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Abstract

Ribosome profiling, an application of nucleic acid sequencing for monitoring ribosome activity, has revolutionized our

understanding of protein translation dynamics. This technique has been available for a decade, yet the current state

and standardization of publicly available computational tools for these data is bleak. We introduce XPRESSyourself,

an analytical toolkit that eliminates barriers and bottlenecks associated with this specialized data type by filling gaps

in the computational toolset for both experts and non-experts of ribosome profiling. XPRESSyourself automates and

standardizes analysis procedures, decreasing time-to-discovery and increasing reproducibility. This toolkit acts as a

reference implementation of current best practices in ribosome profiling analysis. We demonstrate this toolkit’s

performance on publicly available ribosome profiling data by rapidly identifying hypothetical mechanisms related to

neurodegenerative phenotypes and neuroprotective mechanisms of the small-molecule ISRIB during acute cellular

stress. XPRESSyourself brings robust, rapid analysis of ribosome-profiling data to a broad and ever-expanding

audience and will lead to more reproducible and accessible measurements of translation regulation. XPRESSyourself

software is perpetually open-source under the GPL-3.0 license and is hosted at https://github.com/XPRESSyourself,

where users can access additional documentation and report software issues.

Introduction

High-throughput sequencing data has revolutionized biomedical and biological research. One such application of this

consequential technology is ribosome profiling, which, coupled with bulk RNA-Seq, measures translation efficiency,

translation pausing, novel protein translation products, and more [1–3]. Though the experimental procedures for

ribosome profiling have matured, an abundance of biases and peculiarities associated with each analytical method

or tool are still present and may often be obscured to a new user of this methodology [4–8]. Additionally, standardized

methods for handling this unique data type remain elusive. This has been problematic and evidenced by various

studies using vague or opaque methods for data analysis (for examples, see [9–13]), or methods rely on outdated

tools [5]. Very few labs have the tools necessary to separate the biological signals in ribosome profiling data from the

inherent biases of the experimental measurements, and these tools are not readily accessible by the community. This

is a critical time in the rapidly expanding influence of ribosome profiling. For too long, the bioinformatic know-how of

this incredibly powerful technique has been limited to a small handful of labs. As more and more ribosome profiling

studies are performed, more and more labs will lack the ability to analyze their data with ease and fidelity. Few, if
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any, extant pipelines or toolkits offer a thorough set of integrated tools for assessing standard quality control metrics

or performing proper reference curation to reduce systematic biases across any organism, particularly with ribosome

profiling data [14–18].

For example, one issue in ribosome profiling is the pile-up of ribosomes at the 5′- and 3′- ends of coding regions

within a transcript, a systematic biological signal arising from the slower kinetics of ribosome initiation and termination

compared to translation elongation and is generally regarded to not accurately reflect measurements of translation

efficiency. These signals are further exacerbated by pre-treatment with cycloheximide during ribosome footprint

harvesting [4, 19, 20]. These pile-ups can dramatically skew ribosome footprint quantification and measurements of

translational efficiency. Current practices in the field recommend excluding pile-up-prone regions when quantifying

ribosome profiling alignments as they lead to noisier estimations of translation efficiency [3,21]; however, no publicly

available computational tools currently exist to facilitate these automated adjustments to reference transcripts. Curating

references properly and robustly requires advanced implementations. In addition, downstream data visualization

methods presently available are often not optimized to analyze and compare translation regulatory regions of a gene.

To address deficiencies in the public ribosome profiling computational toolkit, we developed XPRESSyourself, a

computational toolkit and adaptable, end-to-end pipeline that bridges these and other gaps in ribosome profiling data

analysis. XPRESSyourself implements the complete suite of tools necessary for comprehensive ribosome profiling

and bulk RNA-Seq data processing and analysis in a robust and easy-to-use fashion, often packaging tasks that

would typically require hundreds to thousands of lines of code into a single command. For instance, XPRESSyourself

creates the mRNA annotation files necessary to remove confounding systematic factors during quantification and

analysis of ribosome profiling data, allowing for accurate measurements of translation efficiency. It provides the

built-in capacity to quantify and visualize differential upstream open-reading frame (uORF) usage by generating

IGV-like, intron-less plots for easier visualization [22]. The ability to visualize (and in another XPRESSyourself

module, quantify) the usage of micro-uORFs is important in exploring regulatory events or mechanisms in a wide

array of biological responses and diseases. XPRESSyourself also introduces a tool for efficient identification of

the most problematic rRNA fragments for targeted depletion, which provides immense financial and experimental

benefits to the user by amplifying ribosome footprint signal over rRNA noise. Tools like this will become vital as

ribosome profiling moves into development in new organisms.

XPRESSyourself aims to address the lack of consensus in analytical approaches used to process ribosome

profiling data by acting as a reference implementation of current best practices for ribosome profiling analysis. While
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a basic bioinformatic understanding is becoming more commonplace amongst the scientific community, the intricacies

of processing RNA-Seq data remain challenging for many. Moreover, many users are often not aware of the most

up-to-date tools or the appropriate settings for their application [23, 24]. Even for the experienced user, developing

robust automated pipelines that accurately process and assess the quality of these datasets can be laborious. The

variability that inevitably arises with each lab or core facility designing and using distinct pipelines is also a challenge

to reproducibility in the field. XPRESSyourself curates the state-of-the-art methods for use and where a required

functionality is unavailable, introduces a thoroughly tested module to fill that gap. While some tasks in these pipelines

may be considered mundane, we eliminate the need of each user to rewrite even simple functionality and promote

reproducibility between implementations. To aid users of any skill-level in using this toolkit, we provide thorough

documentation, walkthrough videos, and interactive command builders to make usage as easy as possible, while

allowing for broad use of this toolkit from personal computers to high-performance clusters.

Finally, the most broadly relevant aspect of our update and streamlining of ribosome-profiling analysis is the novel

biological insights we are able to obtain from published datasets. We highlight this in the ISRIB ribosome-profiling

study discussed in this manuscript, where we are able to observe significant translation regulation that was missed

previously when the data were initially analyzed using now outdated techniques. This analysis generates novel

hypotheses for genes potentially involved in neurodegeneration in humans, but more broadly emphasizes the benefit

of analysis and re-analysis of data using the complete and up-to-date benchmarked methodology provided within

XPRESSyourself.

Design and Implementation

Architecture and Organization

XPRESSyourself is currently partitioned into two software packages, XPRESSpipe and XPRESSplot. XPRESSpipe

contains automated, end-to-end pipelines tailored for ribosome profiling, single-end RNA-Seq, and paired-end RNA-Seq

datasets. Figure 1 outlines the tasks completed by these pipelines. Individual sub-modules can be run automatically

through a pipeline or manually step-by-step. Modules optimize available computational resources where appropriate

to deliver results as quickly as possible. XPRESSplot is available as a Python library and provides an array of

analytical methods specifically for sequence data, but tractable to other data types. For a comparison of how

XPRESSyourself compares to other available software packages available at the time of writing, we refer the reader
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to Figure S1 [14,15,18,25–49].

To make analysis as easy and accessible as possible, an integrated command builder for reference curation

and sample analysis can be run by executing xpresspipe build. This command builder will walk the user through

potential considerations based on their library preparation method and build the appropriate command for execution

on their personal computer or a supercomputing cluster. The builder will then output the requested command for use

on a computational cluster, or the command can be executed immediately on a personal computer.

The software is designed such that updating and testing of a new module, or updating dependency usage,

are facile tasks for a trained bioinformatician. More details on current and future capabilities can be found in each

package’s documentation [50,51] or their respective versions page on each toolkit’s repository page [52].

Automated Reference Curation

The first step of RNA-Seq alignment is curating an organism reference to which the alignment software will map

sequence reads. XPRESSpipe uses STAR [53] for mapping reads as it has been shown consistently to be the best

performing RNA-Seq read aligner for the majority of cases [54,55]. The appropriate reference files are automatically

curated by providing the appropriate GTF file saved as transcripts.gtf and the directory path to the genomic

FASTA file(s). Additional modifications to the GTF file required for ribosome profiling or desired for RNA-Seq are

discussed in the next section. We recommend organizing these files in their own directory per organism.

GTF Modification

For ribosome profiling, frequent read pile-ups are observed at the 5′- and 3′- ends of an open reading frame which are

largely uninformative to a gene’s translational efficiency [4]. While these pile-ups can be indicative of true translation

dynamics [56], current best-practices have more recently settled on ignoring these regions during read quantification

and calculations of translation efficiency [3, 21]. By providing the --truncate argument during reference curation,

the 5′- and 3′- ends of each coding region will be recursively trimmed until the specified amounts are removed from

coding space. A recursive strategy is required here as GTF file-formats split the CDS record into regions separated

by introns. By default, 45 nt will be trimmed from the 5′-ends and 15 nt from the 3′-ends recursively until the full

length is removed from coding space, as is the current convention within the ribosome profiling field [3]. The resulting

output file will then be used to process ribosome footprint libraries and their corresponding bulk RNA-Seq libraries. If
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Figure 1: Workflow schematic of the inputs, outputs, and organization of XPRESSpipe. Representation of the general steps
performed by XPRESSpipe with data and log outputs. Steps in parentheses are optional to the user. Input and output file types
are in parentheses for each input or output block. The main script(s) used for a given step are in yellow blocks. The green block
indicates input sequence file(s). Pink blocks indicate reference input files and curated reference. Orange blocks indicate output
files. Blue blocks indicate general quality control and log file outputs. Differential expression analysis is run independently from
the pipeline as the user will need to ensure count table and metadata table formatting are correct before use.
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generating a GTF file for use solely with general bulk RNA-Seq datasets, this file should not be truncated.

Optionally, the GTF can be parsed to retain only protein-coding genes records. This acts as a read masking

step to exclude non-protein coding transcripts. In particular, overabundant ribosomal RNAs resulting during library

preparation are excluded from downstream analyses using this modified reference file. Parameters can also be

provided to retain only the Ensembl canonical transcript record. This can be useful for some tools that penalize reads

that overlap multiple isoforms of the same gene. If using HTSeq with default XPRESSpipe parameters or Cufflinks to

quantify reads, this is not necessary as they do not penalize a read mapping to multiple isoforms of the same gene

or are capable of handling quantification of different isoforms of a gene [57,58].

Read Processing

Pre-Processing. In order for sequence reads to be mapped to the genome, reads generally need to be cleaned of

artifacts from library creation. These include adaptors, unique molecular identifier (UMI) sequences, and technical

errors in the form of low-quality base calls. Parameters, like minimum acceptable quality or length, can be modified,

or features such as unique molecular identifiers (UMIs) can be specified to identify and group PCR artifacts for later

removal [59,60].

Alignment. Reads are aligned to the reference genome with STAR, which, despite being more memory-intensive, is

one of the fastest and most accurate sequence alignment options currently available [53–55]. XPRESSpipe is capable

of performing a single-pass, splice-aware, GTF-guided alignment or a two-pass alignment of reads wherein novel

splice junctions are determined and built into the genome index, followed by alignment of reads using the updated

index. Both coordinate- and transcriptome-aligned BAM files are output by STAR. We abstain from rRNA negative

alignment at this step as downstream analysis of these mapped reads could be of interest to some users. When rRNA

alignment is preferred, a protein-coding-only GTF file should be provided during quantification. A STAR-compatible

VCF file can also be passed to this step to allow for genomic variant consideration during alignment.

Post-Processing. XPRESSpipe further processes alignment files by sorting, indexing, and optionally parsing unique

alignments based on UMIs for downstream analyses. PCR duplicates are also detected and marked or removed for

downstream analyses; however, these files are only used for relevant downstream steps or if the user specifies to use

these de-duplicated files in all downstream steps. Use of de-duplicated alignment files may be advisable in situations

where the library complexity profiles (discussed below) exhibit high duplication frequencies. However, generally the
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abundance of PCR-duplicates is low in properly-prepared sequencing libraries; thus, doing so may be overly stringent

and unnecessary [59]. Optionally, BED coverage files can also be output.

Quantification. XPRESSpipe quantifies read alignments for each input file using HTSeq with the

intersection-nonempty method by default [57, 61]. We use this quantification method as it conforms to the current

TCGA processing standards and is favorable in the majority of applications [62]. If masking of non-coding RNAs

or quantification to truncated CDS records is desired, a protein_coding modified GTF file should be provided to

the --gtf argument. HTSeq importantly allows selection of feature type across which to quantify, thus allowing for

quantification across the CDSs of a transcript instead of entire exons. If a user is interested in quantifying ribosome

occupancy of transcript uORFs in ribosome footprint samples, they can provide five_prime_utr or three_prime_utr

for the --feature_type parameter if such annotations exist in the organism of interest’s GTF file. If the user is

interested in isoform abundance estimation of reads, Cufflinks is alternatively available for quantification [58,61].

Normalization. Methods for count normalization are available within XPRESSpipe by way of the XPRESSplot

package. For normalizations correcting for transcript length, the appropriate GTF must be provided. Sample

normalization methods available include reads-per-million (RPM), Reads-per-kilobase-million (RPKM) or

Fragments-per-kilobase-million (FPKM), and transcripts per million (TPM) normalization [63]. For samples sequenced

on different chips, prepared by different individuals, or on different days, the --batch argument should be provided

along with the appropriate metadata matrix [64].

Quality Control

Read Length Distribution. The lengths of all reads are analyzed after trimming. By assessing the read distribution

of each sample, the user can ensure the expected read size was sequenced. This is particularly helpful in ribosome

profiling experiments for verifying the requisite 17-33 nt ribosome footprints were selectively captured during library

preparation [3, 65]. Metrics here, as in all other quality control sub-modules, are compiled into summary figures for

easy pan-sample assessment by the user.

Library Complexity. Measuring library complexity is an effective method for analyzing the robustness of a sequencing

experiment in capturing various, unique RNA species. As the majority of RNA-Seq preparation methods involve a

PCR step, sometimes particular fragments will be favored and over-amplified in contrast to others. By plotting the

number of PCR replicates versus expression level for each gene, one can monitor any effects of limited transcript
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capture diversity and high estimated PCR duplication rate on the robustness of their libraries. This analysis is

performed using dupRadar [66] using the duplicate-tagged alignment files output during post-processing. Metrics

are then compiled and plotted by XPRESSpipe.

Metagene Estimation Profile. To identify any general biases for the preferential capture of the 5′- or 3′- ends of

transcripts, metagene profiles are generated for each sample. This is performed by determining the meta-genomic

coordinate for each aligned read in exon space. Coverage is calculated for each transcript, normalized, and combined

to eliminate greediness of super-expressors in profile coverage. Required inputs are an indexed BAM file and an

un-modified GTF reference file. Outputs include metagene metrics, individual plots, and summary plots. Parameters

can be tuned to only analyze representation along CDS regions.

Gene Coverage Profile. Extending the metagene estimation analysis, the user can focus on the coverage profile

across a single gene. Although traditional tools like IGV [22] offer the ability to perform such tasks, XPRESSpipe

offers the ability to collapse the introns to observe coverage over exon space only. This is helpful in situations where

massive introns spread out exons and make it difficult to visualize exon coverage for the entire transcript in a concise

manner. CDS feature annotations are displayed to aid ribosome profiling data users in identifying CDS coverage

and uORF translation events. When running a XPRESSpipe pipeline, a housekeeping gene will be automatically

processed and output for the user’s reference. Figure S2 provides a comparison with the output of IGV [22] and

XPRESSpipe’s geneCoverage module over a similar region for two genes to demonstrate the compatibility between

the methods. We note that while the published superTranscripts tool offers similar functionality, it lacks integration and

automation and must be manually paired with IGV for multi-sample comparisons and visualization [31]. Other tools,

such as Rfeet and riboStreamR [25,47], suffer from similar integration and automation shortcomings. XPRESSpipe’s

geneCoverage module offers easy and automated functionality for this task.

Codon Phasing/Periodicity Estimation Profile. In ribosome profiling, a useful measure of a successful experiment

is obtained by investigating the codon phasing of ribosome footprints [3]. To do so, the P-site positions relative to the

start codon of each mapped ribosome footprint are calculated using riboWaltz [67]. The same inputs are required as

in the metagene sub-module.

Identify Problematic rRNA Fragments from Ribosome Footprinting for Depletion. rRNA depletion is intrinsically

complicated during the preparation of ribosome-footprint profiling libraries: poly(A) selection is irrelevant, and kit-based

rRNA depletion is grossly insufficient. Especially in the case of ribosome profiling experiments, where RNA is

digested by an RNase to create ribosome footprints, many commercial depletion kits will not target the most abundant
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rRNA fragment species produces during the footprinting step of ribosome profiling. The sequencing of these RNAs

becomes highly repetitive, wasteful, and typically biologically uninteresting in the context of gene expression and

translation efficiency. The depletion of these sequences is therefore desired to increase the depth of coverage of

ribosome footprints. Depending on the species and condition being profiled, custom rRNA-depletion probes for a

small subset of rRNA fragments (generally 2-5) can easily account for more than 90% of sequenced reads [1, 3].

rrnaProbe analyzes the over-represented sequences within a collection of footprint sequence files that have already

undergone adaptor and quality trimming, compiles conserved sequences across the overall experiment, and outputs

a rank-ordered list of these sequences for probe design.

Analysis

XPRESSpipe provides a DESeq2 command-line wrapper for performing differential expression analysis of count data.

We refer users to the original publication for more information about uses and methodology [68].

More analytical features are available in XPRESSplot, which requires as input a gene count table as output by

XPRESSpipe and a meta-sample table (explained in the documentation [51]). Analyses with limited to no options in

Python libraries include principle components plotting with confidence intervals and automated volcano plot creation

for RNA-Seq or other data. Other instances of analyses can be found in the documentation [51].

Results

Benchmarking Against Published Ribosome Profiling Data and New Insights

The integrated stress response (ISR) is a signaling mechanism used by cells and organisms in response to a variety

of cellular stresses [69]. Although acute ISR activation is essential for cells to properly respond to stresses, long

periods of sustained ISR activity can be damaging. These prolonged episodes contribute to a variety of diseases,

including many resulting in neurological decline [70]. A recently discovered small-molecule inhibitor of the ISR, ISRIB,

has been demonstrated to be a potentially safe and effective neuroprotective therapeutic for traumatic brain injury and

other neurological diseases. Interestingly, ISRIB can suppress the damaging chronic low activation of the ISR, while it

does not interfere with a cytoprotective acute, high-grade ISR, adding to its wide pharmacological interest [9,71–76].

A recent study (data available under Gene Expression Omnibus accession number GSE65778) utilized ribosome

profiling to better define the mechanisms of ISRIB action on the ISR, modeled by 1-hour tunicamycin (Tm) treatment

10

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 2, 2019. ; https://doi.org/10.1101/704320doi: bioRxiv preprint 

https://doi.org/10.1101/704320
http://creativecommons.org/licenses/by/4.0/


in HEK293T cells [9]. A key finding of this study is that a specific subset of stress-related transcription factor mRNAs

exhibits increased translational efficiency (TE) compared to untreated cells during the tunicamycin-induced ISR.

However, when cells were co-treated with tunicamycin and ISRIB, the TE of these stress-related mRNAs showed no

significant increase compared to untreated cells, which indicates that ISRIB can counteract the translational regulation

associated with the ISR.

To showcase the utility of XPRESSpipe in analyzing ribosome profiling and sequencing datasets, we re-processed

and analyzed this dataset using the more current in silico techniques included in the XPRESSpipe package to further

query the translational mechanisms of the ISR and ISRIB. All XPRESSpipe-processed biological replicate samples

exhibited a strong correlation between read counts per gene when thresholded similarly to count data available with

the original publication (Spearman ρ values 0.991-0.997) (Figure 2A shows representative plots; Figure S3A shows

all replicate comparisons; Figure S4B shows the corresponding plots using the count data provided with the original

publication for reference).

Compared to the count data made available with the original manuscript, when XPRESSpipe-processed samples

were thresholded as in the original published count data, samples showed generally comparable read counts per

gene between the two analytical regimes (Spearman ρ values 0.937-0.951) (Figure 2B shows representative plots;

Figure S3B shows all comparisons). This is in spite of the fact that the methods section of the original publication

employed software that was current at the time but is now outdated, such as TopHat2 [77], which has a documented

higher false-positive alignment rate, generally lower recall, and lower precision at correctly aligning multi-mapping

reads compared to STAR [53–55]. Many of the genes over-represented in the original count data as compared to

data processed by XPRESSpipe appear to be due to the over-estimation of pseudogenes or other gene paralogs.

Figure S4A highlights a sampling of some extreme cases where particular genes with paralogs are consistently

over-represented between samples in the original processed data. This suggests a programmatic difference in how

these transcripts are being treated. As these genes share high sequence similarity with each other, reads mapping

to these regions are difficult to attribute to a specific genomic locus and are often excluded from further analyses due

to their multi-mapping nature. The benchmarking study [54] that examined these and other aligners described how

TopHat2 had a disproportionally high rate of incorrectly aligned bases or bases that were aligned uniquely when they

should have been aligned ambiguously, at least partially explaining the observed overcounting effect with TopHat2.

Had TopHat2 marked problematic reads as ambiguous, they would have been excluded from later quantification.

Additionally, when TopHat2 and STAR were tested using multi-mapper simulated test data of varying complexity,
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TopHat2 consistently suffered in precision and recall. These calls are increasingly more difficult to make with smaller

reads as well, and this is evident from Figure 2B, where ribosome footprint samples consistently showed more

over-counted genes than the corresponding RNA-Seq samples. When dealing with a ribosome footprint library of

about 50-100 million reads, and with TopHat2’s simulated likelihood of not marking an ambiguous read as such

being about 0.5% higher than STAR, this would lead to around 250,000 to 500,000 spuriously aligned reads, which

is in line with our observations (statistics were derived from [54]; analyses are available in the manuscript scripts

repository [78]).

Another potential contributor to this divergence is that the alignment and quantification within XPRESSpipe use

a current human transcriptome reference, which no doubt contains updates and modifications to annotated canonical

transcripts and so forth when compared to the version used in the original study. However, in practice, these effects

are modest for this dataset (Figure S5). Additionally, the usage of the now outdated DESeq1 [79] appears to contribute

significantly to the outcome in differential expression analysis (Figure S6). While differences in processing between

the outdated and current methods may not always create systematic differences in output, key biological insights

may be missed. The analysis that follows is exploratory and only meant to suggest putative targets identifiable by

re-analyzing pre-existing, publicly available data.

We first looked at the canonical targets of translation regulation during ISR, as identified in the original study

within the XPRESSpipe-processed data. These targets include ATF4, ATF5, PPP1R15A, and DDIT3 (Figure 3A-C,

highlighted in purple) [9]. Of note, the fold-change in ribosome occupancy of ATF4 (6.83) from XPRESSpipe-processed

samples closely mirrored the estimate from the original publication (6.44). Other targets highlighted in the original

study [9], such as ATF5, PPP1R15A, and DDIT3 also demonstrated comparable increases in their ribosome occupancy

fold-changes to the original publication count data (XPRESSpipe: 5.90, 2.47, and 3.94; respectively. Original: 7.50,

2.70, and 3.89; respectively) (Figure 3A). Similar to the originally processed data, all of these notable changes in

ribosome occupancy return to untreated levels during Tm + ISRIB co-treatment (Figure 3B). Additional ISR targets

containing micro-ORFs described in the study (highlighted in green in Figure 3A-C) were also similar in translational

and transcriptional regulation across conditions between the two analytical regimes.

Both the original study and our XPRESSpipe-based re-analysis show that ISRIB can counteract the significant

increase in TE for a set of genes during ISR. To further build upon the original analysis and explore TE regulation

during ISR, we asked if ISRIB has a similar muting effect on genes with significant decreases in TE induced by

the ISR. In the original study, genes with significant decreases in TE were reported in a source-data table and not
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Figure 2: Representative comparisons between processed data produced by XPRESSpipe and original study. Genes
were eliminated from analysis if any RNA-Seq sample for that gene had fewer than 10 counts. A) Representative comparisons
of biological replicate read counts processed by XPRESSpipe. B) Representative comparisons of read counts per gene between
count data from the original study and the same raw data processed and quantified by XPRESSpipe. C) Boxplot summaries
of Spearman ρ and Pearson r values for biological replicate comparisons. D) Boxplot summaries of Spearman ρ and Pearson
r values for between method processing. RPF, ribosome-protected fragments. Tm, tunicamycin. All ρ values reported in A
and B are Spearman correlation coefficients using RPM-normalized count data. Pearson correlation coefficients were calculated
using log10(rpm(counts) + 1) transformed data. XPRESSpipe-processed read alignments were quantified to Homo sapiens build
CRCh38v98 using a protein-coding only, truncated GTF.
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Figure 3: Analysis of previously published ISR TE data using XPRESSpipe. A-C) log2(Fold Change) for each drug condition
compared to untreated for the ribo-seq and RNA-Seq data. Purple, ISR canonical targets highlighted in the original study. Green,
genes with uORFs affected by ISR as highlighted in the original study. Orange, genes fitting a strict TE thresholding paradigm to
identify genes that display a 2-fold or greater increase in TE in Tm + ISRIB treatment compared to Tm treatment. Black, genes
with statistically significant changes in TE. Grey, all genes. Changes in ribo-seq and mRNA-Seq were calculated using DESeq2.
TE was calculated using DESeq2. Points falling outside of the plotted range are not included. D) Changes in log2(TE) for each
drug condition compared to untreated control. Grey, all genes. Purple, ISR targets identified in the original study. Orange, genes
fitting a strict TE thresholding paradigm to identify genes that display a 2-fold or greater increase in TE in Tm + ISRIB treatment
compared to Tm treatment. XPRESSpipe-processed read alignments were quantified to Homo sapiens build CRCh38v98 using
a protein-coding only, truncated GTF.
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focused on in the study. However, re-analysis of these data with the updated XPRESSpipe methodology identifies

genes with apparent translational down-regulation that may play a role in the neurodegenerative effects of ISR and

the neuroprotective properties of ISRIB [73–76]. Importantly, several of these genes were not identified as having

significantly down-regulated TEs in the original analysis, which suggests a rationale for not focusing on translational

downregulation. In all, we identified seven genes with the regulatory paradigm of interest: significant decreases in

TE during tunicamycin-induced ISR that are restored in the ISR + ISRIB condition (Table 1, descriptions sourced

from [80–82] (Figure 3D)). RNA-Seq and ribosome-footprint coverage across these genes show that the significant

changes in their TE are due to neither spurious, high-abundance fragments differentially present across libraries nor

variance from an especially small number of mapped reads (Figure S7). This is an important consideration as the

commonly suggested use of the CircLigase enzyme in published ribosome profiling library preparation protocols,

which circularizes template cDNA before sequencing, can bias certain molecules’ incorporation into sequencing

libraries based on read-end base content alone [83].

Five (POMGNT1, RPL27, TKT, HSPA8, NDUFA11) out of the seven identified genes have annotated neurological

functions or mutations that cause severe neurological disorders. Mutations in one other gene (RPS15A) generally

result in metabolic disorders. While none of these genes were identified as being of interest in the original study using

the original methods, by re-processing the original manuscript count data with DESeq2 [68] and the same expression

pattern thresholding, four of these genes are now present in the analysis (RPL27, TKT, HSPA8, RPS15A) (see Figure

S6 for a systematic comparison). NDUFA11 and TKT are protein-coding genes whose functions are integrally tied

to successful central carbon metabolism and mitochondrial electron transport chain function, respectively. NDUFA11

encodes a subunit of mitochondrial respiratory complex I [84], and TKT encodes a thiamine-dependent enzyme

that channels excess sugars phosphates into glycolysis as part of the pentose phosphate pathway [85]. Mutations

in NDUFA11 cause severe neurodegenerative phenotypes such as brain atrophy and encephalopathy [84], and

mutations in TKT cause diseases associated with neurological phenotypes [86]. These regulatory and phenotypic

observations raise the possibility that their role may be functionally relevant to the neurodegenerative effects of ISR

and the neuroprotective properties of ISRIB.

While at this stage speculative, it is interesting that the processing of these data with updated methods provides

a very conservative list of differentially expressed genes, and that the majority of those genes are associated with

severe neurological phenotypes. It is therefore easy to speculate that TE regulation of these targets’ abundance

might be important in the neurodegeneration observed in prolonged ISR conditions. ISRIB’s neuroprotective effects
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Table 1: Translationally down-regulated genes during acute Tm treatment with restored regulation during Tm + ISRIB
treatment. Gene names succeeded by an asterisk indicate these genes were identified in the original data when re-analyzed with
DESeq2 [68]. Gene names succeeded by an ampersand indicate genes with strong neurological phenotype annotations. None of
these genes were present in the original analysis tables.

Gene Name Relevant Description
POMGNT1& Participates in O-mannosyl glycosylation. Mutations have been associated with muscle-eye-brain

diseases and congenital muscular dystrophies. Expressed especially in astrocytes, as well as in
immature and mature neurons. Expressed across brain.

RPL27*& Subunit of ribosome catalyzing protein synthesis. Expressed in cerebral cortex in embryonic
tissue and/or stem cells. Mutations associated with Diamond-Blackfan Anemia 16, a metabolic
disease, which may present with microcephaly.

TKT*& Encodes thiamine-dependent enzyme that channels excess sugars phosphates to glycolysis.
Mutations associated with developmental delays and Wernicke-Korsakoff Syndrome, a metabolic
and neuronal disease and associated with encephalopathy and dementia-like characteristics.

HSPA8*& Encodes heat shock protein 70 member. Facilitates protein folding and localization. Diseases
associated with mutations include Auditory System Disease and Brain Ischemia, both neurological
disorders. Expressed in cerebral cortex in embryonic tissue and/or stem cells.

NDUFA11& Encodes subunit of mitochondrial complex I, a vital component of the electron transport chain.
Mutations are associated with severe mitochondrial complex I deficiency. Related pathways
include the GABAergic synapse. Associated diseases include brain atrophy, encephalopathy,
and leber hereditary optic neuropathy. Overexpressed in frontal cortex.

HIST2H3D Responsible for nucleosome structure. No neurological phenotypes currently annotated.
RPS15A* Subunit of ribosome catalyzing protein synthesis. Diseases associated include Diamond-Blackfan

Anemia, an inborn error of metabolism disease.

may stem from a restoration of one or more of these entities’ protein expression. Though speculative without further

validation, these ISRIB-responsive neuronal targets act as interesting cases for further validation and study in a

model more representative of neurotoxic injury and disease than the HEK-293T model used in the original study.

In all, this comparison demonstrates the utility of XPRESSpipe for rapid, user-friendly analysis and re-analysis of

ribosome-profiling experiments in the pursuit of biological insights and hypothesis generation.

Cost Analysis and Performance

XPRESSpipe functions can be computationally intensive. Super-computing resources are recommended, especially

when handling large datasets or when aligning to larger, more complex genomes. Many universities provide super-computing

resources to their affiliates; however, in cases where these resources are not available, servers such as Amazon Web

Services (AWS) [87] can be used to process sequencing data using XPRESSpipe. Table 2 summarizes the runtime

statistics for the ISRIB dataset used in this study. The ISRIB ribosome profiling dataset contained a total of 32

raw sequence files that were aligned to Homo sapiens; thus it acts as a high-end estimate of the time required to

process data with XPRESSpipe. For a comparable dataset, cost to use an AWS computational node with similar
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specifications for the specified pipeline elapsed time in Table 2 would be approximately 25.76 USD using an Amazon

EC2 On-Demand m5.8xlarge (however, significantly reduced rates are available if using Spot instances or by using

the free tier) and storage cost would amount to around 17.41 USD/month for all input and output data on Amazon

S3 storage (storage costs could be reduced as much of the intermediate data may not be relevent for certain users;

however, raw input data should always be archived by the user).

Table 2: XPRESSpipe sub-module statistics for dataset GSE65778. geneCoverage module performed on high-coverage gene.
While some memory footprints are large in this test case, steps will scale based on available user resources. Input raw FASTQ
files were uncompressed. The metagene and geneCoverage sub-modules used a conservative BAM file multiprocessing limit to
avoid out-of-memory errors. XPRESSpipe v0.3.1 was used to generate these statistics.

Process Command Wallclock Time Max RAM
Curate STAR reference curateReference 00h 38m 34s 34.03 GB
Truncate GTF modifyGTF -t 00h 03m 40s 03.27 GB
Read Pre-processing trim 00h 08m 50s 00.48 GB
Alignment / Post-processing align 07h 57m 44s 38.03 GB
Read Quantification count -c htseq 03h 13m 04s 00.16 GB
Isoform Abundance count -c cufflinks 00h 56m 44s 02.36 GB
Differential Expression (n=9) diffxpress 00h 07m 50s 00.65 GB
Read Distributions readDistribution 00h 05m 00s 00.28 GB
Metagene Analysis metagene 01h 45m 35s 35.52 GB
Gene Coverage (n=1) geneCoverage 01h 24m 00s 19.32 GB
Periodicity periodicity 01h 08m 22s 54.16 GB
Library Complexity complexity 01h 02m 57s 01.52 GB
rRNA probe rrnaProbe 00h 00m 55s 00.15 GB
Pipeline riboseq 16h 46m 19s 54.16 GB

Attribute Value
Total Raw Input 257 GB
Total Output 500 GB
Allocated Virtual CPUs 32
Minimum Allocated Memory 62.50 GB

Availability and Future Directions

We have described the software suite, XPRESSyourself, an automated reference implementation of best-practices

in ribosome profiling data analysis built upon a synthesis of new tools, old tools, and pipelines. XPRESSyouself is

perpetually open source and protected under the GPL-3.0 license. Updates to the software are version controlled

and maintained on GitHub [52]. Jupyter notebooks and video walkthroughs are included within the README files

at [52]. Documentation is hosted on readthedocs [88] at [50] and [51]. Source code for associated analyses and

figures for this manuscript can be accessed at [78]. The data used in this manuscript are available under the Gene
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Expression Omnibus persistent identifier GSE65778 [89] for ribosome profiling data and under the dbGaP Study

Accession persistent identifier phs000178 [90] for the TCGA data.

Although RNA-Seq technologies are quite advanced, standardized computational protocols are far less

established for ribosome profiling. As we discussed in this manuscript, this becomes problematic when individuals or

groups are not using best practices in analysis or may not be aware of particular biases or measures of quality control

required to produce reliable, high-quality sequencing analyses. XPRESSpipe handles these issues through on-going

curation of benchmarked software tools and by simplifying the required user input. It also outputs all necessary quality

control metrics so that the user can quickly assess the reliability of their data and identify any systematic problems or

technical biases that may compromise their analysis. Video walkthroughs, example scripts, and interactive command

builders are available within this software suite to make these analyses accessible to experienced and inexperienced

users alike. XPRESSyourself will enable individuals and labs to process and analyze their own data, which will result

in quicker turnaround times of experiments and immediate financial savings.

One particular benefit of XPRESSyourself is that it consolidates, streamlines, and introduces many tools specific

to ribosome profiling processing and analysis. This includes curating GTF files with 5′- and 3′- truncated CDS

annotations, rRNA probe design for subtractive hybridization of abundant rRNA contaminants, automated quality-control

analysis and summarization to report ribosome footprint periodicity, metagene coverage, and intron-less gene coverage

profiles. These tools will help to democratize aspects of ribosome profiling analysis for which software have not been

previously publicly available or difficult to access.

We demonstrated the utility of the XPRESSyourself toolkit by re-analyzing a publicly available ribosome profiling

dataset. From this analysis, we identified putative translational regulatory targets of the integrated stress response

(ISR) that may contribute to its neurodegenerative effects and their rescue by the small-molecule ISR inhibitor, ISRIB.

This highlights the importance of re-analyzing published datasets with more current methods, as improved analysis

methodologies and updated organism genome references may result in improved interpretations and hypotheses.

With the adoption of this flexible pipeline, the field of high-throughput sequencing, particularly ribosome profiling,

can continue to standardize the processing protocol for associated sequence data and eliminate the variability that

comes from the availability of a variety of software packages for various steps during sequence read processing.

Additionally, XPRESSpipe consolidates various tools used by the ribosome profiling and RNA-Seq communities

into a single, end-to-end pipeline. With these tools, genome reference formatting and curation are automated and

accessible to the public. Adoption of this tool will allow scientists to process and access their data independently
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Table 3: Software Description

Project Name XPRESSyourself
Project Home Page https://github.com/XPRESSyourself
Archived Versions DOIs 10.5281/zenodo.3338669, 10.5281/zenodo.3337897
Operating Systems macOS, Linux, centOS
Programming Languages Python, R, Julia
Other Requirements Anaconda
License GNU General Public License v3.0

and quickly, guide them in understanding key considerations in processing their data, and standardize protocols for

ribosome profiling and other RNA-Seq applications, thus increasing reproducibility in sequencing analyses.

List of Abbreviations

AWS - Amazon Web Services, BAM - Binary Sequence Alignment Map, BED - Browser Extensible Data, cDNA -

complementary DNA, CDS - coding sequence of gene, ChIP-seq - chromatin immunoprecipitation sequencing, CPU

- central processing unit, dbGaP - Database of Genotypes and Phenotypes, DNA - deoxyribonucleic acid, FDR -

false discovery rate, FPKM - fragments per kilobase of transcript per million, GEO - Gene Expression Omnibus,

GTF - General Transfer Format, IGV - Integrative Genomics Viewer, ISR - integrated stress response, ISRIB - ISR

inhibitor, mRNA - messenger RNA, nt - nucleotide, PCA - principal component analysis, PCR - polymerase chain

reaction, RAM - random access memory, RNA - ribonucleic acid, RNA-Seq - RNA sequencing RPKM - reads per

kilobase of transcript per million, RPM - reads per million, rRNA - ribosomal RNA, TCGA - The Cancer Genome

Atlas, TE - translation efficiency, TPM - transcripts per million, UMI - unique molecular identifier, UTR - untranslated

region, VCF - Variant Call Format

Ethics Approval and Consent to Participate

Protected TCGA data were obtained through dbGaP project number 21674 and utilized according to the associated

policies and guidelines.
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Figure S1: Comparison between XPRESSyourself and other available software packages for ribosome profiling data
analysis. Black boxes indicate full functionality, blue boxes indicate partial functionality, grey boxes indicate incomplete or
outdated functionality, and blank boxes indicate no functionality for the specified task. Rankings were compiled using the tools’
documentation, manuscript, and codebase. If a function was not clearly described in any of these venues, a blank box was given.
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Figure S2: Comparison between IGV browser and geneCoverage output. A) Gene coverage from IGV (above) and
XPRESSpipe (below) for SLC1A1. B) Gene coverage from IGV (above) and XPRESSpipe (below) for TSPAN33. Introns collapsed
by XPRESSpipe. Green box, region displayed in corresponding IGV window.
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Figure S3: Comparison between processed data produced by XPRESSpipe and original study. Genes were eliminated
from analysis if any RNA-Seq sample for that gene had fewer than 10 counts. A) Comparison of biological replicate read counts
processed by XPRESSpipe. B) Comparison of read counts per gene between count data from the original study and the same raw
data processed and quantified by XPRESSpipe. RPF, ribosome-protected fragments. Tm, tunicamycin. All ρ values reported are
Spearman correlation coefficients. XPRESSpipe-processed read alignments were quantified to Homo sapiens build CRCh38v98
using a protein-coding only, truncated GTF.
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Figure S4: Original ISRIB count data plotted against XPRESSpipe-processed data reveals systematic differences between
the analytical regimes. A) Selected highlighted genes show consistent differences between processing methods. B) Spearman
correlation plots using the data table provided as supplementary data with the original ISRIB manuscript comparing biological
replicates. RPF, ribosome-protected footprint. Tm, tunicamycin. All ρ values reported are Spearman correlation coefficients.
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Figure S5: Original ISRIB count data plotted against XPRESSpipe-processed data quantified using same reference
version reveals mild improvement in comparability between the analytical regimes. Original samples were processed using
Ensembl human build GRCh38v72, as in the original manuscript, and compared with the original count data provided with the
manuscript. XPRESSpipe-prepared counts were thresholded similarly as the original data (each gene needed to have at least 10
counts across all mRNA samples). RepA, biological replicate A. RepB, biological replicate B. RPF, ribosome-protected footprint.
Tm, tunicamycin. All ρ values reported are Spearman correlation coefficients.
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Figure S6: Cross-method analysis comparisons. A) XPRESSpipe-processed data (orange) versus data as originally
presented within original manuscript using original methods (green). B) Comparison of analyses using provided count table
in original publication using DESeq2 (purple) versus original analysis provided in manuscript using DESeq1 (green). C)
XPRESSpipe-processed (orange) versus originally-processed data (purple), both using DESeq2 for differential expression
analysis. Tan regions indicate overlap between gene lists. Thresholds used were the same as those used in the original study:
|log2(Fold Change)| > 1, FDR < 0.1.
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Figure S7: Gene coverage plots for neurologically annotated genes passing strict thresholding. Coverage plots were
generated using XPRESSpipe’s geneCoverage module, which collapses introns within the representation.
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