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Abstract 23 

Staphylococcus aureus is a metabolically versatile pathogen that colonizes nearly all organs of 24 

the human body. A detailed and comprehensive knowledge of staphylococcal metabolism is 25 

essential to understanding its pathogenesis. To this end, we have reconstructed and 26 

experimentally validated an updated and enhanced genome-scale metabolic model of S. aureus 27 

USA300_FPR3757. The model combined genome annotation data, reaction stoichiometry, and 28 

regulation information from biochemical databases and previous strain-specific models. 29 

Reactions in the model were checked and fixed to ensure chemical balance and thermodynamic 30 

consistency. To further refine the model, growth assessment of 1920 non-essential mutants from 31 

the Nebraska Transposon Mutant Library was performed and metabolite excretion profiles of 32 

important mutants in carbon and nitrogen metabolism were determined. The growth and no-33 

growth inconsistencies between the model predictions and in vivo essentiality data were resolved 34 

using extensive manual curation based on optimization-based reconciliation algorithms. Upon 35 

intensive curation and refinements, the model contains 840 metabolic genes, 1442 metabolites, 36 

and 1566 reactions including transport and exchange reactions. To improve the accuracy and 37 

predictability of the model to environmental changes, condition-specific regulation information 38 

curated from the existing knowledgebase was incorporated. These critical additions improved the 39 

model performance significantly in capturing gene essentiality, substrate utilization, and 40 

metabolite production capabilities and increased the ability to generate model-based discoveries 41 

of therapeutic significance.  Use of this highly curated model will enhance the functional utility 42 

of omics data and, therefore, serve as a resource to support future investigations of S. aureus and 43 

to augment staphylococcal research worldwide. 44 

 45 
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Introduction 47 

S. aureus is a versatile human pathogen that has emerged as one of the most successful infectious 48 

agents of recent times, affecting approximately 20% of the world’s population 1-3. The incidence 49 

of methicillin resistance at low fitness cost has significantly contributed to the rise in 50 

community-associated methicillin resistant S. aureus (CA-MRSA) infections, which 51 

significantly limit therapeutic options and increase rates of mortality, morbidity and costs 52 

associated with its treatment 1,4,5. This threat to human health has resulted in a steady interest and 53 

focus on understanding how staphylococcal metabolism relates to antibiotic resistance and 54 

pathogenesis. A number of studies have attempted to explore the metabolic aspects of 55 

antimicrobial functionality of MRSA, including nitric oxide metabolism, oxidative stress, carbon 56 

overflow metabolism, redox imbalance etc. 6-11. However, a complete mechanistic understanding 57 

of staphylococcal metabolism is still missing, making the identification of systematic therapeutic 58 

targets challenging.  59 

 60 

The increase in knowledge of macromolecular structures, availability of numerous biochemical 61 

database resources, advances in high-throughput genome sequencing, and increase in 62 

computational efficiency have accelerated the use of in silico methods for metabolic model 63 

development and analysis, strain design, therapeutic target discovery, and drug development12-17. 64 

There have been a number of attempts to reconstruct the metabolism of multiple strains of S. 65 

aureus using semi-automated methods 18-22. However, the absence of organism-specific 66 

metabolic functions and the inclusion of genes without any specified metabolic functions still 67 

limit the utility of these models. These models need to be continually refined and updated to 68 
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accurately predict biological phenotypes by addressing these issues as well as by reducing 69 

metabolic network gaps, elemental imbalance, and missing physiological information. Since the 70 

predictive genome-scale metabolic models of several microorganisms were useful in performing 71 

in silico gene essentiality and synthetic lethality analyses and yielded promising results in 72 

pinpointing metabolic bottlenecks and potential drug targets14,23-26, the potential for accurately 73 

modeling S. aureus metabolism is immense. To this end, Seif et al recently developed an updated 74 

genome-scale model of S. aureus strain JE2, incorporated 3D protein structures, evaluated gene 75 

essentiality predictions against experimental physiological data, and assessed flux distributions 76 

in different media types 21. Although their model was informed by multilevel omics data and a 77 

significant step toward deciphering the metabolic differences of this organism under different 78 

environmental conditions, it could further be improved by incorporating the latest annotation 79 

information, reducing the inconsistency in gene essentiality predictions, and removing spurious 80 

metabolic functionalities. 81 

 82 

Several other studies have been dedicated to elucidating the metabolic aspects of staphylococcal 83 

virulence and to pinpoint the key metabolic “hubs” in carbon and nitrogen metabolism 11,27-32. 84 

However, a majority of these studies were focused on specific segments of staphylococcal 85 

metabolism and overlooked a system-wide inter-dependence that drives fitness, metabolic 86 

robustness, virulence, and antimicrobial resistance. Hence, a holistic approach of in silico 87 

genome-scale modeling and in vivo experimentation is crucial for gaining an improved 88 

mechanistic understanding of staphylococcal metabolism and, thereby, facilitating the 89 

development of novel therapeutic strategies to combat staphylococcal infections. 90 

 91 
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In this study, a comprehensive genome-scale metabolic model of S. aureus USA300_FPR3757 92 

was reconstructed using annotation information from biochemical databases33,34 and previous 93 

strain-specific models 19,20,34 and validated through experimental observations and published 94 

phenotypic data. The model underwent extensive manual curation to ensure chemical and charge 95 

balance, thermodynamic consistency, and biomass precursors production. To test and inform the 96 

model, the fitness level of 1920 mutants from Nebraska Transposon Mutant Library (NTML)35 97 

was assessed through an elaborate growth experiment and the metabolite excretion profiles of 98 

eight important mutants distributed across several pathways of the carbon and nitrogen 99 

metabolism were measured. The growth phenotyping results of the NTML mutants were utilized 100 

via GrowMatch procedure36 to reconcile in silico vs. in vivo growth inconsistencies. Upon 101 

incorporating conditional regulations in the model gleaned from existing ‘omics’ datasets30,37,38, 102 

the predictive capability of the model in terms of gene essentiality and metabolite excretions in 103 

different environmental conditions was further improved. Furthermore, the growth predictions 104 

from the model on 69 different carbon sources were validated against existing growth 105 

experiment21. Overall, this model is extensively tested by multiple available and newly-106 

developed experimental datasets on staphylococcal metabolism and subsequently refined to pave 107 

a way forward to advance system-wide analysis of fitness and virulence.  108 

 109 

Results  110 

Reconstruction of an updated model of S. aureus metabolism 111 

Preliminary reconstruction utilizing the existing knowledge base 112 

A collection of 1511 metabolic reactions obtained from a consensus of recently published strain-113 

specific models 19,21 was assembled into a preliminary model of S. aureus. Out of 842 genes in 114 
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the latest strain-specific USA300_FPR3757_uid58555 model by Bosi et al.19, 109 did not have 115 

any reactions associated with them, which were not included in our model at this stage. Checking 116 

reactions from the S. aureus N315 model iSB61920 against the annotations of strain 117 

USA300_FPR3757 in the KEGG database39 resulted in the inclusion of seven unique reactions to 118 

the preliminary model. In addition, every metabolic function in the model was verified for 119 

correct gene annotations in the NCBI, KEGG, and UniProt databases and published 120 

resources19,39-42 to amend the model with 38 metabolic reactions and annotate 75 additional 121 

reactions with correct Gene-Protein-Reaction (GPR) rules.  122 

 123 

These amendments resulted in a preliminary model that contained 833 metabolic genes 124 

catalyzing 1556 reactions involving 1440 metabolites. This model included reactions for central 125 

carbon metabolism, secondary biosynthesis pathway, energy and cofactor metabolism, lipid 126 

synthesis, elongation and degradation, nucleotide metabolism, amino acid biosynthesis and 127 

degradation. All the existing metabolic reconstructions of S. aureus19,20,22, including the most 128 

recently published model 21, used a biomass equation similar to the closely-related organisms 129 

Bacillus subtilis43 and Escherichia coli44, with additional adjustments to accommodate lipid 130 

compositions. However, S. aureus lacks an identifiable polyamine biosynthetic pathway and 131 

therefore cannot produce putrescine28,45. Therefore, putrescine was removed from the biomass 132 

equation adopted from Bosi et al.19 in the current study. Growth condition was set to glucose 133 

minimal media with other essential nutrients (see Supplementary Table 1 for details).  134 

 135 

Model curation to ensure chemical balance and thermodynamic consistency 136 
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The preliminary reconstruction underwent extensive manual curation steps as outlined in the 137 

methods section. In total, 197 reactions (excluding the biomass reaction, demand, sink, and 138 

exchange reactions) were found to be imbalanced in terms of proton, carbon, nitrogen, oxygen or 139 

sulfur. Most of these reactions (i.e.,182 reactions) were fixed for proton imbalance and four 140 

reactions were fixed for imbalance in other elements (see Supplementary Table 2 for details). 141 

Nonetheless, a few mass- and charge-imbalanced reactions remained in the model, primarily due 142 

to the presence of macromolecules with unspecified “R”-groups and gaps in knowledge about 143 

correct reaction mechanisms. These remaining reaction imbalances are common in published 144 

genome-scale metabolic models46 and given that the overall stoichiometry of the reactions 145 

involving these macromolecules is correct, these imbalances do not significantly affect the 146 

performance of the model. 147 

 148 

In addition to charge and elemental imbalances, the preliminary model had 291 reaction fluxes 149 

unnecessarily hitting the upper or lower bounds during a Flux Variability Analysis (FVA) when 150 

no nutrients were provided (see Methods section). Also, the inconsistent dissipation of ATP, 151 

which was persistent in earlier models19,21, also existed in the preliminary reconstruction. These 152 

two phenomena are observed when the reaction network contains thermodynamically infeasible 153 

cycles (as defined in the Methods section)47. To resolve these cycles, 27 reactions were made 154 

irreversible and two reactions were reversed in directionality based on available thermodynamic 155 

information and literature evidence (details in Supplementary Table 3). Furthermore, 66 156 

reactions were turned off either due to their improper annotations or to remove lumped or 157 

duplicate reactions from the model. For example, the irreversible duplicates for several reactions 158 

including acetolactate synthase, aconitase, phosphoribosylaminoimidazole carboxylase, alcohol- 159 
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NAD oxidoreductase, arginine deiminase, D-ribitol-5-phosphate NAD 2-oxidoreductase, 160 

glycerate dehydrogenase, methionine synthase, and ribokinase were removed. Also, based on 161 

available cofactor specificity information, reactions such as cytidine kinase (GTP), glycerol-3-162 

phosphate dehydrogenase (NAD), guanylate kinase (GMP:dATP), and homoserine 163 

dehydrogenase (NADH) were turned off to ensure correct cofactor usage in these reactions. 164 

Reactions involved in polyamine synthesis and degradation were removed due to the lack of 165 

convincing evidence of polyamine functionality in S. aureus USA300_FPR3757 28,45. After these 166 

manual curation steps, the number of unbounded reactions (reaction fluxes hitting either the 167 

upper or the lower bound without any nutrient uptake) was reduced to seven. The annotation of 168 

S. aureus USA300_FPR3757 genome in the KEGG database was next used to bridge several 169 

network gaps in the model. At this stage, the model contained 553 blocked reactions compared to 170 

784 in the preliminary reconstruction. While this was a significant improvement, the model still 171 

contained a greater number of blocked reactions than other similar-sized models21. The blocked 172 

reactions were not removed at the current stage because they contained proper gene annotation 173 

information but either their terminal dead-end metabolite was beyond the scope of the model or 174 

no convincing evidence (e.g., high-score annotations) for filling the gap was available. A 175 

detailed list of the corrections and additions/removals made is given in Supplementary Table 3. 176 

The model reconstruction process, pathway distribution, and comparative model statistics are 177 

shown in Figure 1. The model is available in systems biology markup language format in 178 

Supplementary Data 1. 179 

  180 

Figure 1: (a) The schematic of the reconstruction and curation process for iSA840, (b) pathway 181 

distribution of metabolic functions, (c) overlap of functionalities, and (d) comparison of model statistics 182 

with recent S. aureus metabolic models.  183 
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 184 

Identifying essential genes from existing knowledgebase 185 

We next evaluated the growth profiles of the viable S. aureus mutants from the NTML35. The 186 

variation of wild-type growth among the 384-well plates in the experiment was statistically 187 

insignificant based on z-score (see Supplementary Table 4 for detailed calculations). Out of the 188 

1920 mutants studied, there were 154 genes whose mutations reduced growth by 10% relative to 189 

the wild-type strain and 21 mutations reduced the growth between 30% and 80% compared to 190 

the wild-type value. Out of all the genes from the NTML library, 41 genes were reported to be 191 

essential in other recent studies 18,48-52, whereas only 11 of them showed any significant growth 192 

inhibition (more than a standard deviation from the average wild-type growth rate) in the current 193 

study (see Supplementary Table 4 for details). Therefore, the set of essential genes was a 194 

consensus of multiple literature sources 18,48-52 and our current experimental study (see Methods 195 

and Supplementary Text S1 for details). Briefly, transposon mutagenesis followed by growth 196 

experiments by Valentino et al.49 and Chadhuri et al.51 identified 426 and 351 essential genes, 197 

respectively. Since the disagreement regarding gene essentiality was persistent among these 198 

datasets, the common essential gene (comprsing 319 genes) set from these two transposon 199 

mutagenesis experiment was considered to be essential, which also agreed with multiple 200 

previous growth experiments 18,50,52. Later, Santiago et. al 48 demonstrated that gene essentiality 201 

derived from transposon libraries can be affected by the high temperatures used to remove the 202 

plasmid delivery vehicle and also by the polar effect in disrupting expression of essential genes 203 

in the vicinity of a non-essential gene. Therefore, following their results, these false positive 204 

genes (30 in total) were excluded from the essential gene list. Finally, for the modeling purpose, 205 

only the 167 metabolic genes (excluding non-metabolic genes) present in the model were 206 
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considered to be the core set of essential genes in the current study (see Supplementary Table 5 207 

for the full list of the essential genes).   208 

 209 

Model refinement to reconcile growth and no-growth inconsistencies  210 

Comparison of essential and non-essential genes between the experimental (in vivo) and model-211 

based (in silico) gene essentiality analysis (see Methods section for details) show that there exists 212 

a significant mismatch between these two sets of results (Figure 2a). Correct model predictions 213 

for non-essential and essential genes are denoted by GG and NGNG, while wrong model 214 

predictions for non-essential and essential genes are denoted by NGG and GNG, respectively in 215 

which the first of the two terms (“G” or “NG”) corresponds to in silico and the second term 216 

refers to in vivo observations. An optimization-based procedure called Growmatch was used to 217 

reconcile the GNG inconsistencies by suppressing spurious functionalities and the NGG 218 

inconsistencies by adding miss-annotated functionalities to the model 36. The overall impact of 219 

applying Growmatch is shown in Figure 2b. The specificity increased from 52% to 60.5%, the 220 

sensitivity increased from 87% to 89%, and the false viability rate decreased from 48% to 39.5%. 221 

To resolve the NGG inconsistencies, metabolic functions were added from the E. coli iAF1260 44 222 

and B. subtilis43 metabolic models as well as the Modelseed database34. A total of five reactions 223 

were added to the model and three reactions were allowed to go in the reverse direction based on 224 

literature evidence or thermodynamic information (detailed procedure outlined in Supplementary 225 

Information 1), which reduced the number of NGGs by 12. Model predictions of essential genes 226 

were further improved upon the removal of spurious metabolic functions. To this end, six 227 

reactions that did not have either any gene associated with them (orphan reactions) or proper 228 

gene annotation, were removed from the model, resulting in an 18% reduction in GNGs. 81 of 229 
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the GrowMatch predicted resolution strategies were not accepted because they resulted in 230 

conflicts with correct growth (GG) and no-growth (NGNG) predictions in the model. The details 231 

of the GrowMatch results are presented in Supplementary Table 5. Two example case studies for 232 

NGG and GNG inconsistency reconciliation process by GrowMatch are presented in the next 233 

section. 234 

 235 

Figure 2: GNG table (a) before and (b) after reconciliation of growth-no growth inconsistency by 236 

GrowMatch procedure. Specificity = #NGNG/(#NGNG + #GNG), sensitivity or true viable rate (TVR) = 237 

#GG/(#GG + #NGG) and false viable rate (FVR) = #GNG/(#GNG + #NGNG), (c) a case study of NGG 238 

inconsistency and the corresponding Growmatch solution, and (d) a case study of GNG inconsistency and 239 

the corresponding Growmatch solution. 240 

 241 

Case studies for reconciliation of NGG and GNG inconsistencies 242 

The deletion of aspartate transaminase appeared to be lethal by the model prediction, whereas it 243 

was non-essential in vivo, making it an NGG gene (the solid blue line in Figure 2c). The addition 244 

of L-aspartase (dashed blue line in Figure 2c) rescues the growth of an aspartate transaminase 245 

deletion mutant by creating another route to generate L-aspartate, which was characterized other 246 

closely related bacteria including E. coli and B. subtilis 53-55. On the other hand, the Pentose 247 

Phosphate Pathway contained a GNG inconsistency, in which there were erroneous metabolic 248 

functions present in the model (Figure 2d). For example, glucose-6-phosphate isomerase and 249 

ribulose phosphate 3 epimerase are both essential genes (green highlighted genes in Figure 2d) in 250 

S. aureus, while they were predicted to be nonessential by the model. The reason was the 251 

presence of an alternate pathway to convert glucose-6-phosphate (G6P) to ribulose-5-phosphate 252 

(Ru5P) in the model. Since literature and database searches failed to identify the presence of 253 
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phospho-glucono lactonase in S. aureus, it was removed, and the model was made consistent 254 

with experimental essentiality prediction of glucose-6-phosphate isomerase and ribulose 255 

phosphate-3-epimerase genes. 256 

 257 

Model-driven integrated study  258 

An automated procedure like GrowMatch can significantly improve the gene essentiality 259 

predictions in the model. However, without extensive validation against experimental data and 260 

manual curations, it is difficult to obtain biologically significant and meaningful prediction 261 

capability from the model. Hence, the model was validated against multiple experimental 262 

observations from previous studies and results obtained in the current work for further 263 

refinements.  264 

 265 

Incorporation of conditional regulation to enhance mutant growth predictions  266 

The essentiality predictions for 29 amino acid catabolic pathway genes in the model was 267 

validated against the mutant growth phenotypes evaluated in a previous study29. The mutants 268 

were grown in a chemically defined medium (CDM) supplemented with 18 amino acids but 269 

lacking glucose. It was found that 11 of the mutations did not cause any growth defect, while 11 270 

mutations caused intermediate growth defect and seven mutations were lethal. It was found that 271 

the model failed to recapitulate growth phenotype for nine (ald1/ald2- aldehyde dehydrogenase, 272 

aspA- aspartate aminotransferase, gltA- citrate synthase, sdhA- succinate dehydrogenase, 273 

sdaAA/sdaAB- serine dehydratase, ansA- asparaginase, arcA1/arcA2- arginine deiminase, and 274 

rocF- arginase) out of the 29 mutants, which warranted further investigation and refinements in 275 

the relevant pathways in the model. The complete growth suppression of the pckA mutant was 276 
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not observed in the model because multiple other routes for the chemical conversion between 277 

phosphoenol pyruvate and oxaloacetate i.e., enolase (eno), phosphoshikimate 1-278 

carboxyvinyltransferase (aroA) etc. are present in the model. The deletion of ackA gene also did 279 

not show severe growth inhibition because acetate could be generated via several routes in 280 

addition to the Pta-AckA pathway, specially pdhABCD, aldA, or adhE. The gudB mutant did not 281 

appear to be an essential gene in the model simulation because other genes including D-alanine 282 

transaminase (dat) and aspartate transaminase (aspA) could convert glutamate to alpha-283 

ketoglutarate. However, it has been previously shown that the uptake of L-alanine in bacteria can 284 

be kinetically limited 56. Hence, a tighter constraint on alanine uptake was imposed in the model, 285 

which resulted in a correct prediction of the essentiality of the gudB gene. The essentiality of 286 

sucC and sucA genes was ensured in the model by rectifying the alternate pathway consisting of 287 

succinyldiaminopimelate transaminase (dapE) and tetrahydrodipicolinate succinylase (dapD). In 288 

addition to that, the TCA cycle reactions converting citrate to succinyl-CoA were constrained to 289 

allow flux towards the forward direction only. Two of the gaps in the histidine transport pathway 290 

and proline catabolism were filled during the refinement process to allow for utilization of these 291 

alternate carbon sources in the absence of glucose. Ornithine-putrescine antiport, lactate 292 

dehydrogenase (ferricytochrome), malic enzyme (NADP), succinyldiaminopimelate 293 

transaminase etc. were removed from the model due to the lack of evidence of these 294 

functionalities in S. aureus. Upon these refinements, the model was able to correctly predict 24 295 

(out of 29) of the mutant phenotypes. The model refinements in the central metabolic pathway in 296 

terms of correction of reaction directionality, additions, and deletions are shown in Figure 3.  297 

 298 

Figure 3: Refinements in the central metabolic pathway of the model iSA840 showing correction of 299 

reaction directionality, additions, and deletions. 300 
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 301 

Metabolite excretion profiles of mutants with altered carbon metabolism 302 

In addition to the model refinements mentioned in the preceding section, we determined the 303 

metabolite excretion profiles of eight mutants during exponential growth (Figure 4 and 304 

Supplementary Table 6) and compared them to the model predicted excretion patterns in both 305 

CDM and CDMG (CDM media with added glucose) media. The mutants considered were pyc 306 

(pyruvate carboxylase), citZ (citrate synthase), sucA (2-oxoglutarate dehydrogenase), ackA 307 

(acetate kinase), gudB (glutamate dehydrogenase), ndhA (NADH dehydrogenase), menD 308 

(menaquinone biosynthesis protein) and atpA (a subunit of ATPase). These mutants were 309 

selected for their potential in identifying carbon and nitrogen redirection pathways as they affect 310 

important metabolic pathways associated with central metabolism including glycolysis, TCA 311 

cycle, gluconeogenesis, Electron Transport Chain (ETC), cellular redox potential and overflow 312 

metabolism. In general, supplementation of glucose (CDMG) as the primary carbon source 313 

resulted in the excretion of acetate as the major byproduct in all mutants (Figure 4). In CDM, the 314 

ackA, gudB, ndhA, atpA, and menD mutants displayed delayed growth kinetics (data not shown). 315 

Although acetate remained a major byproduct of strains in CDM, this was due to amino acid 316 

deamination as evidenced by ammonia excretion (Figure 4). As carbon flux through the ATP-317 

generating Pta-AckA pathway is significant in S. aureus, we also observed the excretion of 318 

pyruvate and redirection of carbon flux towards acetoin and α-ketoglutarate in the ackA mutant 319 

(Figure 4). Mutations that affected respiration (ndhA and menD) of S. aureus resulted in 320 

increased levels of lactate production to maintain cellular redox when grown in CDMG (Figure 321 

4). The disruption of ATP production due to mutation of atpA was offset by increased acetate 322 

production and glucose consumption. The increased flux of glucose through the Pta-AckA 323 
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pathway to generate acetate likely compensated for the decrease in ATP production due to a 324 

faulty ATPase.  325 

 326 

Figure 4: Metabolite excretion profile of multiple S. aureus mutants with altered carbon and 327 

nitrogen metabolism.  328 

 329 

The comparison of experimental results and model predictions revealed multiple inconsistencies 330 

that motivated an extensive search for additional metabolic regulations in S. aureus in different 331 

media types. The full list of regulations can be found in Supplementary Table 7. A major 332 

regulatory system that was incorporated in the model was the carbon catabolite repression, which 333 

is a well-studied global regulatory process in low-GC Gram-positive bacteria in the presence of a 334 

preferred carbon source that induces the repression of genes involved in the metabolism of 335 

alternative carbon sources 30. CcpA, the carbon catabolite control protein, is known to repress 336 

genes involved in the utilization of amino acids as alternative carbon sources in the presence of 337 

glucose38. In addition, SrrAB and Rex-dependent transcriptional regulation are prominent driving 338 

forces of metabolic flux through respiratory metabolism that was integrated into the model. 339 

Furthermore, mutant-specific repression of respiration, histidine and ornithine metabolism, and 340 

pyruvate metabolism were imposed on the model for the menD mutant. For each of the mutants, 341 

the incorporation of these regulations resulted in a deviation of the metabolic flux space (defined 342 

as the range between the minimum and maximum flux through reactions, see Methods section 343 

for details) compared to the wild type, as illustrated in Figure 5.  344 

 345 
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Figure 5: Shifts in flux space for eight mutants in the central carbon and nitrogen metabolic pathway. 346 

Every row in the table (inset) denotes a reaction as identified in the pathway map. The relative shifts 347 

compared to the wild type flux space are color-coded according to the legend in the figure.  348 

 349 

Among the eight mutants, the model-predicted excretion patterns for acetate and lactate in sucA 350 

and ackA mutants agreed with the experimental results of decreased excretion in CDMG media, 351 

compared to the wild type strain. In CDM media, while no significant change in lactate excretion 352 

was observed, acetate excretion was decreased in the ackA mutant compared to the wild-type 353 

strain, due to inactivation of the Pta-AckA pathway. On the other hand, the sucA mutant in CDM 354 

media showed increased production of acetate due to increased flux space in the Pta-AckA 355 

pathway (see Figure 5). The Pta-AckA pathway is known to supply a major portion of the ATP 356 

required for growth 27. With the atpA gene turned off in the model Pta-AckA pathway supplied 357 

most of the ATP demand, which increased the acetate production in CDMG media for the atpA 358 

mutant compared to the wild-type. However, in CDM media, the model could not sustain the 359 

ATP maintenance demand of the atpA mutant and therefore, did not produce any acetate. In 360 

CDMG media, the model-predicted excretion profile for urea in all of the mutants matched with 361 

the experimental observations. In CDM media, the model predictions of higher urea excretion 362 

compared to the wild-type strain agreed with the experimental observations for pyc, gudB, ndhA, 363 

and menD mutants. Similar to the experimental results, excretion of ammonia was predicted by 364 

the model in all mutants when glucose was absent (CDM media). These correct predictions can 365 

be attributed to the deamination of the amino acids consumed in CDM media when the cell 366 

adapts to amino acids due to CcpA-mediated control of amino acid metabolism.  367 

 368 
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The incorporation of regulatory information improved the predictive capabilities of other 369 

mutants. For example, incorporation of regulation based on the Rex and SrrAB repressors' effect 370 

on central carbon metabolism allowed the model to correctly simulate the oxygen deprivation in 371 

the model, which, in turn, resulted in correct predictions of decreased acetate excretion by the 372 

ndhA mutant in both CDM and CDMG media. Rex and SrrAB-mediated repression of pyruvate 373 

formate lyase (PFLr), alcohol dehydrogenase (ACALD, ALDD2x) and other pathways 374 

downstream of pyruvate shifted carbon flux away from the acetate production. At the same time, 375 

the flux space for lactate dehydrogenase (LDH) widened, which allowed for more lactate 376 

excretion in the CDMG media. In the menD mutant, mutant-specific regulation information from 377 

Kohler et al 37 resulted in the correct prediction of lactate and acetate excretion. A mutation in 378 

menD or any other gene in the menaquinone biosynthesis pathway resulted in weakened 379 

respiratory functions and emulated anaerobic condition in the cell, which in turn caused a 380 

significant increase in the excretion of lactate in CDMG media. However, although the 381 

respiratory functions were downregulated in CDM media (apparent from the shrinkage of the 382 

flux space), there was no change in acetate excretion compared to the wild type strain. In CDMG 383 

media, the conversion of pyruvate to oxaloacetate by pyruvate carboxylase was not active in the 384 

wild type model. A small amount of phosphoenol pyruvate was converted to oxaloacetate (via 385 

PEPC), which was then used in the conversion of glutamate to aspartate. However, since no 386 

convincing evidence for phosphoenol pyruvate carboxylase was found in S. aureus, PEPC was 387 

removed. This refinement shifted carbon flux through pyruvate carboxylase in the wild type 388 

model and also resulted in correct model prediction of acetate excretion in CDMG media when 389 

pyruvate carboxylase was turned off. 390 

 391 
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While the incorporation of the CcpA, Rex and SrrAB regulations was critical in capturing the 392 

physiological behavior of S. aureus by the model, it should be noted that there are still gaps in 393 

our knowledge about the quantitative repression effect on the reaction fluxes in the presence of 394 

these regulators. For example, in CDMG media, ammonia production was not predicted in the 395 

menD, atpA, and sucA mutants by the model, which was observed experimentally. However, 396 

upon further investigation, it was observed that relaxing the repressions of reaction fluxs that 397 

were imposed on the model due to CcpA, Rex, and SrrAB regulators, the discrepancies were 398 

removed. In CDMG media, the citZ mutant correctly predicted the excretion pattern of acetate, 399 

because with the reduced flux space for the TCA cycle reactions, more carbon could be directed 400 

to the Pta-AckA pathway. However, in the CDM media, when amino acids were the primary 401 

source of carbon, deletion of the citZ gene did not have any effect on the model predicted flux 402 

space in the Pta-AckA pathway. In the pyc mutant, carbon flux to oxaloacetate was directed 403 

through malate dehydrogenase (MDH3) in the model, which involved the consumption of 404 

menaquinone produced by cytochrome oxidase BD. When the pyc gene was active, the same 405 

conversion was mediated through malic enzyme (ME1) and the pyruvate carboxylase (PC). 406 

However, since the model could accommodate the metabolic shift in both the wild-type and pyc 407 

mutant, no change in the excretion rate of acetate or lactate was observed. Also, while the CcpA 408 

repression was active, the deletion of the gudB gene in the model did not have any effect on the 409 

lactate and acetate excretion profiles in CDMG media. In CDM media, the model prediction for 410 

no lactate production was consistent with experimental observations but still no effect was 411 

observed on acetate production. Also, the model predicted a lower urea production rate in the 412 

atpA mutant compared to the wild-type strain, while it was higher in our experiments. Also, no 413 

urea excretion was observed in the citZ mutant in our experiments but model predicted urea 414 
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excretion at the same rate as the wild-type strain. The reason for these inconsistencies could be 415 

the lack of a complete understanding of the regulatory processes that affects the relationship 416 

between amino acid catabolism, urea cycle, TCA cycle and pyruvate metabolism. These 417 

inconsistencies warrant further investigation into CcpA-mediated metabolic control. 418 

 419 

Estimation of carbon catabolism capacity of the model 420 

In order to further test the accuracy of the model, the growth predictive capability of the model 421 

was validated against a recent study of carbon source utilization by S. aureus strain USA300-422 

TCH1516 by Seif et al.21. Out of the 69 carbon sources tested, the authors observed growth on 53 423 

metabolites and no growth on 16 metabolites in their BIOLOG experiment. Our model correctly 424 

predicted growth on 41 and no-growth on 12 of the carbon sources, and falsely predicted growth 425 

on four and no-growth on 12 carbon sources  (see Supplementary Table 8 for details). In 426 

comparison, iYS854 correctly predicted growth on 42 and no-growth on 5 of the carbon sources, 427 

and falsely predicted growth on 11 and no-growth on 11 carbon sources. Overall, our model 428 

achieved a specificity of 75%, a precision of 91%, and an accuracy of 77%, which in general are 429 

either at par with or better than previously developed models21 and further demonstrates the 430 

improved predictive capability of this new model.  431 

 432 

Discussions 433 

In the current study, an updated and comprehensive genome-scale metabolic model of the 434 

methicillin-resistant human pathogen S. aureus  USA300_FPR3757 was reconstructed from the 435 

previous strain specific models 19-21, amended using annotations based on KEGG database39, and 436 

refined based on published and new experimental results. Reactions were examined and fixed to 437 
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ensure chemical and charge balance and thermodynamic consistencies. The extensive manual 438 

curation performed on the preliminary reconstruction resulted in improved prediction capabilities 439 

and successful capture of experimentally observed metabolic traits. All these demonstrate the 440 

necessity of exhaustive manual scrutiny and rectification of automated reconstructions. The 441 

growth and no-growth analysis and the resolution of inconsistencies between in silico growth 442 

predictions and in vivo results using the Growmatch algorithm 36,57 reinforces the importance of 443 

the iterative procedure of model refinement using experimental observations. Further 444 

experimental results from mutant growth and metabolite excretion studies enabled high-445 

resolution model refinements to further enhance the predictive capabilities of the model. The 446 

final genome-scale metabolic reconstruction (iSA840) is therefore a product of the series of 447 

automated and manual curation steps. 448 

 449 

Our growth evaluation experiment revealed varying degrees of growth inhibition of the NTML 450 

mutants compared to the wild type strain and identified subtle disagreements in gene essentiality 451 

predictions of other studies 18,48-52. Therefore, the true set of essential genes required further 452 

scrutiny, which is why, as a conservative estimate, we used a consensus set of essential genes by 453 

utilizing the existing knowledge base and our own experimental findings (more details in 454 

Supplementary Information 1). Moreover, several mutants compromised in growth could be 455 

found in all the different methods, which did not appear to inhibit growth significantly during 456 

model simulations. Instead, the model either predicted growth at full capacity or became 457 

completely growth-inhibited. This phenomenon suggests that the model has degeneracy in the 458 

flux space that may compensate for lost functionality by redirecting or shifting metabolic fluxes. 459 

This issue calls for a more rigorous study of the regulatory influences and necessitates further 460 
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future studies in enzymatic efficiencies and kinetics associated with important metabolic 461 

pathways.  462 

 463 

The growth phenotyping studies of mutations in the amino acid catabolic pathway29 revealed 464 

shifts in S. aureus metabolism in the absence of a preferred carbon source and elucidated the 465 

extent of carbon catabolic repression, which allowed us to make necessary amendments to the 466 

model in terms of correction of reaction directionality, removal and addition of reactions, and 467 

specifying cofactor utilization across the central metabolic pathway (see Figure 3 for details). 468 

The change in media components (CDM vs. CDMG) resulted in a significant redistribution of 469 

metabolic flux in the model, as was evident from the shifts in flux space for different mutants in 470 

the carbon and nitrogen metabolic pathways. These shifts predicted how inactivation and/or 471 

repression of TCA cycle, respiration, electron transport and ATP generation could impact the 472 

cellular redox balance, metabolite production, and fitness. While the model predictions for 473 

acetate and lactate production in the ackA and sucA mutants and ammonia and urea production in 474 

ackA, pyc, gudB, ndhA, and menD mutants matched with experimental results, other mutants 475 

showed deviations in their metabolite excretion behavior. The prediction capability of the model 476 

was improved upon the addition of regulatory information obtained from existing ‘omics’ 477 

datasets30,37,38. For example, incorporation of Rex and SrrAB regulation caused repression on 478 

pyruvate metabolism and alcohol dehydrogenase pathways, which resulted in correct predictions 479 

of acetate excretion by the ndhA mutant in both CDM and CDMG media, and by the citZ and pyc 480 

mutants in CDMG media. Moreover, imposing mutant-specific repressions was critical to 481 

achieving predictive results for the acetate and lactate excretion in the menD mutant and 482 

ammonia and urea excretion in the atpA mutant. However, the current knowledge of the 483 
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regulatory landscape in S. aureus is not sufficient to explain some of the inconsistent metabolite 484 

production trends in the remainder of the mutants, thus, warranting the need for further 485 

investigation. 486 

 487 

S. aureus remains a significant threat to human health, which drives a growing number of studies 488 

towards understanding how staphylococcal metabolism relates to antibiotic resistance and 489 

pathogenesis. Very few studies have addressed these interrelationships from a systems biology 490 

perspective, which requires a predictive in silico metabolic model capable of capturing the 491 

biochemical features of the pathogen. This work addresses these gaps through the development 492 

of a detailed metabolic model informed not only from existing resources, such as the NTML, in 493 

silico genome sequences, annotation databases, and theoretical metabolic stoichiometry but also 494 

from our own experimental studies on mutant fitness, gene essentiality, and metabolite excretion 495 

profile. The results presented in this work demonstrate the predictive capacity of the new 496 

genome-scale metabolic reconstruction of S. aureus  USA300_FPR3757, iSA840, in different 497 

environments, utilizing different substrates, and with perturbed genetic contents, which paves the 498 

way for a mechanistic understanding of S. aureus metabolism. This latest genome-scale model of 499 

S. aureus demonstrates high performance in capturing gene essentiality, mutant phenotype and 500 

substrate utilization behavior observed in experiments. However, the accuracy and prediction 501 

capability, as well as the ability to generate model-based drug-target discoveries, can be further 502 

enhanced by incorporating extensively vetted flux measurements, quantitative proteomics, and 503 

kinetic measurements of metabolic intermediates. The development of a more accurate systems-504 

level metabolic model for S. aureus will have a tremendous impact on future scientific 505 

discoveries and will be a valuable resource shared among the staphylococcal research 506 
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community for the identification and implementation of intervention strategies that are 507 

successful against a wide range of pathogenic strains. 508 

 509 

Methods 510 

Preliminary model reconstruction and curation 511 

Preliminary model and flux balance analysis: The primary reaction set was obtained from the 512 

genome-scale metabolic reconstruction of S. aureus USA300_FPR3757 by Bosi et al. 19 and a 513 

recent model of strain JE2 by Seif et al. 21. Reactions from the S. aureus N315 model iSB619 20 514 

were checked against annotations of S. aureus  USA300_FPR3757 based on the KEGG 515 

database39 and merged with the reaction set to get the preliminary model. Flux balance analysis 516 

(FBA)58-60 was employed during model testing, validation, and analyzing flux distributions at 517 

different stages of the study. For performing FBA, the reconstruction was represented in a 518 

mathematical form of stoichiometric coefficients (known as stoichiometric matrix or S-matrix), 519 

where each column represents a metabolite and each row signifies a particular reaction. In 520 

addition to the mass balance constraints 61, environmental constraints based on nutrient 521 

availability, the relational constraint of reaction rates with concentrations of metabolites, and 522 

thermodynamic constraints were imposed as necessary. The effects of gene expressions were 523 

incorporated as regulatory constraints on the model as the cell adapted to change in media or 524 

gene knockouts 62. The non-growth-associated ATP maintenance demand was estimated to be 525 

5.00 mmol/gDCW.hr in CDM media and 7.91 mmol/gDCW.hr in CDMG media in this study, 526 

according to the established protocol63. 527 

 528 
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Rectification of reaction imbalances: To ensure that each of the reactions in the model is 529 

chemically balanced, the metabolite formula and the stoichiometry of the reactions were checked 530 

against biochemical databases 34,39,64,65. For balancing the reactions imbalanced in protons, the 531 

protonation state consistent with the reaction set in the preliminary model was checked and 532 

additions/deletions of one or multiple protons or water on either the reactant or the product side 533 

were performed. For the other elements, correct stoichiometry was incorporated into the S-534 

matrix. Reaction with unspecified macromolecule formula were not rectified. 535 

 536 

Identification and elimination of thermodynamically Infeasible Cycles: One of the limitations of 537 

constraint-based genome-scale models is that the mass balance constraints only describe the net 538 

accumulation or consumption of metabolites, without restricting the individual reaction fluxes. 539 

Therefore, they have an inherent tendency to ignore the loop low for electric circuits which states 540 

that there can be no flow through a closed loop in any network at steady state 47. While 541 

biochemical conversion cycles like TCA cycle or urea cycle are ubiquitous in a metabolic 542 

network model, there can be cycles which do not have any net consumption or production of any 543 

metabolite. Therefore, the overall thermodynamic driving force of these cycles are zero, 544 

implying that no net flux can flow around these cycles 47. It is important to identify and eliminate 545 

these Thermodynamically Infeasible Cycles (TICs) to achieve sensible and realistic metabolic 546 

flux distributions.  547 

 548 

To identify Thermodynamically Infeasible Cycles in the model, all the nutrient uptakes to the 549 

cell were turned off and an optimization formulation called Flux Variability Analysis (FVA) was 550 

used66. FVA maximizes and minimizes each of the reaction fluxes subject to mass balance, 551 
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environmental, and any artificial (i.e., biomass threshold) constraints 66. The reaction fluxes 552 

which hit either the lower bounds or upper bounds are defined as unbounded reactions and were 553 

grouped as a linear combination of the null basis of their stoichiometric matrix. These groups are 554 

indicative of possible thermodynamically infeasible cycles. To eliminate/destroy the cycles, 555 

duplicate reactions were removed, lumped reaction were turned off or reactions were selectively 556 

turned on/off based on available cofactor specificity information (see Supplementary Information 557 

1 for details). 558 

 559 

Evaluation of growth profiles of mutants in NTML 560 

Pre-cultures of wild-type and isogenic transposon mutant strains were grown overnight 561 

aerobically in 384-well plates containing 100 μL of Tryptic Soy Broth (TSB)/ well. The 562 

overnight cultures (1 μL) were seeded into a fresh 384-well plate containing TSB (100 μL/ well) 563 

using a solid 384 pin tool (V & P Scientific) and cultured for 24 h at 37°C under maximum 564 

agitation in a TECAN microplate reader. Growth was monitored by recording the optical density 565 

(OD600) of cultures for 24 h at 30-minute intervals. The area under the growth curve (AUC) was 566 

calculated as a measure of growth for each strain and used for comparative analyses. 567 

 568 

Elimination of Growth and No-growth Inconsistencies between model predictions and 569 

experimental data 570 

Gene essentiality analyses: Metabolic robustness of an organism in the event of genetic 571 

manipulations are attributed to the essentiality of the respective gene(s) under a specific nutrient 572 

medium or regulatory condition 24. In any metabolic reconstruction, there are either missing 573 

necessary functionalities in the model or erroneous pathways present in the model, mainly due to 574 
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missing or wrong annotation information. To identify these inconsistencies in the model, in silico 575 

essential and non-essential genes were identified by turning off the reaction(s) catalyzed by the 576 

gene following the Boolean logic of the Gene-Protein-Reaction (GPR) relationships, and 577 

estimating growth as a result of the deletion. Isozymes (i.e., proteins/genes with an “OR” 578 

relationship) for essential reactions are not considered as essential, and for reaction catalyzed by 579 

protein with multiple subunits (i.e., proteins/genes with an “AND” relationship), each gene 580 

responsible for each subunit is considered essential. A mutant was classified as lethal if its 581 

growth rate is below the threshold of 10% of the wild type growth rate.  582 

 583 

In vivo essential genes were curated from multiple sources 18,48-52, as explained in detail in the 584 

Supplementary Text S1. Most of the essential genes were determined by randomly inserting 585 

transposons into S. aureus and excluding mutations that remained after growing the cells 48,49,51. 586 

An adaptation of data from multiple sources using antisense RNA was also used to determine 587 

essential enzymes and thus essential genes through the Boolean relationships 18,50,52. Genes 588 

reported to be essential in any sources were considered essential unless there was evidence 589 

suggesting otherwise 18,48-52.  There were three types of positive evidence. First, mutants obtained 590 

from Nebraska’s Transposon Mutant Library 35,67 were not considered essential unless it was 591 

found to be domain-essential 48.  This is because the transposon may have inserted in a non-592 

essential part of the gene, allowing a partially functional protein to be formed.  Second, if the 593 

gene was found to be essential at only 43⁰C, then it is evident that the gene was incorrectly found 594 

to be essential in literature because of a high-temperature plasmid curing step in the processes 595 

used in the other literature sources 48.  Third, if the gene was found to be essential using a 596 

promoterless transposon insert, but not with promoter-containing methodologies, then the gene is 597 
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upstream of an essential gene, and other sources found it to be essential due to polar effects that 598 

disrupt expression 48. The step-by-step methodology used in determining core essential gene set 599 

is illustrated in Supplementary Figure S4. 600 

 601 

Out of the concensus set of the essential genes, 167 metabolic genes that are present in the 602 

iSA840 metabolic model were considered for further model refinements. The results of the in 603 

silico growth estimation were compared with these experimental evidences, and the genes were 604 

classified based on the matches and mismatches between in silico and in vivo results. Correct 605 

model predictions for non-essential and essential genes are denoted by GG and NGNG, while 606 

wrong model predictions for non-essential and essential genes are denoted by NGG and GNG, 607 

respectively. GNG inconsistencies imply that the metabolic model erroneously contains reactions 608 

that complement for the lost gene function. In contrast, NGG inconsistencies are generally 609 

indicative of missing or poor annotations in the model.  610 

 611 

Using GrowMatch to resolve inconsistencies: To resolve the growth and no-growth 612 

inconsistencies in the model, an automated procedure called GrowMatch was used36. 613 

GrowMatch tries to reconcile GNG predictions by suppressing spurious functionalities that were 614 

mistakenly included in the model and NGG predictions by adding missing functionalities to the 615 

model while maintaining the already identified correct growth and no-growth predictions 36. 616 

Every suggested GrowMatch modification was filtered for the resolution of conflict following 617 

the procedure of Henry et al. in 2009 43. A detailed explanation of these cases can be found in the 618 

Supplementary Table 5.  619 
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 620 

Determination of metabolite excretion profiles of mutants 621 

To determine the metabolite excretion profile of various strains, cell-free culture supernatants 622 

were analyzed by HPLC for multiple weak acids, acetoin, and sugars as previously described. 623 

Briefly, the analysis was performed isocratically at 0.5 mL/min and 65ºC using a Biorad Aminex 624 

HPX-87H cation exchange column with 0.13N H2SO4 as the mobile phase. The peaks 625 

corresponding to various metabolites were identified by their retention time obtained by using 626 

genuine standards. Absolute concentrations were determined from calibration curves specific to 627 

each metabolite. Ammonia and urea were measured using a kit (R-biopharm) according to the 628 

manufacturer's protocol. 629 

 630 

Incorporation of regulation in the model 631 

Regulation information for S. aureus in terms of differential expression of genes or high/low 632 

abundance of the corresponding proteins were accumulated from multiple sources as listed in 633 

Supplementary Table 7. Gene-Protein-Reaction (GPR) Boolean relationships for each of the 634 

genes were used to determine the corresponding reactions to be regulated in model simulations in 635 

different conditions. If a reaction in catalyzed by multiple isozymes, the reaction was only 636 

suppressed if all of the isozymes were downregulated in a certain condition. For a reaction 637 

catalyzed by multiple subunit proteins, it was suppressed if any of the genes responsible for a 638 

subunit was downregulated. For aerobic vs. anaerobic simulations in the model, the lower bound 639 

and upper bound for the regulated reactions were set to zero. For CcpA, SrrAB, and Rex 640 

repression, the allowable flux ranges were limited to 50% of their wild-type flux values. For the 641 

reactions suppressed in menD mutant, a similar flux limitation was imposed.  642 
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Figure legends 866 

 867 

Figure 1: (a) The schematic of the reconstruction and curation process for iSA840, (b) pathway 868 

distribution of metabolic functions, (c) overlap of functionalities, and (d) comparison of model 869 

statistics with recent S. aureus metabolic models.  870 

 871 

Figure 2: GNG table (a) before and (b) after reconciliation of growth-no growth inconsistency by 872 

GrowMatch procedure. Specificity = #NGNG/(#NGNG + #GNG), sensitivity or true viable rate (TVR) = 873 

#GG/(#GG + #NGG) and false viable rate (FVR) = #GNG/(#GNG + #NGNG), (c) a case study of NGG 874 

inconsistency and the corresponding Growmatch solution, and (d) a case study of GNG inconsistency and 875 

the corresponding Growmatch solution. 876 

 877 

Figure 3: Refinements in the central metabolic pathway of the model iSA840 showing correction of 878 

reaction directionality, additions, and deletions. 879 

 880 

Figure 4: Metabolite excretion profile of multiple S. aureus mutants with altered carbon and 881 

nitrogen metabolism.  882 

 883 

Figure 5: Shifts in flux space for 8 mutants in the central carbon and nitrogen metabolic 884 

pathway. Every row in the table (inset) denotes a reaction as identified in the pathway map. The 885 

relative shifts compared to the wild type flux space are color-coded according to the legend in 886 

the figure. 887 

 888 
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