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Abstract

Background: Enhancers play a fundamental role in orchestrating cell state and development. Al-
though several methods have been developed to identify enhancers, linking them to their target genes
is still an open problem. Several theories have been proposed on the functional mechanisms of en-
hancers, which triggered the development of various methods to infer promoter enhancer interactions
(PEIs). The advancement of high-throughput techniques describing the three-dimensional organisa-
tion of the chromatin, paved the way to pinpoint long-range PEIs. Here we investigated whether
including PEIs in computational models for the prediction of gene expression improves performance
and interpretability.
Results: We have extended our Tepic framework to include DNA contacts deduced from chromatin
conformation capture experiments and compared various methods to determine PEIs using predic-
tive modelling of gene expression from chromatin accessibility data and predicted transcription factor
(TF) motif data. We found that including long-range PEIs deduced from both HiC and HiChIP data
indeed improves model performance. We designed a novel machine learning approach that allows to
prioritize TFs in distal loop and promoter regions with respect to their importance for gene expres-
sion regulation. Our analysis revealed a set of core TFs that are part of enhancer-promoter loops
involving YY1 in different cell lines.
Conclusion: We show that the integration of chromatin conformation data improves gene expres-
sion prediction, underlining the importance of enhancer looping for gene expression regulation. Our
general approach can be used to prioritize TFs that are involved in distal and promoter-proximal
regulation using accessibility, conformation and expression data.

Keywords— Machine learning, Chromatin accessibility, DNase1-seq, Chromatin conformation, Gene regu-
lation, HiC, HiChIP, Gene expression prediction

Introduction

Understanding the processes involved in gene regulation is an important endeavour in computational biology.
Key players in gene regulation are transcription factors (TFs), DNA binding proteins that are essential in regu-
lating transcriptional processes. They are important in establishing and maintaining cellular identity and their
dysfunction is related to several diseases [1].

TFs bind to promoters of genes, which are in close proximity to their transcription start site (TSS) and to
enhancers, regulatory regions that can be several thousand base pairs away from the regulated gene [2]. Since
enhancers have been described for the first time in 1981 by Banerji et al. [3], numerous studies shed light on their
functional role.
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For example, enhancers were shown to be essential in cell differentiation [4]. Also, it has been reported that
mutations occurring in enhancer regions, can not only lead to changes in gene expression [5, 6] but can also increase
the probability to contract certain diseases, for instance Hirschsprung’s disease[7]. These effects are likely to be
caused by an altered binding of TFs due to SNPs occurring in enhancer sequences [2, 8, 9]. To understand the
function of enhancers, a crucial step after identification of putative enhancer regions is to link them to their target
genes.

Recently, considerable progress has been made in identifying putative enhancer regions: In the past decade,
many epigenetic datasets have been generated in consortia like ENCODE [10], Blueprint [11], and Roadmap
[12]. Histone Modifications, especially H3K27ac and H3K4me1, have been used in unsupervised computational
approaches, such as ChrommHMM [13], EpiCSeg [14], or REPTILE [15] to highlight putative enhancers regions
genome-wide.

Also (semi-)supervised methods, e.g. McEnhancer [16], EnhancerDBN [17], or DECRES [18], relying on
experimentally validated enhancer regions used as training data have been proposed. Furthermore, it was shown
that DNase-hypersensitive sites (DHSs) are good candidate sites for TF-binding [19, 20] and that DNase1-seq
signal is also predictive for gene expression [20, 21]. Thus DHS sites, which are not located nearby promoters can
be considered as candidate enhancer regions. However, it is still a fundamental biological question how enhancers
interact with their potentially distantly located target genes. The most prevalent hypothesis is that enhancers
are brought to close proximity to their target genes by chromosomal re-organisation and DNA-looping. This
hypothesis is known as the looping model. It is opposing the so-called scanning model, which states that an
enhancer is usually regulating only its nearest active promoter [22]. Experimental evidence could be found for
both models [2], hence it is likely that both mechanisms are occurring in nature.

Inspired by these models, several experimental and computational methods have been proposed to link en-
hancers to their target genes. Following the scanning model, two approaches are common in the field: [1] window
based linkage and [2] nearest gene linkage. In the window based approach, a gene is associated to regulatory
regions that are located within a defined genomic region around this gene [23, 24]. Alternatively, in the nearest
gene approach, an enhancer is only associated to its nearest gene [25]. To reduce false positive assignments, the
nearest gene linkage is also often coupled to a correlation test between epigenetic signals in the enhancer and the
expression of the candidate gene [26].

While approaches like FOCS [27] or STITCHIT [28] offer the linkage of regulatory elements on a gene-
specific level, these methods require the availability of large data sets for the considered species and tissues,
which is generally not the case. In practice, the established window and nearest gene based linkage paradigms
are still being used [25]. However, the drawback of those approaches is that they do not include long range
enhancer-gene interactions, as proposed by the looping model. These have been experimentally determined using
for example Fluorescence In Situ Hybridization (FISH), via the identification of enhancer RNAs (eRNAs) and
their correlation to target genes, or via 3C-based high-throughput methods, for instance HiC, Capture-HiC and
HiChIP [29]. Especially the development of such high-throughput methods to analyse the 3D organisation of the
genome enables us to determine genome-wide DNA contacts [30]. Detailed analyses of individual genes, e.g. the
β-globin gene showed that multiple contacts occur simultaneously at one genomic loci and also overlap with DHSs
[31]. It was shown that loops are established by Cohesin, Mediator complexes, and CTCF, which is known to act
as an insulator protein. By performing genome-wide chromatin conformation capture experiments, it is possible to
segment the genome in multiple topological associating domains (TADs). It was shown before that there is more
intra-TAD interaction among genes and enhancers than between TADs [32]. To mine this information, a wealth
of tools have been published. A detailed overview is provided in Yao et al [2]. Despite the availability of such
data, it has not yet been integrated into computational methods inferring gene expression using experimentally
or computationally determined TF binding events. Because of the tissue specificity of enhancers, including PEIs
might augment the interpretability of such models and thereby lead to novel biological insights.

Here, as a follow-up to our previous investigations [24, 33], we introduce an extension of the Tepic framework
to account for PEIs inferred from chromatin conformation capture experiments. As a baseline, we illustrate that
both window and nearest gene annotation approaches are not well suited to account for enhancer activity. Our
new Tepic module extends a promoter-centric window by including far away genomic loci deduced from HiC
and HiChIP data. While both HiC and HiChIP interactions improve the gene expression prediction models, we
observe a greater improvement with HiChIP data, an effect for which we outline several reasons. Furthermore,
we illustrate that a distinct consideration of TF binding events in promoter and potentially far away enhancer
regions allows for a fine grained interpretation and analysis of transcriptional regulation through TFs.

Materials and methods

Data and Preprocessing

In this study we used gene expression quantified from RNA-seq data and DNase1-seq data for the cell lines K562,
GM12878, IMR90, HUVEC, HCT116, Jurkat, and HeLa. All data is obtained from ENCODE, corresponding
accession numbers are provided in Sup. Tab. 1. Except for Jurkat, where gene expression estimates were quan-
tified with Salmon (version 0.8.2) using default parameters, gene expression estimates were directly downloaded
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from ENCODE. DHS sites have been identified using the peak caller Jamm [34] (version 1.0.7.2), with default
parameters configured. All peaks passing the automated filtering of Jamm are considered. Sup. Tab. 2 lists the
number of identified peaks per cell line.

Furthermore, we obtained HiC data for K562, GM12878, IMR90, HUVEC, and HeLa from Rao et al [30].
Specifically, we used the loop files as provided by the Lieberman-Aiden group, which were extracted from raw
HiC contact matrices using the HiCCUPS algorithm [30]. In case of the HiC datasets used in this work the
loops are of 5kb, 10kb, and 25kb resolution, respectively. A loop is defined as a pair of genomic loci that are in
arbitrary genomic distance from each but, at the same time, are in close spatial proximity. In the following, the
HiC resolution called All refers to loops of an arbitrary resolution, as this corresponds to a more conservative
approach where we collect all available loops. For reasons of simplicity, inter-chromosomal loops, which resemble
a less frequent type of contacts, are excluded. Sup. Tab. 3 provides an overview on the HiC data considered in
this work.

Additionally, we use processed HiChIP data (Sup. Tab. 4) in which the TF YY1 was targeted in Jurkat,
HCT116, and K562 cells generated by Weintraub et al. [35]. The data has a resolution of 5kb. All data was
obtained for the hg19 reference genome using gene annotation version 19 from GENCODE [36].

We obtained chromatin state segmentations, containing 15 states generated with ChromHMM [13], for K562,
GM12878, IMR90, HUVEC, and HeLa from ENCODE. As there was no ChromHMM annotation available for
Jurkat, we approximate this using a Roadmap ChromHMM track for CD4+ CD25- Th Primary Cells (E043).
We focus on the promoter states TssA(1) and TssAFlnk(2), as well as on the enhancer states EnhG(6), Enh(7),
BivFlnk(11), and EnhBiv(12). ENCODE accession numbers are provided in Sup. Tab. 1.

Establishing Promoter-Enhancer interactions (PEIs)

We apply three different strategies to come up with PEIs from DNase1-seq data: (1) A window based annotation,
(2) a nearest gene-based linkage, and (3) a window based annotation that incorporates HiC or HiChIP data. An
illustration of the PEI linkage methods is shown in Fig. 1.

We use the following notation throughout the article: Considering a DHS site d ∈ D, where D is the set
of all DHS sites, we denote the length of d with l(d) and the DNase1-seq signal in d with s(d). We aggregate
neighbouring genomic positions, which are assigned the same chromatin state from ChromHMM into one segment
m, representing a distinct ChromHMM state. The set of all considered segments is denoted with M.

Here, we compute three different features for each gene g: (1) total peak length plg, (2) summarized peak
count pcg, and (3) aggregated peak signal psg [33]:

plg =
∑
d∈Dg

l(d)e
− dist(d,g)

d0 , (1)

pcg =
∑
d∈Dg

e
− dist(d,g)

d0 , (2)

psg =
∑
d∈Dg

s(d)e
− dist(d,g)

d0 . (3)

The genomic distance of d, ct, or m to a specific gene g is denoted with dist(d, g). The genomic distance is
measured from the centre of the peak to the most 5′-TSS of g. Using an exponential decay formulation proposed
by Ouyang et al. [23], each peak is weighted by the distance to its linked gene. The parameter d0 is controlling
the effect of the decay and is set to 5000. The set Dg denotes the DHSs that are assigned to gene g. Details on
the assignment are provided in the next section.

Window based linkage

For each gene g, we consider a window w of size |w| centered at the most 5′-TSS of g. We denote all DNase peaks
d, and the ChromHMM regions m that overlap w with Dg,w and Mg,w, respectively. Thus, we set Dg = Dg,w in
equations 1-3 to compute scores based on DNase1-seq data.

Additionally, we define an intersection operation ∩H between Dg,wand Mg,w such that only d ∈ Dg,w are
retained that overlap by at least one 1bp with any m ∈Mg,w. Formally, that is:

Dg,w ∩HMg,w = {d|d ∈ Dg,w ∧ ∃m ∈Mg,w : d ∩m 6= ∅}, (4)

where d ∩m indicates the overlap in genomic space of peak d and segment m.
We apply the ∩H intersection operation to Dg,w thereby obtaining D′g,w:

D′g,w = Dg,w ∩HMg,w. (5)

Consequently, we use Dg = D′g,w in equations 1-3 and compute scores as described above. The window based
annotation is depicted in the upper part of Fig. 1.
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Nearest gene linkage

In this linkage paradigm, a peak (d) or segment (m) is exclusively associated to its closest gene. Notably this
implies that a peak or segment can not be associated to more than one gene. Following this paradigm, we obtain
Dg,n, Mg,n and set Dg = Dg,n in equations (1)-(3). As above, in equations 4-5, we intersect Dg,n with Mg,n

using the ∩H operator and obtain D′g,n. The nearest gene annotation is visualized in the middle of Fig.1.

HiC and HiChIP based annotation

In addition to the window w centered at the TSS of gene g, we apply separate windows v ∈ Vg inferred from
contacts of HiC or HiChIP experiments (equations 6-8). The set Vg refers to all distant regions considered for
gene g. We associate a chromatin contact to gene g if one of the two loop regions is located within a promoter
search window of size rbp around the TSS of gene g. We refer to this search window as loop window ( LW). The
set of all DHSs intersecting a window v ∈ Vg is denoted with Dg,Vg , and are included in the score computation.
Because the chromatin conformation capture experiment suggests a direct interaction of a potentially far away
region v with gene g, we do not apply an exponential decay to peak signals of that region. However, we did
test whether applying the exponential decay in the distal regions would be beneficial for model performance and
found that it is indeed not the case for both HiC and HiChIP experiments, since all features were shrank towards
zero (data not shown). Note that, in contrast to the promoter centric window w, there might be more than one
window v for a distinct gene g.

In addition to the promoter centric features, we compute peak length plg∗, peak count pcg∗, and peak signal
psg∗ in distal DHSs linked to gene g according to:

plg∗ =
∑

d∈Dg,Vg

l(d), (6)

pcg∗ = |Dg,Vg |, (7)

psg∗ =
∑

d∈Dg,Vg

s(d). (8)

The HiC/HiChIP based annotation is explained in the bottom part of Fig. 1.
Finally, we integrate the ChromHMM information with the window based annotation. To this end, we intersect

Dg,Vg withMg,Vg and obtain D′g,Vg to reduce the number of regions associated to g from the distal regions v ∈ Vg
(Sup. Fig. 1).

Computation of TF-gene scores with TEPIC

In addition to the peak based features plg, pcg, psg, pl
′
g, pc

′
g, ps

′
g we estimate TF binding affinities using Tepic [24].

As introduced previously in Schmidt et al. [33], we compute TF affinities ap,t for TF t in peak p using TRAP
and aggregate the TF affinities to TF-gene scores ag,t according to

ag,t =
∑
p∈Pg

ap,t
|p| − |mt|+ 1

and (9)

ag,t =
∑
p∈Pg

ap,t
|p| − |mt|+ 1

e
− dist(p,g)

d0 , (10)

where Pg is the set of all DHSs assigned to gene g, reflecting the window based, or nearest gene assignment.
The variable |p| denotes the length of DHS p, |mt| denotes the length of the Position Specific Energy Matrix
(PSEM) mt representing the binding preference of TF t, dist(p, g) is the distance between peak p and gene g,
and d0 is a constant set to 5kb [23]. Here, we used 726 PSEMs for Homo sapiens, obtained from JASPAR
[37], HOCOMOCO [38] and the Kellis ENCODE motif database [39], which are included in the Tepic 2.0
repository [40].

As a baseline to be used in this study, we consider two promoter centric windows to compute TF-gene scores:
(1) TF-gene scores aggregating TF affinities in a promoter window of size 3kb eq. 9, (2) TF-gene scores aggregating
TF affinities in an extended promoter window of size 50kb including the exponential decay formulation of eq. 10.
To utilise the information offered by the chromatin conformation capture data, we additionally compute TF-gene
scores ag,t∗ solely based on DHSs overlapping the LWs:

ag,t∗ =
∑

p∈Dg,Vg

ap,t
|p| − |mt|+ 1

. (11)

Gene expression learning

Here, we briefly describe the machine learning techniques used in this study. An overview on the different feature
setups is provided in Sup. Fig. 4, as well as in Table 1. The learning paradigm is sketched in Sup. Fig. 5.
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v1 v2
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w1 w2

Figure 1: Assignment of DNase1-seq peaks to genes. The different setups are illustrated for two genes
g1 and g2. The color code of peaks and the border color of segments indicate to which gene a peak is
assigned. Peaks with a striped filling are not assigned to any gene. a) In a window based annotation,
peaks are linked to a gene if they are located within a window w centered at the 5’ transcription start
site (TSS) of a gene of interest. Dg1,w1 denotes the set of all DHSs overlapping window w1 centered
around the promoter of gene g1. b) Peaks are linked to the nearest gene, defining nearest as the gene
with the closest TSS in linear genomic distance. Here, Dg1,n refers to the set of all DHSs linked to gene g1
following the nearest gene approach. c) Using HiC or HiChIP, secondary windows vi covering the distal
regions linked to the TSS are considered in addition to the TSS window. For gene g1, two additional
windows, v1 and v2, are considered, yielding the additional peak sets Dg1,v1, and Dg1,v2.

Details on the linear model

Similar to a previous approach described in [24], we use linear regression with elastic net penalty implemented in
the glmnet R-package [41] to predict gene expression. The elastic net combines two regularization terms, namely
the Ridge (L2) and the Lasso (L1) penalty:

β̂ = arg min
β

||y −Xβ||2 + λ[α||β||2 + (1− α)||β||]. (12)

Here, the feature coefficient vector is represented by β, the estimated coefficients are denoted by β̂, X refers to
the feature matrix, y refers to the response vector, and the parameter λ determines the total amount of shrinkage.
Both the input matrix X and the response vector y, containing gene expression estimates, are log-transformed,
with a pseudo-count of 1, centered and normalized. The parameter α, which is optimized in a grid search from
0.0 to 1.0 with a step-size of 0.01, controls the trade-off between Ridge and Lasso penalty. Model performance is
assessed on a hold-out test data set in a ten-fold outer Monte Carlo cross-validation procedure with 80% of the
data randomly chosen to form the training data and 20% as test data. The λ parameter is fitted in a six-fold
inner cross-validation using the cv.glmnet function. We choose the λ achieving the minimum cross validated error,
computed as the average mean squared error (MSE) on the inner folds (lambda.min).
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Table 1: Different combinations of features evaluated in this study.
Name Considered Peak Features Considered TF Features Annotation

Promoter: Peaks

Peak Length plg
Peak Count pcg
Peak Signal psg

Window
Nearest gene
ChromHMM

Promoter + HiC: Peaks
Promoter + HiChIP: Peaks

Peak Length plg
Peak Count pcg
Peak Signal psg
Peak Length plg∗
Peak Count pcg∗
Peak Signal psg∗

Window + HiC
Window + HiChIP
ChromHMM

Promoter + HiC: C Peaks
Promoter + HiChIP: C Peaks

Peak Length plg + plg∗
Peak Count pcg + pcg∗
Peak Signal psg + psg∗

Window + HiC
Window + HiChIP
ChromHMM

Promoter: Peaks + TFs

Peak Length plg
Peak Count pcg
Peak Signal psg

Affinities in promoter DHS ag,t
Window
ChromHMM

Promoter + HiChIP: EF Peaks + TFs

Peak Length plg
Peak Count pcg
Peak Signal psg
Peak Length plg∗
Peak Count pcg∗
Peak Signal psg∗

Affinities in promoter DHS ag,t
Affinities in loop DHS ag,t∗

Window + HiChIP
ChromHMM

Details on the feature space

In this article, we build the feature matrix X in five different ways, listed in Table 1 and depicted in an exemplary
manner in Sup. Fig. 4. As a baseline, we use our previously introduced promoter centric models considering
DHS based features (plg, pcg, psg) and TF-gene scores ag,t. We refer to those as Promoter: Peaks and Promoter:
Peaks + TFs, respectively.

Initially, we extended the promoter based models only with peak based features derived for loop sites (plg∗,
pcg∗, psg∗), due to simplicity. We refer to the separate consideration of promoter and loop peak features as
Promoter + HiC/HiChIP: Peaks and to the combined consideration as Promoter + HiC/HiChIP: C Peaks.

Finally, we construct a feature matrix that is comprised of all peak (plg, pcg, psg,plg∗, pcg∗, psg∗) and all TF
features (ag,t, ag,t∗). We refer to this distinct consideration of peak features and TF-gene scores for promoter
DHS and enhancer DHS as the extended feature space (EF), as it expands the original feature space considerably
and allows a more detailed interpretation of the models.

Gene sets

For all models in this study, protein coding genes (gencode v19) are considered.

Implementation changes in TEPIC

We have extended the Tepic framework by a novel module that allows the integration of any matrix describing
genome-wide chromatin contacts. The new module requires two inputs. Firstly, it requires a file with paired
intervals (e.g. HiC or HiChIP loops) to be included in the annotation and secondly a parameter specifying the
size of the loop window LW should be provided by the user. The LW is the area around a gene that is being
screened for a potential chromatin contact. Accessible regions overlapping with a chromatin contact are not
subject to the exponential decay. Furthermore, regions overlapping the promoter window as well as the LW are
not counted twice. They are only considered for the promoter window to avoid redundancy. Details on the
formatting of the required input file and on the novel parameters are provided in Sup. Sec. 3.

TF gene expression analysis

We generated a mapping of TF names to Ensemble GeneIDs using Biomart. To test whether TFs in a query set
have a higher expression than expected, we sampled 1000 TF sets of the size of the query set from the entire
TF universe (without replacement). Whether the difference in the expression distributions is significant or not is
assessed with a Wilcoxon test.

Network analysis

Protein-protein interaction analysis was conducted using the STRING database version 11 [42]. We obtained
the consensus PPI network for TFs (seed nodes) found in the extended feature space analysis (YY1, TCF7L2,
TFDP1, REST, E2F8, E2F4, HOXA5, TEAD2, NRF1, TAL1, NR2F1, E2F4, EGR4). The final network was
obtained using an interaction confidence score of 0.4 (default) and by allowing not more than five additional
interactions with respect to the seed proteins (visualized in Fig. 6).

Results

In this work, we developed an extension of our TEPIC approach that aggregates regulatory events occurring in
potentially distal regulatory sites to the gene-level in a genome-wide fashion. Before we present the applicability
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and performance of this extension, we investigate common approaches that are widely applied in the community
to establish PEIs add-hoc and use this comparison as a baseline for our novel methodology. Furthermore, we
briefly describe differences in the HiC and HiChIP data used in this study.

Local genomic architecture governs superiority of window or nearest gene
based approaches

Previously, we have focused on window based linkage approaches in Tepic [24, 33]. Here, we have taken a
broader scope and included the nearest gene assignment as well. Just like the window based approaches, this is
another common strategy, used for instance by Gonzales et al. [25]. First we wanted to obtain a baseline, against
which models considering chromatin conformation data can be compared later. We contrasted the performance
of linear regression models predicting gene expression from the DNase1-seq derived features: (i) peak length, (ii)
peak count, and (iii) peak signal for window based (Dg,w) and nearest gene linkage (Dn) for GM12878, HeLa,
HUVEC, IMR90, and K562 cells. As shown in Fig. 2 and in Sup.Fig. 2a, 50kb windows outperform 3kb windows
and compared to nearest gene approaches, the 50kb window leads to slightly better models for three out of
five samples. In Sup. Fig. 2b the mean squared error (MSE) for 9000 randomly selected, individual genes is
shown using the DNase1-seq model for HeLa. Contrasting gene-specific prediction errors allows us to illustrate
by comprehensive case-examples the existence of genome architecture specific advantages and disadvantages of
the PEI linkage approaches.

For example, the MSE of RPL7A(ENSG00000148303) is nearly twice as high using the nearest gene than the
window based annotation. As shown in Sup. Fig. 3 there seems to be a bidirectional promoter for RPL7A and
MED22. The model suggests that this can not be adequately covered by the nearest gene approach. A different
scenario is depicted in Sup. Fig. 3b for the gene HINT1(ENSG00000169567). This gene is located in a gene
sparse region surrounded by several DHS peaks, which seem to add a large portion of noise in the nearest gene
approach. In contrast to that, for the gene APOA2(ENSG00000131096), the nearest gene approach leads to a
better performance as it neglects, in contrast to the window based model, several DHS sites that seem to be
associated to TOMM40L instead of APOA2 (Sup. Fig. 3c). Each of these genes, RPL7A, HINT1, and APOA2
is highlighted in Sup. Fig. 2b. Overall, these results suggest that neither the window based, nor the nearest
gene annotation, generalise well across all genes. Still, the 50kb window based approach tends to perform slightly
better on average. Therefore, we decided to augment the window based annotation using chromatin conformation
capture data. Specifically, we attempt to replace the 50kb models with 3kb models that additionally consider
DHSs linked to a distinct gene by chromatin conformation capture data. Only for reasons of comparison and
to better understand the data at hand, we also augment the 50kb models with chromatin conformation data,
although we note that in principle regions looped to the gene could be discovered using a chromatin conformation
capture method.

Including ChromHMM states is not beneficial for promoter-centric models

To understand whether the performance of the models could be improved by a stricter selection of potential
regulatory regions, we used Promoter/Enhancer states predicted with ChromHMM in GM12878, HeLa, HUVEC,
IMR90, and K562, thereby reducing the set of considered DHSs (D′g,w and D′g,n). In Sup. Fig. 6 the results for
the window and nearest gene annotation are contrasted. In general, the intersection of regulatory segments with
DHSs (D′) reduces model performance compared to the D models. Only in case of HeLa, the nearest gene model
does not loose performance.

This reduction in performance suggests that also relevant DHSs are removed from consideration. To investigate
this hypothesis, we compared the mean q-value of removed DHSs in the D′ models compared to the retained
DHS (Sup. Fig. 7a). Contrasting this hypothesis, we found that the q-value for the retained peaks is higher
for both window sizes and the nearest gene approach. Note that in case of the nearest gene annotation, the
ChromHMM intersection represents a genome-wide filtering. Also, a large portion of removed peaks are linked to
Quiescent/Low, Weak Repressed Polycomb and Weak transcription chromatin states (Sup. Fig. 7b), which does
not suggest that the removed regions have a regulatory role. Additionally, we observe that the average length of
the considered DHSs tends to be shorter in D′ compared to D models (Sup. Fig. 8).

HiC resolution impacts the association of genes to long range chromatin in-
teractions

Before learning models using HiC or HiChIP data, we performed a few statistical analyses to better understand
the characteristics of the chromatin conformation data. First, we assessed the overlap between DHSs and HiC
as well as HiChIP loops, respectively. As shown in Fig. 3a, the fraction of HiC loops overlapping with at least
one DHS increases with a decreasing HiC resolution. The tremendous differences between the various resolutions
suggest that the choice of the used HiC resolution will likely affect any downstream analysis relying on DHS sites.
Taking into account each HiC loop across all resolutions, at least 80% of the identified HiC loops intersect with at
least one DHS site in four out of five cell lines. Compared to HiChIP data, sketched in Fig. 3b, it is striking how

7

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 16, 2019. ; https://doi.org/10.1101/704478doi: bioRxiv preprint 

https://doi.org/10.1101/704478
http://creativecommons.org/licenses/by-nc-nd/4.0/


0.3

0.4

0.5

0.6

GM
12

87
8

HeL
a

HUVEC

IM
R90

K56
2

Sample

S
pe

ar
m

an
 c

or
re

la
tio

n
3kb

50kb

Nearest gene

Figure 2: The performance of gene expression prediction models measured in terms of Spearman cor-
relation on hold-out test data is shown for various models using peak length, peak count, and peak
signal within the gene promoter regions. Two different window sizes (3kb, 50kb), and the nearest gene
approach are compared. We observe that the 50kb models outperform the 3kb models. Considering
the 50kb models, there is a slight advantage of the window based models over the nearest gene based
annotation.

many genome-wide interactions are determined, compared to HiC data. For instance, in case of K562, there are
10, 000, 000 chromatin interactions with a DHS in both loop sites, contrasted against 6000 sites deduced from
HiC data. As shown in Sup. Fig. 9a, there are still several magnitudes more HiChIP than HiC interactions, if a
reduced HiChIP data set, filtered by q-Value or PET thresholding, is considered.

As expected, the HiC resolution effects the number of genes that are linked to a chromatin loop. As exemplary
shown in Fig. 3c for a LW of 25kb and a HiC resolution of 10kb, there are between 1000-7000 genes associated to
a chromatin contact. In Sup. Fig. 9, we depict additional combinations for search windows and HiC resolutions.
Generally, we observe that the number of genes associated to a loop reduces with a more precise, i.e. numerically
smaller, HiC resolution. The LW used to link a HiC loop to a gene also influences the number of mapped
genes. As expected, with an increasing search window size around the gene promoters, the number of genes that
are linked to a loop is rising accordingly. Simultaneously the slope of the increase depends on the utilised HiC
resolution. For example, as shown in Sup. Fig. 9b and c, the increase in the number of genes is only marginal
for the best resolution (5kb), while it is more than three times as strong for the lowest one (25kb). With HiChIP
data, almost all protein coding genes following the hg19 reference annotation are associated to a HiChIP contact
(Fig. 3d). Upon a reduction of HiChIP contacts to those with a higher confidence, the number of affected genes
stays above the levels of the HiC data (Sup.Fig.8b). As one might expect, the mean distance between HiChIP
sites of one chromatin contact is decreasing with a more stringent thresholding (Sup. Fig. 9c). Together with the
count information from Sup. Fig. 9a, we note that the HiChIP data contains between 10, 000-100, 000 interactions
within a distance of 5kb-10kb between the interacting sites.

Considering HiC and HiChIP data improves model performance

In addition to the promoter centric models shown in Fig. 2, we trained linear models additionally considering
peak length, peak count, and peak signal of DHSs overlapping HiC and HiChIP loci, respectively. We refer to
those features as loop features. Figure 4 illustrates that including HiC and HiChIP data is generally beneficial for
model performance. For HiC data, depicted in Fig. 4a, we observe a slight improvement in model performance,
which is more pronounced in case of a 3kb promoter window than with a 50kb promoter window. As observed in
our earlier studies [33], the 50kb models outperform 3kb models. Overall, our results indicate that a larger LW
tends to be beneficial for model performance. This is especially pronounced for GM12878, HUVEC, and IMR90
using a 3kb promoter window. This observation is likely to be directly linked to the dependence between the loop
window size LW and the number of genes assigned to a HiC contact.

In case of HiChIP data, illustrated in Fig. 4b, we see a stronger improvement of model performance upon
inclusion of the loop features. Here, models extending the 3kb promoter window perform at least as good, or
better than those extending the 50kb promoter window. It is possible, that the higher number of relatively short
HiChIP interactions is responsible for this observation, which is in contrast to what we have seen with HiC data
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Figure 3: a) The number of HiC loops overlapping/not overlapping at least one DHS in each loop site
is shown for different cell lines and different HiC resolutions. b) Analogously to a) for HiChIP contacts.
All HiChIP samples have a resolution of 5kb. In a) and b), the ratio indicates the number of contacts
overlapping DHS contrasted to those which do not. c) The bar plot shows the number of prot.coding
genes that overlap a HiC loop using a LW of 25kb and a HiC resolution of 10kb. d) Analogously to c)
but with HiChIP data and a promoter search window of 5kb.

(Sup. Fig. 10a,c). As shown in Sup. Fig. 11, only a separate consideration of promoter and loop features leads
to an improvement in model performance. Compared to promoter only models, filtering DHS with ChromHMM
does improve models that are considering loop features (Sup. Fig.12).

We chose the 3kb HiChIP annotation for further examination in an extended feature space approach using
TF affinities, because these models achieved the best performance with purely peak based features. As described
in the next section, we attempt to decipher the regulatory impact of TFs binding in promoters and enhancers
suggested by the chromatin conformation capture data.

Results on the extended feature space

In our earlier works, we showed that models including TF affinities can be used to learn about the tissue specific
regulatory activity of TFs [24, 33] and can be extended to investigate regulation of differential gene expression
for example in Durek et al. [43]. Therefore we asked whether adding features for each TF would change the
prediction performance. As shown in Fig. 5a, including TF affinities derived for DHSs around the promoter of
genes, improves the performance of the linear models, compared to those models that are based solely on peak
features.

Having the information about chromatin loops, we cannot only consider TF affinities in the promoter, but
also in distal sites determined with HiChIP data. We trained models using an extended feature space considering
each TF separately for the promoter and aggregated over the distal loop windows, for the K562, HCT116, and the
Jurkat cell line. The distinct inclusion of these features further improves model performance (Fig. 5a, Sup. Fig.
13), suggesting that we can gain additional insights on the role of TFs by examining their regression coefficients.
The UpSet plot in Fig. 5b depicts the overlap between TFs that have been assigned a non-zero mean regression
coefficient in a 10-fold outer cross-validation procedure. The figure highlights that there are several factors
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Figure 4: Model performance measured in Spearman correlation on hold-out test data considering chro-
matin contacts derived from a) HiC data using two different search window (25kb and 50kb) as well as b)
using HiChIP data. We considered two different promoter windows, a 3kb and a 50kb window. While for
HiC, the 50kb promoter windows led to better models than the 3kb models, it is the other way around
considering HiChIP data.

occurring exclusively in promoter or loop regions, respectively.
Overall, we find the TFs BHLHE4, CTCFL, E2F8, ETV5, ETV6, HOXA5, NKX2.8, NKX3.1, NRF1, SRF,

SRY, REST, RUNX1, TCF7L2, TEAD2, TFDP1, YY1, and YY2 to be commonly selected as a feature in the
promoter region for all three cell lines. The TFs E2F4, EGR4, NR2F1, and TAL1, are commonly selected in the
loop regions.

Recalling that the HiChIP data was performed with an antibody targeting YY1 and the fact that YY1 binding
sites are over represented in human core promoters [44], the prediction of YY1 as a common promoter feature is
a validation of our computational approach. The appearance of YY2 may be due to the fact that the C-terminal
binding domains of YY1 and YY2 are highly conserved. Indeed, ChIP-seq derived binding peaks of YY2 contained
the YY1 motif at peak centers, indicating that YY2 binds similar regions and that there is an overlap of genes
regulated by both TFs [45, 46].

Similar to YY1, also NRF1 has been shown to be essential for transcriptional regulation at the core promoter
of several genes [47, 48]. The TF TFDP1 has been shown to bind to the promoter elements of genes that are
related to the cell cyle [49]. Regarding the TFs commonly identified in loop regions, we find, for instance, that
E2F4 has been suggested previously to bind to enhancer regions [50]. Binding sites of NR2F1 have been shown
to coincide with high levels of the established enhancer marks P300 and H3K27ac [51].

Taking into account that the HiChIP data suggests a spatial proximity between the TFs bound to the promoter
regions to those TFs bound to the loop regions, we investigated protein-protein interactions using the String
database [42]. We selected all TFs that occur in our models in all three cell lines, in either promoter or loop
regions. The resulting network is shown Fig. 6. We find that there are many confident interactions between
several of the selected factors, including YY1, NRF1, HOXA5, EGR4, E2F4, TFDP1, TCF7L2, and TEAD2
suggesting the formation of protein-protein complexes ultimately linking enhancer and promoter regions.

In addition to this general analysis, we investigated the top 20 TFs ranked by their mean, absolute, regression
coefficient across the 10-fold outer cross-validation, per cell line (Fig. 5c). A prominent example for a TF selected
in the promoter region for K562 and HCT116 is HMGA1. This TF is known to act as an essential regulator for
the mediator complex and the basal transcription machinery [52]. Also YY1 is among the top 20 TFs selected
for each cell line, supporting the validity of the ranking. On the loop sites, we find for example JUND being
among the top 20 factors in K562 and HCT116. This factor is known to support enhancer functions for instance
in B cells and keratinocytes [53, 54]. Interestingly, the knockdown of SP1 or KLF7, which are selected for K562
cells among the top loop features, has been shown to impact cellular differentiation and β-globin production,
respectively [55].

The potential regulatory role of the TFs highlighted in Figs. 5c and 6 is supported by the observation that the
top 50 TFs with a non-zero regression coefficient per cell line have higher gene expression values than randomly
sampled TFs (Sup. Fig. 14).

The analysis thus revealed a set of core TFs that are involved in enhancer-loop linkage involving the TF YY1.
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Figure 5: a) Model performance assessed in terms of Spearman correlation on hold out test data for
models including TF-gene scores computed in the promoter and in the distal enhancers. Generally,
including TF predictions improves model performance compared to considering only peak features. b)
UpSet plot showing the relationship between TFs with a non-zero regression coefficients inferred by the
extended feature space models. c) Ranking of the top 20 TFs by their absolute regression coefficients for
each cell line. The color code indicates the mean regression-coefficient of the TFs computed in a 10-fold
outer-cross validation.

Discussion

Associating regulatory regions to genes is still subject to ongoing research. In this work, we compared established
methods to construct PEIs and present an extension of our Tepic approach to associate enhancers with genes
using chromatin conformation capture data, exemplary using HiC and HiChIP data. We evaluated the different
PEI linkage methods using predictive models of gene expression learned on DNase1-seq data.

Our results indicate that neither the widely used nearest-gene linkage nor the window based PEI models are
optimal. We illustrate that both approaches have distinct advantages and drawbacks. For example, in the nearest
gene assignment, there is no common agreement, whether the TSS or TTS of a gene is used to calculate the genes’
distance to the putative enhancer. Also, in gene dense regions, it is not obvious whether a peak should be uniquely
assigned to only one or to multiple genes. Indeed, it was shown before that a distinct enhancer can influence
the expression of various genes [56, 57]. On the other hand, the window based linkage might generate many
false positive associations in gene-dense regions and likely misses distal enhancer regions, which in turn might
be captured by the nearest gene approach in gene-sparse genomic loci. We have illustrated these points using
multiple examples in Sup.Fig. 2. Notably, current research suggests that many enhancer-gene interactions are
established only within TADs but only rarely across TAD borders [32]. This might argue in favour of window based
approaches and suggests to include TAD boundaries in nearest gene approaches to avoid assignments across TAD
boundaries. It is of crucial importance for the field to understand the pros and cons of the assignment strategies,
because they still form the basis for recent efforts trying to link enhancers to genes in multi-tissue scenarios [27].
Also, in settings were only few samples are available, a computational de novo assignment of regulatory regions
to genes using correlation based methods is not feasible.

Our examination of the available HiC data suggests that the peak resolution has a strong impact on inferring
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Figure 6: Protein-protein interaction network obtained from the String database illustrating interactions
among YY1 and TFs commonly selected as a predictor in gene expression models for K562, Jurkat, and
HCT116 in promoter and distal loop sites.

PEIs. We showed that both the number of genes as well as the number of overlapping DHS sites largely depends on
the HiC resolution. Notably, with a higher, i.e. numerically smaller, HiC resolution the number of genes associated
to HiC loops almost remains constant with an increasing search window size. While models considering HiC data
did improve in their ability to predict gene expression, the improvement was only marginal compared to the 50kb
promoter model. This can be due to several reasons. One possibility might be that not all chromatin contacts are
directly linked to transcriptional regulation and gene expression, as also suggested by Ray et al. [58]. For instance,
loops could be part of higher-order structures and thereby indirectly influence cellular processes. This could be
an explanation for the varying overlap of DHSs with HiC loops described in Fig.5. It is likely that other methods,
e.g. ChIA-PET, capture HiC[59], or HiChIP, which can enrich the sequencing libraries for distinct regions such
as promoters of interest, lead to more precise contact maps in terms of both resolution and signal-to-noise ratio.
Leveraging these more fine-grained technologies for gene expression modeling seems to be an opportunity to
improve the prediction performance and to enhance our understanding on the underlying regulatory processes.

To examine this hypotheses, we learned gene expression prediction models using recently generated HiChIP
data. In contrast to the HiC data, we see a stronger improvement in model performance. Importantly, the rather
tight 3kb window focusing at the promoter augmented with HiChIP contacts, outperformed all 50kb model
variants, suggesting that the interactions suggested by the HiChIP experiments are indeed meaningful and better
than an average over all DHSs within 50kb of the TSS. As depicted in Fig. 4, the number of HiChIP contacts is
several magnitudes higher than the number of HiC contacts. We noted that many of the high quality HiChIP
contacts belong smaller range contacts, suggesting that HiChIP data also uncovers chromatin interactions between
a gene’s TSS and intragenic enhancers. This might explain why the augmented 3kb models perform at least as
good or better than the 50kb models as intragenic interactions are likely to be modelled in the HiChIP data.

In contrast to the promoter only models, including ChromHMM state segmentations did improve the perfor-
mance of models considering HiC or HiChIP data, suggesting that both techniques lead to the inclusion of less
relevant DHSs.

Wrapping up all these aspects, we tried to further improve the HiChIP models by incorporating TF affinities
into the extended feature space. They allow the inferred regulators to be prioritized in a promoter and a (distal)
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enhancer specific point of view. We have shown that models based on this feature design can be comprehensively
interpreted and lead to biologically meaningful and reasonable results.

To make our approach generally applicable for the research community and to scale-up with new experimental
technologies, we designed Tepics chromatin conformation extension to be able to integrate PEIs derived from any
chromatin conformation capture technology. We believe that this extension together with the extended feature
space annotation will be helpful to elucidate regulatory processes at promoters and enhancers.

Conclusion

Overall, our study provides an unbiased comparison of prevalent PEI linkage strategies and shows that neither the
established window based PEI linkage nor the nearest gene linkage perform optimal. Further, we show that HiC
and HiChIP data can both be used to integrate genome-wide chromatin contacts into predictive gene expression
models. Thereby, we can not only improve model performance, but, using our extended feature space formulation,
enable users to obtain detailed insights into the promoter and enhancer specific activity of TFs across distinct
cell types and tissues.
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