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Abstract—The renewal model uses the observed incidence across an
epidemic to estimate its underlying time-varying effective reproductive
number, R(t). The skyline model infers the time-varying effective pop-
ulation size, N(t), responsible for the shape of an observed phylogeny
of sequences sampled from an infected population. While both models
solve different epidemiological problems, the bias and precision of their
estimates depend on p-dimensional piecewise-constant descriptions of
their variables of interest. At large p estimates can detect rapid changes
but are noisy, while at small p inference, though precise, lacks temporal
resolution. Surprisingly, no transparent, principled approach for opti-
mally selecting p, for either model, exists. Usually, p is set heuristically,
or obscurely controlled using complex algorithms. We present an easily
computable and interpretable method for choosing p based on the
minimum description length (MDL) formalism of information theory.
Unlike many standard model selection techniques, MDL accounts for the
additional statistical complexity induced by how parameters interact. As
a result, our method optimises p so that R(t) and N(t) estimates properly
adapt to the available data. It also outperforms comparable Akaike and
Bayesian information criteria over several model classification problems.
Our approach requires some knowledge of the parameter space, and
exposes the similarities between renewal and skyline models.
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I. INTRODUCTION

Sampled phylogenies (or genealogies) and incidence curves (also
known as epi-curves) are two related but distinct types of epidemio-
logical data that are often used to learn about infectious epidemics.
Phylogenies map the tree of ancestral relationships among sequences
that were sampled from an infected population [5]. They provide
a retrospective view of epidemic dynamics by allowing estimation
of the effective size of that population. Incidence curves chart the
number of infected individuals (infecteds) observed longitudinally
across the epidemic [34], and provide ongoing insight into the rate
of spread of that epidemic, by facilitating inference of its effective
reproduction number. Minimalistic examples of each data type are
given in the top-left and middle-right panels of Fig. 1.

The effective reproduction number, R(t), is a key diagnostic of
whether an epidemic is growing or under control. It defines how many
secondary infections an infected will, on average, propagate [34]. The
renewal model [6] [7] is a popular approach for inferring R(t) from
incidence curves, and has been used, for example, to predict Ebola
virus disease case counts and assess the transmissibility of pandemic
influenza [7] [3] [19]. The effective population size, N(t), is essential
for gauging how past fluctuations in the infected demography shaped
epidemic spread. It measures the number of infecteds that contribute
offspring (i.e. transmit the disease) to the next generation [10]. The
skyline plot model [26] [5] is a prominent means of estimating N(t)
from phylogenies, and has provided insight into the historical growth
and transmission of HIV and hepatitis C, among others [25] [15].

While renewal and skyline models depict very different aspects
of an infectious disease, they possess some statistical similarities.
Foremost is their approximation of N(t) and R(t) by p-dimensional
piecewise-constant functions (see bottom panels of Fig. 1). Here p
is the number of parameters to be inferred from the data and time
t is regressive for phylogenies but progressive for incidence curves.

The choice of p is critical to the quality of inference. Models with
large p are better able to track rapid changes but are susceptible to
noise and uncertainty [3]. Smaller p improves estimate precision but
reduces flexibility, easily over-smoothing salient changes [16] [31].
Optimally selecting p, in a manner that is justified by the available
data, is vital to deriving reliable conclusions from these models.

Surprisingly, no transparent, principled and easily computable p
selection strategy exists. In renewal models, p is often set by trial
and error, or defined using heuristic sliding windows [3] [6]. In
skyline models, where this problem is more actively researched,
smoothing priors or sophisticated algorithms are employed [16] [1].
The first assumes some type of autocorrelation between neighbouring
piecewise parameters, while the second uses path sampling and
power posterior distributions to solve more involved evolutionary
model selection problems. In both cases p is implicitly or obscurely
controlled, the rationale behind its choice is difficult to interrogate
and the computational demand of the method is non-trivial [1] [22]
[10]. Consequently, there is a need for new p selection metrics.

Here we attempt to answer this need by developing and validating
a minimum description length (MDL)-based approach to renewal
and skyline model selection. MDL is a formalism from information
theory that treats model selection as equivalent to finding the best
way of compressing observed data (i.e. its shortest description) [28].
MDL is advantageous because it includes both model dimensionality
and parametric complexity within its definition of model complexity
[29]. Parametric complexity describes how the functional relationship
between parameters matters [17], and is usually ignored by standard
selection criteria. However, in general MDL is intractable [8], which
may explain why it has not penetrated the epidemiological literature.

We overcome this issue by deriving a simple Fisher information
approximation (FIA) to MDL. This is achieved by recognising that
sampled phylogenies and incidence curves both sit within a Poisson
point process framework [30], and by capitalising on the piecewise-
constant structure of skyline and renewal models [23]. The result is a
pair of analogous FIA metrics that lead to adaptive estimates of N(t)
and R(t) by selecting the p most justified by the observed Poisson
data. Our FIA expressions decompose model complexity into clearly
interpretable contributions and are as easy to compute as standard
Akaike (AIC) and Bayesian information criteria (BIC). We find, over
a range of selection problems, that the FIA generally outperforms the
AIC and BIC, emphasizing the importance of including parametric
complexity. This improvement comes at the expense of requiring
some knowledge about the piecewise parameter space domain.

II. MATERIALS AND METHODS

A. Phylogenetic Skyline and Epidemic Renewal Models

The phylogenetic skyline and epidemic renewal models are two
distinct and popular approaches to solving epidemiological inference
problems. The skyline model [26] [5] infers the hidden time-varying
effective population size, N(t), from a phylogeny of sequences
sampled from that infected population; while the renewal model [6]
[7] estimates the hidden time-varying effective reproduction number,
R(t), from the observed incidence of an infectious disease. Here t
indicates time, which is progressive (moving from past to present) in
the renewal model, but reversed (retrospective) in the skyline model.
Although both models solve different problems, they approximate
their variable of interest, θ(t), with a p-dimensional piecewise-
constant function, and assume a Poisson point process relationship
between it and the observed data, y(t), as in Eq. (1).

θ(t) =

p∑
j=1

θj1(εj−1 ≤ t < εj), y(t) ∼ Poiss (µ(θ(t))) (1)
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Here θ(t) is either N(t) or R(t) and y(t) is either phylogenetic or
incidence data, depending on the model of interest. The j th piecewise
component of θ(t), which is valid over the interval [εj−1, εj), is θj .
The rate function, µ(θ(t)) (or µ(t) for short), allows us to treat these
usually distinct models within the same Poisson point process frame-
work, where P(y(t) − y(0) = n) = 1/n! (

∫ t
0
µ(s) ds)ne−

∫ t
0 µ(s) ds.

This implies that the time between y events ∼ exp(µ(θ(t))). We
want to estimate the parameter vector θ = [θ1, . . . , θp] from the
observed data over 0 ≤ t ≤ T , denoted yT0 .

The skyline model is based on the coalescent approach to phy-
logenetics [13]. Here sampled genetic sequences (lineages) from
an infected population elicit a reconstructed phylogeny, in which
these lineages successively merge into their common ancestor. The
observed branching or coalescent times of this phylogeny form a
Poisson point process that contains information about the piecewise
population parameters N := [N1, . . . , Np]. This data type is known
as a Poisson count record [30], and the key Eq. (1) relation between
the observed data and the inferred parameters is µ(t) =

(
n(t)
2

)
N(t)−1

with n(t) as the number of lineages in the phylogeny at time t. The
left panels of Fig. 1 illustrate the skyline inference problem.

Let the count record of the coalescent event times over 0 ≤ t ≤ T
be CT0 . The log-likelihood, lp(N) = log P(CT0 |N), which statisti-
cally describes how this count record informs on the p-dimensional
N(t) then follows as Eq. (2) [5] [23].

lp(N) = Γ +

p∑
j=1

mj log
1

Nj
− ωj
Nj

(2)

Here mj counts the number of coalescent event times within the
duration of Nj (i.e. [εj−1, εj)), while ωj =

∫ εj
εj−1

(
n(t)
2

)
dt and Γ =∑m

i=1 log
(
n(ci)

2

)
are constants for a given phylogeny, with ci as the

ith coalescent event time. Since N(t) can have a large dynamic range
(e.g. for exponentially growing epidemics) it is necessary to perform
estimation under the robust log transform [23]. Note that the skyline
models we use have piecewise segment change-point times, εj , that
coincide with coalescent event times, as in [26] [5] [20].

We obtain the maximum likelihood estimate (MLE), log N̂j ,
and Fisher information (FI), I(logNj) of this model by solving
∇N lp(N) = 0 and E[−∇2

N lp(N)] with ∇N := {∂/∂Nj} as the
vector derivative operator [14]. Log-transforming gives Eq. (3) [23].

log N̂j = logωj − logmj , I(logNj) = mj (3)

Note that across the whole count record there are m coalescent events
with

∑p
j=1mj = m. The MLE and FI are important measures for

describing the population size estimates given m [14]. For a given
p, the MLE controls the per segment bias because as mj increases
logNj−log N̂j decreases. The FI defines the precision i.e. the inverse
of the variance around the MLEs, and also (directly) improves with
mj . We will find these two quantities to be vital, when formulating
our approach to p-model selection. Thus, the FI and MLE control the
per segment performance, while p determines how well the overall
piecewise function adapts to the underlying generating process.

The renewal model is based on the classic renewal equation
approach to epidemic transmission [33]. This states that the number
of new infecteds depends on past incidence through the generation
time distribution, and the effective reproduction number. As incidence
is usually observed on a coarse time scale (e.g. days or weeks),
exact infection times are not available. As a result, time is binned
or discretised, with the number of infecteds observed in the tth bin
denoted I(t). For simplicity we assume daily bins. The generation
time distribution is specified by w(s), the probability that an infected
takes between s− 1 and s days to transmit that infection [6].

The total infectiousness of the disease is defined by Λ(t) :=

∑t−1
s=1 I(t − s)w(s), with

∑c
s=1 w(s) = 1 for a generation time

with maximum memory of c. We make the common assumptions that
w(s) is known (it is disease specific) and stationary (does not change
with time) [3]. If an epidemic is observed for T = m > c days then
the historical incidence, IT1 , informs on the piecewise parameters to
be estimated, R = [R1, . . . , Rp]. This contrasts the skyline model,
as information is now available from binned sums of events instead
actual event times. This type of data is known as a histogram record
[30]. The right panels of Fig. 1 explain the renewal inference problem
and the relation between histogram and count record data.

We derive the renewal log-likelihood using Eq. (1), by noting that
the log-likelihood of the relevant binned Poisson point process is
−
∫m
0
µ(u)) du+

∑m
t=1 I(t) log

(∫ ut
ut−1

µ(u) du
)
− I(t)! [30]. Here

u is continuous time and ut − ut−1 = 1 defines the endpoints of
the tth day (u0 = 0). The renewal equation asserts that E[I(t)] =
Λ(t)R(t) [6]. Setting this equal to our binned Poisson mean gives∫ ut
ut−1

µ(u) du = Λ(t)R(t) and recovers the standard renewal log-
likelihood. Note that this is commonly derived by simply assuming
discrete Poisson noise around Λ(t)R(t) [7]. Our alternate deriva-
tion exposes the statistical similarities between renewal and skyline
models and allows generalisation of standard renewal approaches to
variable width histogram records (e.g. irregularly timed epi-curves)
by choosing appropriate bin endpoints [uj−1, uj).

The above log-likelihood is for the maximally flexible m-parameter
renewal model. For a general p-dimensional model (p ≤ m) the
log-likelihood, lp(R) = log P(IT1 |R), follows by grouping terms
from the m-parameter case. This leads to Eq. (4), with constant Γ =∑m
t=1− log I(t)! + I(t) log Λ(t) invariant to all p-groupings.

lp(R) = Γ +

p∑
j=1

ij logRj − λjRj (4)

If the j th group contains mj days or bins, depicted by the set κ(j) =
{mj−1 + 1, . . . , mj−1 +mj} with duration [εj−1, εj), then we can
define grouped sums λj :=

∑
t∈κ(j) Λ(t), ij :=

∑
t∈κ(j) I(t). This

leads to the MLE and FI of Eq. (5) with
∑p
j=1mj = m [7] [23].

R̂j = ijλ
−1
j , I(2

√
Rj) = λj (5)

As each mj becomes large the per segment bias Rj − R̂j will
decrease. Using results from [23], we can show that the square root
of the reproduction number is the most robust parametrisation for
standard renewal models. We compute the FI under this parametri-
sation to reveal that the total infectiousness controls the precision
around our MLEs. This will also improve as mj increases, but with
the caveat that the parameters underlying bigger epidemics (specified
by larger historical incidence values, and controlled through Λ(t))
are easier to estimate than those of smaller ones.

In both models we find a clear piecewise separation of MLEs and
FIs. Per segment bias and precision depend on the quantity of data
apportioned to each parameter. This data division is controlled by
p, which balances per segment performance against the overall fit
of the model to its generating process. Thus, model dimensionality
fundamentally controls inference quality. Large p means more seg-
ments, which can adapt to rapid N(t) or R(t) changes. However,
this also rarefies the per segment data (grouped sums like λj or mj

decrease) with both models becoming unidentifiable if p > m. Small
p improves segment inference, but stiffens the model. We next explore
information theoretic approaches to p-selection that formally utilise
both MLEs and FIs within their decision making algorithms.

B. Model and Parametric Complexity

Our proposed approach to model selection relies on the MDL
framework of [28]. This treats modelling as an attempt to compress
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N1

N2

ϵ1 ϵ2 = T

R1

R2

ϵ1 ϵ2 = mϵ0 = 0 ϵ0 = 0
Time into past Time into present

(a) Skyline model (b) Renewal model

c1 c2 c3 c4

n(c1) = 4
n(c2) = 3

u1 u2 u3 u4

p = 2
m = 4

m1 = 2 m1 = 2

m2 = 2m2 = 2

N(t) R(t)

I(1)

I(4)

I(t)

1

1

a = (n(t)
2 ) 1

N(t)
b = Λ(t)R(t)

∼ exp(a)

∼ exp(b)
CT0

IT1

Fig. 1: Poisson skyline and renewal inference problems. The left panels show how the reconstructed phylogeny of infecteds (top) leads to
(branching) coalescent events, which form a Poisson count record (middle). The timing of these observable events encodes information about
the piecewise effective population size function to be inferred (bottom). The right panels indicate how infecteds, which naturally conform to
a Poisson count record (top) are usually only observed at the resolution of days or weeks, leading to a Poisson histogram record (middle).
The number of infecteds falling in any histogram bin is informative of the piecewise effective reproduction number (bottom). Both models
feature data with m = 4 and involve p = 2 parameters to be estimated. The notation used is explained in Materials and Methods.

the regularities in the observed data, which is equivalent to learning
about its statistical structure. MDL evaluates a p-parameter model,
Mp, in terms of its code length, Mp = φ(Mp) + φ(D |Mp) [8].
Here φ(x) computes the length to encode x (in e.g. nats or bits) and
D is the observed data. Mp is the sum of the information required to
describe Mp and the data given that Mp is chosen. More complex
models have larger φ(Mp) (more bits are needed to depict just the
model), and smaller φ(D |Mp) (as complex models should better fit
the data, there is less remaining information to detail). If n models
are used to describe D then the model with p∗ = arg min1≤p≤nMp

best compresses or most succinctly represents the data.

The model with p∗ is known to possess the desirable properties
of generalisability and consistency [8]. The first means that Mp∗

provides good predictions on newly observed data (i.e. it fits the
underlying data generating process instead of a specific instance of
data derived from that process), while the second indicates that the
selected p∗ will converge to the true model index (if one exists) as
data increase [24] [8] [2]. However, in its exact form, MDL is very
difficult to compute. We therefore use its well known FIA, from [29],
which we denote FIAp for Mp in Eq. (6).

FIAp = −lp(θ̂) +
p

2
log

m

2π
+ log

∫
det
[
m−1I(θ)

] 1
2 dθ (6)

Here ‘det’ is the standard matrix determinant. The approximation of
Eq. (6) is good, provided certain regularity conditions are met. These
mostly relate to the FI being identifiable and continuous in θ, and
are not issues for either skyline or renewal models [17]. While we
will apply the FIA within a class of renewal or skyline models, this
restriction is unnecessary. The FIA can be used to select among any
variously parametrised and non-nested models [8].

Eq. (6) explicates the main advantages of our approach: inter-
pretability, completeness and computability. The FIA assesses model
complexity as the number of distinguishable distributions that a model
can portray [8]. This is done via the last two terms in Eq. (6) (the
first term is part of most model selection criteria and defines model
fit). The p

2
log m

2π
term states that complexity increases with both the

number of parameters and the data dimension. Higher p indicates a
more flexible model, while larger m also increases the number of
describable distributions by improving the resolution of inference.
Standard and easily computable metrics, such as the AIC and BIC
also, to varying extents, account for these (p, m) effects [12].

However, most standard metrics do not have an equivalent to
the integral term in Eq. (6), which depicts parametric complexity
[29] [17]. Parametric complexity measures the contribution of the
functional form of a model to its overall complexity. It explains
why two parameter sinusoidal and exponential models have non-
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identical complexities, for example (the different functional relation-
ships between the parameters lead to distinct sets of distinguishable
distributions). This concept is detailed in [24] and [8], and is an
important but often neglected aspect of model complexity. In general,
the integral term can be intractable [29]. However, in Section III-B we
show that the FIA for renewal and skyline models, as a consequence
of their piecewise separable MLEs and FIs (Eq. (3) and Eq. (5)), is
no more difficult to compute than the AIC or BIC.

This term therefore allows the FIA to more comprehensively assess
model complexity than the AIC, BIC and other standard metrics,
without any computational downsides. More sophisticated techniques
such as Bayesian model selection (BMS) do account for parametric
complexity, but at the expense of tractability, subjectivity (prior
choices) and interpretability [12]. The FIA decomposes complexity
into transparent and commensurable contributors, allowing relative
determination of the main sources of model complexity. For example,
when m becomes large the parametric complexity is comparatively
unimportant and the FIA converges to the BIC [29]. Moreover, the
FIA can approach the performance of these more sophisticated tech-
niques without the computational cost. If an uninformative (Jeffrey’s)
prior is used, the FIA selects the same model as BMS [17] [8].

Importantly, model complexity is clearly not the same as model
dimensionality. While parametric complexity is invariant to parameter
transforms and independent of sample size and model fit, it does
require knowledge of the parameter domain (the integral limits) [8].
In this work we will generally assume some arbitrary but sensible
domain. However, when this is not possible another approximation
to MDL, denoted QKp and given in Eq. (7), can be used.

QKp = −lp(θ̂) +
1

2
log det[I(θ̂)] +

p∑
j=1

log(| θ̂j |+m−
1
4 ) (7)

This Qian-Kunsch (QK) approximation was developed in [27], and
trades some interpretability for the benefit of not having to demarcate
the multidimensional domain of integration.

III. RESULTS

A. The Insufficiency of Log-Likelihoods

The inference performance of both the renewal and skyline models,
for a given dataset, strongly depends on the model dimensionality,
p, that is chosen. As observed in Section I, current approaches to p-
selection utilise ad-hoc rules or elaborate algorithms that are difficult
to interrogate. Here we emphasise why finding an optimal p, denoted
p∗, is important and illustrate the downfalls of inadequately balancing
bias and precision. We start by proving that over-fitting and over-
parametrisation are guaranteed consequences of depending solely on
the log-likelihood for p-selection. We remove terms from Eq. (2) and
Eq. (4) that are invariant to model dimensionality, and substitute the
MLEs of Eq. (3) and Eq. (5) to obtain Eq. (8).

lp(N̂) =

p∑
j=1

mj log
mj

ωj
, lp(R̂) =

p∑
j=1

ij log
ij
λj

(8)

Both the renewal and skyline log-likelihoods take the form lp(θ̂) =∑p
j=1 aj log

aj
bj

, due to their inherent and dominant Poisson, piece-
wise constant structure. Here aj and bj as grouped variables that are
directly computable from the observed data (CT0 or IT1 depending
on the model). The most complex model supportable by the data is
at p = m, with lm(θ̂) =

∑m
i=1 ai log ai

bi
. As the data size (m) is

fixed, and if κ(j) is the set of i indices that must be clumped to
obtain the j th grouping then aj =

∑
i∈κ(j) ai and bj =

∑
i∈κ(j) bi.

The log-sum inequality from [4] states that
∑
i∈κ(j) ai log ai

bi
≥(∑

i∈κ(j) ai
)

log
(∑

i∈κ(j)
ai

)
/
(∑

i∈κ(j)
bi

)
. Repeating this across all

possible p groupings results in Eq. (9).

p∗ = min
1≤p≤m

−lp(θ̂) = m, for θ̂ = N̂ or R̂ (9)

Consequently, log-likelihood based model selection always chooses
the highest dimensional renewal or skyline model. This result also
holds when solving Eq. (9) over a subset of all possible p, provided
smaller p models are obtained by taking non-overlapping groupings
of larger p ones [9]. It is therefore necessary to penalise the log-
likelihood with some term that increases with p.

The highest p model is most sensitive to changes in θ(t), but
extremely noisy and likely to overfit the data. This noise is reflected
in a poor FI. From Eq. (3) and Eq. (5) it is clear that grouping linearly
increases the FI, hence smoothing noise. However, this improved
precision comes with lower flexibility. At the extreme of p = 1,
for example, θ(t) is approximated by a single, perennial parameter,
and the log-likelihood l1(θ̂) =

(∑m
i=1 ai

)
log (

∑m
i=1 ai)/(

∑m
i=1 bi) is

unchanged for all combinations of data that produce the same grouped
sums. This oversmooths and underfits. We will always select p∗ = 1
if our log-likelihood penalty is too sensitive to dimensionality.

Some concrete examples of bad model selection are now presented.
Here we use deterministic groupings of size k to control p i.e. every
κ(j) clumps k successive indices (the last index is m). In Fig. 2 we
examine skyline models with periodic exponential fluctuations (top
panels) and bottleneck variations (bottom panels), in logN(t). The
periodic case describes seasonal epidemic oscillations in infecteds,
while the bottleneck simulates the severe decline that results from a
catastrophic event. In Fig. 3 we investigate renewal models featuring
cyclical (top panels) and sigmoidal (bottom panels) R(t) dynamics.
The cyclical model represents the pattern of spread for a seasonal
epidemic (e.g. influenza), while the sigmoidal one simulates a vacci-
nation policy that quickly leads to outbreak control.

In both figures we observe underfitting at low p (left panels) and
overfitting at high p (right panels). The detrimental effects of choos-
ing the wrong model are not only dramatic, but also realistic. For
example, in the skyline examples the underfitted case corresponds to
the fundamental Kingman coalescent model [13], which is often used
as a null model in phylogenetics. Alternatively, the classic skyline
[26], which is at the core of many coalescent inference algorithms, is
exactly as noisy as the overfitted case. Correctly penalising the log-
likelihood is therefore essential for good estimation. Section III-B
investigates several appropriate model selection penalties.

B. Minimum Description Length Selection

Having clarified the impact of non-adaptive estimation in Eq. (9),
we develop and appraise various model selection metrics, in terms
of how they penalise renewal and skyline log-likelihoods. The most
common and readily computed metrics are the AIC and BIC [8] [12],
which we reformulate in Eq. (10) and Eq. (11), with (aj , bj) =
(mj , ωj) or (ij , λj) for skyline and renewal models respectively.

AICp =

p∑
j=1

−aj log
aj
bj

+ 1 (10)

BICp =

p∑
j=1

−aj log
aj
bj

+
1

2
logm (11)

By decomposing the AIC and BIC on a per segment basis (for a
model with p segments or dimensions), as in Eq. (10) and Eq. (11),
we gain insight into exactly how they penalise the log-likelihood.
Specifically, the AIC simply treats model dimensionality as a proxy
for complexity, while the BIC also factors in the total dimension of
the available data. Note that a small sample correction to the AIC,
which adds a further p+1/m−p−1 to the penalty in Eq. (10), was used
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Fig. 2: Skyline model under and overfitting. Small p (large k)
leads to smooth but biased estimates characteristic of underfitting
(left panels). Large p (small k) results in noisy estimates that respond
well to changes. This is symptomatic of overfitting (right panels). The
MLEs log N̂ are in cyan, the true logN(t) in black, and m = 800.

Fig. 3: Renewal model under and overfitting. Small p (large k)
results in precise but underfitted and inflexible estimates (left panels).
Large p (small k) leads to flexible, overfitted inferences with poor
stability (right panels). The MLEs R̂ are in cyan, the true R(t) is in
black and simulations are at m = T = 400.

in [31] for skyline models. We found this correction inconsequential
to our later simulations and so used the standard AIC only.

As discussed in Section II-B, these metrics are insufficient de-
scriptions because they ignore parametric complexity1. Consequently,
we proposed the MDL approaches of Eq. (6) and Eq. (7). We now
derive and specialise these expressions to skyline and renewal models.
Adapting the FIA metric of Eq. (6) forms a key result of this work.
Its integral term, Ω = log

∫
det[m−1I(θ)]

1
2 , can, in general, be

intractable [29]. However, the piecewise structure of both skyline and
renewal models, which leads to orthogonal (diagonal) FI matrices,
allows us to decompose det[m−1I(θ)]

1
2 as

∏p
j=1

√
m−1Ij(θ) with

Ij(θ) as j th diagonal element of I(θ). Note that θ = N or R for
the skyline and renewal model respectively.

Using this decomposition we can partition Ω across each piecewise
segment as − p

2
logm + log

∏p
j=1

∫
Ij(θ)

1
2 dθj . The

∫
Ij(θ)

1
2 dθj

1In some contexts, such as when the data sample size is asymptotically
large, parametric complexity can be neglected without detriment [8].

is invariant to parameter transformations [8]. Let ηj denote the
robust transform of log θj or 2

√
θj for the skyline or renewal

model, respectively [23]. Applying the FI change of variable formula
[14] gives

∫
Ij(θ)

1
2 dθj =

∫
Ij(η)

1
2 dηj = Ij(η)

1
2
∫

1 dηj . The
last equality follows by substituting the robust FI values from
Eq. (3) (Ij(η) = mj) and Eq. (5) (Ij(η) = λj). Consequently,
Ω = − p

2
logm +

∑p
j=1

1
2

log Ij(η) + log
∫

1 dηj . The domain of
integration for each parameter is all that remains to be solved.

We make the reasonable assumption that each piecewise parameter,
θj , has an identical domain. This is Nj ∈ [1, v] and Rj ∈ [0, v],
with v as an unknown model-dependent maximum. The minima of
1 and 0 are sensible for these models. This gives

∫
1 dηj = log v or

2
√
v for the skyline or renewal model. Substituting into Ω and then

Eq. (6) leads, after some algebra, to Eq. (12) and Eq. (13) below.

FIAp =

p∑
j=1

−mj log
mj

ωj
+

1

2
logmj +

1

2
log

(log v)2

2π
(12)

FIAp =

p∑
j=1

−ij log
ij
λj

+
1

2
log λj +

1

2
log

2v

π
(13)

Eq. (12) and Eq. (13) present an interesting and complete view of
piecewise model complexity. When compared to the BIC (Eq. (11))
we see that the FIA accounts for how the data are divided among
segments, making explicit use of the robust FI of each model. This is
an improvement over simply using the (clumped) data dimension m.
Intriguingly, the maximum value of each parameter to be inferred,
v, is also central to computing model complexity. This makes sense
as models with larger parameter spaces can describe more types of
statistical behaviours [8]. By comparing the second and third terms
of these expressions we can get an idea of the relative contribution
of the data and parameter spaces to complexity.

One weakness of the FIA is its dependence on the unknown v,
which must be assumed finite. The QK MDL approximation of [27]
resolves this issue. We obtain the QK criteria by simply substituting
appropriate FIs and MLEs from Section II-A into Eq. (7). Expressions
identical to Eq. (12) and Eq. (13) result, except for the parameter
space term, which is replaced as shown in Eq. (14) and Eq. (15).

QKp :
1

2
log

(log v)2

2π
−−−→ log

(
log

ωj
mj

+m−
1
4

)
(14)

QKp :
1

2
log

2v

π
−−−→ log

(
ij
λj

+m−
1
4

)
+

1

2
log

λj
ij

(15)

These replacements require no knowledge of the parameter domain,
but still approximate the parametric complexity of the model [27].
However, in gaining this domain independence we lose some per-
formance (see Section III-D and Section III-D), and transparency,
relative to the FIA criteria. Importantly, observe that both the FIA
and QK are as easy to compute as the AIC or BIC. The similarity in
the skyline and renewal model expressions reflects the significance
of their piecewise Poisson formulations. We will next investigate the
practical performance of our MDL approaches.

C. Adaptive Estimation: Epidemic Renewal Models

We validate our FIA approach on several renewal inference prob-
lems. We simulate epidemic incidence curves, I(t), under some true
R(t), and with a gamma generation time distribution, w(t), that
closely mimics that used in [19] for depicting Ebola outbreaks.
Simulations are initialised with 10 infecteds, as in [3], and we
condition on the epidemic not dying out, in addition to removing
initial sequences of zero incidence at start-up. These stipulations
ensure identifiable inference. We consider an observation period of
T = 400 days, and select from among the set of models with
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10 ≤ k ≤ T such that T is divisible by k. Here k determines
the number of days that are grouped to form a piecewise segment,
and model dimensionality, p, is bijective in k i.e. pk = T = m.

We apply the criteria developed in Section III-B to select among
possible p-parameter (or equivalently k-grouped) renewal models. For
the FIA approach we set v = 100 as a seemingly appropriate upper
bound on the reproduction number domain. We start by highlighting
how the FIA (i) regulates between the over and under-fitting extremes
from Fig. 3, and (ii) updates its selected p∗ as the data increase. These
points are illustrated in Fig. 4 and Fig. 5.

Fig. 4: Adaptive cyclical estimation with FIA. The top panels
show the optimal log-likelihood based R(t) MLEs for 1 (left) and 6
(right) incidence data streams simulated under cyclical reproduction
numbers. The bottom panels provide the FIA adaptive estimates at
the same settings with v = 100.

Fig. 5: Adaptive sigmoidal estimation with FIA. The top panels
present optimal log-likelihood based R(t) MLEs for 1 (left) and
6 (right) observed incidence data streams simulated under sharp,
sigmoidal time-varying reproduction numbers. The bottom panels
give the FIA adaptive estimates at the same settings with v = 100.

The left panels of both figures exemplify (i) as the FIA (bottom)
reduces p from the maximum chosen by the log-likelihood (top),
leading to trajectories that best balance noise against dimensionality.
In particular, observe how the FIA chooses just two parameters
to estimate the sigmoidal fall in Fig. 5, thus pinpointing its key
characteristics. Interestingly, as the observed data are increased (right
panels of Fig. 4 and Fig. 5) the FIA adapts its choice of p to reflect

the improved resolution that is now justified by more data, hence
demonstrating (ii). We obtained this increased dataset by appending
5 further independent incidence curves, conditional on R(t).

While the above examples provide practical insight into the merits
of the FIA, they cannot rigorously assess its performance, since non-
piecewise R(t) functions have no true p = p∗ or k = k∗ = T/p∗.
We therefore study two further problems in which a true p∗ exists:
a simple binary classification, and a more complex model search. In
both, we benchmark the FIA against the AIC, BIC and QK criteria
from Section III-B. While all subsequent simulations are performed
under a fixed incidence curve, we note that, when R(t) is piecewise-
constant, increasing the number of conditionally independent curves
improves the probability of selecting the true model.

For the first problem we set T = 200 days and use a constant
null model (model 1) with R(t) = 1.5, to exemplify an uncontrolled
epidemic. The alternative model 2 changes to R(t ≥ T/2) = 0.5 to
mimic the introduction of rapid control at T/2 (inset of Fig. 6). We
randomly generate 103 epidemics with some null model probability
and compute the frequentist probability that each criteria selects the
correct model in Fig. 6. The FIA outperforms all other criteria, with
the QK as its closest competitor. The AIC performs poorly, as does
the log-likelihood (not shown), because they are biased towards the
more complex model 2. Relative metric performance is unchanged if
we instead set R(t ≥ T/2) = 2.5 (an accelerating epidemic).

Fig. 6: Binary hypothesis selection problem. We test the ability of
several model selection criteria by considering a binary classification
problem in which the null model 1 has no change in R(t) (solid,
inset), while the alternative model 2 has a rapid decline (dashed,
inset). We generate 103 independent epidemic curves randomly
according to model 1 with probability P(model 1), and compute the
ability of each criteria to decipher the correct model, P(correct). We
find that the FIA approach outperforms all other metrics.

For the second, and more complicated problem, we consider
models with piecewise-constant R(t) changes after every k∗ days,
with k∗ looping across the search space of 20 ≤ k ≤ T = m.
As before this space is restricted so that pk = T with p and k as
integers, with T = 400 days. For every possible k∗ we generate
105 independent epidemics, allowing R(t) to vary in each run,
with magnitudes uniformly drawn from [0.5, 5]. Each run features
a different random telegraph R(t) function and we set v = 100.

Key results are shown in Fig. 7. The FIA attains the best accu-
racy, followed by the QK, BIC and AIC (main panel). The strong
performance of both MDL-based criteria suggests that parametric
complexity is important. However, the FIA does not always dominate,
and can do worse than the BIC and QK when v is large compared to
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the actual space from which R(t) is drawn (a similar effect occurs
if the minimum R(t) is notably above 0). We discuss these cases in
Section III-E, explaining why v = 1.5 is used in the inset of Fig. 7.

Fig. 7: Renewal model selection consistency problem. We simulate
105 epidemics from renewal models with 20 ≤ k ≤ T = 400 and
p = T/k. We test the ability of several model selection criteria to
detect the true p = p∗ from among this set. Each epidemic has an
independent, piecewise-constant R(t). In the main panel these pieces
are uniformly drawn from [0.5, 5], v = 100, and we consider the
probability of detection as a function of p∗. The FIA metric dominates
all others at every p∗. In the inset the R(t) range is [0.75, 1.5] and
now v = 1.5. Here the FIA has the best average performance but
does not dominate at every p∗. Circles indicate data-points.

D. Adaptive Estimation: Phylogenetic Skyline Models

We verify the FIA performance on several skyline problems.
We simulate uniformly sampled phylogenies (i.e. the sample times
forming the tips of the phylogeny are spread evenly over some inter-
val), with m coalescent events, using [11]. Increasing the sampling
density within that interval leads to improved data and hence a larger
m. We define our p segments as groups of k coalescent events.
Skyline model selection is more involved because the end-points of
the p segments coincide with coalescent events (see Section II-A).
While this ensures statistical identifiability, it means that grouping is
sensitive to phylogenetic noise [31], and that p changes for a given
k if m varies (m = pk). This can result in MLEs, even at optimal
groupings, appearing delayed or biased relative to N(t), when N(t)
is not within the class of grouped piecewise functions.

Nevertheless, we start by examining how our FIA approach bal-
ances between the extremes in Fig. 2. We restrict our grouping
parameter to 4 ≤ k ≤ 80, set v = 103 (maxN(t) = 300) and
apply the FIA of Eq. (12) to obtain Fig. 8 and Fig. 9. Two points
are immediately visible: (i) the FIA (right panels) regulates the noise
from the log-likelihood (left panels), and (ii) the FIA supports higher
p∗ when the data are increased (bottom panels). Specifically, the FIA
characterises the bottleneck of Fig. 9 using a minimum of segments
but with a delay. As data accumulate, more groups can be justified
and so the FIA is able to compensate for that bias. Note that the last
1-2 coalescent events are often truncated, as they can span half the
time-scale, and bias all model selection criteria [18].

We now consider two model selection problems, in which N(t)
belongs to the piecewise-constant function class, to formally evaluate
the FIA against the QK, BIC and AIC (see Section III-B). The first
is a binary hypothesis test between a Kingman coalescent null model

Fig. 8: Adaptive periodic estimation with FIA. Periodically ex-
ponential population size histories are inferred under optimal log-
likelihood groupings (top panels) and FIA based selection at v = 103

(bottom panels). Phylogenies are sampled uniformly over [0, 50] time
units (with some extra initial samples) and data size increases from
left (m = 400) to right (m = 1000).

Fig. 9: Adaptive bottleneck estimation with FIA. Bottleneck
population size histories are inferred under optimal log-likelihood
groupings (top panels) and FIA based selection at v = 103 (bottom
panels). Phylogenies are sampled uniformly over [0, 60] time units
(with some extra samples at change-points) and data size increases
from left (m = 400) to right (m = 1000).

[13] with N1 = 1000, and an alternative model featuring a single
shift to N2 = 500 at switch time τ = 250 units. We set v = 105 and
simulate 500 replicate phylogenies, with m controlling the quantity
of data available per piecewise component (so the total number of
coalescent events is 2m). This is a slight abuse of previous definitions
of m but is more useful here as we want to recover p = 1 for the null
model and p = 2 for the alternative. Samples are introduced at 0 and
τ time units only. Our model selection results are given in Fig. 10.
The grouping parameter search space is 4 ≤ k ≤ m with the number
of integer groups (now per component) defined as p = m/k.

Overall, the FIA outperformed all other criteria, with the QK in
close second (top panel). However, when the data sample size, m, is
small, the BIC is best. Closer examination reveals that the FIA and
QK have the best overall binary classification performance, achieving
the highest true positive and lowest false positive rates (bottom panel).
Observe that except for the AIC, which is known to not have the
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Fig. 10: Binary hypothesis selection problem. We simulate 500
conditionally independent phylogenies from skyline models with 4 ≤
k ≤ m, and test the classification ability of model selection criteria.
The null model is a Kingman coalescent with N1 = 1000, and the
alternative features a sharp fall to N2 = 500 at τ = 250 time units.
The top panel give the probability of correct classification P(correct)
as a function of data size m. The FIA performs best, on average, but
the BIC is better at small m. The bottom panel gives the true (TPR)
and false positive rates (FPR) of the metrics. The FIA and QK have
the best rates overall. Circles indicate data-points.

consistency property, the other methods all converge to near perfect
detection with increasing data. We found performance to be relatively
unchanged with v, and to hold if τ is doubled.

The second classification problem is more complex, and requires
selection from among 5 possible square waves, with varying half-
periods that are integer powers of 2. We define 15 change-point times
at multiples of τ = 50 time units (i.e. there are 16 components) and
allow N(t) to fluctuate between a maximum Nmax and 1/2Nmax. At
each change-point and 0, equal numbers of samples are introduced,
to allow approximately m coalescent events per component (there
are 16m total coalescent events across the phylogeny). The possible
models are depicted in Fig. 11. A similar problem, but for Gaussian
MDL selection under binary trees, was investigated in [9].

We simulate 200 phylogenies according to each wave and compute
the probability that each metric selects the correct model at Nmax =
300 and 600 in the left and right panels of Fig. 12. The grouping
parameter (k) search space is set to m times the half-period of every
wave and v = 103. The FIA has the best overall performance at both
Nmax settings, with the QK close behind. At Nmax = 300, there is a
greater mismatch with v and so the FIA does not uniformly dominate
(the AIC is better at small m). As Nmax = 600 gets closer to v this
issue dissipates. We discuss the dependence of FIA on v for this
problem in Section III-E. The probability of detection improves as
the sample phylogeny data size (m) increases (consistency).

E. Weaknesses of Piecewise Model Selection

In Section III-C and Section III-D we found the FIA to be a
viable and top performing model selection strategy, when compared
to standard metrics of similar computability such as the AIC and
BIC. However, the FIA does not always dominate, and can do worse
if v is large relative to the actual space from which R(t) or N(t)
is drawn. In such cases, the incorrect parameter bounds can lead
to the FIA overestimating the complexity of the generating renewal
or skyline models. While the QK criteria offers a more stable and
reasonably performing MDL alternative, it is less interpretable. Here

Fig. 11: Possible square wave models. The complex model selection
problem must pick the correct model from 5 square waves given a
phylogeny sampled at each change-point. Each square wave varies
between Nmax and 1/2Nmax (ratios shown on y axes), and occurs
with varying half-periods over 16 segments (x axes) of duration τ .

Fig. 12: Skyline model selection consistency problem. We simulate
200 sampled phylogenies from each square wave model of Fig. 11,
with m coalescent events per component. The probability that several
model selection criteria select the true (correct) model is shown at
v = 103 for Nmax = 300 (left) and Nmax = 600 (right). The FIA is
the most accurate criteria on average. Its performance improves with
m and as v gets closer to the true Nmax. Circles are data-points.

we examine the nature of this v dependence, and discuss some general
issues limiting piecewise model selection.

In the inset of Fig. 7 we showed the FIA outperforming other
metrics for a model selection problem over piecewise R(t) functions
drawn within the artificial range [0.75, 1.5] (the AIC was better at
higher p due to its tendency to overfit). We achieved this by setting
v to the true Rmax = 1.5. However, when there is a significant
mismatch between v and Rmax we find that the FIA is inferior to the
QK and BIC. Fig. 13 illustrates, at v = 100 and 6, how the magnitude
of this mismatch influences relative performance. However, this effect
is not always important, as seen in the main panel of Fig. 7.

The skyline model also features this FIA v-dependence. We
characterise this effect by re-examining the square wave model
selection problem of Fig. 12, but over a range of v between 102 and
105. Fig. 14 investigates the resulting changes in the FIA detection
probability, at Nmax = 300 (left) and 600 (right). There we observe,
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Fig. 13: Renewal FIA parameter space sensitivity. We repeat
the simulations in the inset of Fig. 7 but at different v. The
performance of FIA clearly depends on the discrepancy between v
and maxtR(t) = 1.5, and becomes inferior when v is dramatically
above this maximum (top panel). Circles are data-points.

that while the FIA is sensitive to v, it still performs well over the
entire range. Thus, sometimes, FIA can be a choice model selection
metric, even in the absence of reasonable parameter space knowledge.

Fig. 14: Skyline FIA parameter space sensitivity. We revisit the
simulations of Fig. 11, but vary v between 102 and 105. The AIC,
BIC and QK from Fig. 11 are in cyan, while the best and worst case
FIA values are in grey. While the FIA does depend on v, interestingly,
its performance is still superior on average. The left and right panels
are at Nmax = 300 and 600. Circles are data-points.

Lastly, we comment on some general issues that affect the model
selection performance of any metric on renewal and skyline models.
The MLEs and FIs of the renewal model depend on the λj and ij
groups. Consequently, epidemics with low observed incidence (i.e.
likely to have ij = 0) and diseases possessing sharp (low variance)
generation time distributions (i.e. likely to achieve λj = 0 ) will be
difficult to adaptively estimate. This is why we conditioned on the
epidemic not dying out in Section II-A. Similarly, the MLEs and FIs
of the skyline are sensitive to mj , meaning that it is necessary to
ensure each group has coalescent events falling within its duration.
Forcing segment end-points to coincide with coalescent events, as in
[5], guards against this identifiability problem [23]. However, skyline
model selection remains difficult even after averting this issue.

This follows from the random timing of coalescent events, which
means that regular k groupings can miss change-points, and that
long branches can bias analysis [20]. These are known skyline plot
issues and evidence why we truncated the last few events in the
non-piecewise N(t) simulations of Section III-D. Furthermore, with
both models there will always be a limit to the maximum temporal
precision attainable by R(t) and N(t) estimates. Changes in R(t)
on a finer time scale than that of the observed incidence curve are
impossible to recover, while it is not possible to ever get more N(t)
segments than the number of coalescent events [23]. This cautions
against naively applying the criteria we have developed here. It is
necessary to first understand and then prepare for these preconditions
before sensible model selection results can be obtained.

IV. DISCUSSION

Identifying fluctuations in effective population size, N(t) and
reproduction number, R(t) is vital to understanding the retrospective
and continuing behaviour of an epidemic, at the population level.
A significant swing in R(t) could, for example, inform on a key
change to disease transmission, while a steep shift in N(t) could ev-
idence the historical impact of a vaccine [3] [31]. Piecewise-constant
approaches, such as the skyline and renewal model, are a tractable
way of separating insignificant fluctuations (the constant segments)
from noteworthy ones (the change-points). However, the efficacy of
these models requires principled and data-justified selection of their
dimension, p. Failure to do so, as in Fig. 3 and Fig. 2, could result
in salient changes being misidentified (i.e. underfitting) or random
noise being over-interpreted (i.e. overfitting).

Existing approaches to p-selection are mostly either heuristic (e.g.
by visual affirmation), obscure (i.e. p is implicitly set by complex
algorithms) or computationally demanding [3] [1] [10]. Resolving
these issues is our focus in this work. We started by proving that
ascribing p solely on the evidence of the log-likelihood (i.e. the model
fit) guarantees overfitting (see Eq. (9)). Consequently, it is absolutely
necessary to penalise the log-likelihood with a measure of model
complexity. Standard AIC and BIC, which are easy to compute,
treat model complexity as either equivalent to p or p mediated by
the observed data size (see Eq. (10) and Eq. (11)). However, this
description is incomplete, and neglects parametric complexity.

Parametric complexity describes how the functional relationship
among parameters matters. The general FIA of Eq. (6) defines this
complexity as an integral across parameter space [17]. Unfortunately,
this integral is often difficult to evaluate, rendering the FIA imprac-
tical. However, the piecewise-constant nature of renewal and skyline
models, together with their Poisson data structures, allowed us to
reduce this integral. This led to Eq. (12) and Eq. (13), which form
our main results. These expressions are no more difficult to compute
than AIC and BIC, and disaggregate model complexity as follows:∑p

j=1︸ ︷︷ ︸
model dimension

−ij log
ij
λj︸ ︷︷ ︸

model fit

+
1

2
log λj︸ ︷︷ ︸

data resolution

+
1

2
log

2v

π︸ ︷︷ ︸
parametric complexity︸ ︷︷ ︸

model fit versus complexity

While the above breakdown is for Eq. (13), an analogous one exists
for Eq. (12). Intriguingly, the parametric complexity is now a simple
function of v, the unknown parameter domain maximum.

Knowledge of v is the main cost of our metric. This parameter limit
requirement is not unusual and can often improve estimates. In [21]
and [22], for example, this extra knowledge was shown to facilitate
exact inference from sampled phylogenies. In Fig. 13 and Fig. 14
we explored the effect of incorrectly specifying v. While drastic
mismatches between the true and assumed v can be detrimental,
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we found that in some cases poor knowledge of v can actually be
inconsequential. We adapted the QK metric of [27] to obtain Eq. (14)
and Eq. (15). These expressions, though less interpretable than the
FIA, also somewhat account for parametric complexity and offer good
performance should reasonable knowledge of v be unavailable.

The FIA approximates the MDL model selection strategy, which is
known to have the desirable theoretical properties of generalisability
(it balances overfitting and underfitting) and consistency (it selects
the true model with increasing probability as data accumulate) [8]. In
Fig. 4-Fig. 5 and Fig. 8-Fig. 9 we demonstrated that the FIA not only
inherits the generalisability property, but also regulates its selections
based on the available data. Higher data resolution supports larger p
as both bias and variance can be simultaneously reduced under these
conditions [32]. We then validated the consistency of FIA. Fig. 6,
Fig. 7, Fig. 10 and Fig. 12 confirmed this property, in addition to
benchmarking its performance against the comparable AIC and BIC.
We found that the FIA consistently outperformed all other metrics,
provided that v was not drastically misspecified.

Thus, we recommend FIA as a principled, transparent and compu-
tationally simple means of adaptively estimating informative changes
in N(t) and R(t), and for diagnosing the relative contributions of
different components of model complexity. Sampled phylogenies and
incidence curves, and their associated skyline and renewal models,
have often been treated distinctly within the epidemiological litera-
ture. While they do solve different problems, a key point of our work
is the unification of both their models and data structures within the
piecewise Poisson framework. This allowed us to analogously charac-
terise their statistical and complexity properties, and achieve cross-
model insights. Piecewise Poisson models abound in biology [23].
This may allow wider application of MDL and promote the cross-
fertilisation of statistical insights between modelling approaches.
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