Identification of hidden population structure in
time-scaled phylogenies

Erik M. Volz\textsuperscript{1,*}, Carsten Wiuf\textsuperscript{2}, Yonatan H. Grad\textsuperscript{3}, Simon D.W. Frost\textsuperscript{4,5}, Ann M. Dennis\textsuperscript{6}, and Xavier Didelot\textsuperscript{7}

\textsuperscript{1}Department of Infectious Disease Epidemiology and MRC Centre for Global Infectious Disease Analysis, Imperial College London
\textsuperscript{2}Department of Mathematical Sciences, University of Copenhagen
\textsuperscript{3}Department of Immunology and Infectious Diseases, TH Chan School of Public Health, Harvard University
\textsuperscript{4}Department of Veterinary Medicine, University of Cambridge
\textsuperscript{5}The Alan Turing Institute
\textsuperscript{6}School of Medicine, University of North Carolina Chapel Hill
\textsuperscript{7}School of Life Sciences and Department of Statistics, University of Warwick

* Corresponding author: Norfolk Place, W2 1PG, United Kingdom; E-mail: e.volz@imperial.ac.uk
Abstract

Population structure influences genealogical patterns, however data pertaining to how populations are structured are often unavailable or not directly observable. Inference of population structure is highly important in molecular epidemiology where pathogen phylogenetics is increasingly used to infer transmission patterns and detect outbreaks. Discrepancies between observed and idealised genealogies, such as those generated by the coalescent process, can be quantified, and where significant differences occur, may reveal the action of natural selection, host population structure, or other demographic and epidemiological heterogeneities. We have developed a fast non-parametric statistical test for detection of cryptic population structure in time-scaled phylogenetic trees. The test is based on contrasting estimated phylogenies with the theoretically expected phylodynamic ordering of common ancestors in two clades within a coalescent framework. These statistical tests have also motivated the development of algorithms which can be used to quickly screen a phylogenetic tree for clades which are likely to share a distinct demographic or epidemiological history. Epidemiological applications include identification of outbreaks in vulnerable host populations or rapid expansion of genotypes with a fitness advantage. To demonstrate the utility of these methods for outbreak detection, we applied the new methods to large phylogenies reconstructed from thousands of HIV-1 partial pol sequences. This revealed the presence of clades which had grown rapidly in the recent past, and was significantly concentrated in young men, suggesting recent and rapid transmission in that group. Furthermore, to demonstrate the utility of these methods for the study of antimicrobial resistance, we applied the new methods to a large phylogeny reconstructed from whole genome Neisseria gonorrhoeae sequences. We find that population structure detected using these methods closely overlaps with the appearance and expansion of mutations conferring antimicrobial resistance.
Quantifying the role of population structure in shaping genetic diversity is a longstanding problem in population genetics. When information about how lineages are sampled is available, primarily geographic location, a variety of statistics are available for describing the magnitude and role of population structure (Hartl et al. 1997). In pathogen phylogenetics, such geographic ‘meta-data’ has been instrumental in enabling the inference of transmission rates over space (Dudas et al. 2017), host species (Lam et al. 2015), and even individual hosts (De Maio et al. 2018). Population structure shapes genetic diversity, but can the existence of structure be inferred directly from genetic data in the absence of structural covariates associated with each lineage, such as if the geographic location or host species of a lineage is unknown?

The problem of detecting and quantifying such ‘cryptic’ population structure has become a pressing issue in several areas of microbial phylogenetics. For example, in bacterial population genomics studies, a wide diversity of methods have been recently developed to classify taxonomic units based on distributions of genetic relatedness (Mostowy et al. 2017; Tonkin-Hill et al. 2019, 2018; Beugin et al. 2018). In a different domain, pathogen sequence data have been used for epidemiological surveillance, and ‘clustering’ patterns of closely related sequences have been used to aid outbreak investigations and prioritise public health interventions (Eyre et al. 2012; Dennis et al. 2014; Miller et al. 2014; Ledda et al. 2017). In both population genomics studies and outbreak investigations, a common thread is the absence of variables about sampled lineages that can be correlated with phylogenetic patterns. For example, in outbreak investigations, host risk behaviour and transmission patterns are not usually observed and must be inferred. It is not known a priori which clades are more or less likely to expand in the future,
although there is active research addressing this problem, such as to predict
the emergence of strains of influenza A virus \cite{Klingen2018} or the
forecast the effect of antibiotic usage policies on the prevalence of resistant
variants \cite{Whittles2017}.

In time-scaled phylogenies, the effects of population structure often
appear as a difference in the distribution of branch lengths in clades circulating
in different populations \cite{Dearlove2015}. Figure 1 shows a simulated
genealogy from a structured coalescent process \cite{Notohara1990}. In two clades,
the effective population size grows exponentially, and in the remaining clade,
the effective size remains constant. Consequently, the lineages through time
show noticeably different patterns of relatedness. For the clades with growing
size, most coalescent events occur in the distant past when the size was small.

Supposing that the deme from which lineages were sampled was not
observed, it is clear from visual inspection of Figure 1 which lineages were
sampled from a growing population. Nevertheless, there is a paucity of
objective methods readily available to automate the process of identifying
temporally distinct clades. This process cannot be done manually when the
differences in distributions are less obvious, and needs to be based on a
theoretically grounded statistical test. Furthermore, in Figure 1 the red and
yellow clades are distantly related. Their most recent common ancestor
(MRCA) is at the root of the tree, but they have a very similar distribution of
coalescent times suggesting that they were generated by similar demographic
or epidemiological processes. For example, this can happen in infectious
disease epidemics, when lineages independently colonise the same host
population with greater susceptibility or higher risk behaviour \cite{Dearlove2017}.
It is therefore also desirable to have an automated method for
identifying polyphyletic taxonomic groups defined by shared inferred
population histories as opposed to genetic or phenotypic traits.

Here we develop a statistical test for detecting if clades within a time-scaled genealogy have evidence for unobserved population structure. Our approach is to develop a statistic based on an unstructured coalescent process. This allows us to test a null hypothesis that two clades are both generated by the same coalescent process. In this case, the coalescent model provides a theoretical prediction of the order of the coalescent times between the two clades in the absence of population structure. On the basis of this statistical test, we also develop algorithms for systematically exploring possible partitions of a genealogy into distinct sets representing evolution within latent populations with different demographic or epidemic histories. Notably, these algorithms not only allow us to detect outlying clades with very different genealogical patterns, but also to find and classify distantly related clades which likely have similar demographic or epidemic histories.

Materials and Methods

As a starting point for our methodology, we assume a time-scaled phylogeny has been estimated from genetic data, for example using one of the recently developed fast methods [To et al. 2016, Volz and Frost 2017, Didelot et al. 2018, Sagulenko et al. 2018, Tamura et al. 2018, Miura et al. 2019]. Alternatively, summary trees obtained from full Bayesian approaches as implemented in BEAST (Suchard et al. 2018, Bouckaert et al. 2014) or RevBayes (Höhna et al. 2016) can be used, although these typically incorporate population genetic models which presume a particular form of population structure or a lack of population structure. Some precise terminology and notation is required related to the structure of these time-scaled trees since the basis of our approach concerns comparisons.
Figure 1: A genealogy simulated from a structured coalescent process with two demes, one of which has constant effective population size (clade highlighted in blue), and the other having effective population size growing exponentially (clades highlighted in red and yellow). Migration of lineages occurs at a small constant rate in one direction from the constant size deme to the growing deme. The corresponding plots at the right show a caricature of the effective population size and lineages through time in each clade.
between different subsets of the tree.

**Notation**

The tree has $n$ terminal nodes (nodes with no descendants), is rooted, and is bifurcating (there are $n - 1$ internal nodes each with exactly two descendants). Being rooted implies there is one node with no ancestor. Mathematically we describe this tree as a node-labelled directed acyclic graph:

$$\mathcal{G} = (\mathcal{N}, \mathcal{E}, \tau)$$

where $\mathcal{N}$ is a set of $2n - 1$ nodes, $\mathcal{E} \subseteq \{(u, v) | u, v \in \mathcal{N}\}$ is the set of $2n - 2$ edges or 'lineages', and $\tau : \mathcal{N} \to \mathbb{R}_{\geq 0}$ defines the time of each node. With reference to an edge $(u, v) \in \mathcal{E}$ we say that $u$ is the 'direct ancestor' and $v$ is the 'direct descendant' and we require $\tau(u) < \tau(v)$. Nodes are further classified into two sets: 'tips' (terminal nodes) denoted $\mathcal{T}$ with no descendants and internal nodes denoted $\mathcal{I}$ with exactly two direct descendants. The trees may be heterochronous, meaning that tips of the tree can represent samples taken at different time points.

For a node $u \in \mathcal{N}$ we define the clade $C_u$ to be the set of nodes descending from $u$, that is, the node $u$ and all $v \in \mathcal{N}$ such that there is a directed path of edges from $u$ to $v$. We say that nodes $v$ in $C_u$ are 'descended from' $u$. We will also have occasion to define clades 'top down' in terms of a subset of tips in the tree. For this, we define the most recent common ancestor MRCA($X$) of a set $X \subseteq \mathcal{T}$ to be the most recent node $u$ such that $X \subseteq C_u$, that is, all other nodes $v$ with $X \subseteq C_v$ have $\tau(v) < \tau(u)$. Then we let the top-down clade $B_X$ be defined as
\[ B_X = \{ u \in N | C_u \cap X \neq \emptyset \}. \]

Note that \( B_X \) includes the tips \( X \) as well as some nodes ancestral to MRCA(\( X \)).

In general \( B_X \neq C_{\text{MRCA}(X)} \) since \( X \) does not necessarily include all tips descending from MRCA(\( X \)). We will also need to refer to the nodes corresponding to coalescent events among lineages of the set \( X \) only, excluding those between lineages of \( X \) and lineages of the complement of \( X \),

\[ D_X = X \cup \{ u \in B_X | \exists (u, v), (u, w) \in \mathcal{E}, v \neq w, C_v \cap X \neq \emptyset, C_w \cap X \neq \emptyset \}, \]

Figure 2A illustrates a tree and the sets \( B_X, D_X, \) and \( C_{\text{MRCA}(X)} \).

Since each node has a time, we can define the set of ‘extant’ lineages \( A(t) \) at a particular time \( t \) to be the set of nodes occurring after time \( t \) with a direct ancestor before time \( t \),

\[ A(t) = \{ v \in N | \exists (u, v) \in \mathcal{E}, \tau(u) < t \leq \tau(v) \}. \]

We might also refer to the number of extant lineages at time \( t \), \( a(t) = |A(t)| \), and if considering the number of extant lineages within a particular clade ancestral to (and including) \( X \) we write

\[ a_X(t) = |A(t) \cap B_X|. \]
Non-parametric test for a given pair of clades

With the above notation, the rank-sum statistic can now be defined which will form the basis for subsequent statistical tests and can be used to compare any pair of clades in the tree.

Let $X$ and $Y$ represent disjoint sets of tips as represented in Figure 2B-D. Having sorted the nodes according to time and assigned a corresponding rank to each internal node, this statistic computes the sum of ranks in a given clade in comparison to a different clade:

$$\rho(X|Y) = \sum_{i=1}^{K} i \mathbf{1}_{D_X \setminus D_Y}(w_i),$$

where $S_{X,Y} = (w_1, w_2, \ldots, w_K)$ is the sequence of internal nodes in $D_X \cup D_Y$ sorted by time (present to past), and $\mathbf{1}_A(u)$ is an indicator that takes the value 1 if $u \in A$ and is zero otherwise. Note that $\rho(X|Y)$ is asymmetric in $X$ and $Y$. Also note that $\rho(X|Y)$ makes use of $D_X, D_Y$ and not $B_X, B_Y$ because we are interested in the relative ordering of coalescent events among lineages of $X$ and $Y$. Only the ordering of the events matter, the absolute times are immaterial to the test.

Under a neutral coalescent process, the distribution of coalescent times in two clades ancestral to $X$ and $Y$ will depend on the number of extant lineages through time in both clades and on the effective population size $N_e(t)$ [Wakeley 2009]. However, the distribution of the relative ordering of coalescent times only depends on the sizes of the clades. This distribution can be computed rapidly by Monte-Carlo simulation as shown below, provided that we know the probability that the next coalescent will be in $X$ or $Y$ as a function of the number of lineages ancestral to $X$ and $Y$, given by $a_X(t)$ and
a_Y(t). We here provide new theoretical results on the distribution of the relative ordering of coalescence times under the null hypothesis that both B_X and B_Y are clades within a single tree generated by a neutral unstructured coalescent process. In the following we consider three different scenarios.

**Event E_1.** Suppose that a clade B_X has a MRCA before any tip of X shares a common ancestor with the clade of another set of tips Y, disjoint to X. After lineages in X have found a common ancestor, the MRCA of X may or may not coalesce with lineages in B_Y before Y has found a common ancestor. Figures 2B-C illustrates trees that satisfies this condition. Note that in Figure 2B, a lineage in Y coalesces with the MRCA of X before lineages in Y find a MRCA and in Figure B, both X and Y have a common ancestor before they find a common ancestor with one another.

Observing a taxonomic pattern such as shown in Figures 2B-C is a random event in a stochastic unstructured coalescent process, and we denote this event by E_1 (suppressing X and Y for convenience). Wiuf and Donnelly (Wiuf and Donnelly 1999) showed that the probability of observing E_1, given the state of the tree at a particular time t, only depends on the number of lineages z = a_X(t) and w = a_Y(t),

\[
Q_1(z, w) = \frac{2(z - 1)!w!}{(z + w - 1)!(z + 1)}, \quad z, w \geq 1.
\]  

The numbers of extant lineages in B_X (or its complement) following each coalescent event conditional on E_1 is a Markov chain. The transition probabilities of this chain are exactly those needed to simulate the null distribution of the test statistic \( \rho(X|Y) \). The probability that the next coalescent event is among lineages in the clade B_X given E_1 (starting at a particular time t) and the current ancestral number of lineages of X, say z,
Figure 2: Coalescent trees for illustrating taxonomic relationships and notation used throughout the text. In panel A, the shape and colour of nodes correspond to the variables $B_X, D_X,$ and $C_{\text{MRCA}(X)}$ in relation to the set of tips $X = \{x_1, x_2, x_3\}$. All circles regardless of colour correspond to $C_{\text{MRCA}(X)}$. All filled shapes (red or black, square or circle) correspond to $B_X$. Note that this includes nodes ancestral to the MRCA of $X$. All red filled circles correspond to $D_X$. Two coalescent events occur among nodes in $D_X$ at times $t_1$ and $t_2$. Panels B-D show a coalescent tree and examples of potential taxonomic relationships between two clades. Prior knowledge of taxonomic relationships between $X$ and $Y$ influences the probability that the next coalescent event will be observed in clade $X$. 
and $Y$, say $w$, was found by Wiuf and Donnelly (Wiuf and Donnelly 1999):

$$ (z, w) \rightarrow (z - 1, w) \quad \text{with probability} \quad \frac{z + 1}{z + w}. \quad (3) $$

**Event $E_2$.** We further derive analogous probabilities under slightly different conditions. Suppose we have disjoint sets of tips, $X$ and $Y$. Let all lineages in $X$ share a common ancestor before any share a common ancestor with $Y$ and vice versa, all lineages in $Y$ share a common ancestor before any share a common ancestor with tips in $X$. Figure 2C illustrates a tree and two clades that satisfy this condition, which we denote by $E_2$. As before, the number of ancestors in $B_X$ and $B_Y$ will form a Markov chain, conditional on $E_2$.

The probability that the next coalescent event is among lineages in the clade $B_X$ given $E_2$ at a particular time $t$ and the current ancestral number of lineages of $X$, $z = a_X(t)$, and $Y$, $w = a_Y(t)$, can be given as:

$$ (z, w) \rightarrow (z - 1, w) \quad \text{with probability} \quad \frac{z - 1}{z + w - 2}, \quad z, w \geq 1. \quad (4) $$

To see this, note that without conditioning on $E_2$, the probability that the next coalescent is among ancestral nodes in $B_X$ is

$$ \frac{z(z - 1)}{(z + w)(z + w - 1)}. $$

This is simply the ratio of the coalescent rates in $B_X$, which is $\left(\frac{z}{2}\right)/N_e(t)$, to the rate in $B_X \cup B_Y$, which is $\left(\frac{z + w}{2}\right)/N_e(t)$. The effective population size is homogenous through the tree by hypothesis of the statistical test, and it cancels out in this ratio. The probability that the coalescent event would be
between the clades ancestral to X and Y would be

\[ \frac{2zw}{(z+w)(z+w-1)} \]

The probability \( Q_2(z, w) \) of the event \( E_2 \) must fulfil the recursion,

\[
(z + w)(z + w - 1)Q_2(z, w) = z(z - 1)Q_2(z - 1, w) + w(w - 1)Q_2(z, w - 1),
\]

where \( z, w \geq 1 \). If there is exactly one lineage in both \( B_X \) and \( B_Y \), then \( Q_2(1, 1) = 1 \). If there is one lineage remaining in \( B_X \) and \( w > 1 \) in \( V_Y \), then \( Q_2(1, w) \) is the probability that the next \( w - 1 \) coalescent events only occur between lineages in \( B_Y \) and do not include the single lineage ancestral to \( X \).

The probability of the next coalescent event being in \( B_Y \) is the probability of not selecting the \( B_X \) lineage when sampling two extant lineages without replacement:

\[
Q_2(1, w) = \frac{2}{w(w+1)}, \quad w \geq 1.
\]

Similarly, \( Q_2(z, 1) = \frac{2}{z(z+1)}, \quad z \geq 1 \). This recursion can be solved explicitly to give

\[
Q_2(z, w) = \frac{2zw!}{(z+w)!}, \quad z, w \geq 1.
\]

Now the transition probability (Equation \ref{eq:transition}) can be defined in terms of the
rate of coalescence in $B_X$ and $B_Y$ and the probability of $E_2$ being satisfied following the coalescent event:

$$(z, w) \rightarrow (z - 1, w) \text{ with probability } \frac{z(z - 1)Q_2(z - 1, w)}{z(z - 1)Q_2(z - 1, w) + w(w - 1)Q_2(z, w - 1)} = \frac{z - 1}{z + w - 2}. \quad (8)$$

**Event $E_3$.** Finally, we consider an event that is a combination of the scenarios described by events $E_1$ and $E_2$. We denote $E_3$ to be the event that all $X$ have a MRCA before sharing a common ancestor with lineages of $Y$ and/or *vice versa*, all lineages in $Y$ have a MRCA before sharing an ancestor with lineages of $X$. The trees in Figures 2B-D satisfy this condition.

The probability of the event $E_3$ might be defined in terms of $Q_1$ and $Q_2$ given previously:

$$Q_3(z, w) = Q_1(z, w) + Q_1(w, z) - Q_2(z, w)$$

$$= \frac{2zw!}{(z + w - 1)!} \left( \frac{1}{z(z + 1)} + \frac{1}{w(w + 1)} - \frac{1}{(z + w)(z + w - 1)} \right), \quad (9)$$

with $z = a_X(t)$ and $w = a_Y(t)$ being sample sizes at a particular time $t$, as before. Note that $Q_2$ is subtracted once in this equation because the taxonomic relationship described by $E_2$ is already included in $E_1$. The function $Q_3$ satisfies the same recursion as above (Equation 5) with slightly different boundary conditions:

$$Q_3(1, w) = Q_3(z, 1) = 1, \quad z, w \geq 1.$$

Transition probabilities can be derived as above by substituting $Q_3$ for $Q_2$ in Equation 8. The probability that the next coalescent event is among lineages
in $D_X$ conditional on $E_3$ is

$$(z, w) \mapsto (z - 1, w)$$

with probability

$$\frac{(z - 1)R_{z-1,w}}{(z - 1)R_{z-1,w} + (w - 1)R_{w,z-1}}, \quad (10)$$

where

$$R_{z,w} = \frac{1}{z(z+1)} + \frac{1}{w(w+1)} - \frac{1}{(z+w)(z+w-1)}, \quad z, w \geq 1. \quad (11)$$

**Algorithms for detecting population structure**

The null distribution of the test statistic $\rho(X,Y)$ can be computed by

Monte-Carlo simulation using Equations 3, 4 or 10 depending on the taxonomic constraints to be conditioned on. This can be computed given any pair of disjoint clades $X$ and $Y$. Algorithm 1 in the Supporting Information provides the simulation procedure for computing the two-sided p-values of an empirical measurement $\hat{R} = \rho(X,Y)$, and we denote these p-values $\xi(X,Y,R)$. The algorithm works by simulating many replicates of the rank-sum statistic conditional on the sets $X$, $Y$, and the taxonomic relationship between these clades. Furthermore, the order of sampling events and coalescent events is part of the data within a time-scaled phylogeny. Thus the simulation procedure does not simulate coalescent trees per se, but rather the number of lineages through time $a_X(t)$ and $a_Y(t)$ by proceeding from the most recent sample back to the MRCA of clades $X$ and $Y$. Upon visiting a node in the ordered sequence of coalescent events, the algorithm selects at random a clade $D_X$ or $D_Y$ for this event using the transition probabilities from Equations 3, 4 or 10. Upon visiting a coalescent event, $a_X(t)$ or $a_Y(t)$ is incremented using the observed clade membership of the sample at that time. The end result of this simulation procedure is a large set of replicate rank-sum statistics which serves as a null distribution for comparison with the value computed from the
time-scaled phylogeny.

While in principle this test allows comparison of any pair of disjoint clades, the number of possible comparisons is vast, and deriving a useful summary of taxonomic structure requires additional heuristic algorithms. These algorithms are designed to stratify clades into self-similar sets and to do so in a computationally efficient manner. Algorithm 2 in the Supporting Information identifies ‘cladistic outliers’, which are clades that have a coalescent pattern that is different from the remainder of the tree. It performs a single pre-order traversal of the tree and greedily adds clades to the partition with the most outlying values of the test statistic. At each node \( u \) visited in pre-order traversal, Algorithm 2 examines all descendants \( v \) in \( C_u \) and compares \( C_v \) with to \( C_u \setminus C_v \). If no outliers are found, the algorithm will desist from searching \( C_u \) and the set of tips \( C_u \cap T \) will be added to the partition. If at least one outlier is found in \( C_u \), a search will begin on the biggest outlier (smallest p-value computed using Algorithm 1). The final result of this algorithm is a partition of \( m \) non-overlapping clades \( M = \{X_1, \cdots, X_m\} \).

In practice, it is often desirable to not compare very small clades against one another or much larger clades, so additional parameters are available to desist the pre-order traversal upon reaching a clade with few descendants. It is also often of practical interest to only compare clades that overlap in time to a significant extent, so yet another parameter is available to desist from comparing a pair of clades if few lineages in the pair ever coexist at any time.

Additional algorithms are required to detect polyphyletic relationships as depicted in Figure 1 which arise if, for example, distantly related lineages colonise the same area and have similar population dynamics or if near-identical fitness-enhancing mutations occur independently on different
lineages. Figure 1 depicts two distantly related clades (yellow and red) with similar population dynamics, and it is desirable to classify these as a single deme based on shared population dynamic history. Algorithm 2 will partition tips of the tree into distinct clades with monophyletic or paraphyletic relationships, however an approach based on pre-order traversal of the tree can not on its own arrive at a polyphyletic partition of the tree. Therefore we can implement a final hierarchical clustering step in order to group similar clades as follows:

1. For each distinct pair of clades $X$ and $Y$ in partition $M$, compute
   
   $q_{XY} = \xi(X, Y, \hat{R}_{XY})$.

2. Convert the p-value into a measure of distance between all clades:
   
   $d_{XY} = |F^{-1}(q_{XY})|$, where $F^{-1}$ is the inverse Gaussian cumulative distribution function (quantile function). Set $d_{XX} = 0$ for all $X$.

3. Perform a conventional hierarchical clustering using a threshold distance $F^{-1}(1 - \alpha/2)$ for confidence level $\alpha$. Various clustering algorithms can be used at this point, and our software has implemented the ‘complete linkage’ algorithm [Everitt et al. 2001].

Algorithms 1 and 2 as well as the final hierarchical clustering step are implemented as an open source R package called treestructure available at https://github.com/emvolz-phyldynamics/treestructure The R package supports parallelisation and includes facilities for tree visualisation using the ggtree package [Yu et al. 2017]. The package provides convenience functions to output cluster and partition assignment for downstream statistical analysis in R.
Simulation studies

To evaluate the potential for *treestructure* to detect outbreaks we applied the new method to phylogenies estimated from newly simulated data using a structured coalescent model, as well as previously published simulation data based on a discrete-event branching process (McCloskey and Poon 2017).

The structured coalescent simulation was based on a model with two demes: a large deme with constant effective population size and a smaller deme which grows exponentially up to the time of sampling. Migration occurs at a constant rate in both directions between the growing and constant-size demes, and equal proportions of these two demes are sampled. Coalescent simulations were implemented using the *phydynR* package [http://github.com/emvolz-phylodynamics/phydynR](http://github.com/emvolz-phylodynamics/phydynR). All genealogies simulated from this model were comprised of 1000 tips with 200 of these sampled from the growing deme. Each of 100 simulations were based on different parameters such that there was a spectrum of difficulty identifying population structure from the trees. The sample proportion was chosen uniformly between 5% and 75% and, the growth rate in the growing deme was chosen uniformly between 5% and 100% per year. Bidirectional migration between demes was fixed at 5% per year. While most tips were sampled at a single time point, 50 tips from the constant-size deme were distributed uniformly through time in order to facilitate molecular clock dating. Multiple sequence alignments were simulated based on trees using *seq-gen* [Rambaut and Grass 1997]. Each sequence comprised 1000 nucleotides from a HKY model with a substitution rate of $10^{-3}$ per site per year. A neighbour joining tree was estimated from each alignment and dated phylogenies estimated using the *treedater* R package [Volz and Frost 2017] with a strict molecular clock. The *treestructure* algorithm was applied to each phylogeny using the default
Previously, McCloskey et al. simulated 100 genealogies from a discrete-event birth-death process \cite{McCloskey2017, Vaughan2013}. These simulations were based on a process with heterogeneous classes of individuals with different birth rates. With some probability, lineages migrate to a class with higher birth rates. This could represent a generic outbreak scenario such as a set of individuals with higher risk behaviour or other exposures. In a separate set of simulations, the outbreak population differs from the main population along multiple dimensions: the birth rate and the sampling rate are both increased by a common factor ($5 \times$). 100 genealogies were simulated under both scenarios and the treestructure algorithm was applied to each. To create more challenging conditions for the method and to evaluate the sensitivity of the method to sample coverage, we also applied the method to genealogies based on subsampled lineages with a frequency of 25%. Complete descriptions of parameters and simulation methods can be found in \cite{McCloskey2017}.

The performance of treestructure was evaluated using the normalised mutual information (NMI) statistic and adjusted Rand index (ARI) computed using the aricode R package \url{https://github.com/jchiquet/aricode} \cite{Vinh2010}. Both statistics quantify the strength of association between the estimated and actual structure of the tree, with larger values corresponding to higher quality reconstructions.
Figure 3: The normalised mutual information (NMI) and adjusted Rand index (ARI) as a function of classifications from several tree-partitioning algorithms and membership of lineages in outbreaks or a constant-size reservoir. Each point corresponds to a structured coalescent simulation where 20% of tips are sampled from an exponentially growing outbreak.

Figure 4: Entropy ($H$) of classification from several tree partitioning algorithms applied to the structured coalescent simulations but only counting lineages sampled from the exponentially growing outbreak.
Results

Simulation studies

The treestructure algorithm achieves relatively high fidelity of classifications in comparison to other methods in the structured coalescent simulations which included 20% of samples from a rapidly growing outbreak. Figure 3 compares three methods according to the NMI and ARI statistics. In these figures, the partition of the tree computed by each method is compared to the true membership of each sampled lineage in outbreak or in the constant-size reservoir population. Across 100 simulations, treestructure has mean ARI of 41% (IQR: 20-57%). The FastBAPS method [Tonkin-Hill et al. 2019] has mean ARI of 2.3% (IQR:1.2-3.3%) and the CLMP method [McCloskey and Poon 2017] has mean ARI 5.2% (IQR:-1-7.5%).

The relatively lower performance of CLMP and FastBAPS in these comparisons is largely a consequence of false-positive partitioning of samples from the reservoir population, but CLMP and FastBAPS usually correctly identify a clade that closely corresponds to the outbreak. In contrast, the treestructure method seldom sub-divides clades from the reservoir. Figure 4 compares the entropy of partition assignments only within lineages sampled from the outbreak. This shows that all methods are assigning outbreak lineages to a small number of partitions and no method is clearly superior by this metric. The CLMP method has the lowest entropy (mean 40%) but also several large outliers. treestructure has higher entropy (mean 57%) but few outliers, and FastBAPS is intermediate.

The performance of all methods depended on the sample density and growth rate of the outbreak. Fast growing outbreaks are easier to detect by all methods but the role of sample density is more ambiguous. The Pearson correlation of ARI with growth rate is $\rho = 53\%$, 27\%, 71\% for treestructure,
Figure 5: The adjusted Rand index for 100 previously published simulations (McCloskey and Poon 2017). This describes accuracy of classification of tips into outbreaks using the treestructure method and CLMP. Results on left were based on simulations where both transmission and sampling rates varied in the outbreak cluster, whereas simulations on the right only allowed transmission rates to vary.

CLMP and FastBAPS respectively. Not all methods are equally sensitive to these parameters however and FastBAPS is especially sensitive to growth and sample density. The growth rate and sample density collectively explain 41%, 28% and 60% of variance of ARI in treestructure, CLMP and FastBAPS respectively.

We also performed analyses with Phydelity (Han et al. 2018) (results not shown), a recently proposed method for transmission cluster identification. This tended to generate a very large number of clusters, both within and outside of the outbreak demes, reflecting a different emphasis of this method on finding closely related clusters rather than addressing differences in macro-level population structure. Thus, results with Phydelity and other clustering methods were not easily comparable to treestructure.

Figure 5 shows performance of treestructure on previously published tree simulations (McCloskey and Poon 2017). These simulations differ from the structured coalescent simulations because both the reservoir and outbreak demes are growing exponentially at different rates. The birth rate in the
outbreak deme is 5-fold the birth rate in the reservoir, but in one set of simulations, both the birth rate and sampling rate in the outbreak was also increased 5-fold. In these simulations, the performance of treestructure (median ARI 56%) is slightly lower than the CLMP method (McCloskey and Poon 2017) (median ARI 83%) when only the birth-rate differs in the outbreak deme. However treestructure maintains good performance when death and sampling rates also differ. In that case, treestructure has median ARI 42% and CLMP has median ARI 0%. The difficulty of detecting outbreaks with different sampling patterns was previously highlighted as a challenge for CLMP (McCloskey and Poon 2017).

Clonal expansion of drug-resistant *N. gonorrhoeae*

We examined the role of evolution of antimicrobial resistance in shaping the phylogenetic structure of *N. gonorrhoeae* using 1102 previously described whole genome sequences (Grad et al. 2016). These isolates were collected from multiple sites in the United States between 2000 and 2013 and featured clonal expansion of lineages with antibiotic resistance to different classes of antibiotics. We estimated a maximum likelihood tree using PhyML (Guindon et al. 2010) and corrected for the distorting effect of recombination using ClonalFrameML (Didelot and Wilson 2015). We estimated a rooted time-scaled phylogeny using treedater (Volz and Frost 2017). A relaxed clock model was inferred, with a mean rate of $4.6 \times 10^{-6}$ substitutions per site per year. BactDating (Didelot et al. 2018) was also applied for the same purpose and found to give very similar estimates for the clock rate and dating of clades.

We focus on the origin and expansion of two clades which independently developed resistance to cefixime (CFX) by acquiring the mosaic *penA* XXXIV allele (Grad et al. 2016). These clades are indicated in Figure 6.
Note, however, that the level of susceptibility to CFX varies, particularly in the larger of these two clades. In one lineage within this clade, the mosaic penA XXXIV allele was replaced by recombination with an allele associated with susceptibility. Other isolates within this clade gained mutations that further modified the extent of resistance. The larger of these two clades emerged on a genomic background that is resistant to ciprofloxacin (CIP), so that it has reduced susceptibility to both CIP and CFX. The smaller of the two clades is resistant to CFX but not CIP. We therefore extracted a tree with just 576 tips, representing the genomes from these two CFX-resistant clades as well as genomes from the two clades that are most closely related to the two CFX-resistant clades. The output of treestructure is shown in Figure 6, using unique colours to highlight each of the 11 clusters that were identified with α = 1%. The clusters reported by treestructure are highly correlated with CFX resistance. Among all distinct pairs of sampled isolates, 84% share the same resistance profile and cluster membership.

We compared treestructure with a different method for detecting community structure, FastBAPS (Tonkin-Hill et al. 2019), since BAPS models are often applied to bacterial pathogens. We applied FastBAPS using the same time-scaled phylogeny described previously and using a trimmed sequence alignment consisting of 38830 polymorphic sites and removing sites with many gaps. This produced a similar partition of the tree (Figure S2) with a few differences: FastBAPS clusters overlap exactly with the clade featuring dual resistance (CIP and CFX), whereas treestructure classified a small number of deep-splitting lineages into a different cluster. Note however that this behaviour is not necessarily problematic, and may represent a progressive increase in fitness following the acquisition of resistance through the evolution of compensatory mutations (Dide lot et al. 2016). On the other
hand, FastBAPS failed to identify the smaller clade with resistance to CFX and not CIP and instead grouped that clade with its drug-sensitive sister clade. In general, treestructure found many more clusters within the sister clades and FastBAPS tended to group these together. We also applied the much more computationally intensive RhierBAPS method (Tonkin-Hill et al. 2018), and obtained almost identical results to FastBAPS. Overall, BAPS methods appear to give greater weight to long internal branches when identifying clusters than treestructure.

Epidemiological transmission patterns of HIV-1

We reanalysed a time-scaled phylogeny reconstructed from 2068 partial pol HIV-1 subtype B sequences collected from Tennessee between 2001 and 2015 (Dennis et al. 2018). Each lineage within this phylogeny corresponds to a single HIV patient sampled at a single time point, and various clinical and demographic covariate data concerning these patients can be associated with each lineage. In the original study, these sequence data were used to show high rates of transmission among young (age < 26.4) men who have sex with men (MSM) (Dennis et al. 2018). Clustering by threshold genetic distance is often used in HIV epidemiology (Dennis et al. 2014) and indicated that young white MSM had the highest odds of clustering.

We applied the treestructure algorithm with default settings to the time-scaled tree which yielded ten partitions with sizes ranging from 58 to 398. The tree and partitions are shown in Figure 7 where partitions are labeled according to the median year of birth among patients in each partition. Many of these partitions were polyphyletic, suggesting possible multiple importations of lineages to specific risk groups. We then compared the estimated partition of the tree with patient covariates. A particular partition stands out along
Figure 6: A time-scaled phylogeny based on 576 whole genomes of *N. gonorrhoeae*, comprising two clades with reduced susceptibility to cefixime (CFX) and their two sister clades. The top clade also has resistance to ciprofloxacin (CIP). Different colours on the tree represent the partition detected using the *treestructure* algorithm.
multiple dimensions: it is the smallest (size 58), polyphyletic, arose in the recent past, and is characterised by very young MSM. The median year of birth in this partition is 1987, in stark contrast to the rest of the sample with year of birth in the 1970s. Clades within this young partition are also nested paraphyletically under other relatively young partitions (cf. Figure 7).

We did not find a significant association between the tree partition and residential postal codes (Tukey analysis of variance, \( p = 0.097 \)). This is in agreement with the original study which found minimal impact of geography on genetic clustering in this sample, however this is largely a consequence of the highly concentrated nature of the sample around Nashville. The ethnicity of patients (black, white, and other) was strongly associated with the estimated partition. Black MSM were strongly concentrated in the 1987 partition in particular (83% in contrast to 26-38% in all other partitions). The odds ratio of black ethnicity given membership in the 1987 partition was 9.7 (95% CI: 5.2-19.8).

Finally, we applied phylodynamic analysis methods to see if the partition structure supported the previously published findings that young MSM were transmitting at a higher rate (Dennis et al. 2018). To estimate \( N_e \) through time, we used the nonparametric \textit{skygrowth} R package (Volz and Didelot 2018). We estimated \( N_e(t) \) for each partition individually using a range of precision parameters which control the smoothness (\( \tau \)) of the estimated trajectories since we lack a priori information about volatility of these trajectories. Figure 8 shows \( N_e(t) \) for each partition with \( \tau = 10 \) and supporting Figures S3 and S4 show results using different values of \( \tau \). The 1987 partition again stands out as the only group which shows evidence of recent and rapid population growth. Less dramatic recent periods of growth are also noticeable for other partitions with young patients. The current
Figure 7: A time-scaled phylogeny estimated from HIV-1 pol sequences in Tennessee (Dennis et al. 2018). The colours correspond to the ten partitions identified using the treestructure algorithm. Several partitions are annotated with the median year of birth of HIV patients from whom sequences were sampled. Partitions lacking annotation had years of birth 1969-1972.
exponential growth in the 1987 partition is not consistent across all analyses, but when $\tau < 10$ we find $N(t)$ drops precipitously in 2014-2015 (Figure S3). However, this could also be an artefact of non-random sampling and inclusion of transmission pairs within the sample.

This analysis supports the hypothesis that there has been a recent and rapid rise of HIV transmissions among young MSM in Tennessee and in particular among young black MSM. This interpretation is mostly in agreement with the original study (Dennis et al. 2018), but we find that black MSM are a group at greater risk than young white MSM.

Discussion

Contrasting the distribution of ordering of nodes provides a natural criterion for distinguishing clades within a time-scaled phylogeny which are shaped by different evolutionary or demographic processes. The non-parametric nature of this classification method imposes minimal assumptions on the mechanisms that generate phylogenetic patterns. Thus, we have found this method maintains good performance over a diverse range of situations where phylogenetic structure is produced, including differential transmission rates, epidemiological outbreaks, evolution of beneficial mutations, and differential sampling patterns. Our work is related to the research on species delimitation methods (see for example (Zhang et al. 2013)) although targeted at within-species variation, and is also related to recent work on methods for detecting co-diversification of species (Oaks et al. 2019). This method appears relatively robust compared to other methods against false-positive identification of phylogenetic structure, but nevertheless has good sensitivity for detecting structure in most situations.

There are many immediate applications of this method in the area of
Figure 8: Estimated effective population size through time for each partition in the Tennessee HIV-1 phylogeny. Each panel is annotated with the median year of birth among HIV patients in each partition. $N_e(t)$ was estimated using the skygrowth method (Volz and Didelot 2018) with precision parameter $\tau = 10$. 
pathogen evolution where time-scaled phylogenetics is increasingly used in epidemiological investigations (Biek et al. 2015). We have demonstrated the role of natural selection in shaping phylogenetic structure of *N. gonorrhoeae*, and our method clearly identifies clades which expanded in the recent past due to acquisition of antimicrobial resistance. We have demonstrated the role of human demography and transmission patterns in shaping the evolution of HIV-1, and our method has shown distinct outbreaks of HIV-1 in specific groups defined by age, race, and behaviour. Furthermore, we have shown how clades detected by this method can be analysed using phylodynamic methods that can yield additional insights into recent outbreaks or the mechanisms which generated phylogenetic structure. For example, we have applied non-parametric methods to estimate the effective population size through time in HIV outbreaks detected using *treestructure* which highlighted particular groups that appear to be at higher risk of transmission. Such analyses would be more problematic using other partitioning or clustering algorithms because phylogenetic clusters can appear by chance in homogeneous populations of neutrally evolving pathogens, and this can give the false appearance of recent growth (Dearlove et al. 2017). This application of phylodynamics analysis methods is possible because the statistical test used in *treestructure* provides theoretical justification for treating each partition as a separate unstructured population.

Applications of the *treestructure* algorithms are scalable to relatively large phylogenies. The main algorithms require only a single pre-order traversal of the tree and all of the computations presented here required less than one minute to run. The method is based on a time-scaled phylogeny, and the computational burden of this preliminary step is typically higher than that of running *treestructure*, even though significant progress has been made.
recently is this area (Volz and Frost 2017; Didelot et al. 2018; Sagulenko et al. 2018; Tamura et al. 2018; Miura et al. 2019). Future developments of `treestructure` and other methods post-processing time-scaled phylogenies (Volz and Didelot 2018; Didelot et al. 2017) should address the uncertainty in the input phylogeny, for example by accounting for bootstrap or Bayesian support values for phylogenetic splits, or by summarising results from multiple trees.

**Funding.** Research reported in this publication was supported by the National Institute of Allergy and Infectious Diseases of the National Institutes of Health under Award Number R01-AI135970 (EV, AD, SDWF). EV and XD acknowledge funding from the UK Medical Research Council (MR/R015600/1) and the National Institute for Health Research (NIHR) Health Protection Research Unit in Modelling Methodology (HPRU-2012-10080). SDWF was also supported in part by The Alan Turing Institute via an Engineering and Physical Sciences Research Council Grant (EP/510129/1).

**References**


De Maio, N., C. J. Worby, D. J. Wilson, and N. Stoesser. 2018. Bayesian
reconstruction of transmission within outbreaks using genomic variants.


Lam, T. T.-Y., B. Zhou, J. Wang, Y. Chai, Y. Shen, X. Chen, C. Ma, W. Hong, Y. Chen, Y. Zhang, L. Duan, P. Chen, J. Jiang, Y. Zhang, L. Li,


from genomic data: Inferring shared demographic events is challenging.


**Data:** 1) Disjoint sets of tips $X$ and $Y$
2) Empirical value of test statistic $\hat{R}$
3) Number of simulations $n_{sim}$
4) Taxonomic condition $E$ (see Equations 3, 4 or 10)

**Result:** Two-sided p-value denoted $q = \xi(X, Y, \hat{R})$.

**Initialisation:**
Form a time-ordered sequence of nodes

$$U = (u_1, \cdots, u_{|D_X|+|D_Y|}) | u_i \in (D_X \cup D_Y), \tau(u_i) \geq \tau(u_{i+1})$$

Form a corresponding numeric sequence:

$$\Upsilon = (\upsilon_1, \cdots, \upsilon_{|D_X|+|D_Y|})$$

where

$$\upsilon_i = \begin{cases} 1 & \text{if } u_i \in X \\ -1 & \text{if } u_i \in Y \\ 0 & \text{if } u_i \in (D_X \cup D_Y) \cap I \end{cases}$$

for $k = 1$ to $n_{sim}$ do

- $z \leftarrow 0$ (simulated lineages through time in clade $X$)
- $w \leftarrow 0$ (simulated lineages through time in clade $Y$)
- $r_{sim} \leftarrow 0$ (simulated rank-sum statistic)
- $c \leftarrow 0$ (number of coalescent events simulated)

for $i = 1$ to $|D_X| + |D_Y|$ do

- if $\upsilon_i = 1$ then
  - Account for sample in $X$: $z \leftarrow z + 1$
- if $\upsilon_i = -1$ then
  - Account for sample in $Y$: $w \leftarrow w + 1$
- if $W_i = 0$ then
  - Increment coalescent counter: $c \leftarrow c + 1$
  - Compute probability $\tilde{p} = \tilde{Q}_E(z, w)$ that next coalescent is in $D_X$ or $D_Y$ using Equation 3, 4 or 10
  - Draw a random uniform variable $\omega \leftarrow \text{Unif}(0, 1)$
  - if $\omega < \tilde{p}$ then
    - $z \leftarrow z - 1$
    - $r_{sim} \leftarrow r_{sim} + c$
  - else
    - $w \leftarrow w - 1$

end

Record simulated statistic:

$$R_k \leftarrow r_{sim}$$

end

Compute number of simulations more and less than empirical value:

$$m_+ \leftarrow |\{r' \in R_k | r' > \hat{R}\}|$$
$$m_- \leftarrow |\{r' \in R_k | r' < \hat{R}\}|$$

Return $\min(m_+, m_-)$.

**Algorithm 1:** Algorithm for computing the null distribution and associated p-value of the test-statistic for cladistic outliers.
Data: Time-scale genealogy $\mathcal{G}$

Result: Partition of tips of tree, denoted $M$.

Initialise ‘active set’ to consist of root node: $\Omega \leftarrow \{ \text{root} \}$

Initialise partition: $M \leftarrow \emptyset$ 

for $u \in \mathcal{I}$ (internal nodes) do

| Initialise $\tilde{C}_u \leftarrow C_u$ ; |

end

while $|\Omega| > 0$ do

| Initialise $\Omega' \leftarrow \Omega$ ; |

for $u \in \Omega$ do

| Find biggest outlier descended from $u$: $v^* \leftarrow \arg\max_{v \in C_u} f(v) = \xi(\tilde{C}_u \setminus \tilde{C}_v, \tilde{C}_v)$ (Algorithm 1) ; |

| $q \leftarrow \xi(\tilde{C}_u, \tilde{C}_{v^*})$ ; |

| if $q < \alpha$ then |

| $\Omega' \leftarrow \Omega' \cup v^*$ ; |

| $\tilde{C}_u \leftarrow \tilde{C}_u \setminus C_{v^*}$ ; |

| else |

| No significant outliers, so remove $u$ from active sets: $\Omega' \leftarrow \Omega' \setminus u$ ; |

| Add the clade descended from $u$ to the partition: $M \leftarrow M \cup \{(T \cap \tilde{C}_u)\}$ ; |

| end |

end

$\Omega \leftarrow \Omega'$.

end

Return $M$.

Algorithm 2: Algorithm for detecting cladistic outliers.
Figure S1: The normalised mutual information (NMI) for 100 previously published simulations [McCloskey and Poon 2017]. This describes accuracy of classification of tips into outbreaks using the treestructure method and CLMP [McCloskey and Poon 2017]. Results on left were based on simulations where both transmission and sampling rates varied in the outbreak cluster, whereas simulations on the right only allowed transmission rates to vary.

Figure S2: The output of FastBAPS classification applied to 1102 N. gonorrhoeae isolates described in the main text. Clades indicated in green have CFX resistance.
Figure S3: Estimated effective population size through time for each partition in the Tennessee HIV-1 phylogeny. $N_e(t)$ was estimated using the `skygrowth` method (Volz and Didelot 2018) with precision parameter $\tau = 1$. 

[817-820]: The referenced material is not shown in the image.
Figure S4: Estimated effective population size through time for each partition in the Tennessee HIV-1 phylogeny. $N_e(t)$ was estimated using the *skygrowth* method (Volz and Didelot 2018) with precision parameter $\tau = 100$. 