorescent microscope equipped 

with a motorized stage. Images were acquired in NIS-Elements software (Nikon) with a 10x/0.3NA 

PlanFluor objective.  The ND acquisition menu within Elements was used to take images from adjacent 

fields of view and digitally stitch them (with 15% overlap) to form a single image of the entire muscle cross-

section (approximately 20 - 30 mm2) used for analysis. 

Image analysis 

Manual Outline and Fiber Typing  

Four images containing 150-200 fibers were taken from areas of the muscle section where all fiber types 

were represented. CSA measurement (using the polygon tool) and fibertyping (using the counting tool) was 

performed for all fibers in the images (excluding those on the edge) by two individuals in Fiji.  

Images used to test the efficacy of Myosoft and compare it to other programs  

Images for comparison of analysis programs were generated by fractionating large, whole tissue section 

images.  Small images (containing 200-1000 fibers) were chosen after dividing the original image into 
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sixteenths while larger images (1000+ fibers), were taken from 2 different muscle sections divided into 

halves or fourths.  Selection was accomplished with a random number generator to eliminate bias from the 

process. If an image was randomly selected and had significant fluorescence artifacts or tissue damage, 

this area was either excluded, or a new image was chosen.  Each of these images was then run through 

Myosoft and its peer programs to obtain simple fiber counts. False negatives and false positives were then 

manually scored for each image. All above images were then classified as either poor or good quality. Stain 

quality was quantified as the ratio of intensity between the intra-fiber space and fiber boundary. Ratios >5 

were defined as good stain quality while ratios <5 were defined as poor stain quality. Measurements were 

made at various locations to account for non-uniformity in staining within single images.  

Statistics 

An unpaired Student’s t-test was used to determine the statistical significance between two groups. 

The significance of differences between multiple groups was evaluated by one-way ANOVA with 

Bonferroni’s post-test correction. Fiber size distributions were analysed using Kruskal-Wallis non-

parametric ANOVA.  Histogram bin sizes were determined via the Freedman-Diaconis rule:  2 !"#

$
%
&'
, where 

IQR is the interquartile range and n is the total number of observations (fibers) taken from WT 

gastrocnemius/soleus [23].  All statistical comparisons were performed using Prism 7 software (GraphPad 

Software, Inc). A p-value of <0.05 was considered significant.  

Myosoft download and tutorial 

The code for Myosoft (an ImageJ macro) is freely available and can be accessed directly in 

Supplemental file 1 along with a tutorial and troubleshooting instructions (Supplemental File 2), or 

downloaded through the Choo lab repository on GitHub (https://github.com/Hyojung-

Choo/Myosoft/tree/Myosoft-hub). 

Results  

Four components of the Myosoft pipeline 

The Myosoft image analysis pipeline features 4 distinct modules: image pre-processing, segmentation, 

thresholding, and region of interest (ROI) overlay. In the preprocessing step, simple contrast enhancement 
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is applied to the membrane-stained channel of the image and a 4x4 convolutional matrix is applied to 

enhance the cell boundary edges (Fig. 1 Step 1 and 2). Next, to facilitate computation on computers with 

limited CPU clock speed and RAM, the entire 10x muscle image is sliced into 4 to 25 (that is, 22 to 52; we 

use 42 = 16) equally sized smaller images that are then processed independently (Fig. 1 Step 3).  Although 

not strictly necessary for the analysis presented here, this step drastically reduces the computing power 

required for execution of the Myosoft macro and is thus highly recommended (and a default setting in 

Myosoft).  In the segmentation step, sliced images from step 3 are segmented using a pre-trained machine 

learning classifier (primary classifier). The classifier predicts fiber boundary and intra-fiber space using pixel 

intensity values from the laminin membrane stain. Each of the slices are segmented and saved (Fig. 1 Step 

4). Next, images are subjected to another round of segmentation using a separate machine learning 

classifier (iterative classifier).  The iterative classifier was trained on images already segmented by the 

primary classifier. The output of this step is an image with defined and continuous fiber boundaries and 

intra-fiber spaces with minimal noise (Fig. 1 Step 5). In the thresholding step, Myosoft retrieves all iteratively 

segmented images and stitches them to re-form a unified and complete segmented image of the original 

muscle section (Fig. 1 Step 6). Next, a maximum entropy thresholding algorithm is applied to this image to 

binarize it (Fig. 1 Step 7). In the binary image, pixels are either black (representing the membrane-stained 

cell boundary) or white (corresponding to cytoplasm of myofibers, which are unstained).  A particle analyzer 

extracts contiguous white pixels as objects and represents them as ROIs (Fig. 1 Step 8, red). The ROIs 

obtained after gating in step 8 are expanded according to an adjustable ROI expansion factor to closely 

match the fiber boundary marked by laminin in the input image (Fig. 1 Step 8, yellow).  In the final ROI 

overlay step, original MyHC channel images are retrieved and expanded ROIs are overlaid.  Myosoft then 

extracts several measurements within each ROI from each channel, including mean intensity, mode, and 

standard deviation. The numerical data for each channel image is saved as an XLS (Microsoft Excel format) 

file. Additionally, a reference image for each channel is saved which illustrates all the ROIs and their ID 

number (Fig 1. Step 9).  Each ROI has its own numerical ID which is indexed identically between the data 

and the reference images.  ROIs of whole muscle sections are color-coded according to CSA and the color-

coded image is saved (Fig. 1 Step 10). The distribution of intensity values on each channel is plotted by the 

user to sort fiber types and to obtain CSA information. (Fig 1. Steps 11 and 12) 
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Adjustable Parameters. 

In our initial tests of Myosoft, we noticed that some objects that were not myofibers were erroneously scored 

as myofibers (see white arrowheads in left panel of Fig. 1 Step 9).  However, by visual inspection, it is clear 

that these objects differ in size and shape from true muscle fibers.  We reasoned that exclusion criteria 

based on morphometric features of objects would eliminate these artefacts from detection.  Therefore, 

Myosoft prompts the user to enter constraining values for several parameters that correspond to specific 

morphometric features.  This is accomplished through the Extended Particle Analyzer plugin within the 

Biovoxxel Toolbox.  Parameters include cross-sectional area (Fig. 2A), solidity (which measures the ratio 

of an object’s area to that of a convex polygon of equivalent height and width, Fig. 2B), and circularity (a 

measure of how well an object approximates a circle, Fig. 2C). Adjusting these parameters can be used to 

exclude artifacts (e.g., interstitial spaces), objects that are not fibers (e.g. blood vessels), and improperly 

annotated fibers (e.g., two fibers where the boundary between them is incomplete, Fig. 2D).  

Fiber typing is determined by gating of MyHC fluorescent intensity distributions.   

We stained muscle fiber types I, IIa, and IIb using specific MyHC antibodies for each type (Fig. 3A-C).  As 

mentioned above, Myosoft will return several measurements for each ROI on each color channel.  To 

perform fiber type analysis, we first plotted a frequency distribution of intensity values for each channel (Fig 

3A-C). The distributions were typically bimodal, with peaks corresponding to myofibers that are positive or 

negative for each MyHC isoform. From the intensity histograms, we established thresholds that were used 

to define positive and negative fibers of each type (Fig. 3A-C, dotted vertical line).    

Because our images have only 3 color channels, no antibody was used to label type IIx fibers; 

instead, the presence of type IIx fibers was inferred through the absence of any other MyHC isoform 

staining.  To identify IIx fibers, it was thus necessary to determine which fibers had sub-threshold intensity 

values for every channel. To that end, we generated a logical array from Type I, IIa, and IIb intensity 

measurements, assigning a value of 1 to intensity measurements above the threshold on a given channel 

and 0 to intensity measurements below the threshold on that channel (example fibers are indicated in Fig 

3A-C). For all fibers, it is possible to create a new array equal to the sum of the other three arrays (Fig 3D). 

In this array, type IIx fibers will be those with a value of 0, since they were determined to be negative for all 
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fiber types (Fig 3D). This also allows for the detection of mixed fiber types, which are represented as any 

fiber in the array with a value greater than 1 (Fig 3D).  

Myosoft Performance is comparable to manual analysis. 

To evaluate the accuracy of Myosoft, we assessed the comparative performance between manual analysis 

and Myosoft with respect to their ability to correctly identify muscle fibers. We segmented the original image 

of the muscle section into 16 equally sized images and randomly selected 4 of these images for analysis. 

False positives are defined as ROIs that do not delimit a single, whole muscle fiber (where “true” fibers are 

determined with manual annotation).  We note three possibilities for this type of error: a single ROI outlining 

2 fibers (2 as 1), 2 ROIs outlining a single fiber (1 as 2), and ROIs marking objects that are not fibers (non-

fiber) (Fig. 4A).  The false positive rate (0.35%) is thus the number of false positives divided by the total 

number of fibers counted via manual analysis.  Conversely, the false negative rate is defined as the rate at 

which the program does not generate an ROI for a fiber (Fig. 4A, 0.95%).  

We next wanted to determine how effective Myosoft is as a tool for automated myofiber size and 

type analysis.  Two researchers with previous experience analyzing myofibers used the polygon tool in Fiji 

to outline muscle fibers from four 10X fields of view (~600 fibers total) to obtain CSA values. We then ran 

the same images through the Myosoft program and obtained a distribution of CSA across the images. The 

CSA distributions did not differ significantly between manual and Myosoft analysis (Fig. 4B). Next, we tested 

the accuracy of fiber typing using Myosoft. Fiber type analysis was manually performed on 4 images 

representing ~3000 fibers. We then used Myosoft to obtain mean intensity data for green, blue, and far red 

channels across these four images for fiber typing. The relative proportions of each fiber type was strongly 

correlated between Myosoft and manual analysis (r2 > 0.99) (Fig. 4C).  

Myosoft is a reliable program to analyze large-scale muscle histology images.  

Several tools exist for automation of muscle histological analysis, but Myosoft is the first we are aware of 

that employs machine learning.  To validate this approach, we compared the performance of Myosoft and 

other programs that analyze muscle histology. We chose three recently published programs for initial 

comparison: SMASH (Smith and Barton 2014), Myosvision (Bergmeister, Groger et al. 2016), and MuscleJ 
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(Mayeuf-Louchart, Hardy et al. 2018). First, we compared the muscle fiber count across programs with 

manual count, which is considered here to be the “true” muscle fiber count. We chose 6 images, 4 of which 

were the randomly chosen images used to obtain the false positive and false negative rates, and the 

remaining 2 of which were images from 2 other muscle sections. While all muscle histology programs 

performed well counting myofiber number from muscle sections containing less than 500 fibers, Myovision 

identified fewer fibers from images containing ~750-1500 fibers, and Myovision, SMASH and Muscle J were 

all inaccurate in counting from images containing > 2,000 fibers.  Myosoft was the only program to 

consistently reflect manual count throughout images regardless of number of fibers (Fig. 5A).  

Since these data only compare the raw fiber count with manual analysis, they do not represent the 

accuracy of the program per se. For example, a program may possess a high false positive and false 

negative rate, making the count appear artificially similar to the manual count but may not provide an 

accurate fiber identification. This problem may be more serious if the quality of the stain is not optimal. 

Since consistently producing high quality (i.e. high contrast) stains may be impractical, utilizing a program 

that can retain good performance on lower quality stains is desirable. Thus, we sought to examine how the 

false positive and false negative rate compares when the stain is “poor” and “good” between Myosoft and 

MuscleJ (Fig. 5B-D). We chose to compare Myosoft only to MuscleJ since it is the most recent muscle fiber 

analysis program and has the largest suite of abilities presented to date. Furthermore, it is like Myosoft in 

that it is capable of analyzing large-scale images, is coded in IJMacro and runs in Fiji (SMASH and 

myovision require a MATLAB compiler).  We chose four images randomly from both “poor” and “good” 

quality stains. Good quality is defined as little to no noise between the muscle fiber boundary and intra-fiber 

space (the ratio of intensity between the intra-fiber space and fiber boundary > 5), while poor quality is 

defined as mid to high noise (intensity ratios < 5) between the muscle fiber boundary and intra-fiber space 

(Fig. 5B). When instances of false positive and false negative were counted manually for both Myosoft and 

MuscleJ, Myosoft displayed robust low false negative and false positive rates (<1.5 %) regardless of 

staining quality (Fig. 5C-D). Meanwhile, when the stain quality was poor, MuscleJ (Green line in Fig. 5B) 

performed significantly worse than Myosoft (Red line in Fig. 5B). With low quality images, MuscleJ’s false 

negative rate was ~20% and false positive rate was ~11%, which were significantly greater than those of 

Myosoft for both good- and poor-quality stains (Fig. 5C-D).  
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Example: Myosoft clearly distinguishes normal and dystrophic muscle. 

 Finally, we sought to evaluate the power of Myosoft to detect differences between normal and 

dystrophic tissue.  For this purpose, we analyzed gastrocnemius sections from 20 week old WT or mdx 

mice.  The mdx mouse is one of the most common muscular dystrophy models, harboring a spontaneous 

mutation in the Dmd gene (encoding dystrophin) and presenting with a moderate muscle phenotype [24].  

Mdx muscle showed clear variability in its fiber size distribution, with abnormally high proportions of both 

atrophic and hypertrophic fibers.  This feature, which is a hallmark of muscular dystrophy, was evident by 

inspection of the color-coded section image generated by Myosoft and through comparison of CSA 

histograms from mdx or WT muscle fibers (Fig. 6 A, C).  When the distribution of fiber size was segmented 

according to type, a clear shift in mdx oxidative and glycolytic fiber size populations were observed.  Type 

I and IIa fibers were, overall, still smaller in mdx muscles, but a subpopulation of these fibers was skewed 

to larger sizes.  In contrast, types IIb and IIx fibers were conspicuously smaller in mdx muscle and more 

closely mimicked the general fiber size distribution (although these types also had minor subpopulations of 

very large fibers, with CSA >6000 µm2).  Along with shifts in size, Myosoft also detected an alteration in the 

proportion of type IIa fibers, with mdx muscle containing about half the type IIa fibers of WT muscle. 

 In comparing the fiber type populations between control and dystrophic muscle we discovered that 

the total sum of proportions of the four types exceeded 1.  This is because mixed fiber types are counted 

as being positive for both other the subtypes contributing to the mixture (i.e. a type I/IIa fiber is counted 

once as both a type I fiber and a type IIa fiber).  In all, there are 8 possibilities for fiber types that can be 

distinguished using our staining paradigm: type I, IIa, IIb, and IIx single-type fibers, and type I/IIa, I/IIb, 

IIa/IIb, and I/IIa/IIb mixed types.  We devised a method to simultaneously evaluate the presence of all of 

these possibilities through extension of our original fiber typing logical array (presented in Fig. 3).  Instead 

of assigning values of 1 to each fiber type, we chose to assign values of 1, 4, and 6 to the Types I, IIa, and 

IIb, respectively.  With this arrangement, each of the eight possible fiber types carries a unique value (Fig. 

7A).  Using this method, we identified differences in mixed fiber type proportions, with WT muscle having 

more I/IIb and IIa/IIb mixed fibers than mdx muscle (Fig. 7B).  CSA distributions for mixed types showed 

similar trends to distributions for single-type fibers: namely, mdx fibers had a right-skewed distribution with 
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larger populations of very small and very large fibers, while WT fibers were approximately normally 

distributed (Fig. 7C). 

Discussion 

Histological analysis of muscle sections has been a staple of muscle physiology and neuromuscular 

disease research for decades; indeed, a number of neuromuscular diseases were originally named for their 

distinct histopathological features [25-28].  Although methods to characterize muscle fiber size and type 

are exceedingly common, they have been only modestly updated since their original conception.  Such 

analyses are still routinely performed manually despite their laborious nature and consequently represent 

a substantial bottleneck for projects that require them. Furthermore, while manual annotation of muscle 

sections is not complex, there is a degree of subjectivity inherent in the measurements taken.  Because of 

this, there can be considerable inter-individual variation which can confound the interpretation of studies 

reported by different research groups. Recent advances in computer technology have enabled software-

based automation of standard laboratory data analysis, including analysis of digital images.  To date, 

several groups have reported tools intended for applications in histological studies of muscle, including 

Myovision, SMASH, and MuscleJ [16, 18, 19].  Of these, MuscleJ has by far the most complete collection 

of features, with a number of capabilities that are absent even in Myosoft.  However, we found that all 

programs tested, including MuscleJ, stumbled in analysis of large images or images with sub-optimal 

staining.  This is emblematic of a larger problem with automated image analysis: in general, automated 

analysis is successful only when staining protocols are optimized to yield higher quality (greater 

signal:noise) input images for subsequent analysis.  As a novel alternative, we employed a machine 

learning-based approach to improve the accuracy of image segmentation without altering standard 

protocols for tissue staining or image acquisition.  By using two classifiers iteratively, Myosoft 

mathematically improves image signal:noise without the need for manipulation of original images.  

Altogether, our machine learning-based segmentation approach shows superior performance for accurate 

and efficient histology analysis compared to other muscle histology programs. In addition, Myosoft 

overcomes the dependence on image quality for utilizing histology analysis program.  
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Fiber type analysis is a common method in the muscle disease and physiology fields because it is 

relatively simple technically and because well-characterized antibodies are available.  However, Myosoft 

can be used in any instance where it is necessary or desirable to make intensity measurements within 

identified object boundaries.  In the case of muscle analysis, this might entail assessing muscle fusion in 

vivo with Pax7cre/ERT;tdTomato reporter mice [29], or evaluating proportions of central nuclei in a tissue 

section. Furthermore, while Myosoft was developed as a tool for automated analysis of skeletal muscle 

histology, the classifiers used in our macro could be extended to detect boundaries for non-muscle objects 

provided that there is sufficient distinction between the object and its boundary.  Although we have not 

specifically tested additional applications, we posit that Myosoft could be easily modified to identify, for 

example, cardiomyocytes or adipocytes in histological sections.   

We have shown that Myosoft yields essentially equivalent fiber size distributions to manually 

annotated data, but this capability is not unique.  A more challenging problem in muscle histology analysis 

is the evaluation of specific fiber type proportions and size distributions.  Identification of muscle fiber types 

is most commonly accomplished through immunofluorescent methods, but weak labelling or low expression 

of certain myosin heavy chain isoforms, as well as high background fluorescence of muscle sections at 

certain wavelengths, can make it difficult to obtain data that is both precise and accurate.  Myosoft solves 

this problem by storing identified fiber boundaries as ROIs and overlaying these ROIs on images of 

individual fluorescent channels, each of which corresponds to a particular myosin isoform (and, by 

extension, fiber type).  Thresholds for determining fiber types are set objectively according to the distribution 

of intensities for all fibers on a given channel.  Although high signal:noise ratios make the task of setting 

the threshold simpler, we show that it is possible to determine a valid threshold even when differences 

between positive and negative fibers are hard to identify by eye.  Furthermore, while we focus on the use 

of Myosoft for fiber type analysis, any standard measurement that can be made for an ROI can thus be 

made for a “fiber”. As an example, denervated muscle commonly features atrophic, angular fibers which 

could be detected by plotting distributions of morphometric features measured by Myosoft like circularity 

and solidity.  Overall, Myosoft provides an objective platform for extracting type-specific fiber measurements 

rapidly and accurately. 
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Computing technology is now firmly integrated into the biological research enterprise, but rapid 

advances in fields such as machine learning and artificial intelligence offer new opportunities for automation 

of tedious analyses.  Although Myosoft is, to our knowledge, the first program to exploit machine learning 

for use in muscle histological analysis, it is indeed only a first step.  While the program represents a 

substantial improvement over manual analysis, it is not as complete as MuscleJ with respect to the kinds 

of myological analyses it will perform. And while MuscleJ will automatically report processed data to the 

user, Myosoft requires that the investigator evaluate the large numerical datasets it generates.  However, 

it should be noted that since Myosoft provides users with raw data and reference images, it is possible to 

corroborate results (something that is entirely impossible within MuscleJ).  Furthermore, we have attempted 

to alleviate the burden of data processing to some extent by providing a MATLAB script that will 

automatically provide single- and mixed-type proportions and areas once thresholds are set for each 

channel (Supplemental file 3 and 4 (tutorial)).  We have likewise taken great care to ensure that Myosoft 

will be simple and convenient to use for the entire muscle community through extensive beta testing and 

by providing detailed instructions for use/troubleshooting.  Looking forward, it will be interesting to extend 

this approach to other types of analyses, both in muscle and beyond.  As the use of automation expands 

in biological sciences, previously intractable research questions will become increasingly accessible. 

Conclusions 

Myosoft synergizes the power of machine learning-based image segmentation with thresholding-based 

object extraction and quantification to obtain the morphometry and type of fibers in a given histological 

section of muscle. In doing so, it is capable of circumventing the time, effort, and error incurred by manual 

histology analysis and addresses the central limitations of its peers. Myosoft is freely available in the open 

access image analysis platform: Fiji (Fiji Is Just ImageJ), permitting the use of the vast repertoire of 

functions therein which are familiar to much of the muscle community. Myosoft also applies the power and 

versatility of a machine learning-based approach to image analysis. We anticipate that Myosoft will be an 

especially useful tool for the muscle community and will serve as a scaffold for the creation of future 

automation programs. 
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Figure 1 Overview of Myosoft Image Analysis Pipeline. Step 1 Image of laminin stain with contrast 
enhancement performed. Step 2 Laminin stain following 8-bit conversion and image convolution. Step 3 
Image is cut in a 4x4 grid to create 16 equally sized images. Step 4 Probability map following application 
of the primary machine learning classifier. Step 5 Probability map following application of the iterative 
machine learning classifier. Step 6 Recombination of all iteratively segmented grid images to form 
segmented full-tissue image. Step 7 Segmented image following pixel binarization using max entropy 
threshold. Step 8 Initial ROI mask (red) acquired using particle analysis and mature ROI mask (yellow) 
following ROI enlargement. Step 9 Original single channel images with indexed ROI overlay. Step 10 
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Laminin stain overlaid with ROI heat map color coded by size.  Step 11 Intensity histograms (generated by 
user) identify intensity thresholds for each fiber type. Step 12 CSA distributions for each fiber type 
(generated by user), made possible through Myosoft ROI indexing.  Scale bars: 1500µm, large images; 
100µm, inset images.    

 

 

 

Figure 2. Morphometric gates used to exclude false positives. a Frequency distribution of area when no 
morphometric gates were used with an arbitrary threshold equal to the default area-gate minimum. b The 
frequency distribution of solidity when no morphometric gates were used with an arbitrary threshold equal 
to the default solidity-gate minimum. c The frequency distribution of circularity when no morphometric gates 
were used with an arbitrary threshold equal to the default circularity-gate minimum. d ROI mask when no 
morphometric gating is used vs. when it is used (scale bars = 50µm).  
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Figure 3. Method for extracting fiber type data from Myosoft measurements.  Mean intensity histograms for 
type I (a), type IIa (b), and type IIb (c) show bimodal distributions, with peaks corresponding to low and high 
mean intensity values.  A threshold is applied (vertical dotted line), and all values above the threshold are 
considered positive for that fiber type.  d Logic for identifying type IIx fibers.  Fibers that are marked as 
positive on any channel receive a value of 1 for that channel while fibers marked as negative receive a 
value of 0.  Type IIx fibers are those fibers that receive a score of 0 for all 3 channels (sum=0, bottom), 
while mixed fiber types are indicated by sums>1 (middle). 
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Figure 4. Myosoft is comparable to manual analysis. a Operational classifications of false positive and 
negative. b Myofiber CSA distributions were not different when determined with Myosoft or by manual 
annotation (p>0.9, Kruskal-Wallis non-parametric ANOVA with Dunn’s multiple comparison test).  Results 
of manual analysis from 2 investigators are shown. c Proportion of each fiber type in a given muscle section 
determined manually or using Myosoft.  Proportions determined manually are on the y-axis and proportions 
determined by Myosoft are on the x-axis.  Type I fibers indicated by purple symbols, Type IIa indicated by 
red symbols, Type IIb indicated by blue symbols, and Type IIx indicated by black symbols.   
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Figure 5. Efficacy of Myosoft compared to similar programs. a linear regression between manually counted 
fibers and the fiber count produced by SMASH, MuscleJ, Myovision, and Myosoft. b ROI outlines generated 
using Myosoft or MuscleJ in good- or poor-quality stains (scale bars = 50 µm).  Good quality stains are 
defined as those stains which have >5-fold intensity relative to nearby un-stained space. c Proportion of 
false negatives generated between Myosoft and MuscleJ for good- and poor-quality stains. d Proportion of 
false positives generated between Myosoft and MuscleJ for good- and poor-quality stains. 
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Figure 6. Myosoft is a convenient tool for detecting differences between control and dystrophic tissue.  a 
Whole section images of dystrophic (mdx, left) or WT (right) gastrocnemius and soleus muscles showing 
fiber type distributions (top), laminin, marking cell boundaries (middle), or section maps color-coded 
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according to fiber sizes (bottom). Scale bars: 1500µm, large images; 100µm, inset images.   b Fiber type 
proportions determined by analysis of gastrocnemius/soleus sections from mdx or WT mice with Myosoft.  
c Size (CSA) distributions of mdx (red boxes) or WT (black circles) myofibers in aggregate (top) or by 
specific fiber type. 

 

 

 

 

 

Figure 7. Identification of mixed fiber type populations using Myosoft. a The logical array used to identify 
Type IIx fibers (presented in Figure 3) can be extended to identify fibers of mixed type.  In this case, different 
types are assigned unique non-zero values.  When summed across channels, mixed fiber types have new, 
unique identifier values. b Mixed fiber type proportions determined by analysis of gastrocnemius/soleus 
sections from mdx or WT mice with Myosoft. c Comparison of CSA distributions of mixed fiber types in 
gastrocnemius/soleus muscles of mdx (red boxes) or WT (black circles) mice. 
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