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Abstract

Motivation: Infections by RNA viruses such as Influenza, HIV still pose a serious threat to human
health despite extensive research on viral diseases. One challenge for producing effective prevention
and treatment strategies is high intra-species genetic diversity. As different strains may have different
biological properties, characterizing the genetic diversity is thus important to vaccine and drug design.
Next-generation sequencing technology enables comprehensive characterization of both known and
novel strains and has been widely adopted for sequencing viral populations. However, genome-scale
reconstruction of haplotypes is still a challenging problem. In particular, haplotype assembly programs
often produce contigs rather than full genomes. As a mutation in one gene can mask the phenotypic
effects of a mutation at another locus, clustering these contigs into genome-scale haplotypes is still
needed.
Results: We developed a contig binning tool, VirBin, which clusters contigs into different groups so that
each group represents a haplotype. Commonly used features based on sequence composition and contig
coverage cannot effectively distinguish viral haplotypes because of their high sequence similarity and
heterogeneous sequencing coverage for RNA viruses. VirBin applied prototype-based clustering to cluster
regions that are more likely to contain mutations specific to a haplotype. The tool was tested on multiple
simulated sequencing data with different haplotype abundance distributions and contig sizes, and also on
mock quasispecies sequencing data. The benchmark results with other contig binning tools demonstrated
the superior sensitivity and precision of VirBin in contig binning for viral haplotype reconstruction.
Availability: https://github.com/chjiao/VirBin
Contact: yannisun@cityu.edu.hk

1 Introduction
High genetic diversity within viral populations has been observed in
patients with chronic infection with RNA viruses such as HIV, HCV, etc
(Sullivan et al., 2007; Perrin and Telenti, 1998). The genetic diversity could
be caused by multiple infections of different strains or by mutations during
the virus replication inside the host. In the latter case, the high replication
rate, coupled with the low fidelity of the viral polymerase in most RNA
viruses, results in a group of different but related strains infecting the
same host, which is often termed as “quasispecies” (Nowak, 2006).
Previous studies have revealed that patients with chronic virus infections,
such as AIDS, are often the reservoir of new viral variants, which are
likely produced during the replication process (MacLachlan and Dubovi,
2017). Because different strains could have very different biological
properties such as virulence, transmissibility, antiviral drug resistance

etc, characterizing the genetic diversity within viral populations is very
important for developing effective prevention and treatment strategies.
For example, if some strains have developed antiviral drug resistance,
they may become the dominant strains and lead to treatment failure.
Thus, characterization of the strain-level diversity of viral populations
is indispensable for understanding the viruses and is of great clinical
importance.

Sequencing viral quasispecies for genetic diversity analysis was one
of the first applications of NGS (next-generation sequencing) technologies
(McElroy et al., 2014). Applying whole genome shot-gun sequencing to
viral quasispecies does not require cultivation and can sequence divergent
strains from known virus families. It thus has become a favored choice for
characterizing the diversity of quasispecies.

Given the sequenced viral quasispecies, different types of analysis can
be conducted to probe the genetic diversity. A relatively straightforward
analysis is to understand the local diversity of known viruses by performing
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read mapping against reference genomes. While this type of analysis can
produce a collection of local changes (mutations, insertions, or deletions)
of the strains inside the quasispecies, it is not sufficient to infer the
biological properties of the strains, which are more likely to be determined
by multiple genes. In particular, epistatic interactions are abundant in RNA
viruses, where the mutation of one gene masks the phenotypic effects of a
mutation at another locus. Thus genome-scale reconstruction of the strains
is essential for phenotype prediction of viruses (Töpfer et al., 2014).

Reconstructing the genome-scale strain sequences inside quasispecies
is often referred to as genome-scale haplotype reconstruction, where the
genomes of strains are called haplotypes. The goal is to assemble short
reads from sequenced viral populations into correct haplotype sequences.
When the reference genome is available, read mapping can be conducted
first to identify local mutations and then cluster the local mutations (or short
contigs) into genome-scale haplotypes. When quality reference genomes
are not available, which is often the case for emerging viruses such as
SARS coronavirus, read mapping is not a very effective strategy to identify
all mutations. Thus, de novo assembly is needed to stitch the reads into
haplotypes.

With or without reference genomes, genome-scale haplotype
reconstruction in quasispecies remains a computationally challenging
problem. High similarity between haplotypes in the same quasispecies
and the heterogeneous sequencing depth along the viral genomes present
barriers to adoption of existing assembly programs. A recently published
comparison showed that none of the tested haplotype reconstruction
tools were able to successfully reconstruct the five known strains for a
mock HIV quasispecies (Jayasundara et al., 2014). We had the same
observations when comparing several popular metagenomic assembly
tools and haplotype assembly tools such as IDBA-UD (Peng et al., 2012),
IVA (Hunt et al., 2015), SAVAGE (Baaijens et al., 2017), MLEHaplo
(Malhotra et al., 2015) on the same data set (Chen et al., 2018). Many
methods output a set of contigs with various sizes that are much shorter
than the genomes. With these outputted contigs from assembly programs,
it still remains to infer the number of haplotypes and to match the contigs
to their originating haplotypes. Thus, there is a need to cluster the contigs
into different groups so that each group represents a haplotype. This step
is called contig scaffolding or binning and has been applied for bacterial
strain characterization.

Contig binning for viral quasispecies has its unique challenges.
First, the goal of binning is to distinguish contigs from different viral
strains rather than species. Thus, composition-based features such as
tetranucleotide frequencies or GC contents are not informative enough
to separate contigs from different haplotypes, which usually share high
sequence similarity (over 90%). Tools that heavily rely on sequence
composition-based features will not be able to estimate the number
of haplotypes correctly. Second, RNA virus sequencing tends to be
compounded by gene expression and fast degradation and thus the observed
sequencing coverage along each haplotype, or even a contig, can be more
heterogeneous than expected. In addition, if a contig contains a region
that is common to multiple haplotypes, that region tends to have higher
coverage than a haplotype-specific segment. All these challenges require
carefully designed methods to use the coverage information for contig
binning.

1.1 Related work

Although a number of contig binning algorithms have been developed
(Wu et al., 2014; Alneberg et al., 2014; Kang et al., 2015; Lu et al.,
2017; Quince et al., 2017; Luo et al., 2015; Truong et al., 2017), they all
possess limitations in distinguishing contigs from different viral strains of
the same species. Most of the existing contig binning tools for microbiome
sequencing data are designed for bacteria. These methods usually estimate

the bin number by aligning metagenomic data to a pre-established marker
gene database, and then assign assembled contigs to different bins using
sequence composition information and read coverage levels. For example,
MaxBin (Wu et al., 2014) uses both tetranucleotide frequencies and contig
coverage levels to assign assembled contigs into different bins.

Some binning tools (Lu et al., 2017) leverage co-abundance of genes
across multiple metagenomic samples. The rationale is that if two contigs
are from the same bin, their coverage profiles across multiple samples
should be highly correlated.

Recently, there are a couple of newly developed tools for strain level
analysis from metagenomic data, such as Constrain (Luo et al., 2015) and
StrainPhlAn (Truong et al., 2017). Both rely on species identification using
clade-specific genes, then zoom in to identify the strains. However, both
tools were mainly tested on bacteria.

Our method is designed to cluster contigs produced by existing
assembly tools. There are another group of methods conducting haplotype
reconstruction via read clustering (Ahn et al., 2018; Barik et al., 2018),
which groups variant sites obtained by read mapping against reference
genomes. These tools don’t usually output contigs and thus do not use
contig binning.

Here we present VirBin, a method designed specifically for binning
contigs derived from viral quasispecies data. The input to VirBin is a set
of contigs derived from assembly tools. The output includes the estimated
number of haplotypes, the grouped contigs for each haplotype, and the
corresponding relative abundances. Unlike many bacterial contig binning
tools that require multiple samples, our method works on a single sample.

2 Methods
The overall pipeline of our method is shown in Fig. 1. There are mainly
two steps: (1) estimate the number of haplotypes by aligning contigs and
identifying windows; (2) calculate relative abundances in each window
and apply a clustering algorithm to group clusters of the same haplotype.
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Fig. 1. The pipeline of VirBin.

The underlying algorithm of grouping contigs into haplotypes is
prototype-based clustering (Tan et al., 2005). Features such as the overlaps
and paired-end connections have limited usage in grouping distant contigs
from the same haplotype. The clustering will mainly use the features based
on the abundance distributions. Although abundance-based clustering
has been used for contig binning from multiple samples (Wu et al.,
2014; Quince et al., 2017), existing tools are not designed to tackle key
challenges of distinguishing contigs of different haplotypes. First, the
observed coverage of each contig not only depends on the abundance
of the underlying haplotype, but also depends on whether it is a unique
or shared region by two or more haplotypes. Second, heterogeneous
coverage of each haplotype in an RNA viral quasispecies is common,
which is caused by sequencing-related biases and compounded by gene
expression. Thus, directly applying existing prototype-based clustering
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models such as Gaussian-mixture model to contigs is not expected to
produce accurate clustering. Our solution to this problem is to cut the
contigs into “windows” and to apply the clustering on sub-contigs that are
more likely to represent one haplotype. In addition, instead of assuming
any parametric distribution, which is usually not the case for haplotype
contigs, we will use a non-parametric distribution.

2.1 Step 1: estimate the number of haplotypes via contig
alignment

Although the high similarity between haplotypes presents a barrier to
adoption of kmer-based features for distinguishing contigs from different
haplotypes, it brings opportunities for haplotype number estimation. With
stringent alignment threshold, contigs that can be aligned with each other
usually come from the same region of the virus and thus the number of
aligned contigs can be carefully used for haplotype number estimation.

We progressively build multiple sequence alignments using contigs’
pairwise alignments. In this step, base-level accuracy of the alignment is
not a major concern and thus progressive construction of the alignment
between contigs can serve the purpose well. We first sort the contigs by
their lengths in descending order. The longest contig will be used as the first
reference. All the other contigs will be aligned to the reference using blast+
(Camacho et al., 2009) to generate an alignment profile similar to multiple
sequence alignment. Two types of alignments are kept from the output of
blast+. One is the “glocal” alignment, which is local to the reference but
global to the shorter contigs. The other is overlap alignment, which is the
alignment between the suffix/prefix strings of the contigs. If not all the
shorter contigs can be aligned to the reference contig, this process will
continue by using the second longest contig as the reference until all the
contigs are used. Fig. 2.(c) shows the alignment between contigs using the
longest contig as the reference, which is usually produced for the most
abundant haplotype.

Each multiple alignment can be divided into many windows, which
are formed whenever there is a change of the sequences in the alignment.
We define the number of contigs inside each window as the window depth,
d. Based on these definitions, we have the following observations.

When each position of the underlying haplotypes can be covered by
at least one contig, d is equal to or larger than the number of haplotypes.
Note that the common regions between different haplotypes are regarded
as different positions and thus should be covered by different contigs. This
conclusion can be proved by contradiction easily.

Fig. 2.(b) shows the contigs satisfying the conditions in the ideal case.
There are three haplotypes with different abundances. They only contain
mutations at three positions that are far away from each other. Because of
the long common regions among them, assembly programs usually won’t
be able to recover all the three genomes. Instead, they can generate short
but correct contigs. In Fig. 2.(b), each position in the three haplotypes is
covered by at least one contig. In this case, all the windows have depth of
at least 3. If every position of a haplotype is only covered by one contig,
the windows will have depth N . As some positions can be covered by
multiple contigs, the overlaps between contigs contribute to window depth
larger thanN . For example, in Fig. 2.(b), the middle window contains the
overlaps between two contigs from each haplotype and thus has depth 6.
In this ideal case, we can choose the smallest window depth as the number
of haplotypes in a sample.

In practice though, the assumptions about the contigs’ properties are
not always true. Thus, in our implementation, we will use the consensus
window depth as the number of haplotypes, by assuming that most
windows cover all haplotypes and contain haplotype-specific mutations.
For the contigs shown in Fig. 2.(c), window depth 3 is the most frequent
one.
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Fig. 2. Window construction from aligned contigs. (a): Three haplotypes with mutations
at three locations. Line weights represent the haplotype abundance. S1 and S2 are two
mutation-free regions common to three haplotypes. S1 and S2 are at least 1k bp. (b): The
alignment of contigs that satisfy the ideal condition. The grey-scale intensity represents the
coverage of a contig. Three windows are produced. (c): The contigs that cannot cover all
the three haplotypes. There are six windows. Their depth values are denoted below each
window. For contig marked with “A S2”, its sequencing coverage is plotted above the
contig.

In the implementation, we first sort all the windows in descending
order of window length. Then we choose the most frequent window depth
of the top X windows as the number of haplotypes. The default value of
X is 50 in our implementation. We will present the results of haplotype
number estimation using consensus window depth for both simulated and
real quasispecies data.

2.2 Step 2: contig clustering based on relative abundance
distribution

Let the number of haplotypes estimated by step 1 be N . The problem
can be defined as: given contigs C0, C1, ..., Cn assembled from viral
quasispecies sequencing data, cluster the contigs intoN groups so that each
group contains contigs originating from the same haplotype. The relative
haplotype abundance will be computed during the clustering process.

The clustering algorithm we adopt is prototype-based clustering and
is essentially an augmented K-means algorithm. In a standard K-means
algorithm, the centroid of the objects in a cluster is the prototype of the
cluster. In our algorithm, the prototype is a distribution that is derived from
the contigs and empirically describes the relative abundance distribution.

Unlike many existing contig clustering tools, our clustering is not
applied to a complete contig. Because each contig can contain both
haplotype-specific region and shared regions among different haplotypes,
using the read coverage profile of the whole contig will confuse the
clustering algorithm and makes the convergence slow or leads to wrong
assignment of the objects. For example, in Fig. 2.(c), the contig “A S2”
contains mutation A from one haplotype and also a shared region S2.
Thus, significantly more reads will be mapped to the shared region and
make the coverage for this contig highly heterogeneous. Thus, the objects
as input to the clustering algorithm are “sub-contigs” in windows of depth
N , where the sub-contigs are substrings of the contigs in these windows.
They are more likely to represent the relative abundance of one haplotype.

The clustering algorithm will assign each sub-contig to one cluster
based on the posterior probability of the abundance distribution. Although
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different clustering methods such as Gaussian mixture model can be
applied to cluster the sub-contigs, the augmented K-means as shown below
has the fastest convergence with better clustering accuracy according to
our tests. Before we describe the main components, we first introduce the
notations. The average relative abundance (denote as c̄) for a sub-contig
ci in a window of depth N is calculated as:

c̄i =
S(ci)∑N

j=1 S(cj)
(1)

whereS(ci) is the total number of reads covering sub-contig ci. Similarly,
we can calculate the position-specific relative abundance vector ~c for a
sub-contig ci as

~ci[k] =
ci[k]∑N

j=1 cj [k]
, k = 1..|ci| (2)

where ci[k] represents the reads coverage at position k of sub-contig ci.
|ci| is the number of bases in the sub-contig.

N is the number of bins or haplotypes estimated by Step 1.
VirBin utilizes the position-specific relative abundances of sub-contigs
in windows with depth N to estimate the probability that a sub-contig
belongs to a bin. Let the N bins be H1, H2, . . . , HN . Let Ei be the
abundance distribution for bin i. Ei(x) is the probability of abundance
variable x being generated by bin i.

The iterative clustering algorithm contains four steps as shown below:
Initialization: Initialize N groups by randomly assign sub-contigs to
them.
Updating the abundance distributionEi: For each bin i, the component
sub-contigs’ relative abundance profiles ~cs are aggregated to calculate the
empirical probability density function Ei. The aggregation is performed
by calculating the normalized histograms for these relative abundance
profiles, so that the summation of histogram values will be 1.
Re-assignment of the sub-contigs: Once Ei is derived, the relative
likelihood of cj being produced from the ith prototype distribution can be
calculated as Ei(c̄j). The prior probability of each bin (or haplotype) is
a weighted sum of the likelihoods of all the component sub-contigs. The
weights are determined by the total bases in the sub-contigs. The prior
probability Pr(Hi) for bin i is:

Pr(Hi) =

∑
cj∈Hi

Ei(c̄j)|cj |∑
i=1..N

∑
cj∈Hi

Ei(c̄j)|cj |
(3)

With both likelihood and prior from iteration t, the expected probability
that cj belongs to haplotype Hi at iteration t + 1 can be calculated as
likelihood ∗ prior, that is

P (cj ∈ Hi|c̄j) ∝ Ei(c̄j) ∗ Pr(Hi) (4)

With the posterior probabilities calculated for each group distribution,
we can reassign the sub-contig ci to the haplotype with the maximum
posterior probability. The same reassigning procedures are applied for all
the sub-contigs. With the assignment results, the distributionEi and prior
probability P (Hi) can be updated.
Iteration: Iterate step 2 and 3 until the clustering results do not change or
the maximum number of runs have been achieved. The default maximum
number of runs is 100.

2.3 Step 3: post-processing

The output of the augmented K-means is the clustered sub-contigs. For
each cluster, its average abundance is calculated as the weighted average of
the abundances of all sub-contigs in the cluster and the weight is determined

by the length of a sub-contig. The haplotypes’ abundances are the average
abundances of the clusters.

As each contig can contain multiple sub-contigs, which could have
different membership, the contig’s membership is determined by the
dominant membership of its sub-contigs. For example, if a sub-contig
is not in the window of depth N , it is not an input to the clustering step
and will not be clustered. This could happen when a region of a contig
is common to multiple haplotypes. It is also possible that the sub-contigs
of a contig are assigned to different clusters, which could be caused by
assembly errors.

3 Results
We evaluate the haplotype number estimation and clustering performance
of VirBin on both simulated and mock HIV quasispecies sequencing
data. The simulated data provide us with known ground-truth for
accurate evaluation of the clustering performance. We produced simulated
quasispecies sequencing data consisting of 5 haplotypes and 10 haplotypes,
respectively.

For each experiment, we evaluate the performance of VirBin from
three aspects: haplotype number estimation, clustering performance, and
the computed haplotype abundance. When the originating haplotypes of
the input contigs are known, we can evaluate both the recall and precision
for the clustering step. First, we map the clusters to haplotypes based
on the consensus haplotype label of the component contigs. If there is
no consensus haplotype membership (e.g. a tie), we map the clusters to
haplotypes based on the ranking of the abundance. Let a cluster be B
and its paired haplotype be H . As the input to our program is a set of
contigs, let the contig set originating from H be CH . Define B ∩CH as
the common regions between the two contig sets. Following other contig
binning tools (Wu et al., 2014; Lu et al., 2017), the base-level recall for

H is thus |B∩C
H |

|CH | , which quantified how many of the bases in CH are

correctly clustered in B. The base-level precision is defined as |B∩C
H |

|B| ,
which quantifies how many of the bases in cluster B are from contig set
CH . Similar metrics can be defined for contig-level, which can be found
in the Supplementary Data file.

3.1 Simulated 5-haplotype quasispecies data

First, we constructed 5 haplotypes with high sequence similarity. Second,
in order to simulate haplotypes of different relative abundances, we
generated 3 sets of reads following different abundance distributions.
Third, we generated contigs using two different methods. In method 1,
we simulated 5 sets of error-free contigs of different sizes directly from
the reference genomes. In method 2, we applied available assembly tools to
generate contigs from the reads. The simulated contigs are not dependent
on any assembly tool and thus are ideal for evaluating the binning method.
For simulated contigs, we have 3 (sets of reads) × 5 (sets of simulated
contigs), i.e., 15 sets of input to our program. For assembled contigs, we
have 3 (sets of reads) × 2 (sets of assembled contigs) as input to VirBin
because we applied two assembly tools. Figure S1 in the Supplementary
Data file sketches the process of input data generation. The data simulation
details can be found below.

3.1.1 Data simulation
HIV haplotype construction There are many sequenced HIV strains
in the HIV Sequence Database (Foley, Brian and Leitner, Thomas and
Apetrei, Cristian, 2018). However, many of the strains do not possess
sufficiently high similarity to be included in simulated quasispecies. Thus,
we use both real and simulated strain sequences to simulate haplotypes of
high similarity. Simulated strains were produced by mutating, deleting, or
inserting bases at random positions from a real strain in the HIV database.
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Table 1. Relative abundance for 5 simulated HIV haplotypes in three read sets.
“power” is the read sets generated based on the power law equation. “equal
(6%)” is the abundance distribution with equal difference of 0.06. “equal (3%)”
is the abundance distribution with equal difference of 0.03.

Relative abundance %
Haplotype FJ061 FJ061-h1 FJ061-h2 FJ061-h3 FJ066

power 39.0 23.3 16.0 12.8 9.0
equal (6%) 32.0 25.9 20.1 14.0 8.0
equal (3%) 26.0 23.0 20.0 17.0 14.0

As a result, the five-haplotype dataset contains FJ061, 3 simulated
haplotypes from FJ061, and FJ066. The sequence similarity between the
simulated haplotype and its originating sequence is 97%. The average
sequence similarity between all the five haplotypes is around 93%, which
is comparable to the sequence similarity between haplotypes in a mock
HIV quasispecies dataset (Jayasundara et al., 2014).

Reads simulation using different haplotype abundance distributions
With available HIV haplotypes, simulated reads were generated from them
by ART-illumina (Huang et al., 2012) as error-containing MiSeq paired-
end reads, with read length of 250 bp, average insert size of 600 bp,
and standard deviation of 150 bp. With the total coverage of 1000-x,
three sets of reads are produced using different abundance distributions.
The first one is based on the power law equation (Barbosa et al., 2012).
The second and the third sets of reads represent challenging cases where
different haplotypes have similar abundances, which create difficulties for
abundance-based binning algorithms. The abundance differences in the
second and third data set are 0.06 and 0.03, respectively. In total, there
are 38,914 simulated reads for 5 HIV haplotypes. The relative abundance
for five haplotypes in each read set can be found in Table 1. As the total
coverage is 1000-x, the sequencing coverage of each haplotype is the
product of the total coverage and the relative abundance.
Contig simulation For each reference genome (denote its length as L),
we randomly generated a list of location pairs (p1, p2), where 1 ≤ p1 <
p2 ≤ L. Each location pair represents a candidate contig’s starting and
ending position. Then, in the simulated contigs, we only keep the ones
above 500 bp (i.e. p2 − p1 + 1 ≥ 500). In addition, we would like to
simulate the hard case where the contigs cannot be extended any more
using large overlaps. Thus, we sort all the remaining contigs by p1 and
remove the ones that have overlaps of size above 100 bp with previous
contigs in the sorted list. The five sets of simulated contigs have different
N50 values and are referred to as “1000” to “5000”, indicating the upper
bound of the contig length in each set. Table S1 in the Supplementary
Data file shows the detailed properties of the five sets of contigs. All the
simulated data sets can be downloaded from VirBin’s Github repository.

3.1.2 Haplotype number estimation
According to our methods, the haplotype number estimation only depends
on the alignment results of contigs. For all five sets of simulated contigs
with different average lengths, the consensus window depth of the 50
longest windows is 5 for all. The histogram of window depth for 5
simulated contig sets is shown in Fig. 3. It is clear that window depth
5 dominates longest windows. Thus, the estimated number of haplotypes
is 5, reflecting the truth for our data sets. In general, the percentage of
windows with depth 5 increases with increasing contig lengths.

3.1.3 Clustering
We applied VirBin to cluster contigs into 5 groups. Since the ground truth
about the haplotype membership of each contig is known, we were able to
evaluate the clustering results by calculating the precision and recall at the
base level. The evaluation results are shown in Fig. 4. The performance

of clustering is worst for shortest contig set (denoted as 1000 along the Y-
axis). With increasing contig lengths, the clustering performance becomes
better for all three different abundance distributions. When the contigs are
long, the clustering performance for haplotypes with different abundance
distributions is comparable.
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Fig. 3. The histogram of window depth for the 50 longest windows. X-axis: the observed
window depth, from 3 to 7. Y-axis: the number of windows with the corresponding window
depth on X-axis. “1000” to “5000” represent the five sets of contigs.

The results were compared with MaxBin, which is a binning tool
for metagenomic contigs based on tetranucleotide frequencies and reads
coverage levels. MaxBin requires marker genes to identify seed contigs
for binning. We were able to run the core clustering program of MaxBin
by inputting both the number of haplotypes (i.e. 5) and the seed contigs
manually. We randomly chose one contig from each haplotype as the seed
contig and calculated the contigs’ abundances by mapping reads to them
using Bowtie2. Although the haplotype number was explicitly provided
to MaxBin, empty clusters can be produced by MaxBin. The results from
MaxBin are shown in Fig. 5.

For the shortest contig set, MaxBin only reported two clusters with
one contig for each cluster, leaving 59 (96.7%) contigs unclassified.
For contigs sets from 2000 - 5000, MaxBin was able to generate five
clusters, but with ~30% contigs unclassified. The results of MaxBin
usually have lower precision or recall values than VirBin. In addition,
for contig sets from 1000 - 4000, there are haplotypes without correctly
assigned contigs. The lower sensitivity of MaxBin could be caused by
its dependency on both sequence composition and contig coverage for
clustering. Due to high sequence similarities between viral haplotypes,
sequence composition is not informative enough in differentiating contigs
from different viral strains. Instead, MaxBin could mistakenly cluster
contigs from the homogeneous regions of the viral genome, leading to
more chimeric clusters.

StrainPhlAn (Truong et al., 2017) is also able to to characterize
the genetic structure of viral strains in metagenomes. It takes the raw
sequencing reads and MetaPhlAn2 (Truong et al., 2015) database of
species-specific reference sequences as input and aims to output the most
abundant strain for each sample. However, it failed to detect any viral
species at the first step running MetaPhlAn2. ConStrains (Luo et al., 2015)
is another tool designed to identify strain structures from metagenomic
data. It uses bowtie2 to map reads to a set of universal genes and
infers the within-species strains abundances by utilizing single-nucleotide
polymorphism (SNP) patterns. This tool again did not get enough mapped
reads to report any strain abundance. And it takes considerable efforts for
us to modify their codes for our inputs. Thus, we cannot report the results
from StrainPhlAn or ConStrains.
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Fig. 4. VirBin clustering results (recall and precision) on 15 simulated data sets. X-axis
represents each haplotype, in decreasing order of relative abundance. Y-axis represents the
15 data sets.
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Fig. 5. The recall and precision of contig binning results by MaxBin. X-axis represents
each haplotype, in decreasing order of relative abundance. Y-axis is the index of the 15 data
sets.

Relative abundance computation Once the iterative clustering algorithm
converges, the abundance of each cluster can be computed as the weighted
average abundances for all contigs from this cluster.
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Fig. 6. Compare the known haplotype abundance distributions with computed ones by
VirBin. X-axis represents each haplotype. Y-axis is the ground truth or predicted abundance
for each haplotype.

Fig. 6 compares the known haplotype abundance profiles with our
computed ones. There are three read sets with different abundance
distributions (Table 1). For each distribution, there are five sets of contigs
(Table S1 in the Supplementary Data file). Thus, three plots of five curves
are presented to compare the ground truth and the computed abundance.
In addition, we applied χ2-test to compare the ground-truth distribution
and each computed abundance distribution. The p-values from all the tests
are larger than 0.99, indicating that the distributions are not statistically
different. As MaxBin only correctly clustered several contigs, we did not
include the abundance comparison.

3.1.4 Results on assembled contigs
In addition to simulated contigs, we also tested VirBin on assembled
contigs by two de novo assembly tools: a generic assembly tool
SGA (Simpson and Durbin, 2012) and a viral haplotype reconstruction
tool PEHaplo. The assembled contigs were evaluated by MetaQuast
(Mikheenko et al., 2015) and the results are listed in Table S2 in the
Supplementary Data file. Both PEHaplo and SGA produced enough
contigs to cover almost all the five haplotypes. But contigs produced by
PEHaplo have larger N50 values than contigs by SGA. The contigs are
paired with haplotypes based on the highest sequence similarity. All of the
contigs and their originating haplotypes have similarity of at least 98%.

For all three sets of contigs assembled by PEHaplo and SGA on three
sets of reads, the consensus window depth of the 50 longest windows is 5,
revealing the actual haplotype number.

Fig. 7.(a) presents the clustering results on contigs generated by
PEHaplo and SGA. It shows that VirBin achieved good clustering results
on contigs assembled by both assembly tools. The clustering results on
SGA’s contigs are similar to PEHaplo’s contigs, with both high precision
and recall. This observation is consistent with the results on simulated
contigs that when the contigs are long enough, VirBin can produce good
results.

Again we compared our results with MaxBin. The clustering results
of MaxBin on assembled contigs are shown in Fig. 7.(b). For contigs
assembled by PEHaplo, MaxBin correctly clustered all corresponding
contigs to the strain FJ061-h2 as the recall is 1.0. However, this cluster
also involves many contigs from other strains as the precision value is low.

The comparison between the predicted abundance by VirBin and the
ground-truth on two sets of assembled contigs is presented in Figure S2 in
the Supplementary Data file.

We also simulated reads from 10 haplotypes and tested VirBin on this
data set. The data generation and also the detailed results can be found in
the Section 3 of the Supplementary Data file.

3.2 Mock HIV population MiSeq data set

In this experiment, we applied VirBin to a mock HIV quasispecies data
set (SRR961514), sequenced from the mix of five HIV-1 strains (89.6,

.CC-BY-NC-ND 4.0 International licenseauthor/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peer review) is thethis version posted July 16, 2019. ; https://doi.org/10.1101/704288doi: bioRxiv preprint 

https://doi.org/10.1101/704288
http://creativecommons.org/licenses/by-nc-nd/4.0/


“output” — 2019/7/16 — page 7 — #7

viral contig binning 7

HXB2, JRCSF, NL43, YU2) with Illumina MiSeq sequencing technology
(Di Giallonardo et al., 2014). This data set contains 1,429,988 (250 bp)
of reads that cover the five strains to 20,000x. The raw data set was pre-
processed with FaQCs/1.3 (Lo and Chain, 2014) and Trimmomatic (Bolger
et al., 2014) to trim and filter low-quality reads or adapters. The remaining
reads were then error-corrected with Karect (Allam et al., 2015). After
pre-processing, 774,044 reads were left. By mapping pre-processed reads
to the available 5 reference genomes by bowtie2, we were able to estimate
the abundance for each haplotype as shown in Fig. 8.

We use the contigs assembled by PEHaplo as input for VirBin. PEHaplo
produced 24 contigs from the real MiSeq HIV data set that can cover about
92% of the five HIV-1 strains. These contigs have a N50 value of 2,223 bp
and the longest contig is 9,133 bp.
Haplotype number estimation VirBin was applied to the aligned contigs
for haplotype number estimation. All the windows were sorted in
descending order of window length. Out of the top 50 windows, 27 contain
5 contigs, 16 contain 6 contigs, and 2 contain 4 contigs. Out of the top
25 windows, 17 contain 5 contigs, 5 contain 6 contigs, and 1 contains 4
contigs. Similar to the simulated data, using the consensus window depth
(i.e. 5) correctly predicted the haplotype number.
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Fig. 7. The clustering results of VirBin (a) and MaxBin (b) on contigs assembled by
PEHaplo and SGA.

Clustering results The clustering algorithm was applied to cluster the
contigs into 5 groups. For each contig, its originating haplotype is
determined by comparing the contig with all reference genomes. The
haplotype with the highest similarity and above 98% is assigned. The
outputs of VirBin and MaxBin are shown in Table 2. StrainPhlAn and
ConStrains were applied on this real HIV data set. StrainPhlAn was able
to identify the HIV species, but could not report any strain information.
ConStrains could not align enough reads to marker genes for further
strain-level analysis.

Compared to the simulated contigs or assembled contigs using
simulated reads, the results of VirBin on the real sequencing data have
generally lower sensitivity and precision. There are two major reasons.
First, the assembled contigs for real reads are more likely to contain errors.
Second, this data set has several haplotypes with very similar average

abundances. Referring to Fig. 8, the abundance difference between the 2
least abundant haplotypes is < 2%. Thus, the clustering algorithm could
mix contigs from these haplotypes.

For the mock data experiment, we also present the recall and precision
at contig level in Table S4 in the Supplementary Data file.

Table 2. Base-level clustering results on assembled 5 real haplotype contigs
for VirBin and MaxBin. The haplotypes are sorted in decreasing order of
abundance.

VirBin MaxBin
Precision (%) Recall (%) Precision (%) Recall (%)

JRCSF 65.1 50.8 0.0 0.0
NL43 18.5 17.4 9.6 21.6
89.6 58.0 56.5 0.0 0.0
YU2 34.0 30.0 56.6 50.9
HXB2 48.5 70.2 39.1 27.0

JRCSF NL43 89.6 YU2 HXB20.0
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Fig. 8. The true abundance distribution for real HIV quasispecies data and the computed
relative abundance profiles by VirBin and MaxBin. The true average abundances sorted in
descending order are: 29.79%, 25.18%, 21.68%, 12.62%, 10.87%.

We again compared the predicted abundance profile with the known
one in Figure 8. The χ2-test output p-value 0.9999 and 0.9995 for
VirBin and MaxBin, respectively, indicating that the predicted abundance
distributions by VirBin and MaxBin are not statistically different from the
ground truth.

4 Discussion and conclusion
Overall, VirBin can cluster more contigs into their originating haplotypes
than MaxBin. While VirBin focuses on sub-contigs that are more likely
unique to one haplotype, MaxBin clusters whole contigs, which could
contain regions common to multiple haplotypes and makes read coverage
more heterogeneous. In addition, sequence composition-based features
such as tetranucleotide frequencies are not effective in distinguishing
highly similar viral strains.

Our experimental results show that VirBin works better for longer
contigs with higher coverage of the underlying genomes. When the
genome coverage by the contigs is below 70%, the performance of VirBin
deteriorates because it becomes harder to estimate the correct number of
haplotypes. In addition, the empirical experience shows that it is difficult
to classify two viral strains when the abundance difference between
them is below 3%. Thus, although we have demonstrated much better
contig binning performance for distinguishing viral haplotypes than other
contig binning tools, genome-scale viral haplotype construction is still a
challenging problem.
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