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Abstract 

 The Common Model of Cognition (CMC) is a recently proposed, consensus architecture 

intended to capture decades of progress in cognitive science on modeling human and human-like 

intelligence. Because of the broad agreement around it and preliminary mappings of its 

components to specific brain areas, we hypothesized that the CMC could be a candidate model of 

the large-scale functional architecture of the human brain. To test this hypothesis, we analyzed 

functional MRI data from 200 participants and seven different tasks that cover a broad range of 

cognitive domains. The CMC components were identified with functionally homologous brain 

regions through canonical fMRI analysis, and their communication pathways were translated into 

predicted patterns of effective connectivity between regions. The resulting dynamic linear model 

was implemented and fitted using Dynamic Causal Modeling, and compared against six 

alternative brain architectures that had been previously proposed in the field of neuroscience 

(three hierarchical architectures and three hub-and-spoke architectures) using a Bayesian 

approach. The results show that, in all cases, the CMC vastly outperforms all other architectures, 

both within each domain and across all tasks. These findings suggest that a common set of 

architectural principles that could be used for artificial intelligence also underpins human brain 

function  across multiple cognitive domains. 
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Introduction 

The fundamental organizational principle of a complex system is often referred to as its 

“architecture,” and represents an important conceptual tool to make sense of the relationship 

between a system’s function and structure. For instance, the von Neumann architecture describes 

the organizing principle of modern digital computers; it can be used both to describe a computer 

at a functional level of abstraction (ignoring the specific wiring of its motherboard and mapping 

it onto a theory of computation) and, conversely, to conduct diagnostics on an exceedingly 

complicated piece of hardware (properly identifying the components and pathways on a 

motherboard and the function of their wiring). 

The stunning complexity of the human brain has inspired a search for a similar “brain 

architecture” that, akin to von Neumann’s, could relate its components to its functional 

properties. Succeeding in this quest would lead to a more fundamental understanding of brain 

function and dysfunction and, possibly, to new principles that could further the development of 

artificial intelligence (Hassabis et al., 2017). 

Most attempts in this direction have been “bottom-up,” that is, driven by the application 

of dimensionality-reduction and machine-learning methods to large amounts of connectivity 

data, with the goal of identifying clusters of functionally connected areas  (Cole et al., 2013; 

Gorgolewski et al., 2014; Huntenburg et al., 2018). Although these models can be used to predict 

task-related activity, they rely on large-scale connectivity and are fundamentally agnostic (or, at 

best, make a task-specific guess) as to the function of each network node. The results of such 

approaches are also dependent on the type of data and the methods applied. For instance, one 

researcher might focus on purely functional measures, such as task-based fMRI and the co-

occurrence of activity across brain regions and domains; a second researcher, instead, might 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 29, 2021. ; https://doi.org/10.1101/703777doi: bioRxiv preprint 

https://doi.org/10.1101/703777
http://creativecommons.org/licenses/by-nd/4.0/


focus on spontaneous, resting-state activity and slow frequency time series correlations. 

As recently pointed out (Jonas & Kording, 2017), none of these methods is guaranteed to 

converge and provide a functional explanation from the data. However, the same methods can be 

successfully used to test two or more models against the data via a “top-down” approach (Jonas 

& Kording, 2017). That is, given a candidate functional model of the brain, traditional 

connectivity methods can provide reliable answers as to its degree of fidelity to the empirical 

data and its performance compared to other models. A top-down approach, however, critically 

depends on having a likely and theoretically-motivated functional proposal for a brain 

architecture.   

The Common Model of Cognition 

A promising candidate proposal is the Common Model of Cognition (CMC) (Laird et al., 

2017). As the name implies, the CMC is a common set of organizing principles that summarize  

the similarities of multiple cognitive architectures that were developed over the course of five 

decades in the fields of cognitive psychology, artificial intelligence, and robotics. It is an 

architecture for general intelligence, in the sense that agents based on its principles should be 

capable of exhibiting rational and adaptive behavior across domains, rather than optimal 

behavior in a narrow domain.1  Because of its generality and consensus, it has been used as a 

                                                       

1 Note that this meaning of “general intelligence”, as often used in artificial intelligence 

(Goertzel 2014)  and cognitive science (Anderson & Lebiere, 2003), is different from what 

psychometricians intend as “general intelligence,” which is a hypothetical factor g explaining the 

person-level correlations between different tasks (Hunt, 2010). For a review of the relationship 

between these two meanings of “general intelligence,” as well as other definitions, see Legg & 

Hutter (2007). 
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guideline for designing  cognitive agents (Mohan, n.d.). According to the CMC, agents 

exhibiting human-like intelligence share five functional components: a feature-based, declarative 

long-term memory, a buffer-based working memory, a system for the pattern-directed invocation 

of actions represented in procedural memory, and dedicated perception and action systems. 

Working memory acts as the hub through which all of the other components communicate, with 

additional connections between perception and action (Figure 1A). The CMC also includes 

additional constraints on the mechanisms and representations that characterize each component’s 

functional properties. 

The CMC’s components and assumptions distill lessons learned over the last fifty years 

in the development of computational cognitive models and artificial agents with general human-

like abilities. Surprisingly, these lessons seem to cut across the specific domains of application. 

For instance, the cognitive architecture Soar (Laird, 2012) is predominantly used in designing 

autonomous artificial agents and robots, while the cognitive architecture ACT-R (Anderson, 

2007) is predominantly used to simulate psychological experiments and predict human behavior 

(Kotseruba & Tsotsos, 2020); yet, they separately converged on many of the CMC assumptions 

(Laird, Lebiere, & Rosenbloom, 2017). Similarly, the SPAUN large-scale brain model (Eliasmith 

et al., 2012) and the Leabra neural architecture (O’Reilly et al., 2016) are independently designed 

to simulate brain function through artificial neurons; despite making different assumptions in 

terms of neural coding, representation, and learning algorithms, they agree on the use of high-

level modules (including ones for working memory, procedural memory, and long-term 

memory) that are similar to the CMC. Even recent AIs that are made possible by advances in 

artificial neural networks employ, at some level, the same components. DeepMind’s AlphaGo, 

for example, includes a Monte-Carlo search tree component for look-ahead search and planning 
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(working memory) and a policy network (procedural memory), in addition to dedicated systems 

for perception and action (Silver et al., 2016). Similarly, the Differentiable Neural Computer 

(Graves et al., 2016) uses supervised methods to learn optimal policies (procedural memory) to 

access an external memory (symbolic long-term memory). 

Because the CMC reflects the general organization of systems explicitly designed to 

achieve human-like flexibility and intelligence, the CMC should also apply to the human brain. 

Therefore, it provides an ideal candidate for a top-down examination of possible brain 

architecture. 

Assessing the CMC as a Brain Architecture 

Assuming that the CMC is a valid candidate, how can its viability as a model of the 

human brain architecture be assessed? Operationally, a candidate model should successfully 

satisfy two criteria. The first is the generality criterion: the same cognitive architecture should 

account for brain activity data across a wide spectrum of domains and tasks. The second is the 

comparative superiority criterion: an ideal architecture should provide a superior fit to 

experimental brain data compared to competing architectures of similar complexity and 

generality. 

To test the CMC against these two criteria, we conducted a comprehensive analysis of 

task-related neuroimaging data from 200 young adult participants in the Human Connectome 

Project (HCP), the largest existing repository of high-quality human neuroimaging data. 

Although the HCP project contains both fMRI and MEG data, fMRI was chosen because it 

allows for unambiguous identification of subcortical sources of brain activity, which is crucial to 

the CMC and problematic for MEG analysis. The HCP includes functional neuroimages 

collected while participants performed seven psychological tasks. These tasks were taken or 
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adapted from previously published influential neuroimaging studies and explicitly selected to 

cover the range of human cognition (Van Essen et al., 2013), therefore making it an ideal testbed 

for the generality criterion. Specifically, the tasks examine language processing and 

mathematical cognition (Binder et al., 2011), working memory, incentive processing and 

decision making (Delgado et al., 2000), emotion processing (Hariri et al., 2002), social cognition 

(Wheatley et al., 2007), and relational reasoning (Smith et al., 2007). The seven tasks were 

collected from six different paradigms (language processing and mathematical cognition were 

tested in the same paradigm).  

To properly translate the CMC into a brain network architecture, its five components 

need to be identified with an equal number of spatially-localized but functionally homologous 

elements. Depending on the methods used, the number of anatomically identifiable areas in the 

human brain counts in the hundreds (Power et al., 2011; Yeo et al., 2011), and thus do not 

provide a reliable starting point. The number of functionally distinct circuits, however, is 

recognized as being at least one order of magnitude smaller, as different brain areas form 

interconnected networks (Cole et al., 2016; Power et al., 2011; Yeo et al., 2011). This study 

takes, as a reference point, the influential estimate given in Yeo et al. (2011), which counts seven 

distinct functional networks—a number that is comparable to the number of components in the 

CMC.  

An initial identification can be made between CMC components and some of these 

networks. This initial identification was based on well established findings in the literature and is 

also consistent with the function-to-structure mappings that had been proposed in other 

neurocognitive architectures, such as the mappings suggested for ACT-R’s module-specific 

buffers (Anderson, 2007; Borst et al., 2015; Borst & Anderson, 2013)  and the functional 
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components employed in large-scale models of the brain (Eliasmith et al., 2012; O’Reilly et al., 

2016). At this level, the working memory (WM) component can be identified with the fronto-

parietal network comprising the dorsolateral prefrontal cortex (PFC) and posterior parietal 

cortex. The long-term memory (LTM) component corresponds with regions involved in the 

encoding of episodic memories, such as the hippocampus and the surrounding medial temporal 

lobe regions (Moscovitch et al., 2005; Squire, 2004), as well as with regions involved in memory 

retrieval, such as the medial frontal cortex and the precuneus; these regions are referred to as the 

default mode network (Raichle & Snyder, 2007). The action components can be identified with 

the sensorimotor network (Power et al., 2011); the procedural knowledge component with the 

basal ganglia (Yin & Knowlton, 2006); and the perception modules with the dorsal and ventral 

visual networks, as well as, depending on the task, the auditory networks (Figure 1B). 

To properly characterize each individual component, a processing pipeline was designed 

to progressively identify a relevant corresponding region of interest (ROI) for each task and, 

within each task, for each of the ~200 participants, thus accounting for individual differences in 

functional neuroanatomy (Figure 1C; See Materials & Methods). 
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 Figure 1. (A) Architecture of the Common Model of Cognition, as described by (Laird et 

al., 2017). (B) Theoretical mapping between CMC components and homologous cortical and 

subcortical regions, as used in this study’s pipeline to identify the equivalent Regions of Interest 

(ROIs).  (C) Progressive approximation of the ROIs, from high-level functional mappings (left) 

to task-level group results (middle, with group-level centroid coordinated marked by a color 

circle) to the individual functional centroids of the regions in our sample (right; each individual 

centroid represented by a “+” marker; note that hundreds of markers are overlapping in each 

region). Group-level and individual-level data come from the Relational Reasoning task.  
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Alternative Architectures 

To address our second criterion of comparative superiority, the CMC dynamic model 

was compared against other DCM models that implement alternative brain architectures. 

Because the space of possible models is large, we concentrated on six examples that are 

representative of theoretical neural architectures previously suggested in the neuroscientific 

literature (Figure 2). These six alternatives can be divided into two families. In the 

“Hierarchical” family, brain connectivity implements hierarchical levels of processing that 

initiate with Perception and culminate with Action. In this family, the brain can be abstracted as 

a feedforward neural network model with large-scale gradients of abstraction (Huntenburg et al., 

2018). 

Within this hierarchical structure, each ROI represents a different level and projects both 

forward to the next level’s ROI and backward to the preceding level’s ROI. A degree of freedom 

in this architecture is the specific ordering of the regions within the hierarchy. Since Perception 

was always constrained to be the input and Action the output, the relative ordering of the 

remaining regions was manipulated. Furthermore, WM was considered as having a higher order 

in the hierarchy than LTM. With these constraints in place, the only remaining degree of 

freedom was the position of the Procedural region between Perception and Action, which gave 

rise to three possible hierarchical architectures (Figure 2B), in which the Procedural region falls 

between Perception and LTM (Hierarchical 1, as supported by models of the basal ganglia in 

perceptual categorization: Ashby, Ennis, & Spiering, 2007; Kotz, Schwartze, & Schmidt-Kassow, 

2009; Seger, 2008), or between LTM and WM (Hierarchical 2, reflecting the role of basal 

ganglia in memory retrieval: Scimeca & Badre, 2012; Tricomi & Fiez, 2012), or between WM 
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and Action (Hierarchical 3, as supported by models of basal ganglia in motor control Houk et al., 

2007). 

In the “Hub-and-Spoke” family (Figure 2C), a single ROI is singled out as the network’s 

“Hub” and receives bidirectional connections from all the other ROIs (the “Spokes”). With the 

exception of the Hub, no ROI is mutually connected to any other one. Three different Hub-and-

Spoke architectures were created by selecting as the Hub one of the regions, with the exception 

of Perception and Action. In the first variant, the role of the Hub is played by the WM 

component. Because, in our mapping, the WM component corresponds to the lateral PFC, 

captures the view that the PFC functions as a flexible hub for control. This view is increasingly 

popular and well-supported by large-scale analysis of the human functional connectome  (Cole et 

al., 2012, 2013). Interestingly, in terms of network architecture, this view is also the closest to 

the CMC, which, as noted above, is similarly based on a central WM hub, but also includes 

bidirectional Perception-Action connectivity. In the second variant, the role of the Hub is played 

by the Procedural Memory component, which reflects the centrality of procedural control in 

many production-system-based cognitive architectures (Anderson, 2007; Kieras & Meyer, 1997; 

Laird, 2012). Because, in our mapping, Procedural Memory is identified with the basal ganglia, 

this architecture also reflects the centrality of these nuclei in action selection and in coordinating 

cortical activity (Eliasmith et al., 2012; Hazy et al., 2007; Stocco et al., 2010). In the third 

variant, the role of the hub was played by LTM; this architecture reflects the convergence of 

cortical representations to form coherent semantic and episodic memories to interpret perception 

and guide action, and was the original namesake for “Hub-and-Spoke” (Chiou & Lambon Ralph, 

2016; Rogers et al., 2004) 

Thus defined, these six alternatives span all of the possible combinations within the 
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Hierarchical and Hub-and-Spoke families, given the proposed constraints. Like the CMC, these 

architectures are representative of how the five components could be organized in a large-scale 

conceptual blueprint for the brain architecture; they simply make different choices as to which 

connections between components are more fundamental and better reflect the underlying neural 

organization. All of these architectures have been previously suggested in the literature as 

plausible plans to interpret the brain’s organization. In addition to representing plausible 

alternative architectures, these models differ minimally from the CMC and can be easily 

generated by replacing at most six connections from the CMC architecture (dashed lines and red 

lines, Figure 2B-C). Thus, any resulting differences in fit are unlikely to arise because of 

differences in network complexity. 
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 Figure 2: The seven architectures tested in this study. (A) The CMC; (B) The hub-and-

spoke family of models, with the prefrontal (PFC), basal ganglia (BG), and temporal ROIs 

serving as the hub between the other modules; (C) The hierarchical family of models, 

representing three different configurations of working memory, procedural memory, and long 

term memory. In (B) and (C), pathways that are common to the CMC are shown in black; 

pathways that are present in the CMC but not included in the alternative models are shown as 

grey dashed arrows; and pathways that are present in the alternative models but not in the CMC 

are shown in red.      
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Modeling Network Dynamics 

The link between the network of ROIs and their neural activity was provided through 

Dynamic Causal Modeling (DCM: Friston et al., 2003), a neuronal-mass mathematical modeling 

technique that approximates the time-course of brain activity in a set of brain regions as a 

dynamic system that responds to a series of external drives. Specifically, the time course of the 

underlying neural activity y of a set of regions is controlled by the bilinear state change equation: 

 

dy/dt = Ay + ∑i xi B
iy + Cx  (1) 

 

where x represents the event vectors (i.e., the equivalent of a design matrix in traditional GLM 

analysis), A defines intrinsic connectivity between ROIs, C defines the ROI-specific effects of 

task events, and B defines the modulatory effects that task conditions have on the connectivity 

between regions. For simplicity, the modulatory effects in B were set to zero, reducing the 

equation to the form Ay + Cx. A predicted time course of BOLD signal was then generated by 

applying a biologically-plausible model (the balloon model: Buxton et al., 1998; Friston et al., 

2000) of neurovascular coupling to the simulated neural activity y.  

Our preference for this technique was motivated by the existence of an integrated 

framework to design, fit, and evaluate models; by its ability to estimate the directional effects 

within a network (as opposed to traditional functional connectivity analysis); and by its 

underlying distinction between the modeling of network dynamics and the modeling of recorded 

imaging signals (as opposed to Granger causality), which makes it possible to apply the same 

neural models to different modalities (e.g., M/EEG data) in future work. 
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Materials and Methods 

The study presented herein consists of an extensive analysis of a large sample (N=200) of 

neuroimaging data from the Human Connectome Project, the largest existing repository of young 

adult neuroimaging data. The analysis was restricted to the task fMRI subset, thus excluding both 

the resting state fMRI data, the diffusion imaging data, and all of the M/EEG data. The task 

fMRI data consisted of two sessions of each of seven paradigms, designed to span different 

domains. All subject recruitment procedures and informed consent forms were approved by the 

Washington University in St. Louis’ Institutional Review Board. The present study met criteria 

for exemption at the University of Washington’s Institutional Review Board. 

Tasks fMRI Data 

The HCP task-fMRI data encompasses seven different paradigms designed to capture a 

wide range of cognitive capabilities. Of these paradigms, six were included in our analysis; the 

Motor Mapping task was not included because it would have required the creation of multiple 

ROIs in the motor cortex, one for each effector (arm, leg, voice), thus making this model 

intrinsically different from the others. A full description of these tasks and the rationale for their 

selection can be found in the original HCP papers (Barch et al., 2013; Van Essen et al., 2013). 

This section provides a brief description of the paradigms, while Table 1 provides an overview. 
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 Table 1: Overview of the seven task-fMRI paradigms used in the HCP dataset. Italics 

indicate tasks and conditions that were not included in our analysis; bold typeface marks 

experimental conditions that were selected as “Critical” (as opposed to “Baseline”) in the 

design of the experimental matrices (see below, “DCM-specific GLM analysis” section)  

Task 

(Representative 
Reference) 

Relevant Conditions 

(for GLM analysis) 
Included in 

DCM analysis? 

Motor Mapping (Buckner 
et al., 2011) 

Hand, arm, foot, leg, voice responses  No 

Emotion Processing 
(Hariri et al., 2002)  

Neutral shapes vs. Fearful and angry 
faces. 

Yes 

Incentive Processing 
(Delgado et al., 2000) 

“Winning” vs. “Losing” blocks of choices  Yes 

Language and  
Mathematical Processing 

(Binder et al., 2011) 

Listening vs. Answering questions (in 
both Language and Math blocks) 

Yes 

Relational Reasoning 
(Smith et al., 2007) 

Control Arrays vs. Relational arrays  Yes 

Social Cognition 
(Wheatley et al., 2007) 

Randomly moving shapes vs. Socially 
interacting shapes 

Yes 

Working Memory 0-Back vs. 2-Back blocks of faces, places, 
tools, and body parts. 

Yes 
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Emotion Processing Task. Participants are presented with 12 blocks of six consecutive 

trials. During each trial, they are asked to decide which of two visual stimuli presented on the 

bottom of the screen match the stimulus at the top of the screen. In six of the blocks, all of the 

visual stimuli are emotional faces, with either angry or fearful expressions. In the remaining six 

blocks, all of the stimuli are neutral shapes.  Each stimulus is presented for 2 s, with a 1 s inter-

trial interval (ITI). Each block is preceded by a 3 s task cue (“shape” or “face”), so that each 

block is 21 s including the cue.  

Incentive Processing Task. The task consists of four blocks of eight consecutive 

decision-making trials. During each trial, participants are asked to guess whether the number 

underneath a “mystery card” (visually represented by the question mark symbol “?”) is larger or 

smaller than 5 by pressing one of two buttons on the response box within the allotted time. After 

each choice, the number is revealed; participants receive a monetary reward (+$1.00) for 

correctly guessed trials; a monetary loss (-$0.50) for incorrectly guessed trials; and receive no 

money if the number is exactly 5. Unbeknownst to participants, blocks are pre-designed to lead 

to either high rewards (6 reward trials, 2 neutral trials) or high losses (6 loss trials, 2 neutral 

trials), independent of their actual choices. Two blocks are designated as high-reward, and two as 

high-loss blocks. Each stimulus has a duration of up to 1.5 s, followed by a 1 s feedback, with a 1 

s ITI, so that each block lasts 27 s. 

Language and Mathematical Processing Task. The task consists of 4 “story” blocks 

interleaved with 4 “math” blocks. The two types of blocks are matched for duration and adhere 

to the same internal structure in which a verbal stimulus is first presented auditorily, and a two-

alternative question is subsequently presented. Participants need to respond to the question by 

pressing one of two buttons with the right hand. In the story blocks, the stimuli are brief, adapted 
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Aesop stories (between 5 and 9 sentences), and the question concerns the story’s topic (e.g., 

“Was the story about revenge or reciprocity?”). In the math blocks, stimuli are addition or 

subtraction problems (e.g., “Fourteen plus twelve”) and the question provides two possible 

alternative answers (e.g., “Twenty-nine or twenty-six?”). The math task is adaptive to maintain a 

similar level of difficulty across the participants.  

Relational Processing Task. The task consists of six “Relational” blocks alternated with 

six “Control” blocks. In relational blocks, stimuli consist of two pairs of figures, one displayed 

horizontally at the top of the screen and one pair displayed at the bottom. Figures consist of one 

of six possible shapes filled with one of six possible textures, for a total of 36 possible figures. 

Both pairs of figures differ along one dimension, either shape or texture; participants are asked to 

indicate through a button press if the top figures differ on the same dimension as the bottom 

figures (e.g., they both differ in shape). In the control blocks, the stimuli consist of one pair of 

figures displayed horizontally at the top of the screen, a third figure displayed centrally at the 

bottom of the screen, and a word displayed at the center of the screen. The central word specifies 

a stimulus dimension (either “shape” or “texture”) and participants are asked to indicate whether 

the bottom figure matches either of the two top figures along the dimension specified by the 

word. Both relational and control blocks have a total duration of 16 s, but they vary in the 

number of stimuli. Specifically, relational blocks contain four stimuli, presented for 3.5 s with a 

500 ms ITI, while control blocks contain five stimuli presented for 2.8 s with a 400 ms ITI. 

Social Cognition Task. The task consists of 10 videoclips of moving shapes (circles, 

squares, and triangles). The  clips were either obtained or modified from previously published 

studies (Castelli et al., 2000; Wheatley et al., 2007). In five of the clips, the shapes are moving 

randomly, while in the other five the shapes’ movement reflects a form of social interaction. 
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After viewing each clip, participants press one of three buttons to indicate whether they believed 

the shapes were interacting, not interacting, or whether they were unsure.  All clips have a fixed 

duration of 20 s with an ITI of 15 s. 

Working Memory Task. The task consists of eight 2-back blocks and eight 0-back 

blocks, with each block containing 10 trials. Each trial presents the picture of a single object, 

centered on the screen, and participants have to press one of two buttons to indicate whether the 

object is a target or not. In the 2-back blocks, a target is defined as the same object that had been 

seen two trials before, so that participants have to maintain and update a “moving window” of 

the past two objects to perform the task correctly. In the 0-back blocks, a target is defined as a 

specific object, presented at the very beginning of the block so that participants have to only 

maintain a single object in working memory throughout the block. The stimuli belong to one of 

four possible categories: faces, places, tools, and body parts. The category of the objects being 

used as stimuli changes from block to block, but is consistent within one block, so that there is an 

even number of face, place, tool, and body part blocks for each condition. Each block begins 

with a 2.5 s cue that informs the participant about the upcoming block type (2-back or 0-back). 

Each stimulus is presented for 2 s with a 500 ms ITI, for a total duration of 27.5 s per block. 

Data Processing and Analysis 

Imaging Acquisition Parameters  As reported in Barch et al., (2013), functional 

neuroimages were acquired with a 32-channel head coil on a 3T Siemens Skyra with TR = 720 

ms, TE = 33.1 ms, FA = 52°, FOV = 208 × 180 mm. Each image consisted of 72 2.0mm oblique 

slices with 0-mm gap in-between. Each slice had an in-plane resolution of 2.0 x 2.0 mm. Images 

were acquired with a multi-band acceleration factor of 8X.  

Image Preprocessing  Images were acquired in the “minimally preprocessed” format 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 29, 2021. ; https://doi.org/10.1101/703777doi: bioRxiv preprint 

https://doi.org/10.1101/703777
http://creativecommons.org/licenses/by-nd/4.0/


(Van Essen et al., 2013), which includes unwarping to correct for magnetic field distortion, 

motion realignment, and normalization to the MNI template.  The images were then smoothed 

with an isotropic 8.0 mm FWHM Gaussian kernel.   

Canonical GLM Analysis  Canonical GLM analysis was conducted on the smoothed 

minimally preprocessed data using a mass-univariate approach, as implemented in the SPM12 

software package (Penny et al., 2011). First-level (i.e., individual-level) models were created for 

each participant. The model regressors were obtained by convolving a design matrix with a 

hemodynamic response function; the design matrix replicated the analysis of Barch et al., (2013), 

and included regressors for the specific conditions of interest described in Table 1. Second-level 

(i.e., group-level) models were created using the brain-wise parametric images generated for 

each participant as input. 

DCM-specific GLM Analysis  In parallel with the canonical GLM analysis, a second 

GLM analysis was carried out as part of the DCM analysis pipeline. The purpose of this analysis 

was two-fold. First, it defined the event matrix x that is used in the DCM equation (Eq. 1) to 

measure the parameter matrix C. Second, it provided a way to define the omnibus F-test that is 

used in the ROI definition (see below). Because these models are not used to perform data 

analysis, the experimental events and conditions are allowed to be collinear. 

Like most cognitive neuroscience paradigms, each of our tasks includes at least two 

different conditions, under which stimuli must be processed in different ways. In all cases, the 

difference between conditions can be framed in terms of a more demanding, “critical” condition 

and an easier, “control” condition, with the more demanding events associated with greater 

mental elaboration of the stimuli. The critical condition of each task is emphasized in boldface in 

Table 1. 
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As is common in DCM analysis, these two task conditions were modeled in a layered, 

rather than orthogonal fashion. The difference is illustrated in Figure 3: While, in traditional 

GLM analysis, the two conditions are modeled as non-overlapping events in the design matrix, in 

the DCM-specific definition of the matrix all trials belong to the same “baseline” condition, 

which represents the basic processing of the stimulus across all trials. Stimuli from the critical 

condition form a subset of all stimuli presented in the baseline condition. The critical condition is 

therefore appended to the baseline condition in the design matrix to model the additional 

processes that are specifically related to it. 

 

 

 

 Figure 3: Difference between the design matrices used for canonical GLM (A) and for 

DCM analysis (B). In all of the network models, the Baseline condition drives neural activity in 

perceptual areas, while the Critical condition drives neural activity in the Working Memory 

component (C).  
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 In DCM, each condition can affect one or more ROIs independently. In our analysis, the 

association between conditions and ROIs was kept constant across all tasks. Specifically, the 

baseline conditions selectively affected the perceptual ROI, while the critical condition 

selectively affected the WM ROI. This choice reflects the greater mental effort that is common to 

all critical conditions and is confirmed by the greater PFC activity found in all of the GLM 

analyses of the critical conditions (Barch et al., 2013).      

Regions-of-Interest Definition  

To objectively define the Regions-of-Interest (ROIs) for each task and participant, a 

processing pipeline was set up. The starting point of the pipeline was an a priori, theoretical 

identification of each CMC component with large-scale neuroanatomical distinctions. As noted 

in the main text, this initial identification was based on well established findings in the literature 

as well as the function-to-structure mappings proposed in other large-scale neurocognitive 

architectures (Anderson, 2007; Borst et al., 2015; Borst & Anderson, 2013; Eliasmith et al., 

2012; O’Reilly et al., 2016). Specifically, working memory (WM) was identified with the fronto-

parietal network comprising the dorsolateral prefrontal cortex (PFC) and posterior parietal 

cortex; long-term memory (LTM) with regions in the middle, anterior, and superior temporal 

lobe; the procedural knowledge component with the basal ganglia; the action component with the 

premotor and primary motor cortex; and perception with sensory regions, including the primary 

and secondary sensory and auditory cortices, and the entire ventral visual pathway (Figure 1B). 

Beginning with these macro-level associations, the pipeline progressively refined the 

exact ROI for each component through two consecutive approximations. Fig 1C provides a 

visual illustration of this procedure using the data from the relational reasoning task. 

The first approximation was designed to account for group-level variability due to the 
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different tasks and stimuli used in the four datasets. This was necessary because, for example, the 

different stimulus modalities determine which sensory area (e.g., auditory vs. visual areas) would 

be engaged and different task requirements would recruit different portions of the PFC. These 

differences were accounted for by conducting a separate group-level GLM analysis for each 

dataset, and identifying the coordinates of three points that have the highest statistical response 

within the anatomical boundaries of the visual areas (limited to the occipital lobe and the ventral 

portion of the temporal lobe), the dorso-lateral PFC, and the basal ganglia (limited to the 

striatum).   

The second approximation was designed to account for individual-level variability in 

functional neuroanatomy. The group-level coordinates of each component, derived from the 

previous step, were then used as the starting point to search in 3D space for the closest active 

peak within the individual statistical parameter maps obtained from GLM models of each 

participant  (see Figure 1C, right panel). For maximal sensitivity, the map was derived from an 

omnibus F-test that included all the experimental conditions. In practice, this F-test was designed 

to capture any voxel that responded to any experimental condition. The same F-contrast was also 

used to adjust (i.e., mean-correct) each ROI’s time series (Ashburner et al., 2016; Penny et al., 

2011). 

The individual coordinates, thus defined, were then visually inspected; when the 

coordinates were outside the predefined anatomical boundaries, they were manually re-adjusted. 

Across over 1,200 coordinates examined, only 2 required manual adjustment (~ 0.2%). Figure 4 

illustrates the distribution of the individual coordinates of each region for each task, overlaid 

over a corresponding group-level statistical map of task-related activity. Each individual 

coordinate is represented by a crossmark; the ~200 crossmarks form a cloud that captures the 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 29, 2021. ; https://doi.org/10.1101/703777doi: bioRxiv preprint 

https://doi.org/10.1101/703777
http://creativecommons.org/licenses/by-nd/4.0/


spatial variability in the distribution of coordinates. 

Finally, the individualized ROI coordinates were then used as the center of a spherical 

ROI. All voxels within the sphere whose response was significant at a minimal threshold of p < 

0.50 were included as part of the ROI. For each ROI of every participant in every task, a 

representative time course of neural activity was extracted as the first principal component of the 

time series of all of the voxels within the sphere. 

All the ROIs thus obtained were located in the left hemisphere: this simplifying approach 

was preferred to possible alternatives, such as including homologous regions in the right 

hemisphere (which would have required introducing additional assumptions about inter-

hemispheric connectivity) or creating bi-lateral ROIs (which would have reduced the amount of 

variance captured in each ROI). Because all tasks show stronger activation in the left hemisphere 

than in the right, our results are still representative of brain activity in these domains. 

Model Fitting 

Once the time-series for each ROI was extracted, different networks were created by 

connecting all of the individually-defined ROIs according to the specifications of each 

architecture (Figure 2). It should be noted that synaptic pathways exist that connect every pair of 

components; thus, this network model is designed to capture the fundamental layout of a brain 

architecture in terms of functionally necessary connections, rather than anatomical details. 

The predicted time course of the BOLD response for each network model was then 

generated by using Equation 1 to simulate network activity as it unfolded over the course of the 

task.  The predicted time course of BOLD signal was then generated by applying a biologically-

plausible model (the balloon model: Buxton et al., 1998; Friston et al., 2000) of neurovascular 

coupling to the simulated neural activity y of each node in the network. The parameters of the 
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full DCM, which include both the network connectivity parameters and the physiological 

parameters of the neurovascular coupling model, were estimated by applying the expectation-

maximization procedure (Friston et al., 2003) to reduce the difference between the predicted and 

observed time course of the BOLD signal in each ROI.  

 

 

 Figure 4: Lateral view of the distribution of the ROI centroids across individual 

participants and tasks. Each “+” marker represents the centroid of an ROI for one participant. 

Colors represent the components, following the conventions of Fig 1A-C. The background 

represents the statistical parametric map (in greyscale) of the corresponding group-level 

analysis used to identify the seed coordinates for each ROI (Step 2 in Figure 1C). 
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Results  

Once the seven DCM models were separately fitted to the functional neuroimaging data, 

they were compared against each other using a Bayesian random-effects procedure (Stephan et 

al., 2009). Like many other model comparison procedures, this approach provides a way to 

balance the complexity of a model (as the number of free parameters) versus its capacity to fit 

the data. Compared to popular log-likelihood-based measures (e.g., Akaike’s information 

criterion: Akaike, 1974), this procedure is more robust in the face of outlier subjects, and thus 

better suited for studies that, like the present one, include a large number of participants and deal 

with considerable inter-individual variability (Stephan et al., 2010; Stephan et al., 2009).  

Figure 5, inspired by Stephan et al., (2009), provides a graphical illustration of the 

procedure. Specifically, the probability rk that an architecture k would fit a random individual in 

a sample of participants is drawn from a Dirichlet distribution Dir(α1, α2,… αK). This approach 

yields a posterior distribution of the probabilities rk for each model; the distributions of 

probabilities of architectures 1, 2,… k across n individuals are then drawn from multinomial 

distributions mk,n (see Figure 5A).  Because of the properties of the Dirichlet distribution, the 

distributions rk will jointly sum up to one. Intuitively, these distributions can be thought of as the 

probability densities that a random participant will be best explained by a given architecture, and 

they must sum up to one because the space of architectures in a given comparison is finite and 

each participant must be best fit by one. Figure 5B-C illustrates a simple case with two 

hypothetical architectures, identified by the black and the grey lines, respectively. The figure 

depicts a case in which there is a high probability, centered at around rBLACK = 0.8, that any 

participant will be best fit by the first architecture (the black distribution). A second probability 

distribution (in grey), centered at around rGREY = 0.2, represents the probability that any 
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participant will be fit by the alternative architecture. These two probability distributions can then 

be compared in terms of their relative expected and exceedance probabilities. The expected 

probability (red line in Figure 5B) is simply the mean of a distribution; again, the properties of 

the Dirichlet distribution guarantee that the sum of the means of all distributions is 1. In the 

example of Figure 5B, the mean for the black distribution is 0.74. The exceedance probability is 

the probability that the rk for a given architecture k is larger than the corresponding value of any 

competing models (Figure 5C). In the case of two possible architectures  (k = 2), the exceedance 

probability can be easily calculated as the area of each distribution to the right of rk = 0.5. When 

more than two architectures are compared (k > 2), however, there are no straightforward closed-

form solutions to derive the corresponding distributions’ exceedance probabilities. In this case, 

exceedance probabilities are calculated numerically by simulating 10,000 times the outcomes of 

sampling from the original distributions and computing the proportion of times each given 

architecture has the highest probability.    
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 Figure 5. (A) Visual representation of the hierarchical Bayesian modeling procedure. (B) 

Visual representation of two architectures’ probability distributions rk, shown  as the two thick 

grey and black curves. The red dashed line represents the expected probability of the winning 

architecture; (C) Visual representation of the winning architecture’s exceedance probability, 

that is, the proportion of a probability distribution that is greater than any other.  In the case of 

two possible models (k = 2), the exceedance probability reduces to the area to the right of rk = 

0.5. Modified from Stephan et al., (2009). 
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The model posterior distributions are visualized for each task in Figure 6A-F. The expected 

probabilities are represented as the colored vertical lines, while the exceedance probabilities are 

summarized as colored bars in Figure 6H. Table 2 provides a detailed list of model comparison 

metrics, including the ones derived from the hierarchical Bayesian procedure used in this study 

(Dirichlet’s α, expected, and exceedance probabilities) as well as the group-level log-likelihood 

of each model.  

Both types of metrics provide evidence in favor of the CMC. As shown in Figure 6A-F 

and Table 2, the CMC provides a better fit to the data than any alternative architecture, and its 

exceedance probabilities range from 0.99 to 1.0 (Figure 6H). Thus, the CMC uniquely satisfies 

both the generality and comparative superiority criteria. By contrast, all of the other architectures 

are consistently outperformed by the CMC in every domain (violating comparative superiority) 

and their relative rankings change from task to task (violating generality). 
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 Figure 6: Results of the Bayesian model comparisons. In all plots, different colors 

represent different architectures. (A-G) Probability distributions that each of the seven 

architectures is true, given the data within each task and across all tasks combined. Vertical 

dotted lines represent the  mean of each distribution, i.e. the expected probability of each model. 

(H) Corresponding exceedance probabilities, represented as stacked bars for each task.  
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 Table 2: Results of Bayesian model comparison across tasks and models. For each task, 

the winning model is marked in bold. 

Task Model Dirichlet  Expected 
Probability 

Exceedance 
Probability 

Log-likelihood 

All Tasks 
Combined 

Common Model 154.04 0.8802 1.0000 
-3,766,837.6 

Hub-and-Spoke 
PFC 

0.99 0.0057 0.0000 -4,300,912.0 

Hub-and-Spoke 

BG 

15.98 0.0913 0.0000 -4,250,392.0 

Hub-and-Spoke 
Temp 

0.99 0.0057 0.0000 -4,319,925.9 

Hierarchical 1 0.99 0.0056 0.0000 -4,350,757.7 

Hierarchical 2 1.01 0.0058 0.0000 -4,334,435.3 

Hierarchical 3 1.00 0.0057 0.0000 -4,323,617.8 

Emotion 
Processing 

Common Model 96.91 0.5021 1.0000 
-858,283.0 

Hub-and-Spoke 
PFC 

9.86 0.0511 0.0000 -861,878.6 

Hub-and-Spoke 

BG 

26.37 0.1366 0.0000 -861,523.5 

Hub-and-Spoke 
Temp 

12.39 0.0642 0.0000 -864,280.8 

Hierarchical 1 20.61 0.1068 0.0000 -865,658.5 

Hierarchical 2 16.52 0.0856 0.0000 -864,810.6 

Hierarchical 3 10.34 0.0536 0.0000 -863,274.9 

Incentive 
Processing 

Common Model 142.47 0.7018 1.0000 
-857,045.6 

Hub-and-Spoke 2.29 0.0113 0.0000 -862,786.1 
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PFC 

Hub-and-Spoke 

BG 

18.22 0.0898 0.0000 -865,497.7 

Hub-and-Spoke 
Temp 

13.04 0.0642 0.0000 -866,911.2 

Hierarchical 1 4.88 0.0240 0.0000 -870,353.0 

Hierarchical 2 11.49 0.0566 0.0000 -869,460.1 

Hierarchical 3 10.60 0.0522 0.0000 -868,591.6 

Language &  
Math 

Common Model 97.37 0.5045 1.0000 
-894,992.9 

Hub-and-Spoke 
PFC 

5.63 0.0292 0.0000 -902,568.4 

Hub-and-Spoke 

BG 

13.19 0.0683 0.0000 -918,300.9 

Hub-and-Spoke 
Temp 

10.88 0.0564 0.0000 -906,920.6 

Hierarchical 1 6.36 0.0330 0.0000 -918,356.7 

Hierarchical 2 29.24 0.1515 0.0000 -905,494.7 

Hierarchical 3 30.33 0.1571 0.0000 -904,860.3 

Relational 
Reasoning 

Common Model 81.47 0.4265 0.9920 
-746,544.4 

Hub-and-Spoke 
PFC 

2.70 0.0141 0.0000 -750,719.3 

Hub-and-Spoke 

BG 

33.63 0.1761 0.0000 -672,161.8 

Hub-and-Spoke 
Temp 

53.48 0.2800 0.0080 -748,884.4 

Hierarchical 1 1.05 0.0055 0.0000 -760,118.0 
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Hierarchical 2 9.78 0.0512 0.0000 -756,409.0 

Hierarchical 3 8.90 0.0466 0.0000 -754,017.1 

Social 
Cognition 

Common Model 140.08 0.7221 1.0000 
-712,975.6 

Hub-and-Spoke 
PFC 

3.84 0.0198 0.0000 -715,828.7 

Hub-and-Spoke 

BG 

15.69 0.0809 0.0000 -719,374.2 

Hub-and-Spoke 
Temp 

4.66 0.0240 0.0000 -723,105.1 

Hierarchical 1 6.01 0.0310 0.0000 -724,568.5 

Hierarchical 2 3.78 0.0195 0.0000 -725,094.2 

Hierarchical 3 19.93 0.1027 0.0000 -720,446.2 

Working 
Memory 

Common Model 187.37 0.9658 1.0000 
-113,247.6 

Hub-and-Spoke 
PFC 

1.00 0.0052 0.0000 -679,145.2 

Hub-and-Spoke 

BG 

1.62 0.0083 0.0000 -680,396.4 

Hub-and-Spoke 
Temp 

1.00 0.0052 0.0000 -683,402.0 

Hierarchical 1 1.01 0.0052 0.0000 -687,543.1 

Hierarchical 2 1.00 0.0052 0.0000 -688,720.4 

Hierarchical 3 0.99 0.0051 0.0000 -687,175.6 
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The only tasks in which another model comes close to the CMC in terms of fit were the 

Language and Mathematical cognition and the Relational Reasoning paradigms, in which the 

Hierarchical 2 model and the Hub Temporal model, respectively, reached an expected 

probability of 0.15 and 0.28 against the CMC (Figure 6H). Both paradigms stand out from the 

others for posing unusual demands in terms of switching between strategy or rules (Relational 

Reasoning) or between two entirely different tasks of comparable difficulty. This peculiarity 

raises a potential concern that the CMC’s superiority could be an artifact of modeling each task 

in isolation, and that in conditions where multiple tasks were modeled simultaneously, a different 

model could potentially provide a superior fit. To examine this possibility, a second analysis was 

carried out, which included only the 168 participants for whom data for all seven tasks was 

available. In this analysis, the data from each of the six paradigms performed by the same 

individual is modeled as a different run from a “meta-task” performed by that individual. When 

such an analysis was performed, the CMC maintained its superiority, all other models having a 

combined exceedance probability < 1.0 x 10-10 (Figure 6G-H, Table 2). 

The Role of Perception-Action Connectivity 

One other possibility is that the superiority of the CMC originates from some peculiarity 

of its network connectivity that was missing in the other architectures. The one notable 

difference, in this sense, is the presence of a direct link between the Perception and Action ROIs, 

which are bilaterally connected in the CMC but unconnected in the six other rival architectures 

(Figure 2). To examine the role of a direct perception-action link in fitting the data, the six 

alternative architectures were augmented with bilateral Perception-Action connectivity and a 

new Bayesian model comparison was run. Notice that, after the addition of the Perception-

Action links, the Hub Prefrontal architecture becomes virtually indistinguishable from the CMC, 
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differing only for the direction of one single connection (from the Working Memory to Action: 

Figure 2). Because, in a Bayesian model comparison, models compete against each other, two 

almost-identical models run the risk of evenly dividing the proportion of participants best 

explained, possibly leading to misleading low results. For this reason, we combined the two 

architectures into a single “family”, treating them as an identical model (Penny et al., 2010). 

The results of these follow-up analyses are presented in Figure 7 and in Table 3 (for 

completeness, Table 3 reports the CMC and Hub-and-Spoke PFC entries separately). Overall, the 

addition of the direct Perception-Action connectivity improves the fit of the alternative models. 

This improvement is shown in two ways. First, across all six tasks, the log-likelihoods of the 

alternative architectures have increased, on average, by 6,211; a fixed-effects ANOVA, using 

Task and Connectivity (with vs. without Perception-Action links) as factors, showed that the 

main effect of connectivity was significant [F(1, 60) = 6.411, p = 0.014], suggesting that their 

absolute fit to the data has grown reliably. Second, and more importantly, the expected 

probability of the alternative architectures has risen from r = 0.060 to r = 0.133, implying that 

their distributions have shifted rightwards. Once more, a Task-by-Connectivity fixed-effects 

ANOVA showed that this increase was significant [F(1, 60) = 12.42, p =  0.0008]. Because the 

expected probabilities need to sum to one, the growth of the alternative models must have 

occurred at the expense of the CMC, thus implying that the alternative models have become 

more competitive. This improvement notwithstanding, the results of the Bayesian model 

selection essentially replicates the previous analysis, showing that the CMC/Hub Prefrontal 

family provides a superior fit across tasks. Once more, the only exceptions are the Language and 

Math paradigm, where the Hierarchical 2 and 3 architectures also provide a reasonable fit 

(expected probabilities r = 0.20 and r = 0.23, respectively, against the CMC/Hub Prefrontal’s r = 
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0.32; Figure 7C and Table 3), and the Relational Reasoning task, where the Hub Temporal model 

provides, this time, a slightly better fit than the combined CMC/Hub Prefrontal architecture 

(expected probability of r = 0.30 vs r = 0.27; Figure 7D and Table 3). As in the previous case, a 

follow-up analysis was carried out by combining all tasks into a single paradigm and, thus, rule 

out the possibility that the combined CMC/Hub Prefrontal architecture would be 

underperforming under conditions that require integrating or switching between sources of 

information. Under this combined condition, the combined CMC/Hub Prefrontal family showed, 

once more, its superiority, dominating over all other models (expected probability r = 0.96; 

Figure 7G).   
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 Figure 7: Follow-up Bayesian model comparisons, after the six alternative architectures 

have been augmented with bilateral Perception-Action connections. In all plots, different colors 

represent different architectures. (A-G) Probability distributions that each of the seven 

architectures is true, given the data within each task and across all tasks combined. Vertical 

dotted lines represent the  mean of each distribution, i.e. the expected probability of each model. 

(H) Corresponding exceedance probabilities represented as stacked bars for each task.  
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 Table 3: Results of Bayesian model comparison across tasks and models with added 

Perception-Action connection; the results of the Common Model of Cognition and the Hub-and-

Spoke PFC architecture are presented separately. For each task, the winning model is marked in 

bold. 

Task Model Dirichlet 
α  

Expected 
Probability 

Exceedance 
Probability 

Log- 
likelihood 

 
All Tasks 
Combined 

 
Common 

Model / 
Hub PFC 

Family 168.01 0.9601 1.0000 
 

CMC 167.00 0.9543 1.0000 -3,766,837.6 

Hub PFC 1.01 0.0058 0.0000 -4,265,704.7 

Hub-and-Spoke BG 2.01 0.0115 0.0000 -4,297,225.5 

Hub-and-Spoke Temp 1,00 0.0057 0.0000 -4,287,518.1 

Hierarchical 1 1.99 0.0114 0.0000 -4,287,569.1 

Hierarchical 2 1.00 0.0057 0.0000 -4,272,764.1 

Hierarchical 3 0.99 0.0056 0.0000 -4,274,887.3 

 
Emotion 
Processing 

 
Common 

Model / 
Hub PFC 

Family 77.94 0.4000 1.0000 
 

CMC 22.80 0.1182 0.0022 -858,283.0 

Hub PFC 55.14 0.2857 0.9773 -857,833.4 

Hub-and-Spoke BG 24.72 0.1281 0.0002 -859,985.1 

Hub-and-Spoke Temp 10.35 0.0536 0.0000 -862,050.9 

Hierarchical 1 33.61 0.1741 0.0189 -859,314.4 

Hierarchical 2 26.96 0.1397 0.0014 -859,975.7 
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Hierarchical 3 19.43 0.1007 0.0000 -859,211.7 

 
Incentive 
Processing 

 
Common 

Model / 
Hub PFC 

Family 82.08 0.4023 1.00  

CMC 7.96 0.0392 0.0000 -857,045.6 

Hub PFC 74.12 0.3651 0.9988 -855,018.9 

Hub-and-Spoke BG 21.43 0.1056 0.0000 -858,162.0 

Hub-and-Spoke Temp 8.13 0.0400 0.0000 -859,742.0 

Hierarchical 1 39.39 0.1940 0.0010 -855,268.9 

Hierarchical 2 32.57 0.1604 0.0002 -855,964.4 

Hierarchical 3 19.41 0.0956 0.0000 -858,211.8 

 
Language &  
Math 

 
Common 

Model / 
Hub PFC 

Family 63.30 0.3250 0.9440  

CMC 5.05 0.0262 0.0000 -894,992.9 

Hub PFC 58.25 0.3018 0.8789 -894,287.1 

Hub-and-Spoke BG 19.422 0.1006 0.0000 -912,345.1 

Hub-and-Spoke Temp 16.12 0.0835 0.0000 -901,464.7 

Hierarchical 1 11.35 0.0588 0.0000 -908,420.7 

Hierarchical 2 38.17 0.1978 0.0195 -897,894.4 

Hierarchical 3 44.65 0.2313 0.1016 -897,488.9 

 
Relational 
Reasoning 

 
Common 

Model / 

Family 53.09 0.2740 0.3270  

CMC 1.67 0.0088 0.0000 -746,544.4 
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Hub PFC Hub PFC 51.42 0.2692 0.3036 -743,529.8 

Hub-and-Spoke BG 5.96 0.0312 0.0000 -747,865.8 

Hub-and-Spoke Temp 56.49 0.2958 0.6677 
-739,334.9 

Hierarchical 1 8.25 0.0432 0.0000 -745,921.0 

Hierarchical 2 40.07 0.2098 0.0284 -738,619.2 

Hierarchical 3 27.14 0.1421 0.0003 -739,493.4 

 
Social 
Cognition 

 
Common 

Model / 
Hub PFC 

Family 109.39 0.5639 1.0000 
 

CMC 8.15 0.0420 0.0000 -712,975.6 

Hub PFC 101.24 0.5219 1.0000 -712,243.3 

Hub-and-Spoke BG 23.60 0.1216 0.0000 -715,714.6 

Hub-and-Spoke Temp 3.23 0.0166 0.0000 -719,399.4 

Hierarchical 1 14.26 0.0735 0.0000 -715,774.2 

Hierarchical 2 16.98 0.0875 0.0000 -715,839.3 

Hierarchical 3 26.54 0.1368 0.0000 -714,923.9 

 
Working 
Memory 

 
Common 

Model / 
Hub PFC 

Family 187.03 0.9640 1.0000 
 

CMC 186.03 0.9589 1.0000 -113,247.6 

Hub PFC 1.00 0.0052 0.0000 -671,369.3 

Hub-and-Spoke BG 1.97 0.0101 0.0000 -671,926.9 

Hub-and-Spoke Temp 1.99 0.0102 0.0000 -674,689.8 
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Hierarchical 1 1.01 0.0052 0.0000 -670,352.3 

Hierarchical 2 1.01 0.0052 0.0000 -671,517.9 

Hierarchical 3 1.00 0.0052 0.0000 -673,886.6 
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Differences Between CMC and Augmented Hub Prefrontal 

It has been noted several times that, once the Hub Prefrontal architecture is augmented 

with bi-directional Perception-Action connectivity, it becomes essentially indistinguishable from 

the CMC. This is because the difference between the two architectures reduces to the presence of 

one additional feedback connection (from the Action component to the WM component) in the 

Hub Prefrontal architecture; the absence of such connection, however, is not a central tenet of the 

CMC. Thus, while the differences between the remaining architectures are large, structural, and 

representative of different conceptual views of the brain’s organization, this difference is 

comparatively minor. It remains interesting, however, to consider whether it has functional 

implications.  

In addition to reporting the data in which the two models are considered as a single 

family, Table 3 separately reports the relevant expected and exceedance probabilities and log-

likelihoods for the CMC and augmented Hub Prefrontal. It is worth pointing out two relevant 

features in the data. The first is that, as expected, every time the joint CMC/Hub Prefrontal 

Family was selected as the best architecture, it was due to either one of its two resulting 

architectures. This is relevant because it could be argued that, by encompassing two different 

architectures (albeit very similar ones), this family was given an unfair advantage. 

The second is that there is no consistent winner between the two architectures. Although 

the augmented Hub Prefrontal wins over the CMC in five out of six tasks (Emotion, Incentive 

Processing, Language + Math, Relational Reasoning, and Social Reasoning), the CMC vastly 

surpasses it in the Working Memory task. The degree by which the CMC outperforms in the 

working memory task is such that, when all tasks are combined together, the CMC again comes 

out as the best model. This is confirmed by an analysis of the two architectures’ log-likelihoods 
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across task paradigms (Table 3). Unlike the exceedance and expected probabilities, which are 

constrained to sum up to one and thus depend on the other architectures in the comparison set, 

log-likelihoods are characteristic for each architecture. As the data in Table 3 indicates, the 

difference in log-likelihoods between the CMC and the augmented Hub Prefrontal is minimal 

across the five tasks in which the Hub architecture overperforms (mean difference = 1,382), but 

is massive in the Working Memory task (difference = 558,121), providing the decisive advantage 

when all tasks are combined. 

Analysis of CMC Connectivity 

As noted earlier, although the competing architectures were chosen to represent current 

alternative views, we cannot entirely rule out the existence of alternative architectures that 

explain the data better than the CMC. It is possible, however, to decide whether all of the 

connections in the CMC are necessary, or whether a simpler model could potentially fit the data 

equally well. This is particularly important because, as noted in the previous section, the 

difference between the CMC, as outlined in the original paper (Laird, Lebiere, & Rosenbloom, 

2017) and the modified Hub Prefrontal architecture (augmented with bilateral Perception-Action 

connections) boils down to a single, directed link. 

To this end, a Bayesian parameter averaging procedure (Kasess et al., 2010) was 

conducted to generate the posterior distributions of the intrinsic connectivity parameter values 

(corresponding to matrix A in Eq. 1) across participants for each task. Figure 8 visually depicts 

the six task-specific connectivity matrices, indicating both the mean value (as the matrix cell 

color) and the associated posterior probability (as the overlaid number) for each CMC 

connection in each task.  As the figure shows, the parameter values change significantly from 

task to task, implying that the CMC architecture is adaptively leveraged to meet the specific 
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requirements of each paradigm. Nonetheless, virtually all parameters have a posterior probability 

p ≈ 1.0 of being different than zero (with just two out of 84 parameters having smaller posterior 

probabilities of p = 0.75 and p = 0.98), suggesting that all the components and their functional 

connections remain necessary across all domains. 

 

 

Figure 8. Estimated DCM intrinsic connectivity parameters for the CMC model. Each 

plot represents the intrinsic connectivity matrix (matrix A in Eq. 1); the cell color indicates the 

parameter value, and the white text indicates the posterior probability that the parameter value 

is significantly different from zero. White matrix cells indicate connections that are not present 

in the CMC (see Figure 1A).   
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Discussion 

In this study, a comparative analysis was performed on the relative ability of seven 

theoretical architectures to account for brain activity across seven different domains. These 

results provide overwhelming and converging evidence in favor of the Common Model of 

Cognition (CMC), a consensus architecture derived from the analysis of both human and 

artificial intelligent systems. Specifically,  a CMC-inspired network model of the brain 

consistentlyoutperforms other architectures across all of the domains, thus jointly satisfying the 

two a priori criteria of generality and superiority. Even when the six alternative architectures 

were augmented with the CMC-specific bidirectional Perception-Action connectivity, either the 

CMC or a close variant remained dominant across both criteria. Thus, the CMC emerges as a 

viable high-level blueprint of the human brain’s architecture, potentially providing the missing 

unifying framework to relate brain structure and function for research and clinical purposes. 

Limitations 

Although surprisingly robust and based on a large set of data, these results should be 

considered in light of four potential limitations. First, our conclusions are based on an analysis of 

task-related brain activity. Despite being established in the literature, the HCP tasks remain 

artificial and laboratory-tasks, and their ecological validity is, therefore, unknown. In contrast, 

many prominent studies have focused on task-free, resting-state paradigms (Cole et al., 2013, 

2016; Fox et al., 2005; Power et al., 2011; Yeo et al., 2011). Thus, although the use of the task-

related activity provides the most natural test for the generality criterion, the extent to which the 

CMC applies to resting-state fMRI remains to be explored. 

Second, although this paper has argued that that the CMC components can be mapped to 

a small set of large-scale networks in the human brain (as identified in the works of Power et al., 
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2011; and Yeo et al., 2011), the identification between functional networks and components is 

not perfect; some components match with multiple networks and some networks have no clear 

mapping to the CMC. Thus, in the future, more theoretical work would need to be done to 

elucidate the connections between the large scale network organization of the human brain and 

the CMC.  

Third, as noted above, our selection of alternative architectures was representative but not 

exhaustive. Although most of the distinct architectures that can be generated using just the five 

CMC components are likely to be unreasonable from a functional standpoint, some of them 

could, potentially, outperform the CMC. Furthermore, small variations remain possible within 

each architecture, and their functional role should be further explored.   

Finally, it can be argued that our approach does not take full advantage of the possibilities 

of DCM, which makes it possible to accommodate non-linear, modulatory effects in the dynamic 

model. For example, the strategic role of procedural knowledge in the CMC (Assumption B3 of 

the original paper) is compatible with a “modulatory” view of the basal ganglia, which has also 

been argued for from a theoretical standpoint (Stocco et al., 2010) and empirically observed in at 

least one study using effective connectivity analysis (Prat et al., 2016). In this study, modulatory 

connections were deliberately not included, so to level the field and make the seven possible 

architectures more similar to each other in terms of overall complexity. Preliminary evidence, 

however, suggests that modulatory versions of the CMC might even outperform the standard 

version discussed herein (Steine-Hanson, Koh, & Stocco, A., 2019; Stocco et al., 2018). 

Consideration on the Nature of the CMC 

These limitations notwithstanding, it is worth examining the possible implications of the 

CMC’s ability to account for neural data across cognitive domains. Our set of analyses suggests 
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that the superiority of the CMC across cognitive domains stems from two key characteristics: the 

“Hub-and-Spoke” nature of its connectivity, with a central hub located in the prefrontal cortex, 

and the presence of a direct Perception-to-Action route. Neither of these two elements, in 

isolation, are responsible for the success of the CMC in explaining human neuroimaging data; 

the Hub-and-Spoke architecture alone, for instance, is outmatched not only by the CMC but by 

other architectures as well (Figure 6). By contrast, while the Perception-to-Action connectivity 

improves the relative competitiveness of all architectures, it does not change the superiority of 

the CMC (Figure 7). Thus, it is reasonable to conclude that both elements jointly concur in 

determining the success of the CMC. A possible functional explanation for this duality is that the 

two elements provide different and complementary routes for control. The hub-like nature of the 

PFC has been speculated upon for more than a century (Bianchi, 1922; Luria, 2012), and has 

been confirmed empirically by functional connectivity studies (Cole et al., 2012, 2013; Zanto & 

Gazzaley, 2013); computationally, it has been postulated that its existence creates a “global 

workspace” (Dehaene et al., 1998) in which information across different modalities can be 

integrated and shared, thus allowing effortful but advanced and flexible control over behavior—

and, possibly, even consciousness (Dehaene & Naccache, 2001). Conversely, direct bi-

directional links between Perception and Action systems in the human brain (Craighero et al., 

1999; Fuster, 2004) are believed to support fast and automatic online monitoring and correction 

of motor behavior. 

Broader Implications  

The results outlined here also have further implications. The first is that they highlight the 

fact that a greater degree of translation is possible, at the systems level,  between the results of 

the cognitive sciences and those of the neuroscience and neuroimaging communities. 
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Specifically, they show that constraints developed at the levels of cognitive theories could be 

successfully translated into constraints at the level of the brain’s functional organization. 

Furthermore, it was shown that systems-level principles from the cognitive sciences are, in fact, 

compatible with an increasingly popular view about the hub-like nature of PFC in humans. 

Our results also suggest that a different, top-down approach to the analysis of functional 

connectivity in the brain could be implemented. This approach could be extended in the future 

and integrated with the more common bottom-up approaches to the analysis of functional 

connectivity.  

Finally, the fact that the CMC, which draws inspiration from high-level models of human 

cognition and artificial intelligent systems, accounts for the neural activity of the human brain, 

which is a low-level biological intelligent system, is also worthy of further consideration. In 

principle, solutions designed for artificial systems do not need to apply for biological systems, or 

vice versa. A mundane explanation is that this convergence simply reflects the fact that 

principles of brain organization have indirectly guided the development of cognitive 

architectures for human and machine intelligence (for instance, through the mediating influence 

of cognitive science). A more radical explanation is that the architectural space for general (or, at 

least, human-like) intelligence is inherently constrained and possibly independent of its physical 

realization, whether organic or artificial. In this sense, the CMC could be a model for any 

intelligent system, or at least for a large class of them, at different levels of organization. Both 

hypotheses are worth exploring in future research. 
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