
Inferring genome-wide correlations of mutation fitness effects

between populations

Xin Huang1, Alyssa Lyn Fortier2, Alec J. Coffman3, Travis J. Struck1, Megan N. Irby1,
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Abstract

The effect of a mutation on fitness may differ between populations depending on environmental and
genetic context, but little is known about the factors that underlie such differences. To quantify genome-
wide correlations in mutation fitness effects, we developed a novel concept called a joint distribution of
fitness effects (DFE) between populations. We then proposed a new statistic w to measure the DFE
correlation between populations. Using simulation, we showed that inferring the DFE correlation from
the joint allele frequency spectrum is statistically precise and robust. Using population genomic data,
we inferred DFE correlations of populations in humans, Drosophila melanogaster, and wild tomatoes. In
these specices, we found that the overall correlation of the joint DFE was inversely related to genetic
differentiation. In humans and D. melanogaster , deleterious mutations had a lower DFE correlation than
tolerated mutations, indicating a complex joint DFE. Altogether, the DFE correlation can be reliably
inferred, and it offers extensive insight into the genetics of population divergence.

Introduction1

New mutations that alter fitness are the key input into the evolutionary process. Typically, the majority2

of new mutations are deleterious or nearly neutral, and only a small minority are adaptive. These three3

categories constitute a continuum of fitness effects—the distribution of fitness effects (DFE) of new mutations4

(Eyre-Walker and Keightley 2007). The DFE is central to many theoretical evolutionary topics, such as the5

maintenance of genetic variation (Charlesworth 1994) and the evolution of recombination (Barton 1995), in6

addition to being key to applied evolutionary topics, such as the emergence of pathogens (Gandon et al.7

2013) and the genetic architecture of complex disease (Durvasula and Lohmueller 2019).8

The DFE can be quantified by either experimental approaches or statistical inference. Experimental9

approaches measure the DFE using random mutagenesis (Elena et al. 1998) or mutation accumulation (Fry10

et al. 2002); however, these approaches are limited to studying a small number of mutations. Most of our11

knowledge regarding the DFE has come from statistical inferences based on contemporary patterns of natural12

genetic variation. In these inferences, genetic data are typically summarized by the allele frequency spectrum13

(AFS). In some methods, a demographic model is inferred from the AFS of putatively neutral variants, and14

the DFE is estimated from the AFS of variants under selection, conditional on the best fit demographic15

model (Eyre-Walker et al. 2006; Keightley and Eyre-Walker 2007; Boyko et al. 2008; Kim et al. 2017). In16

other methods, the background pattern of variation is accounted for by the inclusion of nuisance parameters17

when fitting a DFE model to the AFS of variants under selection (Eyre-Walker et al. 2006; Tataru et al.18

2017; Barton and Zeng 2018). In an alternative approach, a recent study applied approximate Bayesian19

computation to simultaneously infer the DFE and a demographic model (Johri et al. 2020). Moreover, a20

linear regression method can be used to infer the DFE from nucleotide diversity (James et al. 2017). These21

approaches has been applied to numerous organisms, including plants (Chen et al. 2017; Huber et al. 2018;22
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Chen et al. 2020), Drosophila melanogaster (Keightley and Eyre-Walker 2007; Huber et al. 2017; Castellano23

et al. 2017; Barton and Zeng 2018; Johri et al. 2020), and primates (Boyko et al. 2008; Huber et al. 2017;24

Kim et al. 2017; Ma et al. 2013; Castellano et al. 2019).25

Using these inference methods, several studies have found evidence for differences in DFEs among different26

populations (Boyko et al. 2008; Ma et al. 2013; Kim et al. 2017; Castellano et al. 2019; Tataru and Bataillon27

2019). These studies, however, have been limited by the implicit assumption that the fitness effects of a given28

mutation in different populations are independent draws from distinct DFEs. Biologically, the fitness effects29

of a given mutation in different contexts are correlated, but it is unclear how large this correlation is and30

what factors affect it. Moreover, these studies only compared DFEs from the AFS of single populations and31

therefore cannot investigate differences in fitness effects in new environments after population divergence.32

Here, we developed a novel concept called the joint DFE of new mutations, which can be inferred from33

the joint AFS of pairs of populations. We then defined the correlation of mutation fitness effects between34

populations using the joint DFE. With simulation, we showed that inferring the joint DFE and correlation35

requires only modest sample sizes and is robust to many forms of model misspecification. We then applied36

our approach to data from humans, D. melanogaster, and wild tomatoes. We found that the correlation37

of mutation fitness effects between populations is lowest in wild tomatoes and highest in humans. In D.38

melanogaster and wild tomatoes, we found differences in the correlation among genes with different functions.39

We also found that mutations with more deleterious effects exhibit lower correlations. Together, our results40

show that the joint DFE and correlation of mutation fitness effects offer new insight into the population41

genetics of these species.42

Results43

Definition44

To define the joint DFE, we considered two populations that have recently diverged, one of which may have45

entered a new environment (Fig. 1A). We also considered that a mutation has selection coefficient s1 in the46

ancestral population and s2 in the recently diverged population. For two populations, the joint AFS is a47

matrix in which each entry i, j corresponds to the number of variants observed at frequency i in population 148

and j in population 2 in a sequenced sample of individuals from the two populations. Different combinations49

of s1 and s2 lead to distinct patterns in the joint AFS (Fig. 1B). We refer to the joint probability distribution50

for (s1, s2) as the joint DFE (Fig. 1C), and we refer to the marginal probability distributions for s1 or s251

as the marginal DFEs for population 1 or population 2, respectively. The observed AFS from a pair of52

populations results from integrating spectra for different values of s1 and s2 over the joint DFE.53

Little is known about the shape of the joint DFE, so we considered multiple parametric models. The54

best fit DFEs for single populations tend to be lognormal or gamma distributions (Boyko et al. 2008),55

although discrete distributions may sometimes fit better (Kousathanas and Keightley 2013; Johri et al.56

2020) We first considered a bivariate lognormal distribution (Fig. 1C), because it has an easily interpretable57

correlation coefficient. However, the bivariate lognormal distribution can be numerically poorly behaved58

as the correlation coefficient approaches one and the distribution becomes very thin. We also considered59

another popular probability distribution for modeling DFEs, the gamma distribution, but there are multiple60

ways of defining a bivariate gamma distribution (Nadarajah and Gupta 2006). We thus focused on a mixture61

model that consisted of a component corresponding to perfect correlation with weight w, and a component62

corresponding to zero correlation with weight (1 − w) (Fig. 1D). To limit the complexity of the model,63

we assumed that the marginal DFEs were identical for both populations. In this case, the correlation of64

the overall distribution is equal to the mixture proportion w. We thus interpret and discuss w as a DFE65

correlation coefficient.66

The DFE correlation profoundly affects the expected AFS (Fig. 1E). Qualitatively, if the correlation67

is low, there is little shared high-frequency polymorphism. In this case, alleles that are nearly neutral in68

one population are often deleterious in the other, driving their frequencies lower in that population. If the69

correlation of the joint DFE is larger, more shared polymorphism is preserved. To calculate the expected70
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Figure 1: The joint allele frequency spectrum (AFS) and joint distribution of fitness effects
(DFE). A: We considered populations that have recently diverged with gene flow between them. Some
genetic variants will have a different effect on fitness in the diverged population (s2) than in the ancestral
population (s1). B: The joint DFE is defined over pairs of selection coefficients (s1, s2). Insets show the
joint AFS for pairs of variants that are strongly or weakly deleterious in each population. In each spectrum,
the number of segregating variants at a given pair of allele frequencies is exponential with the color depth.
C: One potential model for the joint DFE is a bivariate lognormal distribution, illustrated here for strong
correlation. D: We focus on a model in which the joint DFE is a mixture of components corresponding
to equality (ρ = 1) and independence (ρ = 0) of fitness effects. E: As illustrated by these simulated allele
frequency spectra, stronger correlations of mutation fitness effects lead to more shared polymorphism. Here
w is the weight of the ρ = 1 component in the mixture model.
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AFS for a given demographic model and DFE, we first cached calculations of the expected AFS for a grid71

of selection coefficient pairs. Assuming independence among sites, the expectation for the full DFE is then72

an integration over values of s1, s2, weighted by the DFE (Fig. S1) (Ragsdale et al. 2016; Kim et al. 2017).73

We based our approach on the fitdadi framework developed by Kim et al. (2017), and our approach is74

integrated into our dadi software (Gutenkunst et al. 2009). More detail can be found in the Methods section.75

Simulation76

To evaluate the precision of our approach, we first stochastically simulated unlinked single nucleotide poly-77

morphisms (SNPs) under a known demographic model (Table S1 & Fig. S2) and a symmetric lognormal78

mixture model for the joint DFE (Fig. 1; Eq. 4 & 6). We then inferred the three joint DFE parameters:79

the mean µ and standard deviation σ of the marginal lognormal distributions and the DFE correlation w.80

The demographic and joint DFE parameters for these simulations were similar to those we later inferred for81

human populations under a demographic model of divergence, growth, and migration. When we fit the joint82

DFE to these simulated data, we found that the variance of the inferred parameters grew only slowly as the83

sample size decreased (Fig. S3A). This suggests that only modest sample sizes are necessary to confidently84

infer the joint DFE, similar to how only modest sample sizes are necessary to infer the mean and variance85

of the univariate DFE (Keightley and Eyre-Walker 2010).86

Because our inference approach focuses on shared variation, we expected precision to depend on the87

divergence time between the populations. To test this, we simulated data sets with sample size similar to88

our real Drosophila data and varied the divergence time in the demographic model. We found that the89

variance of the inferred µ and σ parameters was always small (Fig. S3B & C), but the variance of the90

inferred DFE correlation w depended on the divergence time (Fig. S3B & C). That variance was large for91

small divergence times (T = 10−4). This is expected, because in this case selection has had little time act92

differently in the two populations. That variance was also large if the divergence time was large and there93

was no migration between the populations (Fig. S3C). This is also expected, because in this scenario there94

is little shared variation between populations. However, the variance of the inferred DFE correlation w was95

small when the divergence time was between 10−3 and 100 (Fig. S3B & C).96

Having found good precision for our inference, we then turned to testing the robustness of our inference to97

model misspecification. Since these tests focused on biases in the average inference, we did not stochastically98

sample data for these analyses, but rather used the expected AFS under each scenario as the data.99

The demographic model is a key assumption of our joint DFE inference procedure. To test how imperfect100

modeling of demographic history would bias our inference, we simulated both neutral and selected data un-101

der a demographic model that included divergence, exponential growth in both populations, and asymmetric102

migration between populations (Fig. S2B). We then fit models that either lacked migration or that modeled103

instantaneous growth and symmetric migration to the neutral data (Fig. S2C). We then used these mis-104

specified models to infer the DFE correlation w from the selected data. For both misspecified demographic105

models, although the inferred µ and σ were biased, we found that the inferred w was not strongly biased,106

particularly for large correlations (Fig. 2A).107

Dominance is a potential confounding factor when inferring the joint DFE, since dominance influences108

allele frequencies differently in populations that have and have not undergone a bottleneck (Balick et al. 2015).109

Typically, mutation fitness effects in diploids are assumed to be additive, corresponding to a dominance110

coefficient of h = 0.5. To test the effects of dominance on our inference, we simulated nonsynonymous111

frequency spectra with dominance coefficients of h = 0.25 and h = 0.75 and then optimized joint DFE112

parameters under the assumption that h = 0.5. We found that an incorrect assumption about dominance113

did not substantially bias the inferred w, although it did bias the inferred µ and σ (Fig 2B).114

The probability distribution assumed for the joint DFE is another potential confounding factor. To test115

how this might bias inference, we first simulated a true mixture model in which the marginal distributions116

were gamma (Eq. 7), rather than lognormal (Eq. 6). In this case, we found that inferred w was not substan-117

tially biased (Fig. 2C). We also considered fitting the lognormal mixture model (Fig. 1D) to data simulated118

under a bivariate lognormal model (Fig. 1C & Eq. 8). In this case, we found that the inferred mixture119

component w was larger than the simulated bivariate lognormal correlation coefficient ρ, although they were120
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Figure 2: Robustness of joint DFE inference to model misspecification. Simulated neutral and se-
lected data were generated under a demographic model with exponential growth and migration (Table S1),
and lognormal mixture DFE models were fit to the data. The DFE parameters are: µ, the mean log
population-scaled selection coefficient; σ, the standard deviation of those log coefficients; and w, the corre-
lation of the DFE. The gray lines indicate true values, and the data plotted in these figures can be found in
Table S4–S6. A: In this case, simpler demographic models with instantaneous growth or symmetric migra-
tion were fit to the neutral data. The resulting misspecified model was then used when inferring the DFE.
This misspecification strongly biased µ and σ, but not w. B: In this case, selected data were simulated
assuming dominant or recessive mutations, but the DFE was inferred assuming no dominance (h = 0.5).
Again, µ and σ are strongly biased, but w is not. C: In this case, selected data were simulated using a
mixture of gamma distributions. When these data were fit using our mixture of lognormal distributions, w
was not biased. D: In this case, selected data were simulated using bivariate lognormal models, with either
symmetric or asymmetric marginal distributions. When these data were fit using our symmetric mixture of
lognormal distributions, w was only slightly biased.
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Figure 3: Robustness of joint DFE inference to background selection. Simulated genome-scale data
were generated with background selection and different DFE correlations. A: Data were simulated using the
best fit demographic model for humans in Fig. S5A with µ = 2.113 and σ = 4.915. Beside fitting the true
model, simpler demographic models (Fig. S2) were also fitted to test the robustness of model misspecification
in the presence of background selection. B: Data were simulated using the best fit demographic model for
D. melanogaster in Fig. S5B with µ = 6.174 and σ = 4.056. Points indicate inferences from distinct data
sets and colors indicate different demographic models using in the inference. Gray lines indicate true values.
The data plotted in these figures can be found in Table S7.

similar (Fig. 2D). The mixture model assumes symmetric marginal distributions between the two popula-121

tions, but the bivariate lognormal model is more general and permits asymmetric marginal distributions.122

When we simulated data under a bivariate model with asymmetric means and variances of the marginal123

distributions, but fit with a symmetric mixture model, we found only slight bias, similar to the symmetric124

bivariate case (Fig. 2D).125

Finally, background selection may also bias our joint DFE inference. To examine the effects of background126

selection on our inference, we simulated data with linkage using SLiM 3 (Haller and Messer 2019). We127

simulated genome-scale data for both human- and Drosophila-like scenarios using the best fit demographic128

models we inferred for our real data (Fig. S5A & B). For each data set, we fit a demographic model to129

the simulated synonymous mutations then used that demographic model to infer the joint DFE from the130

simulated nonsynonyous mutations. For human-like simulations, we also carried out the analysis using131

simpler demographic models in the inference. As expected, we found that background selection (BGS)132

biased our demographic model inferences. For example, if we used the same human demographic model133

in the inference and simulation, the inferred divergence time increased as the DFE correlation w decreased134

(Table S7). As w decreased, the strength of BGS increased (Table S8). However, we found that the joint135

DFE correlation w could be robustly inferred in the presence of background selection (Fig. 3). The inferred136

µ and σ were biased if the demographic model was misspecified (Fig. 3A). But the inferred w was somewhat137

overestimated only if w was less than 0.8 with misspecified demographic models (Fig. 3A). In our Drosophila-138

like simulations, no bias in inferred w was observed (Fig. 3B). Because the strength of background selection139

in our simulations was much stronger than estimated in empirical studies (Fig. S4), these simulations suggest140

that our analysis of the real data is robust to background selection.141

Together, our tests on simulated data suggest that inferring the DFE correlation w from the joint AFS142

can be done with high precision and is robust to multiple confounding factors, including misspecification of143
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Figure 4: Model fits to joint allele frequency spectra (AFS) using nonsynonymous data. A:
Joint AFS for the human nonsynonymous data, the best fit model with DFE correlation w = 0.995, and the
residuals between model and data. B: Joint AFS for the D. melanogaster nonsynonymous data and the best
fit model with DFE correlation w = 0.967. C: Joint AFS for the wild tomato nonsynonymous data and the
best fit model with DFE correlation w = 0.905.

the demographic model and DFE distribution as well as the presence of background selection.144

Application145

We applied our joint DFE inference approach to humans, D. melanogaster , and wild tomatoes. For humans,146

we considered the joint DFE between Yoruba in Ibadan (YRI) and Utah residents (CEPH) with Northern147

and Western European ancestry (CEU) populations, because the Yoruba are a well-studied proxy for the148

ancestral human population and European populations parallel the history of French D. melanogaster .149

For D. melanogaster , we considered the joint DFE between Zambian and French populations, because the150

Zambian population is representative of the ancestral population (Lack et al. 2015) and France is a distinct151

environment. For wild tomatoes, we considered the joint DFE between two closely related species, Solanum152

chilense and Solanum peruvianum, because they still share substantial polymorphism and have overlapping153

ranges.154

We first fit demographic models to synonymous variants in each population pair. For all the three species,155

we fit relatively simple models of divergence with exponential growth and gene flow, although for humans156

we also found it necessary to include pre-divergence population growth. Broadly, these models fit the data157

well (Fig. S5 & S6).158

We next estimated the joint DFE using all nonsynonymous variants in the whole exome data from159

7

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 18, 2021. ; https://doi.org/10.1101/703918doi: bioRxiv preprint 

https://doi.org/10.1101/703918
http://creativecommons.org/licenses/by-nc/4.0/


0.15 0.20 0.25 0.30
FST

0.88

0.90

0.92

0.94

0.96

0.98

1.00

w

Wild tomato

D. melanogaster

Human

A

H
um

an
 to

le
ra

te
d

H
um

an
 d

el
et

er
io

us

D
.m

el
an

og
as

te
r t

ol
er

at
ed

D
.m

el
an

og
as

te
r d

el
et

er
io

us

To
m

at
o 

to
le

ra
te

d

To
m

at
o 

de
le

te
rio

us

0.6

0.8

1.0

w

B

p = 0.002
p = 2.016 × 10 15

p = 0.010

0.00

0.05

0.10

FD
R

 a
dj

us
te

d 
p-

va
lu

e

Figure 5: Exome-wide DFE correlations. A: Plotted are maximum likelihood inferences of the DFE
correlation w with 95% confidence intervals versus genetic divergence FST of the considered population pair.
B: Plotted are maximum likelihood inferences of the DFE correlation w with 95% confidence intervals for
nonsynonymous SNPS with different predicted effects from SIFT. Colors indicate FDR adjusted p-values
from two-tailed z-tests as to whether the confidence interval overlaps w = 1. FST was estimated using
whole-exome synonymous mutations.

each species with our lognormal mixture model (Fig. 1D). In all the cases, the resulting models fit the160

nonsynonymous joint frequency spectrum well, with similar patterns of residuals to the demographic models161

fit to synonymous data (Fig. 4 & S6). For humans, we found the highest DFE correlation w = 0.995±0.007162

in our study (Fig. 5 & Table S9), which was statistically indistinguishable from perfect correlation w = 1.163

For D. melanogaster , we found that mutation fitness effects between Zambian and French populations were164

highly correlated, with w = 0.967±0.017 (Fig. 5 & Table S10). For wild tomatoes, we found the lowest DFE165

correlation, w = 0.905 ± 0.015 (Fig. 5 & Table S11). We also inferred DFE correlations using mutations166

from non-CpG regions in humans and D. melanogaster , because the mutation rate may differ between167

non-CpG and CpG regions. The resulting estimates of w (Fig. S10 & Table S9 & S10) were statistically168

indistinguishable from those using the whole exome data. Among these three population pairs, the inferred169

DFE correlation was negatively related to genetic divergence, as measured by FST (Fig. 5A).170

For simplicity, we assumed that the DFE correlation w is constant throughout the distribution, but the171

correlation may depend on how deleterious the mutation is. To test this assumption, rather than adding172

complexity to the DFE model, we instead segregated our data by applying SIFT scores to predict whether a173

nonsynonymous mutation is likely to be tolerated or deleterious based on evolutionary conservation (Vaser174

et al. 2016). We then fit DFE models to the SNPs in each class. As expected, we inferred a more negative175

mean fitness effect for the deleterious class than the tolerated class (Fig. S10 & Table S9–S11). Moreover,176

we found that the DFE correlation w was dramatically smaller for the deleterious class than the value from177

the tolerated class in humans and D. melanogaster , but not in wild tomatoes (Fig. 5B). To test whether this178

effect extended beyond individual mutations to whole genes, we also separated our data by the dN/dS ratio179

in humans and D. melanogaster . We found no significant difference in DFE correlations among genes with180

different dN/dS ratios (Fig. S10). However, we did observe that the average strength of purifying selection181

increases as the dN/dS ratio decreases (Fig. S10).182

To investigate the biological basis of the joint DFE, we considered genes of different function based on183

Gene Ontology (GO) terms (The Gene Ontology Consortium 2000). For D. melanogaster , we found a wide184
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Figure 6: DFE correlation for different GO terms in D. melanogaster and wild tomatoes. Plotted
are maximum likelihood inferences with 95% confidence intervals. Colors indicate FDR-adjusted p-values
from two-tailed z-tests as to whether the confidence interval overlaps w = 1. The data plotted in these
figures can be found in Table S10 & S11. A: Inferred DFE correlation in D. melanogaster . B: Inferred DFE
correlation in wild tomatoes.
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range of inferred DFE correlations, with the lowest maximum likelihood estimate corresponding to mutations185

in genes involved in the mitotic nuclear division at w = 0.901±0.048 (Fig. 6 & Table S10). For wild tomatoes,186

we found an even wider range of inferred DFE correlations, with the lowest maximum likelihood estimate187

being genes involved in photosynthesis at w = 0.769 ± 0.106 (Fig. 6 & Table S11). For humans, we found188

that all GO terms yielded values of w that were statistically indistinguishable from one (Table S9 & Fig. S7).189

Among the D. melanogaster GO terms, we found no correlation between the inferred w and the mean and190

standard deviation of the marginal DFEs (Fig. S11), suggesting that the variation we see in w is not driven191

simply by variation in overall constraint. In humans, we further explored the biological context of the joint192

DFE by considering genes that are involved in disease and that interact with viral pathogens. We found193

no statistically significant differences in DFE correlations among these gene groups, although we did find194

that the DFE for genes involved in disease or that interact with viruses was shifted toward more negative195

selection (Table S9 & Fig. S10).196

To test the robustness of our analyses in the real data to various modeling choices, we used the variation197

among our inferences among D. melanogaster GO terms. We fit simpler models of demographic history198

with instantaneous growth in the two diverged populations with and without symmetric migration to the199

synonymous data and used those models as the basis of joint DFE analysis. Although these demographic200

models fit the data much less well than our main model (Fig. S6 & S12), the inferred values of w for the GO201

terms were highly correlated with those from our main model (Fig. S13A & B). We also tested our approach202

using a DFE model with a bivariate lognormal model instead of a lognormal mixture model. The inferred203

values for ρ in the bivariate model were highly correlated with the values for the inferred w (Fig. S13C).204

Together, these results suggest that the robustness we observed in simulated data (Fig. 2) holds true for real205

data.206

Discussion207

In this study, we introduced the concept of a joint distribution of fitness effects between pairs of populations,208

and we developed and applied an approach for inferring it. We tested our approach with simulation studies209

and found that inferring the DFE correlation between populations does not require excessive data and210

is robust to many forms of model misspecification (Fig. S3, 2, & 3). We then applied our approach to211

humans, D. melanogaster , and wild tomatoes. Among these species, we found the lowest exome-wide DFE212

correlation in wild tomatoes and the highest in humans (Fig. 5A). In humans and D. melanogaster , we213

found that the DFE correlation is lower for deleterious mutations than tolerated mutations (Fig. 5B). And214

in D. melanogaster and tomatoes, we found that the DFE correlation varied with gene function (Fig. 6).215

These results illustrate the biological insights that can be gained by considering the joint DFE between216

populations.217

The first step of our analyses is fitting a demographic model, although our correlation inferences are robust218

to details of that model (Fig. 2A & S12). Nevertheless, our inferred demographic models (Fig. S5) agree219

well with other inferences. For humans, our demographic parameters were similar to those of Gravel et al.220

(2011). For D. melanogaster , our inferred population sizes and divergence time for African and European221

populations agree with those of Arguello et al. (2019), although we used different populations and different222

models. For wild tomatoes, we obtained a demographic model close to the result of Beddows et al. (2017).223

The fitness effect of a mutation may differ between populations due to differences in both environmen-224

tal and genetic context. The wild tomato species we analyzed overlap in range and are more genetically225

differentiated than the D. melanogaster or human populations we studied. In this case, we speculate that226

differences in fitness effects are primarily driven by differences in genetic background, although Solanum227

chilense does exhibit adaptations for more arid habitats (Moyle 2008). Among the species we studied, hu-228

mans exhibited the highest correlation of mutation fitness effects, which was statistically indistinguishable229

from perfect correlation w = 1, suggesting little difference in mutation fitness effects between YRI and CEU230

populations. Huang et al. (2021) also estimated the genome-wide differences of selection coefficients between231

Africans and Europeans were almost 0 with a different approach (He et al. 2015). It is unclear whether this232

is caused by our relatively low genetic differentiation or our ability to control our local environment. Experi-233
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ments suggest that stressful environments can alter DFEs between populations (Wang et al. 2014). Previous234

population genetic studies also have found evidence for differences in marginal DFEs between populations235

of humans (Boyko et al. 2008; Lopez et al. 2018) and also between populations of other primates (Ma et al.236

2013; Castellano et al. 2019; Tataru and Bataillon 2019). Although we assumed that the mean and the237

variance of mutation fitness effects did not differ between the two populations in our models for the joint238

DFE, those previous studies found only slight differences and our simulation study suggests that inferences of239

the DFE correlation are robust to relatively large differences in marginal DFEs (Fig. 2D). Recently, Martin240

and Lenormand (2015) extended Fisher’s Geometrical Model to consider the relationship between mutation241

fitness effects in two different environments, represented by two optima in trait space. Unfortunately, they242

could not derive an analytic joint DFE for their model, so we could not apply it here. Overall, our simple243

models of the joint DFE fit the data well, but more complex models may be more informative. Over the244

long term, assessing the joint DFE between multiple populations of multiple species may reveal the relative245

importance of environmental and genetic context in determining the mutation fitness effects.246

We focused on the deleterious component of the DFE in this study, and positive selection or local247

adaptation may affect joint DFE inference. However, Castellano et al. (2019) found that including beneficial248

mutations or not did not affect the DFE model for the deleterious components in humans. Moreover, Zhen249

et al. (2021) estimated the proportion of new beneficial mutations to be around 1.5% in humans and close to250

0 in D. melanogaster . Therefore, we do not expect beneficial mutations to significantly affect our inference251

in humans and D. melanogaster . Further studies that include local adaptation when inferring the joint DFE252

may improve our analysis of populations with low DFE correlations, such as wild tomatoes.253

Finally, the concept of a joint DFE could be widely applicable. For example, we recently inferred a joint254

DFE between mutations at the same protein site, using triallelic variants (Ragsdale et al. 2016). Remarkably,255

we found that biochemical experiments in a variety of organisms yielded a similar correlation of pairwise256

fitness effects to the value we inferred from D. melanogaster population genetic data. Other potential257

applications of a joint DFE include modeling ancient DNA data to infer DFE correlations across time and258

modeling linkage to infer DFE correlations across genomic positions. We thus anticipate that extending the259

concept of the DFE from one population to two or more will significantly advance our understanding of260

population evolution and have broad impact in population genetics.261

Methods262

Inferring joint DFE from joint allele frequency spectrum (AFS)263

If we sample n1 chromosomes from population 1 and n2 chromosomes from population 2, then the joint AFS
for these two populations can be written as

X = {Xi,j , 0 ≤ i ≤ n1, 0 ≤ j ≤ n2, 0 < i+ j < n1 + n2} . (1)

Here, Xi,j denotes the number of mutations in the sample that have i copies of derived alleles among the n1264

chromosomes from population 1 and j copies of derived alleles among the n2 chromosomes from population 2.265

We denote the joint spectra for neutral and selected mutations as N = {Ni,j} and S = {Si,j}, respectively.266

Let F(γ1, γ2|Θdemo) = {Fi,j(γ1, γ2|Θdemo)} be the expected joint AFS for demographic parameters Θdemo,
population-scaled selection coefficients γ1 in the ancestral and first contemporary population and γ2 in the
second contemporary population, and population-scaled mutation rate θ = 1. Then the expected neutral
joint AFS is

E (Ni,j |Θdemo) = θneuFi,j(γ1 = 0, γ2 = 0|Θdemo), (2)

where θneu is the population-scaled neutral mutation rate (Gutenkunst et al. 2009). The expected selected
joint AFS is

E (Si,j |Θdemo,ΘDFE) = θsel

∫ ∞
−∞

∫ ∞
−∞

Fi,j(γ1, γ2|Θdemo)G(γ1, γ2|ΘDFE) dγ1 dγ2. (3)
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Here θsel is the population-scaled mutation rate for selected mutations, and G(γ1, γ2|ΘDFE) is the joint DFE.267

In most of our analyses, we modeled the joint DFE as a mixture of two components, G1d and G2d, where
G1d is a DFE with equal selection coefficients in the two populations, and G2d is a DFE with statistically
independent selection coefficients and marginal distributions G1d. Letting w be the mixture proportion of
G1d, we have

Gmix = wG1d + (1− w)G2d, 0 ≤ w ≤ 1. (4)

And considering only deleterious mutations we have

E (Si,j |Θdemo,ΘDFE) =w θsel

∫ 0

−∞
Fi,j(γ, γ|Θdemo)G1d(γ|ΘDFE) dγ

+ (1− w) θsel

∫ 0

−∞

∫ 0

−∞
Fi,j(γ1, γ2|Θdemo)G2d(γ1, γ2|ΘDFE) dγ1 dγ2.

(5)

We typically worked with lognormal distributions, so

G1d(γ) =
1

γσ
√

2π
exp

(
− (ln(−γ)− µ)

2

2σ2

)
,

G2d(γ1, γ2) =
1

γ1γ2σ22π
exp

(
− (ln(−γ1)− µ)

2
+ (ln(−γ2)− µ)

2

2σ2

)
.

(6)

Here µ and σ are the mean and standard deviation of the logs of the population-scaled selection coefficients,268

respectively.269

To test the robustness of our approach, we also considered other models for the joint DFE. When using
a mixture of gamma distributions,

G1d(γ) =
1

βαΓ(α)
(−γ)α−1 exp(γ/β)

G2d(γ1, γ2) =
1

β2αΓ(α)2
(γ1γ2)α−1 exp((γ1 + γ2)/β).

(7)

Here α is the shape parameter and β is the scale parameter. When using a bivariate lognormal distribution,
which is potentially asymmetric,

G(γ1, γ2) =
1

2πσ1σ2γ1γ2
√

1− ρ2

× exp

(
−1

2

(
(ln(−γ1)− µ1)

2

σ2
1

+
(ln(−γ2)− µ2)

2

σ2
2

− 2ρ (ln(−γ1)− µ1) (ln(−γ2)− µ2)

σ1σ2

))
.

(8)

Here ρ is the correlation coefficient.270

Calculating the expected selected joint AFS (Eq. 3 & 5) is computationally expensive, because spectra271

F(γ1, γ2|Θdemo) must be calculated for many pairs of selection coefficients. Simultaneously inferring the272

demographic Θdemo and the DFE ΘDFE parameters is thus infeasible. We thus first inferred the demographic273

parameters using the putative neutral data and then held those parameters constant while inferring the DFE274

parameters.275

We inferred the demographic parameters Θ̂demo by maximizing the composite likelihood of the neutral
joint AFS, including θneu as a free parameter (Gutenkunst et al. 2009). To then infer the DFE parameters
ΘDFE, we modeled the selected joint AFS as a Poisson Random Field (Sawyer and Hartl 1992) and maximized
the composite likelihood

L(S|Θ̂demo,ΘDFE) =
∏
i,j

exp [−E(Si,j |Θ̂demo,ΘDFE)]E(Si,j |Θ̂demo,ΘDFE)Si,j

Si,j !
. (9)
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Here, Θ̂demo represents the demographic parameters inferred from the neutral data. And in this step we276

fixed θsel to a multiple of θneu determined by the expected ratio of new selected to new neutral mutations,277

based on base-specific mutation rates and genome composition.278

Numerically, to calculate the expected selected joint AFS, we first cached expected spectra F(γ1, γ2|Θ̂DFE)279

for a range of selection coefficient pairs. The cached values of γ1, γ2 were from 50 points logarithmically280

spaced within [−10−4,−2000], for a total of 2500 cached spectra (Fig. S1). We then evaluated Eq. 3 using the281

trapezoid rule over these cached points. For the mixture model (Eq. 5), the G1d component was calculated282

as a one-dimensional integral over a cache of γ1 = γ2 spectra. Probability density for the joint DFE may283

extend outside the range of cached spectra. To account for this density, we integrated outward from the284

sampled domain to γ = 0 or −∞ to estimate the excluded weight of the joint DFE. We then weighted the285

closest cached joint AFS F by the result and added it to the expected joint AFS. For the edges of the domain,286

this was done using the SciPy method quad, and for the corners it was done using dblquad (Virtanen et al.287

2020).288

Simulated data289

For our precision tests (Fig. S3), we used dadi to simulate data sets without linkage. Unless otherwise290

specified, for Fig. S3 and Fig. 2, the “truth” simulations were performed with an isolation-with-migration291

(IM) demographic model (Fig. S2B) with parameters as in Table S1, a joint lognormal mixture DFE model292

with marginal mean µ = 3.6 and standard deviation σ = 5.1, and with sample sizes of 216 for population 1293

and 198 for population 2. For Fig. S3, data were simulated with w = 0.9 and the nonsynonymous population-294

scaled mutation rate θNS = 13842.5 by Poisson sampling from the expected joint AFS. For Fig. S3A the295

resulting average number of segregating polymorphisms varied with sample size, ranging from 6,953 for296

sampling two chromosomes to 45,691 for sampling 100 chromosomes. For Fig. S3B & C, the sample size was297

fixed at 20 chromosomes per population.298

For our robustness tests (Fig. 2), we were interested in bias rather than variance, so misspecified models299

were fit directly to the expected frequency spectrum under the true model without Poisson sampling noise.300

For Fig. 2A, the best fit model with no migration had s = 0.937, ν1 = 3.025, ν2 = 3.219, T = 0.0639,301

m = 0, and the best fit model with instantaneous growth and symmetric migration had ν1 = 2.4, ν2 = 0.92,302

T = 0.23, m = 0.42. For Fig. 2C, the true joint DFE was a mixture model with marginal gamma distributions303

with α = 0.4, β = 1400. For Fig. 2D, the true joint DFE was a symmetric bivariate lognormal distribution304

with µ = 3.6 and σ = 5.1, and for the asymmetric case in Fig. 2D, µ1 = 3.6, σ1 = 5.1, µ2 = 4.5, σ2 = 6.8.305

We then simulated data with different correlation coefficients ρ to examine the relationship between ρ and306

the DFE correlation w.307

To examine the effects of background selection, we used SLiM 3 (Haller and Messer 2019) to simulate308

data with linkage. We replicated our simulation and inference three times for each w with different demo-309

graphic models in the human simulations and an IM model in the D. melanogaster simulations (Fig. S2). For310

humans, we simulated the exome in chromosome 21 using the demographic parameters in Fig. S5A, the joint311

DFE parameters µ and σ from the whole human exome in Table S9 with w = 0.75, 0.8, 0.85, 0.9, 0.95, 1, and312

sample sizes of 216 for population 1 and 198 for population 2. We assumed the mutation rate was 1.5×10−8313

per nucleotide per generation (Ségurel et al. 2014). We further assumed the ratio of the nonsynonymous to314

synonymous mutations in humans was 2.31 (Huber et al. 2017). In our simulation, we used the human exome315

based on the reference genome hg19 from UCSC Genome Browser and the deCODE human genetic map316

(Kong et al. 2010). For each w, we first simulated human chromosome 21 twenty times, then obtained 20317

synonymous frequency spectra and 20 nonsynonymous frequency spectra from these sequences. We combined318

these 20 synonymous frequency spectra into a single one and inferred the demographic models. We then com-319

bined the 20 nonsynoymous frequency spectra into one spectrum and inferred the joint DFEs. We inferred320

the joint DFEs using both the true (IM pre model) and wrong (IM model with asymmetric migration &321

split mig model without migration) demographic models (Fig. S2). For D. melanogaster , we simulated small322

sequences instead of a whole chromosome, because the large population size of D. melanogaster made our323

simulation extremely slow. We used the demographic parameters for the IM model in Fig. S5B, the joint DFE324

parameters µ and σ from the whole D. melanogaster exome in Table S10 with w = 0.75, 0.8, 0.85, 0.9, 0.95, 1,325
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and sample sizes of 178 for population 1 and 30 for population 2. For each w, we simulated 20,000 small326

sequences with a length of 1000 bp, then obtained 20,000 synonymous frequency spectra and 20,000 non-327

synonymous frequency spectra. We combined these 20,000 synonymous frequency spectra into a single one328

and inferred the demographic models. We then combined the 20,000 nonsynonymous frequency spectra into329

one spectrum and inferred the joint DFEs. This was equivalent to a total sequence size of 20 Mb. We330

assumed that the mutation rate was 2.8 × 10−9 per nucleotide per generation and that the recombination331

rate was 5 × 10−9 per nucleotide per generation (Keightley et al. 2014). We also assumed the ratio of the332

nonsynonymous to synonymous mutations in D. melanogaster was 2.85 (Huber et al. 2017). To accelerate333

our simulation, we used a factor of 1000 to re-scale the population size, mutation rate, and recombination334

rate (Hoggart et al. 2007). To quantify the strength of BGS in our simulations, we simulated data under335

neutral models and compared the expected number of pairwise differences between two chromosomes in the336

non-neutral scenarios with the neutral ones (Hudson and Kaplan 1995). The strength of BGS (Fig. S4) in337

the simulated data for both humans and D. melanogaster was stronger than the estimated strength from338

the empirical studies (Charlesworth 2013).339

Genomic data340

In all analyses, we only considered biallelic SNPs from automosomes. For humans, we obtained 108 and341

99 unrelated individuals (216 and 198 haplotypes) from YRI and CEU populations in the 1000 Genomes342

Project Phase 3 genotype data (The 1000 Genomes Project Consortium 2015). We removed those regions343

that were not in the 1000 Genomes Project phase 3 strict mask file. We only considered biallelic exonic344

SNPs that were annotated as synonymous variant or missense variant by the 1000 Genomes Project.345

We further excluded SNPs without reported ancestral alleles. We also used the CpG table from the UCSC346

Genome Browser to distinguish SNPs in CpG regions.347

For D. melanogaster , we obtained Zambian and French D. melanogaster genomic data from the Drosophila348

Genome Nexus (Lack et al. 2016). The Zambian sequences were 197 haploids from the DPGP3 and the French349

were 87 inbred individuals. We removed those SNPs in the IBD and/or admixture masks. In these data,350

many SNPs were not called in all individuals. We thus projected downward to obtain a consensus AFS with351

maximal genome coverage. For these data, that was to a sample size of 178 Zambian and 30 French haplo-352

types (Fig.S14). We used D. simulans as the outgroup and downloaded the alignment between the reference353

genome for D. simulans (drosim1) and the reference genome for D. melanogaster (dm3) from UCSC Genome354

Browser to determine the ancestral allele of each SNP. We then used GATK (version: 4.1.4.1) (McKenna355

et al. 2010) to liftover the genomic coordinates from dm3 to dm6 with the liftover chain file from the UCSC356

Genome Browser. To annotate SNPs to their corresponding genes and as synonymous or nonsynonymous357

mutations, we used ANNOVAR (version: 20191024) (Wang et al. 2010) with default settings and the dm6358

genome build. We downloaded the CpG table from the UCSC Genome Browser to distinguish SNPs in CpG359

regions.360

For wild tomatoes, we obtained Solanum chilense and Solanum peruvianum DNA sequencing data from361

Beddows et al. (2017) and followed their scheme for assigning individuals to species. We only analyzed362

17 Solanum chilense and 17 Solanum peruvianum individuals sequenced by Beddows et al. (2017) because363

of their high quality. We used an Solanum lycopersicoides individual sequenced by Beddows et al. (2017)364

to determine the ancestral allele of each SNP. We further removed variants with heterozygous genotype in365

this Solanum lycopersicoides individual. To more easily apply SIFT, we used the NCBI genome remapping366

service to convert the data from SL2.50 coordinates to SL2.40.367

Fitting demographic models to genomic data368

We used dadi to fit models for demography to spectra for synonymous mutations (Gutenkunst et al. 2009),369

including a parameter for ancestral state misidentification (Ragsdale et al. 2016). For the human analy-370

sis, we used dadi with grid points of [226,236,246], and we found that an isolation-with-migration model371

with an instantaneous growth in the ancestral population (IM pre) fit the data well (Fig. S5A). For the372

D. melanogaster analysis, we used dadi with grid points of [188,198,208], and we found that an IM model373
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fit the data well (Fig. S5B). For the wild tomato analysis, we used dadi with grid points of [44,54,64] and374

fit a split-migration model with asymmetric migration (Fig. S5C), as Beddows et al. (2017) did.375

Fitting joint DFEs to genomic data376

Cached allele frequency spectra were created for the corresponding demographic models. For humans and377

D. melanogaster , we used the same grid points settings as the grid points used when inferring demographic378

models. For wild tomatoes, we used dadi with grid points of [300, 400, 500] to generate caches with selection.379

Models of the joint DFE were then fit to nonsynonymous data by maximizing the likelihood of the data,380

assuming a Poisson Random Field (Sawyer and Hartl 1992). In these fits, the population-scaled mutation381

rate for nonsynonymous mutations θNS was held fixed at a given ratio to the rate for synonymous mutations382

θS in the same subset of genes, as inferred from our demographic history model. For D. melanogaster this383

ratio was 2.85 and for humans it was 2.31 (Huber et al. 2017). For wild tomatoes, this ratio was assumed to384

be 2.5, which was between the ratios in humans and D. melanogaster . For the lognormal mixture model, the385

three parameters of interest are the DFE correlation w as well as the mean µ and standard deviation σ of the386

marginal distributions. In addition, we included a separate parameter for ancestral state misidentification for387

each subset of the data tested, because the rate of misidentification depends on the strength of selection acting388

on the sites of interest. To mitigate the effect of background selection, we separately inferred demographic389

parameters for each subset of the data (Table S9–S11) with the best fit demographic model inferred from390

the whole exome data (Fig. S5).391

We separately analyzed SNPs from genes associated with different Gene Ontology (GO) terms. We392

downloaded the Generic GO subset from http://geneontology.org/docs/download-ontology/ on August 12,393

2020. This is a set of curated terms that are applicable to a range of species (The Gene Ontology Consor-394

tium 2000). We considered the direct children of GO:0008510 “Biological Process”, and any gene annotated395

with a child of a given term was assumed to also be annotated by the parent term. Thus, a given gene396

may be present in multiple GO terms in our analysis. We used Ensembl Biomart (Cunningham et al.397

2019) to retrieve the annotated GO terms for each gene. For humans, we downloaded the GO annota-398

tion from https://grch37.ensembl.org/biomart/martview/ with Ensembl Genes 101 database and Human399

genes (GRCh37.p13) on August 19, 2020. For D. melanogaster , we downloaded the GO annotation from400

https://www.ensembl.org/biomart/martview/ with Ensembl Genes 101 database and D. melanogaster genes401

(BDGP6.28) on September 10, 2020. For tomatoes, we downloaded the GO annotation from https://jul2018-402

plants.ensembl.org/biomart/martview/ with Ensembl Plants Genes 40 database and Solanum lycopersicum403

genes (SL2.50) on September 26, 2020. To ensure convergence in our inference, we removed those GO terms404

with less than 2,000 either synonymous or nonsynonymous mutations (Table S9–S10).405

We also separately analyzed SNPs classified by SIFT as deleterious (SIFT score ≤ 0.05) or tolerated (SIFT406

score > 0.05) (Vaser et al. 2016). We downloaded SIFT predictions from https://sift.bii.a-star.edu.sg/sift4g/407

on October 2, 2020. We used the SIFT prediction data with GRCH37.74 for humans, with BDGP6.83 for408

D. melanogaster , and with SL2.40.26 for tomatoes. To carry out our DFE analysis, we needed to estimate an409

appropriate population-scaled nonsynonymous mutation rate θNS for deleterious and tolerated mutations.410

To do so, we estimated the proportions of deleterious and tolerated mutations in the downloaded SIFT411

prediction datasets. This is because all the possible mutations and their SIFT scores were predicted in the412

downloaded datasets. We then obtained the population-scaled mutation rates for deleterious and tolerated413

mutations by multiplying θNS from the whole exome data with the proportions of deleterious and tolerated414

mutations respectively.415

We further considered differences between regions of the genome that experience different levels of evolu-416

tionary conservation, as estimated from the ratio of nonsynonymous to synonymous divergence dN/dS. For417

humans, we separated SNPs into categories based on the estimated dN/dS values of the gene in which they418

are found from a previous study (Gayà-Vidal and Albà 2014). For D. melanogaster , we separated SNPs419

based on the dN/dS estimate of the surrounding 10 kb genomic region from PopFly (Hervas et al. 2017).420

For humans, we also divided genes into classes based on their role in disease and interactions with viruses.421

Following Struck et al. (2018), we classified genes as associated with Mendelian disease, complex disease, or422

no disease using Online Mendelian Inheritance in Man (OMIM, Amberger et al. 2015) and the European423
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Bioinformatics Institute’s genome-wide association studies (GWAS) catalog (MacArthur et al. 2017). We424

used the data of Enard and Petrov (2018) to annotate 4,534 genes as encoding virus-interacting proteins425

(VIPs). We defined the set of non-VIP genes as the 17,603 Ensembl genes that were not annotated as426

encoding VIPs. We identified 1,728 genes as known to interact with 2 or more viruses, leaving 2,806 genes427

known to interact with only a single virus.428

To estimate the uncertainty of our inferences, we used an approach based on the Godambe Information429

Matrix (Coffman et al. 2016), which is computationally more efficient than conventional bootstrap parameter430

optimization. To generate the requisite bootstrap data sets, we divided the reference genomes into 1 Mb431

chunks. Because gene content varied among bootstraps, θNS also needed to vary. To estimate the appropriate432

θNS for each bootstrap, we scaled corresponding θNS from the real data by the ratio of the number of433

segregating sites in the AFS of the bootstrap versus real data. We found good agreement between the434

uncertainties estimated by the Godambe approach and those from directly fitting the bootstrap data sets435

(Fig. S15). Note that this process does not propagate uncertainty in the demographic parameter inference,436

so our uncertainties are somewhat underestimated.437

To estimate p-values for inferred DFE correlation w, we used the two-tailed z-test by assuming w = 1438

under the null hypothesis and using the standard deviation estimated from the Godambe approach. To439

compare inferred DFE correlations between tolerated and deleterious mutations, we used two-tailed z-tests440

to calculate p-values by assuming no difference under the null hypothesis and using the standard deviations441

estimated from the Godambe approach. For multiple testing correction, we estimated false discovery rate442

(FDR) adjusted p-values by the Benjamini–Hochberg procedure (Benjamini and Hochberg 1995). These443

multiple hypothesis tests are from different types of data, including whole-exome data, whole-exome data444

without CpG regions, different GO terms, genes with different dN/dS values, genes with different SIFT445

scores, genes associated with no/simple/complex diseases, and genes associated with no/single/multiple446

VIPs (Table S9–S11).447

Data availability448

The software tools used in this study are dadi (https://bitbucket.org/gutenkunstlab/dadi) and SLiM 3449

(https://github.com/MesserLab/SLiM/). The supplementary tables can be found at https://doi.org/450

10.6084/m9.figshare.13936985.451
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Supporting Information638

Table S1: Model parameters for unlinked simulation

Model s ν1 ν2 T m1←2 m2←1 θNS
IM 0.93 2.9 2.83 0.084 0.47 0.35 13,842.5

Figure S1: Illustration of computational approach for calculating expected joint AFS for a given
joint DFE. Dots represent cached frequency spectra. Horizontal and vertical lines indicate single-variable
semi-analytic integrations to estimate DFE density outside the sampled domain, and gray regions indicate
corresponding double-variable integrations.
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Figure S2: Demographic models used in this study. In these models, the population sizes were scaled
by the ancestral population size Na and the times were in units of 2Na generations. The migration rates
between Population 1 and 2 can be symmetric (m1←2 = m2←1) or asymmetric (m1←2 6= m2←1). If there
was no migration, then m1←2 = m2←1 = 0. A: IM pre model. In this model, the ancestral population
experienced an instantaneous population size change at time T + TB before present. After the change,
its population size became νBNa and remained constant until time T before present. Population 1 and 2
diverged at time T before present and then grew exponentially. For Population 1, its initial population size
was sνBNa and its final population size was ν1Na at present. For Population 2, its initial population size
was (1 − s)νBNa and its final population size was ν2Na at present. B: IM model. This model corresponds
to the IM pre model with no ancestral growth event. C: split mig model. In this model, Population 1 and 2
diverged at time T before present. Their population sizes remained constant after the divergence with ν1Na
for Population 1 and ν2Na for Population 2.
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Figure S3: Precision of joint DFE inference versus sample sizes and divergence time. Simulated
data were generated without linkage and with different sample sizes or divergence times, using the demo-
graphic model parameters in Table S1 with logornal µ = 3.6 and σ = 5.1 and DFE correlation w = 0.9. In
each panel, points represent inferences from individual data sets and the gray line indicates the true value.
A: Inferred DFE parameters for different sample sizes. For small sample sizes, w is still inferred precisely,
even though µ and σ are highly uncertain. B: Inferred DFE parameters for different divergence times, in a
model with migration. Precision of w inference is low for small divergence times. C: Inferred DFE param-
eters for different divergence times, in a model without migration. In this case, precision of w inference is
low for both small and large divergence times.
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Figure S4: Strength of background selection (BGS) between simulation and empirical studies.
The strengths of BGS in empirical studies are from Charlesworth (2013). The strengths in simulation are
estimated from the observed number of pairwise differences between two chromosomes in the non-neutral
scenarios versus the neutral ones. The data plotted in these figures can be found in Table S8.
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Figure S5: Best fit demographic models. A: The best fit demographic model for humans. B: The best
fit demographic model for D. melanogaster . C: The best fit demographic model for wild tomatoes.
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Figure S6: Model fits to joint allele frequency spectra (AFS) using synonymous data. A: Joint
AFS for the human synonymous data and the best fit model (Fig. S5A). B: Joint AFS for the D. melanogaster
synonymous data and the best fit model (Fig. S5B). C: Joint AFS for the wild tomato synonymous data
and the best fit model (Fig. S5C).
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Figure S7: Joint DFE inference for different GO terms in humans. Plotted are maximum likelihood
inferences with 95% confidence intervals. For inferred w, colors indicate FDR-adjusted p-values from two-
tailed z-tests as to whether the confidence interval overlaps w = 1. The data plotted in these figures can be
found in Table S9.
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Figure S8: Inferred µ and σ from the joint DFE inference for different GO terms in
D. melanogaster . Plotted are maximum likelihood inferences with 95% confidence intervals. The data
plotted in these figures can be found in Table S10.
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Figure S9: Inferred µ and σ from the joint DFE inference for different GO terms in wild
tomatoes. Plotted are maximum likelihood inferences with 95% confidence intervals. The data plotted in
these figures can be found in Table S11.
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Figure S10: Joint DFE inference for different types of data in humans and D. melanogaster .
Plotted are maximum likelihood inferences with 95% confidence intervals. For inferred w, colors indicate
FDR-adjusted p-values from two-tailed z-tests as to whether the confidence interval overlaps w = 1. The
data plotted in these figures can be found in Table S9, S10 and S11.
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Figure S11: Relationships among among fitted parameters to D. melanogaster GO terms. Insets
indicate Pearson correlations. The data plotted in these figures can be found in Table S10.
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Figure S12: D. melanogaster results assuming simpler demographic models. A, B & C: A split mig
model (Fig. S2C) with symmetric migration fits the data less well than our full model with exponential
growth and asymmetric migration. (Compare residuals with Fig. S6F.) D, E & F: A split mig model
without migration fits even worse.
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Figure S13: D. melanogaster results assuming different models. For the D. melanogaster Gene
Ontology terms, inferences from the full demographic model and lognormal mixture DFE model are compared
with A: A split mig model with symmetric migration, B: A split mig model withnot migration and C: A
DFE model with a bivariate lognormal distribution. The data plotted in these figures can be found in Table
S12.
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Figure S14: Calling rate for different chromosome arms in analyzed D. melanogaster data. For
each arm, histograms indicate the number of bases at which a given number of individuals were called in
each population. The vertical lines indicate the projection sizes for the AFS analysis.
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Figure S15: Comparison between uncertainties estimated with the Godambe Information Ma-
trix and bootstrap fitting. For the D. melanogaster data, each panel shows a different subset of
genes/mutations. In each panel, the histogram shows results from conventional bootstrap fitting, while
the smooth curve is a normal distribution centered at the maximum likelihood inferred value and standard
deviation estimated using the Godambe approach.
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