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Abstract
Background:  The  ability  to  reconstruct  neuronal  networks,  local  microcircuits,  or  the  entire
connectome is  a  central  goal  of  modern  neuroscience.  Recently,  advancements  in  sample
preparation (e.g., sample expansion and Brainbow labeling) and optical (e.g., confocal and light
sheet)  techniques have enabled the imaging of  increasingly  large neural  systems with high
contrast.  Tracing  neuronal  structures  from  these  images  proves  challenging,  however,
necessitating  tools  that  integrate  multiple  neuronal  traces,  potentially  derived  by  various
methods, into one combined (montaged) result.

New Method: Here,  we present  TraceMontage,  an ImageJ/Fiji  plugin for  the combination of
multiple neuron traces of a single image, either redundantly or non-redundantly.  Internally,  it
uses graph theory to connect topological patterns in the 3-D spatial coordinates of neuronal
trees. The software generates a single output tracing file containing the montage traces of the
input  tracing  files  and  provides  several  measures  of  consistency  analysis  among  multiple
tracers.

Results  and Comparison to existing  method(s):  To our  knowledge,  our  software is  the  first
dedicated method for the combination of tracing results. Combining multiple tracers increases
the  accuracy  and  speed  of  tracing  of  densely-labeled  samples  by  harnessing  collaborative
effort. This utility is demonstrated using fluorescence microscope images from the hippocampus
and primary visual cortex (V1) in Brainbow-labeled mice.

Conclusions: TraceMontage provides researchers the ability to combine neuronal tracing data
generated by either the same or different method(s). As datasets become larger, the ability to
trace images in this parallel manner will help connectomics scale to increasingly larger neural
systems.
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1. Introduction
One of the major goals of neuroscience is to map neuronal circuits at the microscopic resolution
to elucidate their structure-function relationship and elaborate on the connection of brain and
behavior,  also  known  as  connectomics.  For  decades,  these  studies  have  been  conducted
through direct observation of neuronal morphology under light and electron microscopy.

Traditionally,  neurons are sparsely labeled to be unambiguously  captured in a single
sample.  It  leads directly to the need for  computational  tools to identify and separate neural
structures  from  image  stacks.  In  2010,  the  DIADEM (DIgital  reconstruction  of  Axonal  and
DEndritic  Morphology) contest was organized to encourage development in the study of 3D
reconstructions of neurons. Recently, the  BigNeuron (Peng et al.,  2015) project was formed,
aiming to perform comprehensive comparisons of more recent developments in the field using
standardized data protocols and evaluation methods. These two projects have resulted in a
burgeoning of automated methods for producing neuronal reconstructions. Additionally, manual
and semi-manual approaches have been created which allow human annotation of images to
form 3D reconstructions. These methods include Simple Neurite Tracer (Longair et al., 2011),
Neuromantic  (Myatt et  al.,  2012) or commercial  tools such as  Neurolucida  and  iMaris.  More
recently, the transgenic Brainbow techniques (Cai et al., 2013; Lichtman et al., 2008; Livet et al.,
2007) have facilitated high throughput neuronal imaging at the microscale resolution, using the
combinatorial expression of several fluorescent proteins in neurons to color-tag individual cells
and  fluorescence  microscopy  to  visualize  them.  This  allows  dense  and  unique  labeling  of
neuronal processes, which permits short-to-long-range circuit tracing of multiple neurons of the
same sample by the software nTracer (Roossien et al., 2019).

The digitization of neuronal  morphology normally describes the tree-like branching of
axons and dendrites as a sequence of interconnected cylinders (as in the industry-standard
SWC file format). In this sparse representation, each point in the arbor is usually characterized
by five values including the three Euclidean coordinates, the diameter of the cylinder, and the
identity  of  the  “parent”  point  from  which  it  originates.  While  the  labor-intensive  and  rate-
determining process of neuronal reconstruction is largely facilitated by increasingly automated
computational  algorithms,  error  checking and quality  control  still  require  human intervention
(Parekh and Ascoli, 2013). In general, automated solutions to neuronal reconstructions aim to
answer  the three  interrelated  areas of  active  study  (Acciai  et  al.,  2016):  the  morphological
characterization  of  cell  types,  mapping  projections  of  single  cells  in  the  whole  brain,  and
describing  convergence-divergences  patterns  in  the  neuronal  networks  of  different  brain
regions. The first and second problems demand developing image processing techniques to
automate neuron  tracing  in  single-color  samples  of  brain  tissues.  Brainbow,  as  a  potential
candidate  to  investigate  the  third  problem,  intends  to  map  the  convergence-divergences
patterns in neuronal networks, e.g. among excitatory pyramidal neurons and different types of
inhibitory interneurons.

Despite the increasing amount of data produced through these methods, utilities for the
postprocessing of SWC files have been notably lacking. A common operation, the merging of
tracing results,  is  often done manually  in  annotation software,  requiring  the effort  of  skilled
technicians. The requirement that tracing between multiple images be merged can arise from
several situations, for example, if multiple (overlapping) tiles of a wide-field image are traced
independently (e.g. to increase throughput), if  different neurons of a single image are traced
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independently, or if a single neuron in a single image is traced redundantly as a quality control
measure.  To  address  these  different  scenarios,  we  present  TraceMontage,  an  ImageJ/Fiji
plugin,  which  was developed  to  provide  an automated combination  (montage)  methods  for
merging the neural traces generated by multiple tracers or modalities. These tracing datasets
belong to one image or two adjacent images. In the former case, the plugin is also able to
remove the redundant traces of one tracing dataset, and, in the latter case, the two adjacent
images must have an overlapped region.  TraceMontage uses graph theory to find patterns in
the 3-D spatial coordinates of neuronal trees and uses a model with few free parameters. The
algorithms applied are fast and capable of handling large tracing datasets provided in SWC
format (which contain the neurites’ x, y, and z coordinates with a known convention for branch
naming in the form of a full binary tree structure). It is applicable to both monochromatic neuron
labeling and multi-spectral neuron labeling (e.g., Brainbow) and forms a key part of the growing
toolkit  of  connectomics  data  analysis.  In  the  following  sections,  we  will  demonstrate
TraceMontage using results generated by  nTracer  from multi-spectral Brainbow samples. The
Brainbow  images  provide  color  information  for  the  identification  of  distinct  neurons,  which
serves as a more general example than the canonical monochrome images.

2. Methods

2.1. The TraceMontage Workflow
Figure 1 gives an overview of the workflow automated by TraceMontage.  To obtain the color of
branches, TraceMontage accepts one or two TIFF-formatted image files, while tracings are read
from one or two files in SWC format or  nTracer-ZIP format. For each branch in each image,
overlapping traces between the input files are identified using their spatial coordinates and the
color of the traces (if the TIFF file provided has multiple channels of labeling, such as an ImageJ
hyperstack). Next, branches which overlap are merged locally to remove redundant data, and,
finally,  the trees which contain the overlapping branches are combined into a single model,
preserving  the  binary  structure  initiated  from  a  single  soma  node.  Notably,  in  cases  of
disagreement between two tracers, the software will  default  to the “Primary” tracer, which is
indicated by the first input tracing file; this can result in differences of merging results based on
the selection of the primary. After running,  the plugin generates one output tracing data file
which contains the montage traces of the input tracing file(s). Additionally, a range of quality
control metrics that describe the consistency between tracers is calculated and presented upon
completion.

2.2. Algorithms
TraceMontage utilizes a theoretical model for neural reconstruction derived on that used in the
nTracer software (Figure S1A). This model represents a neuron reconstruction as a tree graph,
which  has  a  root  node,  leaf  nodes,  branching  nodes,  and  other  internodes,  following  the
definitions of  (Peng et al.,  2011). This allows the manipulation of these structures within the
framework of graph theory. As such,  TraceMontage implements a fuzzy-logic  (Radojevic and
Meijering,  2017) inspired algorithm for  the identification  of  overlapping branches.  Additional,
detailed information about the algorithms implemented in  TraceMontage  can be found in the
Supplementary Methods.
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2.3. Testing and Demonstration
TraceMontage was tested under various scenarios to demonstrate its utility. Test microscope
images were collected from Brainbow-labeled mouse Hippocampus or primary visual  cortex
(V1) samples, as indicated in  (Roossien et al., 2019; Roossien and Cai, 2017), and split into
overlapping tiles to simulate the result of a two-exposure imaging experiment. Each tile was
independently traced with  nTracer by separate, trained biologists (see  Acknowledgements),
followed by merging with TraceMontage. Resulting traces were then annotated for correctness
through comparisons to a “gold-standard” traced from the original (before splitting) image.

2.4 Software Availability
The TraceMontage plugin, example Brainbow images and tracing results are available from the
Cai Lab website at https://www.cai-lab.org/tracemontage. TraceMontage is under GPL3 License
(https://www.gnu.org/licenses/gpl-3.0.en.html).  After  installation,  the  software  can  be  started
from ImageJ/Fiji, under the “plugins” interface.

3. Results

3.1. Merging Horizontally-aligned Image Tiles
In  Figure  2,  image  tiles  of  Parvalbumin-expressing  Basket  Cells  (PVBCs)  in  the  mouse
Hippocampus were traced, followed by merging with  TraceMontage. As demonstrated in the
enlarged portion  of  the  figure,  TraceMontage  is  capable  of  merging matching traces in  the
overlapped  region of  two Brainbow images.  It  is  notable,  however,  that  inaccuracies  in  the
human tracing (possibly caused by the difficulty imposed by the dense labeling) can lead to an
incomplete merging of all possible neurites. The default values of parameters were used in this
example, although optimization of the free parameters could lead to decreases in the number of
merged traces, at the cost of stringency and/or accuracy of the combined set of output neurons.

3.2 Additional Examples
TraceMontage was tested using image tiles from a vertically-aligned PVBC image (Figure S6),
multiple tracers on a single PVBC image (Figure S7 and S8). These cases were chosen to
demonstrate the use of TraceMontage as a tool for tracing wide-field images (similar to Figure
1), and as an automated proofreading tool between multiple tracers, respectively.

4. Discussion
Increasing computational power and advancements in imaging technology continue to enable
the collection and processing of large connectomic images. Currently, one rate-determining step
in the usage of this data is to efficiently and consistently generate tracing results from the whole
volume of very large microscopic images. The algorithms powering TraceMontage are able to
provide an efficient solution for the combination of tracing results, and, as a result, this plugin
and its  algorithms make a contribution  to  the large-scale  neuronal  tracing in  computational
connectomics.

There are, however, some limitations regarding the use of this software. First,  in the
current  format  of  its  algorithms,  the  plugin  is  only  applicable  to  the  alignment  of  neurites
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representable  with  a  full  binary  tree  structure.  This  prohibits  its  usage  to  other  non-binary
structures, such as the vasculature system (CITE some of those tracing/segmentation results).
This  issue can be resolved by considering the topological  relations between the number of
nodes and edges when the tree structure is not necessarily binary. A second limitation is that, in
some situations,  some traces may not  be  combined.  This  is  most  evident  when  there  are
neurites that were not traced in both input reconstructions. In that case, some original tracings
may  be  excluded  (for  consistency)  from  the  final  montage  result,  and  therefore,  some
information which one of the tracers has been provided would be missed. This issue arises
because the two end-points of each branch are the only signatures of the branch and there is no
referencing to the internodes of the branch in the whole tree. We think this could be addressed
in a future version of the software, but would be computationally more expensive due to the
larger number of comparisons which would be required. A third limitation is that the current
version arbitrarily assumes one tracing result is always correct when presented differences. The
future version may provide options to calculate an average as the merged results. Finally, new
algorithms for merging more than two tracing results would be powerful for generating “gold-
standard” with higher accuracy in a large collaborative tracing setting.
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Figures

Figure 1: An overview of the TraceMontage workflow. First, the user inputs two overlapping
neuron  traces  (generated  with  either  automatic  or  manual  methods)  and  corresponding
microscope  image  stacks.  The  software  identifies  neuron  traces  which  are  overlapping  via
graph theory methods, overlapping branches are merged together, and, finally, neurons which
contain  overlapping  branches  are  merged.  The  merged  result  is  output  for  visualization  or
additional analysis.
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Figure 2:  An example merge performed with TraceMontage. An image of  Parvalbumin-
expressing basket cells (fast-spiking inhibitory interneurons) of the Hippocampus of mouse brain
was split into two overlapping tiles; (A and B) All visible neurites in each tile was semi-manually
traced using the nTracer tool by two different scientists; (C) The traces with overlapping region
were shown after merging using TraceMontage; (D) The overlapping and adjacent regions are
enlarged to show the merged traces clearly connect between (A) and (B). All  panels are Z-
projected renderings of the path, colored to match the original sample’s Brainbow labeling; the
image is 560 x 560 x 225 pixels total.
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