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Abstract:  34 

Indonesia is the world’s fourth most populous country, host to striking levels of human diversity, regional 35 

patterns of admixture, and varying degrees of introgression from both Neanderthals and Denisovans. 36 

However, it has been largely excluded from the human genomics sequencing boom of the last decade. 37 

To serve as a benchmark dataset of molecular phenotypes across the region, we generated genome-wide 38 

CpG methylation and gene expression measurements in over 100 individuals from three locations that 39 

capture the major genomic and geographical axes of diversity across the Indonesian archipelago. 40 

Investigating between- and within-island differences, we find up to 10% of tested genes are differentially 41 

expressed between the islands of Mentawai (Sumatra) and New Guinea. Variation in gene expression is 42 

closely associated with DNA methylation, with expression levels of 9.7% of genes strongly correlating 43 

with nearby CpG methylation, and many of these genes being differentially expressed between islands. 44 

Genes identified in our differential expression and methylation analyses are enriched in pathways 45 

involved in immunity, highlighting Indonesia tropical role as a source of infectious disease diversity and 46 

the strong selective pressures these diseases have exerted on humans. Finally, we identify robust within-47 

island variation in DNA methylation and gene expression, likely driven by very local environmental 48 

differences across sampling sites. Together, these results strongly suggest complex relationships between 49 

DNA methylation, transcription, archaic hominin introgression and immunity, all jointly shaped by the 50 

environment. This has implications for the application of genomic medicine, both in critically 51 

understudied Indonesia and globally, and will allow a better understanding of the interacting roles of 52 

genomic and environmental factors shaping molecular and complex phenotypes. 53 

 54 
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Introduction 61 

Modern human genomics does not equitably represent the full breadth of humanity. While genome 62 

sequences for people of European descent now number a million or more, most of the world is deeply 63 

understudied1. This is particularly true of Indonesia2, a country geographically as large as continental 64 

Europe and the world’s fourth largest by population. Genomic diversity in Indonesia is strikingly 65 

different to other well-characterized East Asian populations, such as Han Chinese and Japanese, but this 66 

diversity is not captured in large global datasets like the 1000 Genomes Project3 or the Simons Genome 67 

Diversity Project4. The first Indonesian genome sequences were only reported in 20165 with the first 68 

representative survey of diversity across the archipelago only appearing in 20196. This extreme lack of 69 

representation extends to molecular phenotypes. To our knowledge, only one genome-wide gene 70 

expression study has been published7 from the region, focused exclusively on host-pathogen interactions 71 

with P. falciparum. There are no analyses of diversity in gene regulatory mechanisms in either Indonesia 72 

or, more broadly, Island Southeast Asia. 73 

 74 

This gap is especially incongruous because Indonesia is an epicenter of infectious disease diversity, 75 

ranging from well-known agents like malaria8 to emerging diseases like zika virus9. The country faces 76 

substantial healthcare challenges, including the rise in prevalence of understudied tropical infectious 77 

diseases and the increasing impact of metabolic disorders among a growing middle class10. However, 78 

Indonesia also offers unique advantages for studying responses to these diseases and disorders, some of 79 

which are likely to have exerted strong evolutionary pressures on the immune system over thousands of 80 

years11. Because the country comprises a chain of islands that stretch for 50 degrees of longitude along 81 

the equator (wider than either the continental USA or mainland Europe), but span barely 15 degrees of 82 

latitude, environment conditions are broadly comparable in many key respects across Indonesia. In 83 

contrast, a complex population history means that its people differ greatly, forming a genomic cline from 84 

Asian ancestry in the west to Papuan ancestry in the east12. This change in ancestry is the most distinctive 85 

genomic signal observed in the region13, and provides a framework  for studying the effects of genome 86 

composition on gene expression in a heterogeneous environment. 87 

 88 

To provide a benchmark dataset of regional molecular phenotypes, here we report genome-wide 89 

measurements of DNA methylation and gene expression for 117 individuals drawn from three population 90 

groups that capture the major genomic and geographical axes of diversity across Indonesia. The people 91 

of Mentawai, living on the barrier islands off Sumatra, are representative of the dominant Asian ancestry 92 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 16, 2019. ; https://doi.org/10.1101/704304doi: bioRxiv preprint 

https://doi.org/10.1101/704304
http://creativecommons.org/licenses/by-nc/4.0/


 

 4 

in western Indonesia13; the Korowai, hunter-gatherers from the highlands of western New Guinea capture 93 

key aspects of regional Papuan ancestry6; and the inhabitants of Sumba in eastern Indonesia are, 94 

genetically, a near equal mixture of the two different ancestries14. However, it remains unclear whether, 95 

and to what extent, these differences in genomic ancestry correlate with variation in molecular 96 

phenotypes. By quantifying DNA methylation and gene expression levels across Indonesia for the first 97 

time, we identify the relative influences of genomic ancestry versus plasticity to local environmental 98 

conditions in driving regional molecular phenotypic patterns. 99 

 100 

  101 
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Methods 102 

Ethical approvals 103 

The samples used in this study were collected by JSL, HS and an Indonesian team from the Eijkman 104 

Institute for Molecular Biology, Jakarta, Indonesia, with the assistance of Indonesian Public Health clinic 105 

staff. All collections followed protocols for the protection of human subjects established by institutional 106 

review boards at the Eijkman Institute (EIREC #90 and EIREC #126) and the University of Melbourne 107 

(Human Ethics Sub-Committee approval 1851639.1). All individuals gave written informed consent for 108 

participation in the study. Permission to conduct research in Indonesia was granted by the Indonesian 109 

Institute of Sciences and by the Ministry for Research, Technology and Higher Education. 110 

 111 

Data collection 112 

Whole blood was collected by trained phlebotomists from the Eijkman Institute from over 300 113 

Indonesian men. Samples were collected across multiple villages in the three islands using EDTA blood 114 

tubes from either Vacuette or Intherma for DNA isolation, and Tempus Blood RNA Tubes (Applied 115 

Biosystems) for RNA isolation. All RNA extractions were performed according to the manufacturers’ 116 

protocols and randomised with respect to village and island (Supplementary Tables 1 and 2).  117 

 118 

Quality and concentration of all extracted RNA samples were assessed with a Bioanalyzer 2100 (Agilent) 119 

and a Qubit device (Life Technologies), respectively. We selected 117 samples for RNA sequencing and 120 

DNA methylation analysis primarily on the basis of RIN score, by focusing on villages with at least 10 121 

samples with RIN ≥ 6 (Table 1). Given our past work on the island of Sumba14, we included all samples 122 

from Sumba with RIN ≥ 6, heedless of village. However, we occasionally observed differences between 123 

our RIN measurements and those performed by the sequencing provider, with the latter generally being 124 

lower. Out of 117 individuals, 24 (21%) had a final RIN measurement < 6. Further detail on all samples, 125 

including extracting and sequencing batches, is provided in Supplementary Tables 1 and 2. Library 126 

preparation was performed by Macrogen (South Korea), using 750 ng of RNA and the Globin-Zero Gold 127 

rRNA Removal Kit (Illumina) according to the manufacturer's instructions. Samples were sequenced 128 

using a 100-bp paired-end configuration on an Illumina HiSeq 2500 to an average depth of 30 million 129 

read pairs per individual, in three batches. All batches included at least one inter-batch control for 130 

downstream normalisation (Supplementary Tables 1 and 2).  131 

 132 
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In parallel, we extracted whole blood DNA from all individuals included in the RNA sequencing data 133 

using Gentra® Puregene® for human whole blood kit (QIAGEN) and MagAttract® HMW DNA kit 134 

(QIAGEN) according to the manufacturer's instructions. 1 µg of DNA from each sample was shipped to 135 

Macrogen, bisulfite-converted and hybridized to Illumina Infinium EPIC BeadChips according to the 136 

manufacturer's instructions. Samples were randomized with respect to village and island across two array 137 

batches, with three samples processed on both batches to control for technical variation (Supplementary 138 

Table 1).  139 

 140 

Table 1: Numbers of DNA methylation and RNA sequenced samples from each study location. 141 

 142 

Island Village Location DNA 
methylation 

RNA-seq RNA-seq 
samples RIN ≥ 6 

Mentawai Madobag 1.594° S, 99.084° E 17 17 15 

 Taileleu 1.788° S, 99.137° E 31 31 31 

 Subtotal  48 48 46 

Sumba Anakalang 9.588° S, 119.575° E 17 17 15 

 Bukambero 9.450° S , 119.104° E 1 1 0 

 Hupu Mada 9.697° S, 119.464° E 5 5 0 

 Padira Tana 9.671° S, 119.832° E 3 3 2 

 Patiala Bawa 9.751° S, 119.332° E 1 1 0 

 Rindi 9.935° S, 120.669° E 5 5 2 

 Wunga 9.385° S, 119.958° E 16 16 12 

 Wura Homba 9.560° S, 118.959° E 1 1 0 

 Subtotal  49 49 39 

West 
Papua 
 

Basman 
(Korowai) 

5.480° S, 139.673° E 20 20 16 

 Subtotal  20 20 16 

Total   117 117 93 

 143 
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RNA sequencing data processing 144 

All RNA sequencing reads were examined with FastQC v. 0.11.515. Leading and trailing bases below a 145 

Phred score of 20 were removed using Trimmomatic v. 0.3616. Reads were then aligned to the human 146 

genome (GRCh38 Ensembl release 90: August 2017) with STAR v. 2.5.3a17 and a two-pass alignment 147 

mode; this resulted in a mean of ~29 million uniquely-mapped read pairs per sample. Next, we performed 148 

read quantification with featureCounts v. 1.5.318 against a subset of GENCODE basic (release 27) 149 

annotations that included only transcripts with support levels 1-3, retaining a total of 58,391 transcripts 150 

across 29,614 genes. On average, we successfully assigned ~15 million read pairs to each sample 151 

(Supplementary table 2). 152 

 153 

Differential expression analysis 154 

All statistical analyses were performed using R v. 3.5.219. We transformed read counts to log2-counts per 155 

million (CPM) using a prior count of 0.25, and removed genes with low expression levels by only keeping 156 

genes with log2 CPM ≥ 1 in at least half of the individuals from any island, resulting in a total of 12,975 157 

genes retained for further analysis. To quantify the effect of technical batch, we included six replicate 158 

samples among our sequencing batches. As expected, PCA of uncorrected data suggested the presence 159 

of substantial sequencing batch effects in the data (Supplementary figure 1). However, pairwise 160 

correlations between technical replicates were higher than between different individuals from the same 161 

village sequenced in the same batch (Supplementary figure 2). 162 

 163 

We applied TMM normalisation20 to the data, and removed high sample variability from the count data 164 

using the voom function21 in limma v. 3.40.222. Differential expression testing was also performed using 165 

limma. To construct the linear model for testing, we used ANOVA to test for associations between all 166 

possible covariates and the first 10 principal components (PC) of the data. Technical covariates 167 

significantly associated with at least one PC (sequencing batch, RIN, age) were included in the model. 168 

In addition, because blood cell type composition can impact gene expression estimates in bulk RNA 169 

samples, we used DeconCell v. 0.1.023 to estimate the proportion of CD8T, CD4T, NK, B cells, 170 

monocytes and granulocytes in each sample (Supplementary table 2), and tested these for association 171 

with the first 10 PCs as described above. All covariates were significantly associated with at least one 172 

PC and were included in the differential expression model. Sampling sites were included at either the 173 

island or the village level, depending on the test. Comparisons between villages were limited to those 174 

with at least 15 individuals, to ensure sufficient power to detect differences. All individuals were included 175 
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in comparisons between islands, and models were not hierarchically structured. Genes were called as 176 

differentially expressed (DEG) if the FDR-adjusted p value was below 0.01, regardless of the magnitude 177 

of the log2 fold change, unless noted otherwise.  178 

 179 

Lists of DEGs were annotated using biomaRt v. 2.40.024. Gene set enrichment analyses for the DEGs on 180 

the island and village levels were performed using clusterProfiler v. 3.12.025, with Gene Ontology and 181 

KEGG annotation drawn from the org.Hs.eg.db v. 3.9 database26. Additionally, we tested whether DEGs 182 

were enriched for genes known to have been introgressed from Denisovans into individuals of Papuan 183 

ancestry at high frequency using a hypergeometric test. A GO term similarity test was performed using 184 

GOSim v. 1.22.027 using the ‘relevance’ method. Finally, to examine possible associations between 185 

known climatic variables and expression across sampling sites, we retrieved mean monthly precipitation 186 

and temperature data from WorldClim v. 2.028 for the five main villages in our study at a resolution of 187 

0.5 arcminutes (roughly 1 km2 tiles). 188 

 189 

DNA methylation array data processing and analysis 190 

DNA methylation data were processed using minfi v. 1.30.029. The two arrays were combined using the 191 

combineArrays function and preprocessed with the bgcorrect.illumina function to correct for array 192 

background signal. Signal strength across all probes was evaluated using the detectionP function and 193 

probes with signal p < 0.01 in >75% of samples were retained. To avoid potential spurious signals due 194 

to differences in probe hybridization affinity, we discarded 6,072 probes overlapping known SNPs 195 

segregating in any of the study populations based on previously published genotype data6. The final 196 

number of probes retained was 859,404. Subset-quantile Within Array Normalization (SWAN) was 197 

carried out using the preprocessSWAN function30. Methylated and unmethylated signals were quantile 198 

normalized using lumi v. 2.36.031. As with the RNA sequencing, replicate samples were included to 199 

detect and correct for batch effects (supplementary figure 3). The replicate samples exhibit a high 200 

correlation between batches (Spearman’s Rho 0.969 for MPI-025 and 0.980 for SMB-ANK-029, 201 

Supplementary Figure 4). As above, we used limma to test for differential methylation between sampling 202 

sites. We included methylation array batch, age, and the estimated cell type proportions (derived from 203 

the RNA sequencing data) as covariates. Differentially methylated probes (DMPs) between all pairwise 204 

comparisons of the islands and villages were identified using contrast designs. Significant DMPs were 205 

selected based on an FDR-adjusted p value threshold of 0.01 and a log2 fold change of 0.5 or greater. 206 

Enrichment tests for the DMPs were performed using missMethyl v. 1.18.032, to account for differences 207 
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in probe density associated with gene length that can otherwise bias results33; probes were annotated to 208 

genes according to Illumina's manifest for the EPIC array.  209 

 210 

We further identified differentially methylated regions (DMRs) by annotating the CpG probes with the 211 

cpg.annotate function of the R package DMRcate v. 3.934, and by collapsing the probes to regions using 212 

the dmrcate function. Individual probes with an FDR-adjusted p value ≤0.01 and significant DMRs were 213 

selected based on a region beta value of 0.5 or greater. 214 

 215 

Principal Component Analysis (PCA) 216 

DNA methylation M-values and gene expression log2 CPM values were adjusted to correct for batch 217 

effects and differences in blood cell type proportions between samples by fitting a linear model with the 218 

technical covariates used in the differential methylation and expression analysis. Residuals of this model 219 

were used in the PCAs in Figure 1. Variable CpG probes and genes were identified based on coefficients 220 

of variation between samples. PCA was performed using the 104 most variable probes and the 103 most 221 

variable genes from the methylation and expression datasets, respectively; PCAs of the entire data set 222 

before and after batch correction are available in supplementary figures 1 and 3. 223 

 224 

Identifying associations between DNA methylation regions and gene expression 225 

We used the R package MethylMix v. 2.12.035,36 to identify transcriptionally predictive methylation 226 

states by focusing on methylation changes that affect gene expression. As with the PCA analysis, DNA 227 

methylation M-values and gene expression log (CPM) values were adjusted to account for technical 228 

covariates and blood cell type proportions by fitting a linear model. Residuals of these linear models 229 

were used in the analysis. Batch corrected M-values and logCPM values were min-max normalized to 230 

range from 0 to 1. CpG probe methylation levels were matched to genes using the ClusterProbes 231 

function, which uses a complete linkage hierarchical clustering algorithm for all probes of a single gene 232 

to cluster the probes. To identify transcriptionally predictive DNA methylation events, MethylMix 233 

utilizes linear regression to detect negative correlations between methylation and gene expression levels. 234 

Matching DNA methylation and gene expression data from 117 individuals were used in the analysis, 235 

and a total of 10,420 genes with matching methylation and expression data were tested. As MethylMix 236 

does not output detailed summary statistics of the fitted linear models, we used linear regression to 237 

calculate the r2 and p values for each significant CpG probe cluster and gene pair detected by MethylMix. 238 

False discovery rate adjusted p values were calculated using the p.adjust function in base R. 239 

 240 
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Data access 241 

All RNA sequencing reads and Illumina Epic iDat files are available through the Data Access Committee 242 

of the official data repository at the European Genome-phenome Archive (EGA; 243 

https://www.ebi.ac.uk/ega/home). The RNA sequencing data are deposited in study EGAS00001003671 244 

and the methylation data are deposited in study EGAS00001003653. Matrices of unfiltered read counts 245 

(doi:10.26188/5d12023f77da8) and M-values (doi:10.26188/5d13fb401e305) for all samples, including 246 

replicates, are freely available on figshare (https://figshare.com). Differential expression 247 

(doi:10.26188/5d26aec1d817a) and methylation (10.26188/5d26b0b5230dd) testing results are freely 248 

available on figshare. 249 

 250 

  251 
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Results 252 

Differential DNA methylation and gene expression between Indonesian island populations 253 

To quantify the gene regulatory landscape in Indonesia, we generated DNA methylation (array) and gene 254 

expression (RNA sequencing) measurements from 117 whole blood samples of male individuals living 255 

on three islands in the Indonesian archipelago (Figure 1A). Our three sampling sites, Mentawai, Sumba, 256 

and West Papua, represent distinct points along a well-documented Asian/Papuan admixture cline13: the 257 

Korowai of West Papua exhibit high Papuan ancestry; Sumbanese have intermediate degrees of Papuan 258 

ancestry; and the Mentawai have no Papuan ancestry, having been settled primarily by ancestral 259 

 
Figure 1. Sampling locations and overview of DNA methylation and gene expression variation among the 

study samples. (A) Colors indicate island populations: Mentawai, blue; Sumba, yellow; Korowai, red. PCA was 

performed on the top 10,000 most variable methylation probes and the top 1,000 most variable genes, determined 

by the sample-wide coefficient of variation. The first two axes of variation from the principal component analysis 

in the (B) DNA methylation and (C) gene expression data after correcting for confounding effects are driven by 

between-island differences. Plotting shapes indicates sequencing/array batches. 

 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 16, 2019. ; https://doi.org/10.1101/704304doi: bioRxiv preprint 

https://doi.org/10.1101/704304
http://creativecommons.org/licenses/by-nc/4.0/


 

 12 

Austronesian speakers. Furthermore, Korowai individuals are likely to carry up to 5% of introgressed 260 

genomic sequence from archaic Denisovans, as repeatedly observed in other samples from the island of 261 

New Guinea6,37.  262 

 263 

Principal component analysis of DNA methylation (Figure 1B) and gene expression (Figure 1C) shows 264 

clear clustering of samples driven by population origin. After correcting for known technical 265 

confounders, PC1 in the DNA methylation data separates the island of Sumba from both the Korowai 266 

(FDR-corrected ANOVA p = 0.001) and Mentawai (p = 7.4x10-5); PC2 further differentiates Sumbanese 267 

and Mentawai (p = 9.0x10-4) and additionally separates Mentawai from Korowai (p = 9.0x10-7). In the 268 

gene expression data, Korowai is separated from both Mentawai and Sumba (p = 1.0x10-7 and 1.5x10-6, 269 

respectively), whereas PC2 separates Sumba from Mentawai (p = 1.6x10-4).  270 

 271 

We then tested for differences in DNA methylation and gene expression between the three islands, 272 

initially without considering the village structure in Sumba and Mentawai (Table 1; supplementary tables 273 

1 and 2). At an absolute log2(FC) threshold of 0.5 and an FDR-adjusted p value threshold of 0.01, we 274 

detected 22,189 (2.58% of all tested probes), 14,168 (1.64%) and 3,947 (0.46%) differentially methylated 275 

probes (DMPs) and 1,398 (10.77% of all tested genes), 1,017 (7.84%), and 314 (2.40%) differentially 276 

expressed genes (DEGs) between Sumba and the Korowai, Mentawai and the Korowai, and Sumba and 277 

Mentawai, respectively (Figure 2A, 2B). In addition, we identified 1,003, 919 and 283 differentially 278 

methylated regions across all three inter-island comparisons, respectively, when thresholding to a mean 279 

β difference of 0.05 across the region. A full summary of these results is available as supplementary table 280 

3. 281 

 282 

There is substantial overlap in signals between either Sumba or Mentawai versus Korowai (Figure 2C, 283 

2D). For instance, 45.35% of DEGs between Sumba and Korowai are also differentially expressed 284 

between Mentawai and Korowai; the same is true of 42.24% of DMPs between Sumba and Korowai. 285 

DEGs and DMPs between Sumba and Mentawai, however, have poor overlap with the other inter-island 286 

comparisons, and are generally limited in number. This suggests that many of the signals we identify are 287 

driven by the Korowai data, and by some degree of homogeneity across Sumba and Mentawai. Indeed, 288 

comparisons involving Korowai routinely identify an order of magnitude more DEGs and DMPs. 289 

Furthermore, we find substantial agreement in both the magnitude and direction of effect between DEGs 290 

and DMPs across both comparisons involving Korowai, (Figure 2E, 2F; generalized additive model of 291 

the form (y ~ s(x, bs = "cs")); methylation deviance explained by model = 64.6%, p < 2x10-16;. expression 292 
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 13 deviance explained = 70.1%, p < 2x10-16). However, these are not found across both comparisons 293 

 
Figure 2. Inter-island differential expression and methylation trends. Volcano plots of (A) differentially 

methylated probes and (B) differentially expressed genes between Sumba and Mentawai (green), Korowai and 

Sumba (orange), and Korowai and Mentawai (purple). Venn diagrams of DMPs (C) and DEGs (D) overlapping 

between different pairwise comparisons at an FDR-adjusted p value ≤ 0.01 and an absolute log2(FC) ≥ 0.5. 

Relationship between the log2(FC) of each probe (E) and gene (F) between Mentawai vs. Korowai and Sumba vs. 

Korowai. Probes and genes that were DMP or DEG between Mentawai and Korowai (purple), Sumba and Korowai 

(orange), or both comparisons (pink) are indicated. Smoothed conditional means based on generalized additive 

models are presented with 95% confidence intervals. 
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featuring either Sumba or Mentawai, regardless of whether we focus on methylation or expression 294 

differences (Supplementary Figure 5).  295 

 296 

Differentially expressed genes are enriched for immune function and Denisovan introgression 297 

We tested for enrichment of DEGs and DMPs against Gene Ontology (GO38) and Kyoto Encyclopedia 298 

of Genes and Genomes (KEGG39) pathways to detect functional enrichment between island populations. 299 

Overlapping enriched GO categories and KEGG pathways (adjusted p < 0.05; full tables of results for 300 

all comparisons are provided as Supplementary Tables 4-7) in comparisons between both Mentawai or 301 

Sumba versus the Korowai include functions related to the adaptive immune response, malaria response, 302 

and nervous system function (Supplementary Figure 6). However, DEGs between Mentawai and Sumba 303 

were enriched for GO terms related to neurogenesis and the nervous system with no enriched KEGG 304 

pathways. Similar testing for enrichment on DMPs shows various categories, which include terms mostly 305 

related to neurogenesis, the nervous system, and sensory perception, and which partly overlap with 306 

categories enriched in DEGs, although biological interpretation of these terms is not straightforward. 307 

 308 

Finally, because the island of New Guinea has the highest levels of Denisovan introgression worldwide 309 

(up to 5%6), we asked whether any of the genes differentially expressed between the Korowai (high 310 

Papuan ancestry) and Mentawai (no Papuan ancestry), or the Korowai and Sumbanese (intermediate 311 

Papuan ancestry) fell within high confidence introgressed Denisovan tracts, on the basis of our previous 312 

data6. A total of 265 DEGs (considering all comparisons) overlap high confidence introgressed 313 

Denisovan haplotype blocks in New Guinea6. High-frequency introgressed genes in our DEGs includes 314 

FAHD2B (introgressed at 65% frequency in New Guinea; DE between Sumba and West Papua (p = 315 

0.005), and Mentawai and West Papua (p = 8.8x10-7), and multiple genes related to immunity and 316 

antiviral response, such as CXCR6 (20% frequency in New Guinea40) and GBP1/3/4 (19% frequency in 317 

New Guinea41,42).  318 

 319 

Since calling Denisovan-introgressed genes as differentially expressed depends on both the magnitude 320 

of the expression change and the introgressed allele’s frequency, the likelihood cannot be easily predicted 321 

a priori. Therefore, we examined the distribution of introgressed allele frequencies in New Guinea for 322 

all DEGs in our data, and asked whether these differ between our three inter-island comparisons. If 323 

Denisovan introgression is contributing to expression differences between the three sampling sites, we 324 

expect that genes that are differentially expressed between the Korowai and the other two groups will 325 

have generally higher allele frequencies than genes that are DE between the Sumbanese and the 326 
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Mentawai. Indeed, we observe no difference in allelic frequencies for genes that are DE between both 327 

Sumba and West Papua, and Mentawai and West Papua (t-test p = 0.946), but observe higher frequencies 328 

in DEG between Sumba and West Papua, or Mentawai and West Papua, than between Sumba and 329 

Mentawai (p = 0.035 and 0.034, respectively), suggesting that Denisovan introgression may impact the 330 

expression levels of some genes.  331 

 332 

Methylation changes are associated with changes in gene expression in a subset of genes 333 

To further explore the relationship between DNA methylation and gene expression, we asked how much 334 

of the variation we observe in gene expression levels can be attributed to variation in DNA methylation 335 

levels. We searched for regions of functional DNA methylation by identifying instances of significant 336 

negative correlation between gene expression levels and cis-promoter methylation. We identified 1,292 337 

probe clusters associated with 1,261 genes (9.72% of all genes under investigation) where expression 338 

level was predicted by nearby CpG methylation (Figure 3A, supplementary table 8). We compared the 339 

genes identified in this analysis with the DMPs and DEGs detected in the between-island comparisons, 340 

and find that 153 genes (10.94% of DEGs) in the comparison between Korowai and Sumba, 113 genes 341 

(11.11%) between Korowai and Mentawai, and 12 genes (3.83%) between Sumba and Mentawai have 342 

expression levels associated with significant methylation changes at nearby CpGs; these include genes 343 

like SIGLEC7 (Figure 3B), which is involved in antigen presentation and natural killer (NK) cell–344 

dependent tumor immunosurveillance43. SIGLEC7 and other SIGLEC family genes are also potential 345 

immunotherapeutic targets against cancer44. These results confirm the relationship between DNA 346 

methylation and gene expression, and suggest a possible role for differential DNA methylation in shaping 347 

 
Figure 3. Association between methylation and gene expression levels. (A) Relationship between probe cluster 

DNA methylation and gene expression levels among the 1,292 probe clusters and associated genes identified by 

MethylMix. (B) Example of a single gene, SIGLEC7, which is both differentially expressed and differentially 

methylated between Sumbanese and the Korowai. 
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the patterns of differential gene expression between these populations. There are five enriched KEGG 348 

pathways, all broadly involved in immune interactions (Supplementary Table 9), including natural killer 349 

cell-mediated cytotoxicity.  350 

  351 

Inter-island differences are primarily driven by a subset of villages 352 

While the three island populations differ substantially in terms of genetic composition, we have 353 

previously shown that there is a high degree of genetic similarity within islands13. Therefore, we may 354 

expect that intra-island differences in either DNA methylation or gene expression profiles, if they exist, 355 

are likely to reflect local environmental differences45. To test this hypothesis, we took advantage of the 356 

fact that we collected samples across multiple villages in both Sumba and Mentawai. 357 

 358 

PCA captured differences between villages at both the expression and methylation level. For instance, 359 

PC1 of the DNA methylation data captures varying degrees of separation at both the intra- and inter-360 

island level. Neither the two Sumba villages, Wunga and Anakalang, or the two Mentawai villages, 361 

Taileleu and Madobag, are separated by the first PCs, confirming our previous observations of limited 362 

differentiation within islands. Between islands, however, PC1 separates the villages of Wunga and 363 

Taileleu (Tukey HSD, p = 0.001; Supplementary Table 10), Wunga and Madobag (p = 0.012), and 364 

Anakalang and Taileleu (p = 0.017), but not Anakalang and Madobag (p = 0.101). Of the two Mentawai 365 

villages, Taileleu is clearly separated from Korowai by PC1 (p = 1.9x10-5), while Madobag is only 366 

weakly separated from Korowai (p = 0.021); in Sumba, PC1 clearly separates Wunga and Korowai (p = 367 

0.003), but separates Anakalang and Korowai only weakly (p = 0.033). In the expression data, PC1 368 

separates Mentawai (p = 1.0x10-7) and Sumba (p = 1.5x10-6) from Korowai, and PC2 separates Sumba 369 

from Mentawai (p = 1.6x10-4). When examining the villages, PC1 separates the Korowai village from 370 

the two Mentawai villages Madobag (p = 0.029) and Taileleu (p < 1.0x10-10) and the Sumba villages 371 

Wunga (p = 1.0x10-7) and Anakalang (p = 4.0x10-4). PC2 further separates Wunga (p = 0.0035) and 372 

Anakalang (p = 0.039) from Taileleu. 373 

 374 

We then repeated our differential expression and methylation analyses between villages. At a log2 FC 375 

threshold of 0.5 and an FDR of 1%, we are able to recapitulate the main findings of our island-level 376 

analyses, although additional trends emerge (Figure 4, Supplementary Figure 7). Detectable differences 377 

between villages in the same island are small, with only 71 DMPs and 51 DEGs between the two 378 

Mentawai villages of Madobag and Taileleu, and 21 DMPs and 1 DEG, IDO1 (a modulator of T-cell 379 

behavior and marker of immune activity46; p = 0.007, log2 FC = -1.48), between the Sumbanese villages 380 
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of Wunga and Anakalang, echoing their limited separation in the PCA. Similarly, we find low numbers 381 

of DEGs and DMPs across all comparisons involving Sumba and Mentawai (Figure 4), again 382 

recapitulating the observations we made at the island level (Figure 2). Overall, there appears to be high 383 

concordance between genes identified as DE at the island and village level (Supplementary Figure 8), 384 

with a high degree of correlation between village- and island-level results, as expected (Supplementary 385 

 
Figure 4. Differential gene expression trends at the village level partially reflect inter-island trends. (A) 

Sharing of village-level DEG signal across all possible inter-island contrasts. (B) Top 100 DEGs between Taileleu 

and the Korowai that are not DE between Madobag and the Korowai. (C) Top 100 DEGs between Wunga and the 

Korowai that are not DE between Anakalang and the Korowai. 
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Table 11). However, when comparing villages within islands, we identified substantially more DMPs 386 

and DEGs between Taileleu and Korowai (9,631 and 1,157, respectively) than between Madobag and 387 

Korowai (7,282 and 486, respectively). Similarly, we identified more DMPs and DEGs between Wunga 388 

and Korowai (24,557 and 1,617, respectively) than between Anakalang and Korowai (18,663 and 863, 389 

respectively).  390 

 391 

We thus focused on genes that exhibit discordant patterns between the villages in an island. DEGs 392 

between Taileleu and Korowai, but not between Madobag and Korowai (Figure 4B), tend to have similar 393 

expression profiles in Madobag and Korowai, whereas DEGs between Wunga and Korowai but not 394 

between Anakalang and Korowai (Figure 4C) seem to be expressed at an intermediate level in Anakalang. 395 

These differences are not correlated with known technical confounders such as differences in RNA 396 

quality or in variability within villages (Supplementary Figure 9). Indeed, their presence in both the DNA 397 

methylation and RNA sequencing results argues against sample processing artifacts. In order to confirm 398 

that these patterns were not driven by differences in sample size, we randomly subsampled each village 399 

to 10 individuals and repeated DEG testing 103 times. There are consistently more DEGs between Wunga 400 

and Korowai than Anakalang and Korowai (t-test p < 10-20) as well as between Taileleu and Korowai 401 

than between Madobag and Korowai (p < 10-20). In turn, this suggests that they may be driven by 402 

interactions between genetics and differences in the local environment at each sampling site, although a 403 

comparison of rainfall and mean monthly temperatures across all five sites did not support these factors 404 

as drivers (Supplementary Figure 10). On the whole, our results highlight the importance of detailed data 405 

collection and thorough sampling from regions spanning diverse genomic and environmental clines, if 406 

we are to elucidate gene-by-environment interactions.   407 

 408 

  409 
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Discussion 410 

Although Island Southeast Asia accounts for nearly 6% of the world's population, and contains 411 

substantial ethnic and genetic diversity13, genomic characterisation of this region lags drastically behind 412 

other regions of the world. The first regional large-scale set of publicly available human whole genome 413 

sequences were published in 20196; to our knowledge there is only one study of gene expression from 414 

the region, of patients with malaria from the northern tip of Sulawesi7. In contrast, our work represents 415 

the first characterization of gene expression and DNA methylation levels across self-reported healthy 416 

individuals from geographically and genetically distinct populations in Indonesia, and more broadly from 417 

Island Southeast Asia. We have surveyed three sites with genetically distinct populations, spanning the 418 

Asian/Papuan genetic cline that characterises human diversity in the region, and we also sampled 419 

multiple villages in two of the islands (Sumba and Mentawai). Our study design purposefully allows us 420 

to explore both genetic (primarily between islands) and environmental (both between and within island) 421 

contributions to expression and methylation differences, a result that is further highlighted in our inter-422 

village analysis, where we observe some small-scale village-specific effects (Figure 4).  423 

 424 

Indeed, while we find differentially expressed genes and differentially methylated CpGs in most location 425 

comparisons (Figure 2), the most numerous, reproducible and largest effect changes were found when 426 

comparing either the Sumbanese or Mentawai with the Korowai. Many of these results feature genes 427 

involved in immune function, suggesting a potentially adaptive response to local environmental 428 

pressures. For example, beyond consistent enrichment for immune-associated GO and KEGG terms, the 429 

top 20 strongest DEG signals between the Mentawai and the Korowai include genes involved in antigen 430 

presentation in both innate and adaptive immune cells (MARCO and SIGLEC7, respectively; MARCO p 431 

= 2.7x10-14; SIGLEC7 p = 9.7x10-14; these genes are also differentially expressed between Sumbanese 432 

and the Korowai (MARCO p = 4.2x10-10; SIGLEC7 p = 4.9x10-12; supplementary figure 11). 433 

Polymorphisms within MARCO, which is expressed on the surface of macrophages, have been 434 

repeatedly shown to associate with susceptibility of infection by Mycobacterium tuberculosis and 435 

Streptococcus pneumoniae in multiple populations worldwide47–50; some of these variants have been 436 

subsequently shown to have a direct impact on antigen binding51. Our MethylMix analyses identify 437 

differences in SIGLEC7 expression as being driven, at least in part, by methylation differences in its 438 

promoter region (Figure 4C).  439 

 440 
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In the absence of whole genome data from our samples, it is challenging to identify whether these signals 441 

are also associated with selective signals at the DNA level or driven entirely by environmental 442 

differences; neither of these genes has been identified in previous scans of Denisovan introgressions. 443 

However, both we and others have previously shown that introgressed Denisovan tracts on the island of 444 

New Guinea are enriched for immune genes6,52, similar to the contributions of Neandertals to non-African 445 

genomes53,54. Indeed, our data suggest that Denisovan introgression in New Guinea may be impacting 446 

gene expression levels in the Korowai. More broadly, immune challenges have exerted some of the 447 

strongest selective forces on humans throughout our species’ history11; transmissible diseases endemic 448 

in Indonesia range from malaria (both P. falciparum and P. vivax)8 to infections by multiple helminth 449 

species and other understudied tropical diseases2. Tuberculosis remains a major health concern in the 450 

region, with the World Health Organisation reporting nearly half a million new cases in 201755. 451 

 452 

Others have sought to characterise the interplay between genetic and environmental contributions to 453 

either expression or methylation levels across limited geographic scales. A study of approximately 1,000 454 

individuals drawn from a founder population in Quebec demonstrated that gene-by-environment 455 

interactions – specifically, with air pollution levels – drastically impacted measurements of gene 456 

expression in blood, overpowering the effects of genetic relatedness45. Equivalent high-resolution 457 

Indonesian data are unavailable, and our attempts to associate differences in expression or methylation 458 

across small geographic scales by using WorldClim data were inconclusive. Unfortunately, it remains 459 

difficult to characterize granular levels of regional heterogeneity in disease burden and infection type, 460 

yet our results suggest pressures shaping immune response in Indonesia vary at the local level. 461 

 462 

A different study of DNA methylation across rainforest hunter-gatherer and farmer populations in Central 463 

Africa showed that methylation captures both population history and current lifestyle practices. However, 464 

these two factors impact non-overlapping sets of genes, with differences at immune genes associated 465 

with a group’s present-day habitat as well as genomic signals of past positive selection45. We observe 466 

similar trends here; the Korowai occupy an ecological niche akin to that of African rainforest hunter-467 

gatherers, whereas the inhabitants of Sumba and Mentawai are village-based agriculturalists. Sumba in 468 

particular is host to a network of traditional communities derived largely from pre-existing Papuans, who 469 

first arrived on the island ~50,000 years ago, and incoming Asian farming cultures, that reached the 470 

island ~4,000 years ago14. Today, Sumba retains a low population density and little contact between 471 

villages, as reflected in its extensive linguistic diversity56. This has resulted in small, isolated populations 472 
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of a few hundred to a few thousand individuals that can be identified genetically between villages roughly 473 

10 km apart14, making it a near unique study system for examining gene by environment interactions.  474 

 475 

As we move further into the age of personalised and genomic medicine, understanding how genetics and 476 

other molecular phenotypes drive disease risk across diverse populations is of crucial importance to 477 

ensure benefits are equitably distributed. Already there has been a dramatic expansion of genomic-based 478 

tests that are being deployed to identify the risk of disease. However, these tests are largely built using 479 

European cohorts and have proven difficult to translate to non-European populations57–59. Even within 480 

homogeneous populations, environmental factors can have marked effects on gene expression 481 

measurements, and on the interpretability of genomic-based tests of disease risk60, highlighting a 482 

secondary risk of such biased European sampling: limiting not only the genomic diversity under study, 483 

but the environmental diversity as well, to general detriment. This study provides a valuable first step in 484 

the characterization of the processes shaping gene expression changes in Island Southeast Asia. 485 

 486 
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Supplementary Materials 503 

Supplementary materials include 11 tables and 11 figures: 504 
 505 

Supplementary table 1: Sample metadata 506 

Supplementary table 2: Sample sequencing information  507 

Supplementary table 3: Summary of DEG/DMP/DMR testing at various thresholds 508 

Supplementary table 4: GO enrichment testing results for DEGs 509 

Supplementary table 5: KEGG enrichment testing results for DEGs 510 

Supplementary table 6: GO enrichment testing results for DMPs 511 

Supplementary table 7: KEGG enrichment testing results for DMPs 512 

Supplementary table 8: List of significant MethylMix clusters 513 

Supplementary table 9: KEGG enrichment testing for MethylMix-associated genes  514 

Supplementary table 10: ANOVA on PCA and covariates 515 

Supplementary table 11: Spearman correlation between village and island level across both DEG and 516 

DMP tests 517 

 518 

Supplementary figure 1: Clustering of the gene expression data before and after batch correction 519 

Supplementary figure 2: Distribution of Spearman's pairwise correlation (rho) values across all levels 520 

of the RNA-sequencing data 521 

Supplementary figure 3: Clustering of the DNA methylation data before and after batch correction 522 

Supplementary figure 4: Distribution of Spearman's pairwise correlation (rho) values across all levels 523 

of the DNA methylation data. 524 

Supplementary figure 5: Relationship between the log2(FC) of probes and genes across island-level 525 

comparisons.  526 

Supplementary figure 6: Shared GO terms between Sumbanese and the Korowai and the Mentawai and 527 

the Korowai 528 

Supplementary figure 7: Sharing of village-level DMP signal across all possible inter-island contrasts. 529 

Supplementary figure 8: Sharing of DE signals at the island and village levels 530 

Supplementary figure 9: Distribution of coefficients of variation (CoV) across villages 531 

Supplementary figure 10: Monthly climate fluctuations across the five main village sampling sites.  532 

Supplementary figure 11: log2 CPM values across all samples for (A) MARCO and (B) SIGLEC7. 533 

 534 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 16, 2019. ; https://doi.org/10.1101/704304doi: bioRxiv preprint 

https://doi.org/10.1101/704304
http://creativecommons.org/licenses/by-nc/4.0/


 

 23 

References 535 

1. Popejoy, A.B., and Fullerton, S.M. (2016). Genomics is failing on diversity. Nature 538, 161–164. 536 

2. Horton, R. (2016). Offline: Indonesia—unravelling the mystery of a nation. Lancet 387, 830. 537 

3. 1000 Genomes Project Consortium, Auton, A., Brooks, L.D., Durbin, R.M., Garrison, E.P., Kang, 538 
H.M., Korbel, J.O., Marchini, J.L., McCarthy, S., McVean, G.A., et al. (2015). A global reference for 539 
human genetic variation. Nature 526, 68–74. 540 

4. Mallick, S., Li, H., Lipson, M., Mathieson, I., Gymrek, M., Racimo, F., Zhao, M., Chennagiri, N., 541 
Nordenfelt, S., Tandon, A., et al. (2016). The Simons Genome Diversity Project: 300 genomes from 542 
142 diverse populations. Nature 538, 201–206. 543 

5. Pagani, L., Lawson, D.J., Jagoda, E., Mörseburg, A., Eriksson, A., Mitt, M., Clemente, F., 544 
Hudjashov, G., DeGiorgio, M., Saag, L., et al. (2016). Genomic analyses inform on migration events 545 
during the peopling of Eurasia. Nature 538, 238–242. 546 

6. Jacobs, G.S., Hudjashov, G., Saag, L., Kusuma, P., Darusallam, C.C., Lawson, D.J., Mondal, M., 547 
Pagani, L., Ricaut, F.-X., Stoneking, M., et al. (2019). Multiple Deeply Divergent Denisovan 548 
Ancestries in Papuans. Cell 177, 1010–1021.e32. 549 

7. Yamagishi, J., Natori, A., Tolba, M.E.M., Mongan, A.E., Sugimoto, C., Katayama, T., Kawashima, 550 
S., Makalowski, W., Maeda, R., Eshita, Y., et al. (2014). Interactive transcriptome analysis of malaria 551 
patients and infecting Plasmodium falciparum. Genome Res. 24, 1433–1444. 552 

8. Elyazar, I.R.F., Hay, S.I., and Baird, J.K. (2011). Malaria distribution, prevalence, drug resistance 553 
and control in Indonesia. Adv. Parasitol. 74, 41–175. 554 

9. R. Tedjo Sasmono, Rama Dhenni, Benediktus Yohan, Paul Pronyk, Sri Rezeki Hadinegoro, 555 
Elizabeth Jane Soepardi, Chairin Nisa Ma’roef, Hindra I. Satari, Heather Menzies, William A. Hawley, 556 
et al. (2018). Zika Virus Seropositivity in 1–4-Year-Old Children, Indonesia, 2014. Emerging 557 
Infectious Disease Journal 24, 1740. 558 

10. Suryanto, Plummer, V., and Boyle, M. (2017). Healthcare System in Indonesia. Hosp. Top. 95, 82–559 
89. 560 

11. Quintana-Murci, L. (2019). Human Immunology through the Lens of Evolutionary Genetics. Cell 561 
177, 184–199. 562 

12. Cox, M.P., Karafet, T.M., Lansing, J.S., Sudoyo, H., and Hammer, M.F. (2010). Autosomal and X-563 
linked single nucleotide polymorphisms reveal a steep Asian-Melanesian ancestry cline in eastern 564 
Indonesia and a sex bias in admixture rates. Proc. Biol. Sci. 277, 1589–1596. 565 

13. Hudjashov, G., Karafet, T.M., Lawson, D.J., Downey, S., Savina, O., Sudoyo, H., Lansing, J.S., 566 
Hammer, M.F., and Cox, M.P. (2017). Complex Patterns of Admixture across the Indonesian 567 
Archipelago. Mol. Biol. Evol. 34, 2439–2452. 568 

14. Cox, M.P., Hudjashov, G., Sim, A., Savina, O., Karafet, T.M., Sudoyo, H., and Lansing, J.S. 569 
(2016). Small Traditional Human Communities Sustain Genomic Diversity over Microgeographic 570 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 16, 2019. ; https://doi.org/10.1101/704304doi: bioRxiv preprint 

https://doi.org/10.1101/704304
http://creativecommons.org/licenses/by-nc/4.0/


 

 24 

Scales despite Linguistic Isolation. Mol. Biol. Evol. 33, 2273–2284. 571 

15. Babraham Bioinformatics - FastQC A Quality Control tool for High Throughput Sequence Data. 572 
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/. 573 

16. Bolger, A.M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina 574 
sequence data. Bioinformatics 30, 2114–2120. 575 

17. Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., 576 
and Gingeras, T.R. (2013). STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21. 577 

18. Liao, Y., Smyth, G.K., and Shi, W. (2014). featureCounts: an efficient general purpose program for 578 
assigning sequence reads to genomic features. Bioinformatics 30, 923–930. 579 

19. R Core Team (2017). R: A language and environment for statistical computing (R Foundation for 580 
Statistical Computing, Vienna, Austria). 581 

20. Robinson, M.D., and Oshlack, A. (2010). A scaling normalization method for differential 582 
expression analysis of RNA-seq data. Genome Biol. 11, R25. 583 

21. Law, C.W., Chen, Y., Shi, W., and Smyth, G.K. (2014). voom: precision weights unlock linear 584 
model analysis tools for RNA-seq read counts. Genome Biol. 15, R29. 585 

22. Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W., and Smyth, G.K. (2015). limma 586 
powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids 587 
Res. 43, e47. 588 

23. Aguirre-Gamboa, R., de Klein, N., di Tommaso, J., Claringbould, A., Vosa, U., Zorro, M., Chu, X., 589 
Bakker, O.O., Borek, Z., Ricano-Ponce, I., et al. (2019). Deconvolution of bulk blood eQTL effects 590 
into immune cell subpopulations. 591 

24. Durinck, S., Spellman, P.T., Birney, E., and Huber, W. (2009). Mapping identifiers for the 592 
integration of genomic datasets with the R/Bioconductor package biomaRt. Nat. Protoc. 4, 1184–1191. 593 

25. Yu, G., Wang, L.-G., Han, Y., and He, Q.-Y. (2012). clusterProfiler: an R package for comparing 594 
biological themes among gene clusters. OMICS 16, 284–287. 595 

26. Carlson, M. Genome wide annotation for Human, primarily based on mapping using Entrez Gene 596 
identifiers. https://doi.org/doi:10.18129/B9.bioc.org.Hs.eg.db. 597 

27. Froehlich, H. GOSim. https://doi.org/doi:10.18129/B9.bioc.GOSim. 598 

28. Fick, S.E., and Hijmans, R.J. (2017). WorldClim 2: new 1-km spatial resolution climate surfaces 599 
for global land areas. International Journal of Climatology 37, 4302–4315. 600 

29. Aryee, M.J., Jaffe, A.E., Corrada-Bravo, H., Ladd-Acosta, C., Feinberg, A.P., Hansen, K.D., and 601 
Irizarry, R.A. (2014). Minfi: a flexible and comprehensive Bioconductor package for the analysis of 602 
Infinium DNA methylation microarrays. Bioinformatics 30, 1363–1369. 603 

30. Maksimovic, J., Gordon, L., and Oshlack, A. (2012). SWAN: Subset-quantile within array 604 
normalization for illumina infinium HumanMethylation450 BeadChips. Genome Biol. 13, R44. 605 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 16, 2019. ; https://doi.org/10.1101/704304doi: bioRxiv preprint 

https://doi.org/10.1101/704304
http://creativecommons.org/licenses/by-nc/4.0/


 

 25 

31. Du, P., Kibbe, W.A., and Lin, S.M. (2008). lumi: a pipeline for processing Illumina microarray. 606 
Bioinformatics 24, 1547–1548. 607 

32. Phipson, B., Maksimovic, J., and Oshlack, A. (2016). missMethyl: an R package for analyzing data 608 
from Illumina’s HumanMethylation450 platform. Bioinformatics 32, 286–288. 609 

33. Geeleher, P., Hartnett, L., Egan, L.J., Golden, A., Raja Ali, R.A., and Seoighe, C. (2013). Gene-set 610 
analysis is severely biased when applied to genome-wide methylation data. Bioinformatics 29, 1851–611 
1857. 612 

34. Peters, T.J., Buckley, M.J., Statham, A.L., Pidsley, R., Samaras, K., V Lord, R., Clark, S.J., and 613 
Molloy, P.L. (2015). De novo identification of differentially methylated regions in the human genome. 614 
Epigenetics Chromatin 8, 6. 615 

35. Gevaert, O. (2015). MethylMix: an R package for identifying DNA methylation-driven genes. 616 
Bioinformatics 31, 1839–1841. 617 

36. Cedoz, P.-L., Prunello, M., Brennan, K., and Gevaert, O. (2018). MethylMix 2.0: an R package for 618 
identifying DNA methylation genes. Bioinformatics 34, 3044–3046. 619 

37. Reich, D., Patterson, N., Kircher, M., Delfin, F., Nandineni, M.R., Pugach, I., Ko, A.M.-S., Ko, Y.-620 
C., Jinam, T.A., Phipps, M.E., et al. (2011). Denisova admixture and the first modern human dispersals 621 
into Southeast Asia and Oceania. Am. J. Hum. Genet. 89, 516–528. 622 

38. The Gene Ontology Consortium (2019). The Gene Ontology Resource: 20 years and still GOing 623 
strong. Nucleic Acids Res. 47, D330–D338. 624 

39. Kanehisa, M., and Goto, S. (2000). KEGG: kyoto encyclopedia of genes and genomes. Nucleic 625 
Acids Res. 28, 27–30. 626 

40. Paust, S., Gill, H.S., Wang, B.-Z., Flynn, M.P., Moseman, E.A., Senman, B., Szczepanik, M., 627 
Telenti, A., Askenase, P.W., Compans, R.W., et al. (2010). Critical role for the chemokine receptor 628 
CXCR6 in NK cell-mediated antigen-specific memory of haptens and viruses. Nat. Immunol. 11, 629 
1127–1135. 630 

41. Shenoy, A.R., Kim, B.-H., Choi, H.-P., Matsuzawa, T., Tiwari, S., and MacMicking, J.D. (2007). 631 
Emerging themes in IFN-gamma-induced macrophage immunity by the p47 and p65 GTPase families. 632 
Immunobiology 212, 771–784. 633 

42. Pilla-Moffett, D., Barber, M.F., Taylor, G.A., and Coers, J. (2016). Interferon-Inducible GTPases in 634 
Host Resistance, Inflammation and Disease. J. Mol. Biol. 428, 3495–3513. 635 

43. Jandus, C., Boligan, K.F., Chijioke, O., Liu, H., Dahlhaus, M., Démoulins, T., Schneider, C., 636 
Wehrli, M., Hunger, R.E., Baerlocher, G.M., et al. (2014). Interactions between Siglec-7/9 receptors 637 
and ligands influence NK cell–dependent tumor immunosurveillance. Journal of Clinical Investigation 638 
124, 1810–1820. 639 

44. Daly, J., Carlsten, M., and O’Dwyer, M. (2019). Sugar Free: Novel Immunotherapeutic Approaches 640 
Targeting Siglecs and Sialic Acids to Enhance Natural Killer Cell Cytotoxicity Against Cancer. 641 
Frontiers in Immunology 10,. 642 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 16, 2019. ; https://doi.org/10.1101/704304doi: bioRxiv preprint 

https://doi.org/10.1101/704304
http://creativecommons.org/licenses/by-nc/4.0/


 

 26 

45. Favé, M.-J., Lamaze, F.C., Soave, D., Hodgkinson, A., Gauvin, H., Bruat, V., Grenier, J.-C., 643 
Gbeha, E., Skead, K., Smargiassi, A., et al. (2018). Gene-by-environment interactions in urban 644 
populations modulate risk phenotypes. Nat. Commun. 9, 827. 645 

46. Zhai, L., Ladomersky, E., Lenzen, A., Nguyen, B., Patel, R., Lauing, K.L., Wu, M., and 646 
Wainwright, D.A. (2018). IDO1 in cancer: a Gemini of immune checkpoints. Cell. Mol. Immunol. 15, 647 
447. 648 

47. Bowdish, D.M.E., Sakamoto, K., Lack, N.A., Hill, P.C., Sirugo, G., Newport, M.J., Gordon, S., 649 
Hill, A.V.S., and Vannberg, F.O. (2013). Genetic variants of MARCO are associated with 650 
susceptibility to pulmonary tuberculosis in a Gambian population. BMC Medical Genetics 14,. 651 

48. Ma, M.-J., Wang, H.-B., Li, H., Yang, J.-H., Yan, Y., Xie, L.-P., Qi, Y.-C., Li, J.-L., Chen, M.-J., 652 
Liu, W., et al. (2011). Genetic variants in MARCO are associated with the susceptibility to pulmonary 653 
tuberculosis in Chinese Han population. PLoS One 6, e24069. 654 

49. Dorrington, M.G., Roche, A.M., Chauvin, S.E., Tu, Z., Mossman, K.L., Weiser, J.N., and Bowdish, 655 
D.M.E. (2013). MARCO Is Required for TLR2- and Nod2-Mediated Responses to Streptococcus 656 
pneumoniae and Clearance of Pneumococcal Colonization in the Murine Nasopharynx. The Journal of 657 
Immunology 190, 250–258. 658 

50. Thuong, N.T.T., Tram, T.T.B., Dinh, T.D., Thai, P.V.K., Heemskerk, D., Bang, N.D., Chau, 659 
T.T.H., Russell, D.G., Thwaites, G.E., Hawn, T.R., et al. (2016). MARCO variants are associated with 660 
phagocytosis, pulmonary tuberculosis susceptibility and Beijing lineage. Genes Immun. 17, 419–425. 661 

51. Novakowski, K.E., Yap, N.V.L., Yin, C., Sakamoto, K., Heit, B., Golding, G.B., and Bowdish, 662 
D.M.E. (2018). Human-Specific Mutations and Positively Selected Sites in MARCO Confer Functional 663 
Changes. Mol. Biol. Evol. 35, 440–450. 664 

52. Gittelman, R.M., Schraiber, J.G., Vernot, B., Mikacenic, C., Wurfel, M.M., and Akey, J.M. (2016). 665 
Archaic Hominin Admixture Facilitated Adaptation to Out-of-Africa Environments. Curr. Biol. 26, 666 
3375–3382. 667 

53. Abi-Rached, L., Jobin, M.J., Kulkarni, S., McWhinnie, A., Dalva, K., Gragert, L., Babrzadeh, F., 668 
Gharizadeh, B., Luo, M., Plummer, F.A., et al. (2011). The shaping of modern human immune systems 669 
by multiregional admixture with archaic humans. Science 334, 89–94. 670 

54. Dannemann, M., Andrés, A.M., and Kelso, J. (2016). Introgression of Neandertal- and Denisovan-671 
like Haplotypes Contributes to Adaptive Variation in Human Toll-like Receptors. Am. J. Hum. Genet. 672 
98, 22–33. 673 

55. WHO (2019). Tuberculosis country profiles. https://www.who.int/tb/country/data/profiles/en/ 674 
(World Health Organization). 675 

56. Lansing, J.S., Cox, M.P., Downey, S.S., Gabler, B.M., Hallmark, B., Karafet, T.M., Norquest, P., 676 
Schoenfelder, J.W., Sudoyo, H., Watkins, J.C., et al. (2007). Coevolution of languages and genes on 677 
the island of Sumba, eastern Indonesia. Proc. Natl. Acad. Sci. U. S. A. 104, 16022–16026. 678 

57. Martin, A.R., Kanai, M., Kamatani, Y., Okada, Y., Neale, B.M., and Daly, M.J. (2019). Clinical use 679 
of current polygenic risk scores may exacerbate health disparities. Nat. Genet. 51, 584–591. 680 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 16, 2019. ; https://doi.org/10.1101/704304doi: bioRxiv preprint 

https://doi.org/10.1101/704304
http://creativecommons.org/licenses/by-nc/4.0/


 

 27 

58. Daar, A.S., and Singer, P.A. (2005). Pharmacogenetics and geographical ancestry: implications for 681 
drug development and global health. Nat. Rev. Genet. 6, 241–246. 682 

59. Martin, A.R., Gignoux, C.R., Walters, R.K., Wojcik, G.L., Neale, B.M., Gravel, S., Daly, M.J., 683 
Bustamante, C.D., and Kenny, E.E. (2017). Human Demographic History Impacts Genetic Risk 684 
Prediction across Diverse Populations. Am. J. Hum. Genet. 100, 635–649. 685 

60. Mostafavi, H., Harpak, A., Conley, D., Pritchard, J.K., and Przeworski, M. Variable prediction 686 
accuracy of polygenic scores within an ancestry group. 687 

 688 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 16, 2019. ; https://doi.org/10.1101/704304doi: bioRxiv preprint 

https://doi.org/10.1101/704304
http://creativecommons.org/licenses/by-nc/4.0/

