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Summary10

In adult dentate gyrus neurogenesis, the link between maturation of newborn11

neurons and their function, such as behavioral pattern separation, has remained12

puzzling. By analyzing a theoretical model, we show that the switch from excita-13

tion to inhibition of the GABAergic input onto maturing newborn cells is crucial14

for their proper functional integration. When the GABAergic input is excitatory,15

cooperativity drives the growth of synapses such that newborn cells become sen-16

sitive to stimuli similar to those that activate mature cells. When GABAergic17

input switches to inhibitory, competition pushes the configuration of synapses18

onto newborn cells towards stimuli that are different from previously stored ones.19

This enables the maturing newborn cells to code for concepts that are novel, yet20

similar to familiar ones. Our theory of newborn cell maturation explains both21

how adult-born dentate granule cells integrate into the preexisting network and22

why they promote separation of similar but not distinct patterns.23

Introduction24

In the adult mammalian brain, neurogenesis, the production of new neurons,25

is restricted to a few brain areas, such as the olfactory bulb and the dentate26

gyrus (Deng et al., 2010). The dentate gyrus is a major entry point of input from27

cortex, primarily entorhinal cortex (EC), to the hippocampus (Amaral et al.,28
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2007), which is believed to be a substrate of learning and memory (Jarrard,29

1993). Adult-born cells in dentate gyrus mostly develop into dentate granule30

cells (DGCs), the main excitatory cells that project to area CA3 of hippocam-31

pus (Deng et al., 2010).32

The properties of rodent adult-born DGCs change as a function of their mat-33

uration stage, until they become indistinguishable from other mature DGCs at34

approximately 8 weeks (Deng et al., 2010; Johnston et al., 2016) (Fig. 1a). Many35

of them die before they fully mature (Dayer et al., 2003). Their survival is36

experience-dependent, and relies upon NMDA receptor activation (Tashiro et al.,37

2006). Initially, newborn DGCs have enhanced excitability (Schmidt-Hieber et al.,38

2004; Li et al., 2017) and stronger synaptic plasticity than mature DGCs, reflected39

by a larger LTP amplitude and a lower threshold for induction of LTP (Wang40

et al., 2000; Schmidt-Hieber et al., 2004; Ge et al., 2007). Furthermore, after 441

weeks of maturation adult-born DGCs have only weak connections to interneu-42

rons, while at 7 weeks of age their activity causes indirect inhibition of mature43

DGCs (Temprana et al., 2015).44

Newborn DGCs receive no direct connections from mature DGCs (Deshpande45

et al., 2013; Alvarez et al., 2016) (yet see (Vivar et al., 2012)), but are indirectly ac-46

tivated via interneurons (Alvarez et al., 2016; Heigele et al., 2016). At about three47

weeks after birth, the γ-aminobutyric acid (GABAergic) input from interneurons48

to adult-born DGCs switches from excitatory in the early phase to inhibitory in49

the late phase of maturation (Ge et al., 2006; Deng et al., 2010) (’GABA-switch’,50

Fig. 1a). Analogous to a similar transition during embryonic and early postnatal51

stages (Wang and Kriegstein, 2010), the GABA-switch is caused by a change in52

the expression profile of chloride cotransporters. In the early phase of matura-53

tion, newborn cells express the Na+-K+-2Cl− cotransporter NKCC1, which leads54

to a high intracellular chloride concentration. Hence the GABA reversal potential55

is higher than the resting potential (Ge et al., 2006; Heigele et al., 2016), and56

GABAergic inputs lead to Cl− ions outflow through the GABAA ionic receptors,57

which results in depolarization of the newborn cell (Ben-Ari, 2002; Owens and58

Kriegstein, 2002). In the late phase of maturation, expression of the K+-Cl−-59

coupled cotransporter KCC2 kicks in, which lowers the intracellular chloride con-60

centration of the newborn cell to levels similar to those of mature cells, leading61

to a hyperpolarization of the cell membrane due to Cl− inflow upon GABAergic62

stimulation (Ben-Ari, 2002; Owens and Kriegstein, 2002). The transition from de-63

polarizing (excitatory) to hyperpolarizing (inhibitory) effects of GABA is referred64

to as the ’GABA-switch’. It has been shown that GABAergic inputs are crucial65

for the integration of newborn DGCs into the preexisting circuit (Ge et al., 2006;66

Chancey et al., 2013; Alvarez et al., 2016; Heigele et al., 2016).67

The mammalian dentate gyrus contains – just like hippocampus in general –68

a myriad of inhibitory cell types (Freund and Buzsáki, 1996; Somogyi and Klaus-69
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berger, 2005; Klausberger and Somogyi, 2008) including basket cells, chandelier70

cells, and hilar cells. Basket cells can be subdivided in two categories: some ex-71

press cholecystokinin (CCK) and vasoactive intestinal polypeptide (VIP), while72

the others express parvalbumin (PV) and are fast-spiking (Freund and Buzsáki,73

1996; Amaral et al., 2007). Chandelier cells also express PV (Freund and Buzsáki,74

1996). Overall, it has been estimated that PV is expressed in 15-21% of all dentate75

GABAergic cells (Freund and Buzsáki, 1996), and in 20-25% of the GABAergic76

neurons in the granule cell layer (Houser, 2007). Amongst the GABAergic hilar77

cells, 55% express somatostatin (SST) (Houser, 2007) [and somatostatin-positive78

interneurons (SST-INs) represent about 16% of the GABAergic neurons in the79

dentate gyrus as a whole (Freund and Buzsáki, 1996)]. While axons of hilar in-80

terneurons (HIL) (Yuan et al., 2017) stay in the hilus and provide perisomatic inhi-81

bition onto dentate GABAergic cells (Yuan et al., 2017), axons of hilar-perforant-82

path-associated interneurons (HIPP) extend to the molecular layer and provide83

dendritic inhibition onto both DGCs and interneurons (Yuan et al., 2017). HIPP84

axons generate lots of synaptic terminals and extend as far as 3.5 mm along the85

septotemporal axis of the dentate gyrus (Amaral et al., 2007). PV-expressing86

interneurons (PV-INs) and SST-INs both target adult-born DGCs early (after87

2-3 weeks) in their maturation (Groisman et al., 2020). PV-INs provide both88

feedforward inhibition and feedback inhibition (also called lateral inhibition) to89

the DGCs (Groisman et al., 2020). In general, SST-INs provide lateral, but not90

feedforward, inhibition onto DGCs (Stefanelli et al., 2016; Groisman et al., 2020).91

Adult-born DGCs are preferentially reactivated by stimuli similar to the ones92

they experienced during their early phase of maturation, up to 3 weeks after cell93

birth (Tashiro et al., 2007). Even though the amount of newly generated cells per94

month is rather low (3 to 6% of the total DGCs population (Van Praag et al.,95

1999; Cameron and McKay, 2001)), adult-born DGCs are critical for behavioral96

pattern separation (Clelland et al., 2009; Sahay et al., 2011a; Jessberger et al.,97

2009), in particular in tasks where similar stimuli or contexts have to be discrim-98

inated (Clelland et al., 2009; Sahay et al., 2011a). However, the functional role99

of adult-born DGCs is controversial (Sahay et al., 2011b; Aimone et al., 2011).100

One view is that newborn DGCs contribute to pattern separation through a mod-101

ulatory role (Sahay et al., 2011b). Another view suggests that newborn DGCs102

act as encoding units that become sensitive to features of the environment which103

they encounter during a critical window of maturation (Kee et al., 2007; Tashiro104

et al., 2007). Some authors have even challenged the role of newborn DGCs in105

pattern separation in the classical sense and have proposed a pattern integration106

effect instead (Aimone et al., 2011). Within that broader controversy, we ask two107

specific questions: First, why are GABAergic inputs crucial for the integration108

of newborn DGCs into the preexisting circuit? And second, why are newborn109

DGC particularly important in tasks where similar stimuli or contexts have to be110

discriminated?111
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To address these questions, we present a model of how newborn DGCs inte-112

grate into the preexisting circuit. In contrast to earlier models where synaptic113

input connections onto newborn cells were assumed to be strong enough to drive114

them (Chambers et al., 2004; Becker, 2005; Crick and Miranker, 2006; Wiskott115

et al., 2006; Chambers and Conroy, 2007; Aimone et al., 2009; Appleby and116

Wiskott, 2009; Weisz and Argibay, 2009, 2012; Temprana et al., 2015; Finnegan117

and Becker, 2015; DeCostanzo et al., 2019), our model uses an unsupervised bi-118

ologically plausible Hebbian learning rule that makes synaptic connections either119

disappear or grow from small values at birth to values that eventually enable120

feedforward input from EC to drive DGCs. Contrary to previous modeling stud-121

ies, our plasticity model does not require an artificial renormalization of synaptic122

connection weights since model weights are naturally bounded by homeostatic123

heterosynaptic plasticity. We show that learning with a biologically plausible plas-124

ticity rule is possible thanks to the GABA-switch, which has been overlooked in125

previous modeling studies. Specifically the growth of synaptic weights from small126

values is supported in our model by the excitatory action of GABA whereas, after127

the switch, specialization of newborn cells arises from competition between DGCs,128

triggered by the inhibitory action of GABA. Furthermore, our theory of adult-129

born DGCs integration yields a transparent explanation of why newborn cells130

favor pattern separation of similar stimuli, but do not impact pattern separation131

of distinct stimuli.132

Results133

We model a small patch of cells within dentate gyrus as a recurrent network of 100134

DGCs and 25 GABAergic interneurons, omitting the Mossy cells for the sake of135

simplicity (Fig. 1b). The modeled interneurons correspond to SST-INs from the136

HIPP category, as they are the providers of feedback inhibition to DGCs through137

dendritic projections (Stefanelli et al., 2016; Yuan et al., 2017; Groisman et al.,138

2020). The activity of a DGC with index i and an interneuron with index k is139

described by their continuous firing rates νi and νIk , respectively. Connectivity in140

a localized patch of dentate neurons is high: DGCs densely project to GABAergic141

interneurons (Acsády et al., 1998), and SST-INs heavily project to cells in their142

neighborhood (Amaral et al., 2007). Hence, in the recurrent network model,143

each model DGC projects to, and receives input from, a given interneuron with144

probability 0.9. The exact percentage of GABAergic neurons (or SST-INs) in the145

dentate gyrus as a whole is not known, but has been estimated at about 10% and146

only a fraction of these are SST-INs (Freund and Buzsáki, 1996). The number of147

inhibitory neurons in our model network might therefore seem too high. However,148

our results are robust to substantial changes in the number of inhibitory neurons149

(Suppl. Table S2).150
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Each of the 100 model DGCs receives input from a set of 144 model EC151

cells (Fig. 1b). In the rat the number of DGCs has been estimated to be about152

106, while the number of EC input cells is estimated to be about 2 · 105 (An-153

dersen et al., 2007), yielding an expansion factor from EC to dentate gyrus of154

about 5. Theoretical analysis suggests that the expansion of the number of neu-155

rons enhances decorrelation of the representation of input patterns (Marr, 1969;156

Albus, 1971; Marr, 1971; Rolls and Treves, 1998), and promotes pattern sepa-157

ration (Babadi and Sompolinsky, 2014). Our standard network model does not158

reflect this expansion, because we want to highlight the particular ability of adult159

neurogenesis in combination with the GABA-switch to decorrelate input patterns160

independently of specific choices of the network architecture. However, we show161

later that an enlarged network with an expansion from 144 model EC cells to 700162

model DGCs (similar to the anatomical expansion factor) yields similar results.163

At birth a DGC with index i does not receive synaptic glutamatergic input164

yet. Hence the connection from any model EC cell with index j is initialized at165

wij = 0. The growth or decay of the synaptic strength wij of the connection from166

j to i is controlled by a Hebbian plasticity rule (Fig. 1c):167

∆wij = η {xj · LTP(νi − θ)− xj · LTD(θ − νi)− wij · HET(νi − θ)} (1)

where xj is the firing rate of the presynaptic EC neuron and η (’learning rate’)168

is the susceptibility of a cell to synaptic plasticity. The first term on the right-169

hand-side of equation (1) describes Long-Term-Potentiation (LTP) whenever the170

presynaptic neuron is active (xj > 0) and the postsynaptic firing νi is above171

a threshold θ; the second term on the right-hand-side of equation (1) describes172

Long-Term-Depression (LTD) whenever the presynaptic neuron is active and the173

postsynaptic firing rate is positive but below the threshold θ; LTD stops if the174

synaptic weight is zero. Such a combination of LTP and LTD is consistent with175

experimental data (Artola et al., 1990; Sjöström et al., 2001) as shown in ear-176

lier rate-based (Bienenstock et al., 1982) or spike-based (Pfister and Gerstner,177

2006) plasticity models. The third term on the right-hand-side of equation (1)178

implements heterosynaptic (HET) plasticity (Chistiakova et al., 2014; Zenke and179

Gerstner, 2017) whenever the postsynaptic neuron fires at a rate above θ, inde-180

pendent of presynaptic activity (Methods). It ensures that the weights cannot181

grow without bounds (Methods). Since survival of newborn cells requires NMDA182

receptor activation (Tashiro et al., 2006), a DGC which has not been able to183

grow several strong weights is removed after some time and replaced by another184

newborn DGC.185

We ask whether such a biologically-plausible plasticity rule enables adult-born186

DGCs to be integrated in an existing network of mature cells. To address this187

question, we exploit two observations (Fig. 1a): first, the effect of interneurons188

onto newborn DGCs exhibits a GABA-switch from excitatory to inhibitory after189

about three weeks of maturation (Ge et al., 2006; Deng et al., 2010) and, second,190
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newborn DGCs receive input from interneurons early in their maturation (before191

the third week), but project back to interneurons only later (Temprana et al.,192

2015). However, before integration of adult-born DGCs can be addressed, an193

adult-stage network where mature cells already store some memories has to be194

constructed.195

Mature neurons represent prototypical input patterns196

In an adult-stage network, some mature cells already have a functional role. Hence197

we pretrain our network of 100 DGCs using the same learning rule (equation (1))198

that we will use later for the integration of newborn cells. For the stimulation of199

EC cells, we apply patterns representing thousands of handwritten digits in differ-200

ent writing styles from MNIST, a standard data set in artificial intelligence (LeCun201

et al., 1998). Even though we do not expect EC neurons to show a 2-dimensional202

arrangement, the use of 2-dimensional patterns provides a simple way to visualize203

the activity of all 144 EC neurons in our model (Fig. 1d). We implicitely model204

feedforward inhibition from PV-INs (Groisman et al., 2020) by normalizing the205

L2-norm of each input pattern to unity (Methods). Below, we present results206

for a representative combination of three digits (digits 3, 4 and 5), but other207

combinations of digits have also been tested (Suppl. Table S1).208

After pretraining with patterns from digits 3 and 4 in a variety of writing styles,209

we examine the receptive field of each DGC. Each receptive field, consisting of210

the connections from all 144 EC neurons onto one DGC, is characterized by its211

spatial structure (i.e., the pattern of connection weights) and its total strength212

(i.e., the efficiency of the optimal stimulus to drive the cell). We observe that out213

of the 100 DGCs, some have developed spatial receptive fields that correspond214

to different writing styles of digit 3, others receptive fields that correspond to215

variants of digit 4 (Fig. 1e).216

Behavioral discrimination has been shown to be correlated with classification217

accuracy based on DGC population activity (Woods et al., 2020). Hence, to quan-218

tify the representation quality, we compute classification performance by a linear219

classifier that is driven by the activity of our 100 DGC model cells (Methods). At220

the end of pretraining, the classification performance for patterns of digits 3 and 4221

from a distinct test set not used during pretraining is high: 99.25% (classification222

performance on digit 3: 98.71%; digit 4: 99.80%), indicating that nearly all input223

patterns of the two digits are well represented by the network of mature DGCs.224

The median classification performance for ten random combinations of two groups225

of pretrained digits is 98.54%, the 25th-percentile 97.26%, and the 75th-percentile226

99.5% (Suppl. Table S1).227

A detailed mathematical analysis (Methods) shows that heterosynaptic plas-228
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ticity in equation (1) ensures that the total strength of the receptive field of each229

selective DGC converges to a stable value which is similar for selective DGCs.230

As a consequence, synaptic weights are intrinsically bounded without the need to231

impose hard bounds on the weight dynamics. Moreover, the spatial structure of232

the receptive field represents the weighted average of all those input patterns for233

which that DGC is responsive. The mathematical analysis also shows that those234

DGCs that do not develop selectivity have weak synaptic connections and a very235

low total strength of the receptive field.236

Newborn neurons become selective for novel patterns dur-237

ing maturation238

After convergence of synaptic weights during pretraining, selective DGCs are con-239

sidered mature cells. Some DGCs did not develop any strong weight patterns240

and exhibit unselective receptive fields after pretraining (highlighted in red in241

Fig. 1e). We classify these as unresponsive units. Since unresponsive model units242

have weak synaptic connections, we assume them to die because of lack of NMDA243

receptor activation (Tashiro et al., 2006), and replace them in the model by plastic244

newborn DGCs. Mature cells are less plastic than newborn cells (Schmidt-Hieber245

et al., 2004; Ge et al., 2007), so we set η = 0 in equation (1) for mature cells and246

η = 0.01 for newborn cells. Feedforward connection weights from EC to mature247

cells remain therefore fixed in our model. To mimic exposure of an animal to a248

novel set of stimuli, we now add input patterns from digit 5 to the set of presented249

stimuli, which was previously limited to patterns of digits 3 and 4.250

We postulate that functional integration of newborn DGCs requires the two-251

step maturation process caused by the GABA-switch from excitation to inhibition.252

Since excitatory GABAergic input potentially increases correlated activity within253

the dentate gyrus network, we predict that newborn DGCs respond to familiar254

stimuli during the early phase of maturation, but not during the late phase, when255

inhibitory GABAergic input leads to competition.256

To test this hypothesis, our model newborn DGCs go through two maturation257

phases (Methods). The early phase of maturation is cooperative because, for each258

pattern presentation, activated mature DGCs indirectly excite the newborn DGCs259

via GABAergic interneurons. We assume that in natural settings, this GABAergic260

activation stays below the reversal potential of the GABA channels at which261

shunting inhibition would be induced (Heigele et al., 2016). This lateral activation262

of newborn DGCs drives the growth of their receptive fields in a direction similar263

to those of the currently active mature DGCs. Consistent with our hypothesis264

we find that, at the end of the early phase of maturation, newborn DGCs show a265

receptive field corresponding to a mixture of several input patterns (Fig. 2a).266
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In the late phase of maturation, model newborn DGCs receive inhibitory267

GABAergic input from interneurons, similar to the input received by mature268

DGCs. Given that at the end of the early phase, newborn DGCs have receptive269

fields similar to those of mature DGCs, lateral inhibition induces competition270

with mature DGCs for activation during presentation of patterns from the novel271

digit. Because model newborn DGCs start their late phase of maturation with a272

higher excitability (lower threshold) compared to mature DGCs, consistent with273

observed enhanced excitability of newborn cells (Schmidt-Hieber et al., 2004; Li274

et al., 2017), the activation of newborn DGCs is facilitated for those input pat-275

terns for which no mature DGC has preexisting selectivity. Therefore, in the late276

phase of maturation, competition drives the synaptic weights of newborn DGCs277

towards receptive fields corresponding to different subcategories of the ensemble278

of input patterns of the novel digit 5 (Fig. 2b).279

During maturation, the L2-norm of the feedforward weight vector onto new-280

born DGCs increases (Fig. 2e) indicating an increase in total glutamatergic in-281

nervation, e.g. through an increase in the number and size of spines (Zhao et al.,282

2006). Nevertheless, the distribution of firing rates of newborn DGCs is shifted to283

lower values at the end of the late phase compared to the end of the early phase of284

maturation (Fig. 2c,d), consistent with in vivo calcium imaging recordings show-285

ing that adult-born DGCs are more active than mature DGCs (Danielson et al.,286

2016).287

We emphasize that upon presentation of a pattern of a given digit, only those288

DGCs with a receptive field similar to the specific writing style of the presented289

pattern become strongly active, others fire at a medium firing rate, yet others at a290

low rate (Fig. 2g). As a consequence, the firing rate of a particular newborn DGC291

at the end of its maturation to a pattern from digit 5 is strongly modulated by the292

specific choice of stimulation pattern within the class of ’5’s. Analogous results293

are obtained for patterns from pretrained digits 3 and 4 (Suppl. Fig S1). Hence,294

the ensemble of DGCs is effectively performing pattern separation within each295

digit class as opposed to a simple ternary classification task. The selectivity of296

newborn DGCs develops during maturation. Indeed, during the late, competitive,297

phase, the percentage of active newborn DGCs decreases, both upon presentation298

of familiar patterns (digits 3 and 4), as well as upon presentation of novel pat-299

terns (digit 5) (Fig. 2f). This reflects the development of the selectivity of our300

model newborn DGCs from broad to narrow tuning, consistent with experimental301

observations (Maŕın-Burgin et al., 2012; Danielson et al., 2016).302

Adult-born neurons promote better discrimination303

As above, we compute classification performance of our model network as a sur-304

rogate for behavioral discrimination (Woods et al., 2020). At the end of the late305
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phase of maturation of newborn DGCs, we obtain an overall classification perfor-306

mance of 94.56% for the three ensembles of digits (classification performance for307

digit 3: 90.50%; digit 4: 98.17%; digit 5: 95.18%). Confusion matrices show that308

although novel patterns are not well classified at the end of the early phase of309

maturation (Fig. 3e), they are as well classified as pretrained patterns at the end310

of the late phase of maturation (Fig. 3f).311

We compare this performance with that of a network where all three digit312

ensembles are simultaneously pretrained (Fig. 3a, control 1). In this case, the313

overall classification performance is 92.09% (classification performance for digit 3:314

86.83%; digit 4: 98.78%; digit 5: 90.70%). The confusion matrix show that315

all three digits are decently classified, but with an overall lower performance316

(Fig. 3d). Across ten simulation experiments, classification performance is sig-317

nificantly higher when a novel ensemble of patterns is learned sequentially by318

newborn DGCs, than if all patterns are learned simultaneously (Wilcoxon signed319

rank test: p-val = 0.0020, Wilcoxon signed rank = 55; one-way t-test: p-val =320

0.0269, t-stat = 2.6401, df = 9; Suppl. Table S1).321

Furthermore, if two novel ensembles of digits (instead of a single one) are322

introduced during maturation of newborn DGCs, we observe that some newborn323

DGCs become selective for one of the novel digits, while others become selective for324

the other novel digit (Suppl. Fig. S2a). This was expected, since we have found325

earlier that DGCs are becoming selective for different prototype writing styles326

even within a digit category; hence introducing several additional digit categories327

of novel patterns simply increases the prototype diversity. Therefore, newborn328

DGCs can ultimately promote separation of several novel overarching categories329

of patterns, no matter if they are learned simultaneously or sequentially (Suppl.330

Fig. S2b).331

The GABA-switch guides learning of novel representations332

To assess whether maturation of newborn DGCs promotes learning of a novel333

ensemble of digit patterns, we compare our results with a control model without334

neurogenesis (control 2). Similar to the neurogenesis case, patterns from the novel335

digit 5 are introduced after pretraining with patterns from digits 3 and 4. The336

feedforward weights and thresholds of DGCs that developed selectivity during337

pretraining are fixed (learning rate η = 0), while the thresholds and weights of338

all unresponsive neurons remain plastic after pretraining (η = 0.01). The only339

differences to the model with neurogenesis are that in the control case unresponsive340

neurons: (i) keep their feedforward weights (i.e., no reinitialization to low values),341

and (ii) keep the same connections from and to inhibitory neurons.342

We find that without neurogenesis, the previously unresponsive DGCs do not343
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become selective for the novel digit 5, no matter during how many epochs pat-344

terns are presented (we went up to 100 epochs) (Fig. 3b, control 2). Therefore,345

if patterns from digit 5 are presented to the network, the model fails to discrim-346

inate them from the previously learned digits 3 and 4: the overall classification347

performance is 81.69% (classification performance for digit 3: 85.94%; digit 4:348

97.56%; digit 5: 59.42%). This result suggests that integration of newborn DGCs349

is beneficial for sequential learning of novel patterns.350

As a further control (control 3), we compare with a model where all DGCs351

keep plastic feedforward weights at the end of pretraining and upon introduction352

of the novel digit 5, no matter if they became selective or not for the pretrained353

digits 3 and 4. We observe that in the case where all neurons are plastic, learning354

of the novel digit occurs at the cost of loss of selectivity of mature neurons. Several355

DGCs switch their selectivity to become sensitive to the novel digit (Fig. 3c), while356

none of the previously unresponsive units becomes selective for presented patterns357

(compare with Fig. 1e). In contrast to the model with neurogenesis, we observe a358

drop in classification performance to 90.92% (classification performance for digit359

3: 85.45%; digit 4: 98.37%; digit 5: 88.90%). We find that the classification360

performance for digit 3 is the one which decreases the most. This is due to the361

fact that many DGCs previously selective for digit 3 modified their weights to362

become selective for digit 5. Importantly, the more novel patterns are introduced,363

the more overwriting of previously stored memories occurs. Hence, if all DGCs364

remain plastic, discrimination between a novel pattern and a familiar pattern365

stored long ago is impaired.366

Maturation of newborn neurons shapes the representation367

of novel patterns368

Since each input pattern stimulates slightly different, yet overlapping, subsets of369

the 100 model DGCs in a sparse code such that about 20 DGCs respond to each370

pattern (Fig. 2g), there is no simple one-to-one assignment between neurons and371

patterns. In order to visualize the activity patterns of the ensemble of DGCs, we372

perform dimensionality reduction. We construct a two-dimensional space using373

the activity patterns of the network at the end of the late phase of maturation374

of newborn DGCs trained with ’3’s, ’4’s and ’5’s. One axis connects the center375

of mass (in the 100-dimensional activity space) of all DGC responses to ’3’s with376

all responses to ’5’s (arbitrarily called ’axis 1’) and the other axis those from ’4’s377

to ’5’s (arbitrarily called ’axis 2’). We then project the activity of the 100 model378

DGCs upon presentation of MNIST testing patterns onto those two axes, both at379

the end of the early and late phase of maturation of newborn DGCs (Methods).380

Each 2-dimensional projection is illustrated by a dot whose color corresponds to381

the digit class of the presented input pattern (blue for digit 3, green for digit 4,382
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red for digit 5). Different input patterns within the same digit class cause different383

activation patterns of the DGCs, as depicted by extended clouds of dots of the384

same color (Fig. 4a,b). Interestingly, an example pattern of a ’5’ that is visually385

similar to a ’4’ (characterized by the green cross) yields a DGC representation386

that lies closer to other ’4’s (green cloud of dots) than to typical ’5’s (red cloud of387

dots) (Fig. 4b). Noteworthy the separation of the representation of ’5’s from ’3’s388

and ’4’s is better at end of the late phase (Fig. 4b) when compared to the end of389

the early phase of maturation (Fig. 4a). For instance, even though the pattern390

’5’ corresponding to the orange cross is represented close to representations of ’4’s391

at the end of the early phase of maturation (green cloud of dots, Fig. 4a), it is392

represented far from any ’3’s and ’4’s at the end of maturation (Fig. 4b). The393

expansion of the representation of ’5’s into a previously empty subspace evolves394

as a function of time during the late phase of maturation (Fig. 4d).395

Robustness of the model396

Our results are robust to changes in network architecture. As mentioned earlier,397

neither the exact number of GABAergic neurons (Suppl. Table S2), nor that of398

DGCs is critical. Indeed, a larger network with 700 DGCs, thus mimicking the399

anatomically observed expansion factor of about 5 between EC and dentate gyrus400

(all other parameters unchanged), yields similar results (Suppl. Table S3).401

In the network with 700 DGCs, 275 cells remain unresponsive after pretrain-402

ing with digits 3 and 4. In line with our earlier approach in the network with403

100 DGCs, we can algoritmically replace all unresponsive neurons with newborn404

DGCs before patterns of digit 5 are added. Upon maturation, newborn DGC405

receptive fields provide a detailed representation of the prototypes of the novel406

digit 5 (Suppl. Fig. S4) and good classification performance is obtained (Suppl.407

Table S3). Interestingly, due to the randomness of the recurrent connections,408

some newborn DGCs become selective for particular prototypes of the familiar409

(pretrained) digits that are not already extensively represented by the network410

(see newborn DGCs selective for digit 4 highlighted by magenta squares in Suppl.411

Fig. S4).412

As an alternative to replacing all unresponsive cells simultaneously, we can also413

replace only a fraction of them by newborn cells so as to simulate a continuous414

turn-over of cells. For example, if 119 of the 275 unresponsive cells are replaced415

by newborn DGCs before the start of presentations of digit 5, then these 119416

cells become selective for different writing styles and generic features of the novel417

digit 5 (Suppl. Fig. S5) and allow a good classification performance of all three418

digits. On the other hand, replacing only 35 of the 275 unresponsive cells is not419

sufficient (Suppl. Table S3). In an even bigger network with more than 144420

EC cells and more than 700 DGCs, we could choose to replace 1% of the total421
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DGC population per week by newborn cells, consistent with biology (Van Praag422

et al., 1999; Cameron and McKay, 2001). Importantly, if only a small fraction423

of unresponsive cells are replaced at a given moment, other unresponsive cells424

remain available to be replaced later by newborn DGCs that are then ready to425

learn new stimuli.426

Interestingly, the timing of the introduction of the novel stimulus is impor-427

tant. In our standard neurogenesis model, we introduce the novel digit 5 at428

the beginning of the early phase of maturation, which consists in one epoch of429

MNIST training patterns (all patterns are presented once). For the network with430

100 DGCs, if the novel digit is only introduced in the middle of the early phase431

(half epoch), it cannot be properly learned (classification performance for digit432

5: 46.52%). However, if introduced after three-eights or one-quarter of the early433

phase, the novel digit can be picked out (classification performance for digit 5:434

93.61% and 94.17% resp.). We thus observe an increase in performance the ear-435

lier the novel digit is introduced (classification performance for digit 5 was 95.18%436

when introduced at the beginning of the early phase of maturation). Therefore437

our model predicts that a novel stimulus has to be introduced early enough with438

respect to newborn DGC maturation to be well discriminated, and that the ac-439

curacy of discrimination is better the earlier it is introduced. This could lead440

to an online scenario of our model, where adult-born DGCs are produced every441

day and different classes of novel patterns are introduced at different timepoints.442

Then different model newborn DGCs would become selective for different novel443

patterns according to their maturation stage with respect to presentation of the444

novel patterns.445

Newborn dentate granule cells become selective for similar446

novel patterns447

To investigate whether our theory for integration of newborn DGCs can explain448

why adult dentate gyrus neurogenesis promotes discrimination of similar stimuli,449

but does not affect discrimination of distinct patterns (Clelland et al., 2009; Sahay450

et al., 2011a), we use a simplified competitive winner-take-all network (Methods).451

It contains only as many DGCs as trained clusters, and the GABAergic inhibitory452

neurons are implicitly modeled through direct DGC-to-DGC inhibitory connec-453

tions. DGCs are either silent or active (binary activity state, while in the detailed454

network DGCs had continuous firing rates). The synaptic plasticity rule is however455

the same as for the detailed network, with different parameter values (Methods).456

We also construct an artificial data set (Fig. 5a,b) that allows us to control the457

similarity s of pairs of clusters (Methods). The MNIST data set is not appropri-458

ate to distinguish similar from dissimilar patterns, because all digit clusters are459

similar and highly overlapping, reflected by a high within cluster dispersion (e.g.460
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across the set of all ’3’) compared to the separation between clusters (e.g. typical461

’3’ versus typical ’5’).462

After a pretraining period, a first mature DGC responds to patterns of cluster 1463

and a second mature DGC to those of cluster 2 (Fig. 5e,f). We then fix the464

feedforward weights of those two DGCs and introduce a newborn DGC in the465

network. Thereafter, we present patterns from three clusters (the two pretrained466

ones, as well as a novel one), while the plastic feedforward weights of the newborn467

DGC are the only ones that are updated. We observe that the newborn DGC468

ultimately becomes selective for the novel cluster if it is similar (s = 0.8) to469

the two pretrained clusters (Fig. 5i), but not if it is distinct (s = 0.2, Fig. 5j).470

The selectivity develops in two phases. In the early phase of maturation of the471

newborn model cell, a pattern from the novel cluster that is similar to one of the472

pretrained clusters activates the mature DGC that has a receptive field closest473

to the novel pattern. The activated mature DGC drives the newborn DGC via474

lateral excitatory GABAergic connections to a firing rate where LTP is triggered475

at active synapses onto the newborn DGC. LTP also happens when a pattern476

from one of the pretrained clusters is presented. Thus, synaptic plasticity leads477

to a receptive field that reflects the average of all stimuli from all three clusters478

(Fig. 5g).479

To summarize our findings in a more mathematical language, we characterize480

the receptive field of the newborn cell by the vector of its feedforward weights.481

Analogous to the notion of a firing rate vector that represents the set of firing482

rates of an ensemble of neurons, the feedforward weight vector represents the set483

of weights of all synapses projecting onto a given neuron (Fig. 1b). In the early484

phase of maturation, for similar clusters, the feedforward weight vector onto the485

newborn DGC grows in the direction of the center of mass of all three clusters486

(the two pretrained ones and the novel one), because for each pattern presentation487

one of the mature DGCs becomes active (compare Fig. 5g and Fig. 5k). However,488

if the novel cluster has a low similarity to pretrained clusters, patterns from the489

novel cluster do not activate any of the mature DGCs. Therefore the receptive490

field of the newborn cell reflects the average of stimuli from the two pretrained491

clusters only (compare Fig. 5h and Fig. 5l).492

As a result of the different orientation of the feedforward weight vector onto the493

newborn DGC at the end of the early phase of maturation, two different situations494

arise in the late phase of maturation, when lateral GABAergic connections are495

inhibitory. If the novel cluster is similar to the pretrained clusters, the weight496

vector onto the newborn DGC at the end of the early phase of maturation lies at497

the center of mass of all the patterns across the three clusters. Thus it is closer to498

the novel cluster than the weight vector onto either of the mature DGCs (Fig. 5g).499

So if a novel pattern is presented, the newborn DGC wins the competition between500

the three DGCs, and its feedforward weight vector moves towards the center of501
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mass of the novel cluster (Fig. 5i). By contrast, if the novel cluster is distinct, the502

weight vector onto the newborn DGC at the end of the early phase of maturation503

is located at the center of mass of the two pretrained clusters (Fig. 5h). If a novel504

pattern is presented, no output unit is activated since their receptive fields are not505

similar enough to the input pattern. Therefore the newborn DGC always stays506

silent and does not update its feedforward weights (Fig. 5j). These results are507

consistent with studies that have suggested that dentate gyrus is only involved508

in the discrimination of similar stimuli, but not distinct stimuli (Gilbert et al.,509

2001; Hunsaker and Kesner, 2008). For discrimination of distinct stimuli, another510

pathway might be used, such as the direct EC to CA3 connection (Yeckel and511

Berger, 1990; Fyhn et al., 2007).512

In conclusion, our model suggests that adult dentate gyrus neurogenesis pro-513

motes discrimination of similar patterns because newborn DGCs can ultimately514

become selective for novel stimuli which are similar to already learned stimuli.515

On the other hand, newborn DGCs fail to represent novel distinct stimuli, pre-516

cisely because they are too distinct from other stimuli already represented by the517

network. Presentation of novel distinct stimuli in the late phase of maturation518

therefore does not induce synaptic plasticity of the newborn DGC feedforward519

weight vector toward the novel stimuli. In the simplified network, the transition520

between similar and distinct can be determined analytically (Methods). This anal-521

ysis clarifies the importance of the switch from cooperative dynamics (excitatory522

interactions) in the early phase to competitive dynamics (inhibitory interactions)523

in the late phase of maturation.524

Upon successful integration the receptive field of a newborn525

DGC represents an average of novel stimuli526

With the simplified model network, it is possible to analytically compute the527

maximal strength of the DGC receptive field via the L2-norm of the feedforward528

weight vector onto the newborn DGC (Suppl. Material). In addition, the angle529

between the center of mass of the novel patterns and the feedforward weight vector530

onto the adult-born DGC can also be analytically computed (Suppl. Material).531

To illustrate the analytical results and characterize the evolution of the receptive532

field of the newborn DGC, we thus examine the angle φ of the feedforward weight533

vector with the center of mass of the novel cluster (i.e. the average of the novel534

stimuli), as a function of maturation time (Fig. 6b,c and Suppl. Fig. S3).535

In the early phase of maturation, the feedforward weight vector onto the new-536

born DGC grows, while its angle with the center of mass of the novel cluster stays537

constant (Suppl. Fig. S3). In the late phase of maturation, the angle φ between538

the center of mass of the novel cluster and the feedforward weight vector onto the539
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newborn DGC decreases in the case of similar patterns (Fig. 6c, Suppl. Fig. S3),540

but not in the case of distinct patterns (Suppl. Fig. S3), indicating that the new-541

born DGC becomes selective for the novel cluster for similar but not for distinct542

patterns.543

The analysis of the simplified model thus leads to a geometric picture that544

helps us to understand how the similarity of patterns influences the evolution of545

the receptive field of the newborn DGC before and after the switch from excitation546

to inhibition of the GABAergic input. For novel patterns that are similar to known547

patterns, the receptive field of a newborn DGC at the end of maturation represents548

the average of novel stimuli.549

Discussion550

While experimental studies, such as manipulating the ratio of NKCC1 to KCC2,551

suggest that the switch from excitation to inhibition of the GABAergic input onto552

adult-born DGCs is crucial for their integration into the preexisting circuit (Ge553

et al., 2006; Alvarez et al., 2016) and that adult dentate gyrus neurogenesis pro-554

motes pattern separation (Clelland et al., 2009; Sahay et al., 2011a; Jessberger555

et al., 2009), the link between channel properties and behavior has remained puz-556

zling (Sahay et al., 2011b; Aimone et al., 2011). Our modeling work shows that557

the GABA-switch enables newborn DGCs to become selective for novel stimuli558

which are similar to familiar, already stored, representations, consistent with the559

experimentally-observed function of pattern separation (Clelland et al., 2009; Sa-560

hay et al., 2011a; Jessberger et al., 2009).561

Previous modeling studies already suggested that newborn DGCs integrate562

novel inputs into the representation in dentate gyrus (Chambers et al., 2004;563

Becker, 2005; Crick and Miranker, 2006; Wiskott et al., 2006; Chambers and Con-564

roy, 2007; Appleby and Wiskott, 2009; Aimone et al., 2009; Weisz and Argibay,565

2009, 2012; Temprana et al., 2015; Finnegan and Becker, 2015; DeCostanzo et al.,566

2019). However, our work differs from them in four important aspects. First567

of all, we implement an unsupervised biologically plausible plasticity rule, while568

many studies used supervised algorithmic learning rules (Chambers et al., 2004;569

Becker, 2005; Chambers and Conroy, 2007; Weisz and Argibay, 2009; Finnegan570

and Becker, 2015; DeCostanzo et al., 2019). Second, as we model the formerly571

neglected GABA-switch, the connection weights from EC to newborn DGCs are572

grown from small values through cooperativity in the early phase of maturation.573

This integration step was mostly bypassed in earlier models by initialization of574

the connectivity weights towards newborn DGCs to random, yet fully grown val-575

ues (Crick and Miranker, 2006; Aimone et al., 2009; Weisz and Argibay, 2009,576

2012; Finnegan and Becker, 2015). Third, as the dentate gyrus network is com-577
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monly modeled as a competitive network, weight normalization is crucial. In our578

framework, competition occurs during the late phase of maturation. Previous579

modeling works either applied algorithmic weight normalization or hard bounds580

on the weights at each iteration step (Crick and Miranker, 2006; Aimone et al.,581

2009; Weisz and Argibay, 2009, 2012; Temprana et al., 2015; Finnegan and Becker,582

2015). Instead, our plasticity rule includes heterosynaptic plasticity which intrinsi-583

cally softly bounds connectivity weights by a homeostatic effect. Finally, although584

some earlier computational models of adult dentate gyrus neurogenesis could ex-585

plain the pattern separation abilities of newborn cells, separation was obtained586

independently of the similarity between the stimuli. Contrarily to experimental587

data, no distinction was made between similar and distinct patterns (Chambers588

et al., 2004; Becker, 2005; Crick and Miranker, 2006; Wiskott et al., 2006; Cham-589

bers and Conroy, 2007; Aimone et al., 2009; Appleby and Wiskott, 2009; Weisz and590

Argibay, 2012; Temprana et al., 2015; Finnegan and Becker, 2015; DeCostanzo591

et al., 2019). To our knowledge, we present the first model that can explain both:592

(i) how adult-born DGCs integrate into the preexisting network, and (ii) why they593

promote pattern separation of similar stimuli and not distinct stimuli.594

Our work emphasizes why a two-phase maturation of newborn DGCs is ben-595

eficial for proper integration in the preexisting network. From a computational596

perspective, the early phase of maturation, when GABAergic inputs onto newborn597

DGCs are excitatory, corresponds to cooperative unsupervised learning. There-598

fore, the synapses grow in the direction of patterns that indirectly activate the599

newborn DGCs via GABAergic interneurons (Fig. 6a). At the end of the early600

phase of maturation, the receptive field of a newborn DGC represents the center601

of mass of all input patterns that led to its (indirect) activation. In the late phase602

of maturation, GABAergic inputs onto newborn DGCs become inhibitory, so that603

lateral interactions change from cooperation to competition, causing a shift of the604

receptive fields of the newborn DGCs towards novel features (Fig. 6b). At the end605

of maturation, newborn DGCs are thus selective for novel inputs. This integra-606

tion mechanism is in agreement with the experimental observation that newborn607

DGCs are broadly tuned early in maturation, yet highly selective at the end of608

maturation (Maŕın-Burgin et al., 2012; Danielson et al., 2016). Loosely speaking,609

the cooperative phase of excitatory GABAergic input promotes the growth of the610

synaptic weights coarsely in the relevant direction, whereas the competitive phase611

of inhibitory GABAergic input helps to specialize on detailed, but potentially612

important differences between patterns.613

In the context of theories of unsupervised learning, the switch of lateral GABAer-614

gic input to newborn DGCs from excitatory to inhibitory provides a biological615

solution to the “problem of unresponsive units” (Hertz et al., 1991). Unsuper-616

vised competitive learning has been used to perform clustering of input patterns617

into a few categories (Rumelhart and Zipser, 1985; Grossberg, 1987; Kohonen,618

1989; Hertz et al., 1991; Du, 2010). Ideally, after learning of the feedforward619
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weights between an input layer and a competitive network, input patterns that620

are distinct from each other activate different neuron assemblies of the compet-621

itive network. After convergence of competitive Hebbian learning, the vector of622

feedforward weights onto a given neuron points to the center of mass of the clus-623

ter of input patterns for which it is selective (Kohonen, 1989; Hertz et al., 1991).624

Yet, if the synaptic weights are randomly initialized, it is possible that the set625

of feedforward weights onto some neurons of the competitive network point in a626

direction “quasi-orthogonal” (Methods) to the subspace of the presented input627

patterns. Therefore those neurons, called “unresponsive units”, will never get628

active during pattern presentation. Different learning strategies have been devel-629

oped in the field of artificial neural networks to avoid this problem (Grossberg,630

1976; Bienenstock et al., 1982; Rumelhart and Zipser, 1985; Grossberg, 1987; De-631

Sieno, 1988; Kohonen, 1989; Hertz et al., 1991; Du, 2010). However, most of632

these algorithmic approaches lack a biological interpretation. In our model, weak633

synapses onto newborn DGCs form spontaneously after neuronal birth. The exci-634

tatory GABAergic input in the early phase of maturation drives the growth of the635

synaptic weights in the direction of the subspace of presented patterns that suc-636

ceed in activating some of the mature DGCs. Hence the early cooperative phase637

of maturation can be seen as a smart initialization of the synaptic weights onto638

newborn DGCs, close enough to novel patterns so as to become selective for them639

in the late competitive phase of maturation. However, the cooperative phase is640

helpful only if the novel patterns are similar to the input statistics defined by the641

set of known (familiar) patterns.642

Our results are in line with the classic view that dentate gyrus is responsible643

for decorrelation of inputs (Marr, 1969; Albus, 1971; Marr, 1971; Rolls and Treves,644

1998), a necessary step for differential storage of similar memories in CA3, and645

with the observation that dentate gyrus lesions impair discrimination of similar646

but not distinct stimuli (Gilbert et al., 2001; Hunsaker and Kesner, 2008). To647

discriminate distinct stimuli, another pathway might be involved, such as the648

direct EC to CA3 connection (Yeckel and Berger, 1990; Fyhn et al., 2007).649

Our model of transition from an early cooperative phase to a late compet-650

itive phase makes specific predictions, at the behavioral and cellular level. In651

our model, the early cooperative phase of maturation can only drive the growth652

of synaptic weights onto newborn cells if they are indirectly activated by ma-653

ture DGCs through GABAergic input, which has an excitatory effect due to the654

high NKCC1/KCC2 ratio early in maturation. Therefore our model predicts that655

NKCC1-knockout mice would be impaired in discriminating similar contexts or656

objects because newborn cells stay silent due to lack of indirect activation. The657

feedforward weight vector onto newborn DGCs could not grow in the early phase658

and newborn DGCs could not become selective for novel inputs. Therefore our659

model predicts that since newborn DGCs are poorly integrated into the preex-660

isting circuit, they are unlikely to survive. If, however, in the same paradigm661
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newborn cells are activated by light-induced or electrical stimulation, we predict662

that they become selective to novel patterns. Thus discrimination abilities would663

be restored and newborn DGCs are likely to survive. Analogously, we predict that664

using inducible NKCC1-knockout mice, animals would gradually be impaired in665

discrimination tasks after induced knockout and reach a stable maximum impair-666

ment about 3 weeks after the start of induced knockout.667

Experimental observations support the importance of the switch from early668

excitation to late inhibition of the GABAergic input onto newborn DGCs. An ab-669

sence of early excitation using NKCC1-knockout mice has been shown to strongly670

affect synapse formation and dendritic development in vivo (Ge et al., 2006). Con-671

versely, a reduction in inhibition in the dentate gyrus through decrease in KCC2672

expression has been associated with epileptic activity (Pathak et al., 2007; Bar-673

mashenko et al., 2011). An analogous switch of the GABAergic input has been674

observed during development, and its proper timing has been shown to be cru-675

cial for sensorimotor gating and cognition (Wang and Kriegstein, 2010; Furukawa676

et al., 2017). In addition to early excitation and late inhibition, our theory also677

critically depends on the switch. In our model, the switch makes an instantaneous678

transition between early and late phase of maturation. Several experimental re-679

sults have suggested that the switch is indeed sharp and occurs within a single680

day, both during development (Khazipov et al., 2004; Tyzio et al., 2007; Leonzino681

et al., 2016) and adult dentate gyrus neurogenesis (Heigele et al., 2016). Fur-682

thermore, in hippocampal cell cultures, expression of KCC2 is upregulated by683

GABAergic activity but not affected by glutamatergic activity (Ganguly et al.,684

2001). A similar process during adult dentate gyrus neurogenesis would increase685

the number of newborn DGCs available for representing novel features by advanc-686

ing the timing of their switch. In this way, instead of a few thousands of newborn687

DGCs ready to switch (3 to 6% of the whole population (Van Praag et al., 1999;688

Cameron and McKay, 2001), divided by 30 days), a larger fraction of newborn689

DGCs would be made available for coding, if appropriate stimulation occurs.690

To conclude, our theory for integration of adult-born DGCs suggests that691

newborn cells have a coding –rather than a modulatory– role during dentate gyrus692

pattern separation function. Our theory highlights the importance of GABAergic693

input in adult dentate gyrus neurogenesis, and links the switch from excitation694

to inhibition to the integration of newborn DGCs into the preexisting circuit.695

Finally, it illustrates how Hebbian plasticity of EC to DGC synapses along with696

the switch make newborn cells suitable to promote pattern separation of similar697

but not distinct stimuli, a long-standing mystery in the field of adult dentate698

gyrus neurogenesis (Sahay et al., 2011b; Aimone et al., 2011).699
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Methods700

Network architecture and neuronal dynamics701

DGCs are the principal cells of the dentate gyrus. They mainly receive excitatory702

projections from the entorhinal cortex through the perforant path and GABAergic703

inputs from local interneurons, as well as excitatory input from Mossy cells. They704

project to CA3 pyramidal cells and inhibitory neurons, as well as local Mossy705

cells (Acsády et al., 1998; Henze et al., 2002; Amaral et al., 2007; Temprana706

et al., 2015). In our model, we omit Mossy cells for simplicity and describe the707

dentate gyrus as a competitive circuit consisting of NDGC dentate granule cells708

and NI GABAergic interneurons (Fig. 1b). The activity of NEC neurons in EC709

represents an input pattern ~x = (x1, x2, ..., xNEC ). Because the perforant path710

also induces strong feedforward inhibition in the dentate gyrus (Li et al., 2013),711

we assume that the effective EC activity is normalized, such that ||~x|| = 1 for712

any input pattern ~x. We use P different input patterns ~xµ, 1 6 µ 6 P in the713

simulations of the model.714

In our network, model EC neurons have excitatory all-to-all connections to715

the DGCs. In rodent hippocampus, spiking mature DGCs activate interneurons716

in DG, which in turn inhibit other mature DGCs (Temprana et al., 2015; Alvarez717

et al., 2016). In our model, the DGCs are thus recurrently connected with in-718

hibitory neurons (Fig. 1b). Connections from DGCs to interneurons exist in our719

model with probability pIE and have a weight wIE. Similarly, connections from720

interneurons to DGCs occur with probability pEI and have a weight wEI . All721

parameters are reported in Table 1(Biologically-plausible network).722

Before an input pattern is presented, all rates of model DGCs are initialized to723

zero. Upon stimulation with input pattern ~x, the firing rate νi of DGC i evolves724

according to (Miller and Fumarola, 2012):725

τm
dνi
dt

= −νi + tanh

(
[Ii − bi]+

L

)
(2)

where [.]+ denotes rectification: [a] = a for a > 0 and zero otherwise. Here, bi is726

a firing threshold, L = 0.5 is the smoothness parameter of the frequency-current727

curve (L−1 is the slope of the frequency-current curve at the firing threshold), and728

Ii the total input to cell i:729

Ii =

NEC∑
j=1

wijxj +

NI∑
k=1

wEIik ν
I
k (3)

with xj the activity of EC input neuron j, wij > 0 the feedforward weight from730

EC input neuron j to DGC i, and wEIik the weight from inhibitory neuron k to731
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DGC i. The sum runs over all inhibitory neurons, but the weights are set to732

wEIik = 0 if the connection is absent. The firing rate νi is unit-free and normalized733

to a maximum of 1, which we interpret as a firing rate of 10 Hz. We take the734

synaptic weights as unit-less parameters such that Ii is also unit-free.735

The firing rate νIk of inhibitory neuron k, is defined as:736

τinh
dνIk
dt

= −νIk + [IIk − p∗NDGC ]+ (4)

with p∗ a parameter which relates to the desired ensemble sparsity, and IIk the737

total input towards interneuron k, given as:738

IIk =

NDGC∑
i=1

wIEki νi (5)

with wIEki the weight from DGC i to inhibitory neuron k. (We set wIEki = 0 if739

the connection is absent.) The feedback from inhibitory neurons ensures a sparse740

activity of model DGCs for each pattern. With p∗ = 0.1 we find that more than 70741

% of model DGCs are silent (firing rate < 1 Hz (Senzai and Buzsáki, 2017)) when742

an input pattern is presented, and less than 10% are highly active (firing rate743

> 9 Hz) (Fig. 2c,d), consistent with the experimentally observed sparse activity744

in dentate gyrus (Chawla et al., 2005).745

Plasticity rule746

Projections from EC onto newborn DGCs exhibit Hebbian plasticity (Schmidt-
Hieber et al., 2004; Ge et al., 2007; McHugh et al., 2007). Therefore, in our
model the connections from EC neurons to DGCs are plastic, following a Hebbian
learning rule which exhibits long-term depression (LTD) or long-term potentiation
(LTP) depending on the firing rate νi of the postsynaptic cell (Bienenstock et al.,
1982; Artola et al., 1990; Sjöström et al., 2001; Pfister and Gerstner, 2006). Input
patterns ~xµ, 1 6 µ 6 P , are presented in random order. For each input pattern,
we let the firing rates converge for a time T where T was chosen long enough
to achieve convergence to a precision of 10−6. After n − 1 presentations (i.e. at

time (n − 1) · T ) the weight vector has value w
(n−1)
ij . We then present the next

pattern and update at time n·T (w
(n)
ij = w

(n−1)
ij +∆wij), according to the following

plasticity rule:

∆wij = η {−αxjνi[θ − νi]+ + γxjνi[νi − θ]+ − βwij[νi − θ]+ν3i } (6)

where xj is the firing rate of presynaptic EC input neuron j, νi the firing rate747

of postsynaptic DGC i, η the learning rate, θ marks the transition from LTD to748
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LTP, and the relative strength α, γ of LTP and LTD depend on θ via α = α0

θ3
> 0749

and γ = γ0−θ > 0. The values of the parameters α0, γ0, β, and θ are given in Ta-750

ble 1(Biologically-plausible network). The weights are hard-bounded from below751

at 0, i.e. if equation (6) leads to a new weight smaller than zero, wij is set to zero.752

The first two terms of equation (6) are a variation of the BCM rule (Bienenstock753

et al., 1982). The third term implements heterosynaptic plasticity (Chistiakova754

et al., 2014; Zenke and Gerstner, 2017). Because the first two terms of the plas-755

ticity rule are Hebbian and proportional to the presynaptic activity xj, the active756

DGCs (νi > θ) update their feedforward weights in direction of the input pattern757

~x. Moreover, all weights onto neuron i are downregulated heterosynaptically by758

an amount that increases supra-linearly with the postsynaptic rate νi. Similar to759

learning in a competitive network (Kohonen, 1989; Hertz et al., 1991), the vector760

of feedforward weights onto active DGCs will move towards the center of mass of761

the cluster of patterns they are selective for, as we will discuss now.762

For a given input pattern ~xµ, there are three fixed points for the postsynaptic763

firing rate: νi = 0, νi = θ, and νi = ν̂i (the negative root is omitted, because νi > 0764

due to equation (2)). For νi < θ, there is LTD, so the weights move toward zero:765

wij → 0, while for νi > θ, there is LTP, so the weights move toward wij →
γxµj
βν̂2i

766

(Fig. 1c). The value of ν̂i is defined implicitly by the network equations (2)-(5). If767

a pattern ~xµ is presented only for a short time these fixed points are not reached768

during a single pattern presentation.769

Winners, losers, and quasi-orthogonal inputs770

We define the winners as the DGCs which become strongly active (νi > θ) during771

presentation of an input pattern. Since the input patterns are normalized to have772

an L2-norm of 1 (||~xµ|| = 1 by construction), and the L2-norm of the feedforward773

weight vectors is bounded (see Section Direction and length of the weight vector),774

the winning units are the ones whose weight vectors ~wi (row of the feedforward775

connectivity matrix) align best with the current input pattern ~xµ. Furthermore,776

we say that an input pattern ~xµ is “quasi-orthogonal” to a weight vector ~wi if777

Ii =
∑NEC

j=1 wijxj +
∑NI

k=1w
EI
ik ν

I
k < bi. If an input pattern ~xµ is quasi-orthogonal778

to a weight vector ~wi, then neuron i does not fire in response to ~xµ. Note that779

for a case without inhibitory neurons and with bi → 0, we recover the standard780

orthogonality condition.781

Direction and length of the weight vector782

Let us denote the ensemble of patterns for which neuron i is a winner by Ci and783

call this the set of winning patterns (Ci = {µ|νi > θ}). Suppose that neuron i784

21

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 9, 2021. ; https://doi.org/10.1101/704791doi: bioRxiv preprint 

https://doi.org/10.1101/704791


is quasi-orthogonal to all other patterns, so that for all µ /∈ Ci we have νi = 0.785

Then the feedforward weight vector of neuron i converges in expectation to:786

~wi =
γ

β

〈G1(νi)~x〉µ∈Ci
〈G2(νi)〉µ∈Ci

(7)

where G1(νi) = (νi− θ)νi and G2(νi) = (νi− θ)ν3i . Hence ~wi is a weighted average787

over all winning patterns.788

The squared length of the feedforward weight vector can be computed by
multiplying equation (7) with ~wi:

||~wi||2 = ~wi · ~wi =
γ

β

〈G1(νi) (~wi · ~x)〉µ∈Ci
〈G2(νi)〉µ∈Ci

(8)

Since input patterns have length one, the scalar product on the right-hand side789

can be rewritten as ~wi · ~x = || ~wi|| cos(α) where α is the angle between the weight790

vector and pattern ~x. Division by || ~wi|| yields the L2-norm of the feedforward791

weight vector:792

|| ~wi|| =
γ

β

〈G1(νi) cos(α)〉µ∈Ci
〈G2(νi)〉µ∈Ci

(9)

where the averages run, as before, over all winning patterns.793

Let us now derive bounds for || ~wi||. First, since cos(α) 6 1 we have794

〈G1(νi) cos(α)〉µ∈Ci 6 〈G1(νi)〉µ∈Ci . Second, since for all winning patterns νi > θ,795

where θ is the LTP threshold, we have 〈G2(νi)〉µ∈Ci > 〈(νi − θ) νi〉θ2. Thus the796

length of the weight vector is finite and bounded by:797

|| ~wi|| 6
γ

β

〈G1(νi)〉µ∈Ci
〈G2(νi)〉µ∈Ci

6
γ

β

1

θ2
(10)

It is possible to make the second bound tighter if we find the winning pattern798

with the smallest firing rate νmin such that νi > νmin ∀i ∈ Ci:799

|| ~wi|| 6
γ

β

1

(νmin)2
(11)

The bound is reached if neuron i is winner for a single input pattern.800

We can also derive a lower bound. For a pattern µ ∈ Ci, let us write the
firing rate of neuron i as νi(µ) = ν̄i + ∆νi(µ) where ν̄i is the mean firing rate
of neuron i averaged across all winning patterns and 〈∆νi〉µ∈Ci = 0. We assume
that the absolute size of ∆νi is small, i.e., 〈(∆νi)2〉µ∈Ci � (ν̄i)

2. Linearization of
equation (9) around ν̄i yields:

||~wi|| =
γ

β

G1(ν̄i)

G2(ν̄i)
〈cos(α)〉µ∈Ci +

γ

β

G′1(ν̄i)

G2(ν̄i)
〈cos(α)∆νi〉µ∈Ci (12)
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Elementary geometric arguments for a neuron model with monotonically in-801

creasing frequency-current curve yield that the value of 〈cos(α)∆νi〉µ∈Ci is positive802

(or zero), because an increase in the angle α lowers both the cosine and the firing803

rate, giving rise to a positive correlation. Since we are interested in a lower bound,804

we can therefore drop the term proportional to G′1 and evaluate the ratio G1/G2805

to find:806

|| ~wi|| >
γ

β

1

(ν̄i)2
〈cos(α)〉µ∈Ci >

γ

β

1

(νmax)2
cos(α̂) (13)

where νmax is the maximal firing rate of a DGC and α̂ = maxµ∈Ci
{α} is the angle807

of the winning pattern that has the largest angle with the weight vector. The first808

bound is tight and is reached if neuron i is winner for only two patterns.809

To summarize we find that the length of the weight vector remains bounded in810

a narrow range. Hence, for a reasonable distribution of input patterns and weight811

vectors, the value of || ~wi|| is similar for different neurons i, so that the weight812

vector will have, after convergence, similar lengths for all DGCs that are winners813

for at least one pattern. In our simulations with the MNIST data set, we find that814

the length of feedforward weight vectors lies in the range between 9.3 and 11.1815

across all responsive neurons with a mean value close to 10; cf. Fig. 2e.816

Early maturation phase817

During the early phase of maturation, the GABAergic input onto a newborn818

DGC with index l has an excitatory effect. In the model, it is implemented as819

follows: wEIlk = −wEI > 0 with probability pEI for any interneuron k and wEIlk = 0820

otherwise (no connection). Since newborn cells do not project yet onto inhibitory821

neurons (Temprana et al., 2015), we have wIEkl = 0 ∀l. Newborn DGCs are known822

to have enhanced excitability (Schmidt-Hieber et al., 2004; Li et al., 2017), so823

their threshold is kept at bl = 0 ∀l. Because the newborn model DGCs receive824

lateral excitation via interneurons and their thresholds are zero during the early825

phase of maturation, the lateral excitatory GABAergic input is always sufficient826

to activate them. Hence, if the firing rate of a newborn DGC exceeds the LTP827

threshold θ, the feedforward weights grow towards the presented input pattern,828

cf. equation (6).829

Presentation of all patterns of the data set once (1 epoch) is sufficient to reach830

convergence of the feedforward weights onto newborn DGCs. We define the end831

of the first epoch as the end of the early phase, i.e., simulation of one epoch of832

the model corresponds to about three weeks of biological time.833
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Late maturation phase834

During the late phase of maturation (starting at about 3 weeks (Ge et al., 2006)),835

the GABAergic input onto newborn DGCs switches from excitatory to inhibitory.836

In terms of our model, it means that all existing wEIlk connections switch their837

sign to wEI < 0. Furthermore, since newborn DGCs develop lateral connections838

to inhibitory neurons in the late maturation phase (Temprana et al., 2015), we839

set wIEkl = wIE with probability pIE, and wIEkl = 0 otherwise. The thresholds of840

newborn DGCs are updated after presentation of pattern µ at time n · T (b
(n)
l =841

b
(n−1)
l + ∆bl) according to ∆bl = ηb (νl − ν0), where ν0 is a reference rate and ηb842

a learning rate, to mimic the decrease of excitability as newborn DGCs mature843

(Table 1, Biologically-plausible network). Therefore the distribution of firing rates844

of newborn DGCs is shifted to the left (towards lower firing rates) at the end of the845

late phase of maturation compared to the early phase of maturation (Fig. 2c,d). A846

sufficient condition for a newborn DGC to win the competition upon presentation847

of patterns of the novel cluster is that the scalar product between a pattern of848

the novel cluster and the feedforward weight vector onto the newborn DGC is849

larger than the scalar product between the pattern of the novel cluster and the850

feedforward weight vector onto any of the mature DGCs. Analogous to the early851

phase of maturation, presentation of all patterns of the data set once (1 epoch)852

is sufficient to reach convergence of the feedforward weights onto newborn DGCs.853

We therefore consider that the late phase of maturation has been finished after854

one epoch.855

Input patterns856

Two different sets of input patterns are used. Both data sets have a number K857

of clusters and several thousands of patterns per cluster. As a first data set, we858

use the MNIST 12x12 patterns (LeCun et al., 1998) (NEC = 144), normalized859

such that the L2-norm of each pattern is equal to 1. The training set contains860

approximately 6000 patterns per digit, while the testing set contains about 1000861

patterns per digit (Fig. 1d).862

As a second data set, we use hand-made artificial patterns designed such that863

the distance between the centers of any two clusters, or in other words their864

pairwise similarity, is the same. All clusters lie on the positive quadrant of the865

surface of a hypersphere of dimension NEC − 1. The cluster centers are Walsh866
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patterns shifted along the diagonal (Fig. 5b):867

~P 1 =
1

c0
(1 + ξ, 1− ξ, 1 + ξ, 1− ξ, ..., 1 + ξ, 1− ξ, 1 + ξ, 1− ξ)

~P 2 =
1

c0
(1 + ξ, 1 + ξ, 1− ξ, 1− ξ, ..., 1 + ξ, 1 + ξ, 1− ξ, 1− ξ)

...

~PK =
1

c0
(1 + ξ, 1 + ξ, 1 + ξ, 1 + ξ, ..., 1− ξ, 1− ξ, 1− ξ, 1− ξ)

(14)

with |ξ| < 1 a parameter that determines the spacing between clusters. c0 is868

a normalization factor to ensure that the center of mass of all clusters has an869

L2-norm of 1:870

c0 =
√
NEC (1 + ξ2). (15)

The number of input neurons NEC is NEC = 2K . The scalar product, and hence871

the angle Ω, between the center of mass of any pair of clusters k and l (k 6= l) is872

a function of ξ (Fig. 5a):873

~P k · ~P l =
1

1 + ξ2
= cos(Ω) (16)

We define the pairwise similarity s of two clusters as: s = 1 − ξ. Highly similar874

clusters have a large s due to the small distance between their centers (hence a875

small ξ).876

To make the artificial data set comparable to the MNIST 12x12 data set, we877

choose K = 7, so NEC = 128, and we generate 6000 noisy patterns per cluster for878

the training set and 1000 other noisy patterns per cluster for the testing set. Since879

our noisy high-dimensional input patterns have to be symmetrically distributed880

around the centers of mass ~P k, yet lie on the hypersphere, we have to use an881

appropriate sampling method. The patterns ~xµ(k) of a given cluster k with center882

of mass ~P k are thus sampled from a Von Mises-Fisher distribution (Mardia and883

Jupp, 2009):884

~xµ(k) ∼
(√

1− a2
)
~ζ + a~P k (17)

with ~ζ an L2-normalized vector taken in the space orthogonal to ~P k. The vector ~ζ885

is obtained by performing the singular-value decomposition of ~P k (UΣV ∗ = ~P k),886

and multiplying the matrix U (after removing its first column), which corresponds887

to the left-singular vectors in the orthogonal space to ~P k, with a vector whose888

elements are drawn from the standard normal distribution. Then the L2-norm of889

the obtained pattern is set to 1, so that it lies on the surface of the hypersphere.890

A rejection sampling scheme is used to obtain a (Mardia and Jupp, 2009). The891

sample a is kept if κa+ (NEC − 1)ln(1− ψa)− c > ln(u), with κ a concentration892

parameter, ψ = 1−b
1+b

, c = κψ + (NEC − 1)ln(1 − ψ2), u drawn from a uniform893
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distribution u ∼ U [0, 1], a = 1−(1+b)z
1−(1−b)z , b = NEC−1√

4κ2+(NEC−1)2+2κ
, and z drawn from a894

beta distribution z ∼ Be(NEC−1
2

, NEC−1
2

).895

The concentration parameter κ characterizes the spread of the distribution896

around the center ~P k. In the limit where κ → 0, sampling from the Von Mises-897

Fisher distribution becomes equivalent to sampling uniformly on the surface of the898

hypersphere, so the clusters become highly overlapping. In dimension NEC = 128,899

if κ > 103 the probability of overlap between clusters is negligible. We use a value900

κ = 104.901

Classification performance (readout network)902

It has been observed that classification performance based on DGC population903

activity is a good proxy for behavioral discrimination (Woods et al., 2020). Hence,904

to evaluate whether the newborn DGCs contribute to the function of the dentate905

gyrus network, we study classification performance. Once the feedforward weights906

have been adjusted upon presentation of many input patterns from the training907

set (Section Plasticity rule), we keep them fixed and determine classification on908

the test set using artificial readout units (RO).909

To do so, the readout weights (wROki from model DGC i to readout unit k) are910

initialized at random values drawn from a uniform distribution: wROki ∼ σU(0, 1),911

with σ = 0.1. The number of readout units, NRO, corresponds to the number of912

learned classes. To adjust the readout weights, all patterns of the training data913

set that belong to the learned classes are presented one after the other. For each914

pattern ~xµ, we let the firing rate of the DGCs converge (values at convergence:915

νµi ). The activity of a readout unit k is given by:916

νRO,µk = g
(
IRO,µk

)
= g

(
NDGC∑
i=1

wROki ν
µ
i

)
(18)

As we aim to assess the performance of the network of DGCs, the readout weights
are adjusted by an artificial supervised learning rule. The loss function, which
corresponds to the difference between the activity of the readout units and a
one-hot representation of the corresponding pattern label (Hertz et al., 1991),

L(WRO) =
1

2

NRO∑
k=1

(Lµk − ν
RO,µ
k )2 (19)

with Lµk the element k of a one-hot representation of the correct label of pattern917

~xµ, is minimized by stochastic gradient descent:918

∆wRO,µki = η(Lµk − ν
RO,µ
k )g′

(
IRO,µk

)
νµi . (20)
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The readout units have a rectified hyperbolic tangent frequency-current curve:919

g(x) = tanh (2[x]+), whose derivative is: g′(x) = 2
(
1− (tanh (2[x]+))2

)
. We learn920

the weights of the readout units over 100 epochs of presentations of all training921

patterns with η = 0.01, which is sufficient to reach convergence.922

Thereafter, the readout weights are fixed. Each test set pattern belonging to923

one of the learned classes is presented once, and the firing rates of the DGCs are924

let to converge. Finally, the activity of the readout units νRO,µk is computed and925

compared to the correct label Lµk of the presented pattern. If the readout unit with926

the highest activity value is the one that represents the class of the presented input927

pattern, the pattern is said to be correctly classified. Classification performance928

is given by the number of correctly classified patterns divided by the total number929

of test patterns of the learned classes.930

Control cases931

In our standard setting, patterns from a third digit are presented to a network932

that has previously only seen patterns from two digits. The question is whether933

neurogenesis helps when adding the third digit. We use several control cases to934

compare with the neurogenesis case. In the first control case, all three digits are935

learned in parallel (Fig. 3a, control 1). In the two other control cases, we either936

keep all feedforward connections towards the DGCs plastic (Fig. 3c, control 3),937

or fix the feedforward connections for all selective DGCs but keep unselective938

neurons plastic (as in the neurogenesis case) (Fig. 3b, control 2). However, in939

both instances, the DGCs do not mature in the two-step process induced by the940

GABA-switch that is part of our model of neurogenesis.941

Pretraining with two digits942

As we are interested by neurogenesis at the adult stage, we pretrain the network943

with patterns from two digits, such that it already stores some memories before944

neurogenesis takes place. To do so, we randomly initialize the weights from EC945

neurons to DGCs: they are drawn from a uniform distribution (wij ∼ U [0, 1]).946

The L2-norm of the feedforward weight vector onto each DGC is then normal-947

ized to 1, to ensure fair competition between DGCs during learning. Then we948

present all patterns from digits 3 and 4 in random order, as many times as needed949

for convergence of the weights. During each pattern presentation the firing rates950

of the DGCs are computed (Section Network architecture and neuronal dynam-951

ics) and their feedforward weights are updated according to our plasticity rule952

(Section Plasticity rule). We find that we need approximately 40 epochs for con-953

vergence of the weights, and use 80 epochs to make sure that all weights are stable.954
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At the end of pretraining, our network is considered to correspond to an adult955

stage, because some DGCs are selective for prototypes of the pretrained digits956

(Fig. 1e).957

Projection on pairwise discriminatory axes958

To assess how separability of the DGC activation patterns develops during the959

late phase of maturation of newborn DGCs, we project the population activity960

onto axes which are optimized for pairwise discrimination (patterns from digit 3961

versus patterns from digit 5, 4 versus 5, and 3 vs 4). Those axes are determined962

using Fisher linear discriminant analysis (LDA), as explained below.963

We determine the vector of DGC firing rates, ~ν, at the end of the late phase of964

maturation of newborn DGCs upon presentation of each pattern, ~x, from digits965

3, 4 and 5 of the training MNIST dataset. The mean activity in response to all966

training patterns µ from digit m, ~µm = 1
Nm

∑
µ∈m ~ν

µ, is computed for each of967

the three digits (Nm is the number of training patterns of digit m). The pairwise968

Fisher linear discriminant is defined as the linear function ~wT~ν that maximizes the969

distance between the means of the projected activity in response to two digits (eg.970

m and n), while normalizing for within-digit variability. The objective function971

to maximize is thus given as:972

J(w) =
wTSBw

wTSWw
(21)

with SB = (~µm − ~µn)(~µm − ~µn)T the between-digit scatter matrix, and SW =973

Σm + Σn the within-digit scatter matrix (Σm is the covariance matrix of the DGC974

activity in response to pattern of digit m, and Σn is the covariance matrix of975

the DGC activity in response to pattern of digit n). It can be shown that the976

direction of the optimal discriminatory axis between digit m and n is given by the977

eigenvector of S−1W SB with the corresponding largest eigenvalue.978

We arbitrarily set ”axis 1” as the optimal discriminatory axis between digit979

3 and digit 5, ”axis 2” as the optimal discriminatory axis between digit 4 and980

digit 5, and ”axis 3” as the optimal discriminatory axis between digit 3 and digit981

4. For each of the three discriminatory axes, we define its origin (ie. projection982

value of 0) as the location of the average projection of all training patterns of the983

three digits on the corresponding axis. Fig. 4 represents the projections of DGC984

activity upon presentation of testing patterns at the end of the early and late985

phase of maturation of newborn DGCs onto the above-defined axes.986
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Statistics987

In the main text, we present a representative example with three digits from the988

MNIST data set (3, 4 and 5). It is selected from a set of ten random combinations989

of three different digits. For each combination, one network is pretrained with990

two digits for 80 epochs. Then the third digit is added and neurogenesis takes991

place (one epoch of early phase of maturation, and one epoch of late phase of992

maturation). Furthermore another network is pretrained directly with the three993

digits for 80 epochs. Classification performance is reported for all combinations994

(Suppl. Table S1).995

Simplified rate network996

We use a toy network and the artificial data set to determine if our theory of997

integration of newborn DGCs can explain why adult dentate gyrus neurogenesis998

helps for the discrimination of similar, but not for distinct patterns.999

The rate network described above is simplified as follows. We use K dentate1000

granule cells for K clusters. Their firing rate νi is given by:1001

τm
dνi
dt

= −νi +H (Ii − bi) (22)

where H is the Heaviside step function. As before, bi is the threshold, and Ii the1002

total input towards neuron i:1003

Ii =

NEC∑
j=1

wijxj +

NDGC∑
k 6=j

wrecνk (23)

with xj the input of presynaptic EC neuron j, wij the feedforward weight between1004

EC neuron j and DGC i, and νk the firing rate of DGC k. Inhibitory neurons are1005

modeled implicitly: each DGC directly connects to all other DGCs via inhibitory1006

recurrent connections of value wrec < 0. During presentation of pattern ~xµ, the1007

firing rates of the DGCs evolve according to equation (22). After convergence, the1008

feedforward weights are updated: w
(µ)
ij = w

(µ−1)
ij + ∆wij. The synaptic plasticity1009

rule is the same as before, see equation (6), but with the parameters reported1010

in Table 1(Simple network). They are different from those of the biologically-1011

plausible network because we now aim for a single winning neuron for each cluster.1012

Note that for an LTP threshold θ < 1 all active DGCs update their feedforward1013

weights, because of the Heaviside function for the firing rate (equation (22)).1014

Assuming a single winner i∗ for each pattern presentation, the input (equa-1015

tion (23)) to the winner is:1016

Ii∗ = ~wi∗ · ~x, (24)

29

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 9, 2021. ; https://doi.org/10.1101/704791doi: bioRxiv preprint 

https://doi.org/10.1101/704791


while the input to the losers is:1017

Ii = ~wi · ~x+ wrec. (25)

Therefore, two conditions need to be satisfied for a solution with a single winner:1018

~wi∗ · ~x > bi (26)

for the winner to actually be active, and:1019

~wi · ~x+ wrec < bi (27)

to prevent non-winners to become active. The value of bi in the model is lower in1020

the early phase than in the late phase of maturation to mimic enhanced excitabil-1021

ity (Schmidt-Hieber et al., 2004; Li et al., 2017).1022

Similar versus distinct patterns with the artificial data set1023

Using the artificial data set with |ξ| < 1 (equation (14)), the scalar product1024

between the centers of mass of two different clusters, given by equation (16),1025

satisfies: 0.5 6 1
1+ξ2

6 1. This corresponds to 0◦ 6 Ω 6 Ωmax = 60◦.1026

After stimulation with a pattern ~x, it takes some time before the firing rates1027

of the DGCs converge. We call two patterns “similar” if they activate, at least1028

initially, the same output unit, while we consider two patterns as “distinct” if1029

they do not activate the same output unit, not even initially. We now show that,1030

with a large concentration parameter κ, patterns of different clusters are similar1031

if ξ <
√
||~wi||
bi
− 1 and distinct if ξ >

√
||~wi||
bi
− 1.1032

We first consider a DGC i whose feedforward weight vector has converged1033

towards the center of mass of cluster k. If an input pattern ~xµ(k) from cluster k1034

is presented, it will receive the following initial input:1035

Ii = ~wi · ~xµ(k) = ||~wi|| · ||~xµ(k)|| · cos(ϑkk) = ||~wi|| · cos(ϑkk) (28)

where ϑkk is the angle between the pattern ~xµ(k) and the center of mass ~P k of1036

the cluster to which it belongs. The larger the concentration parameter κ for the1037

generation of the artificial data set, the smaller the dispersion of the clusters, and1038

thus the larger cos(ϑkk). If instead, an input pattern from cluster l is presented,1039

that same DGC will receive a lower initial input:1040

Ii = ~wi · ~xµ(l) = ||~wi|| · ||~xµ(l)|| · cos(ϑkl) ≈
||~wi||
1 + ξ2

(29)

The approximation holds for a small dispersion of the clusters (large concentra-1041

tion parameter κ). We note that there is no subtraction of the recurrent input1042
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yet, because output units are initialized with zero firing rate before each pattern1043

presentation. By definition, similar patterns stimulate (initially) the same DGCs.1044

A DGC can be active for two clusters only if its threshold is:1045

bi <
||~wi||
1 + ξ2

(30)

Therefore, with a high concentration parameter κ, patterns of different clusters1046

are similar if ξ <
√
||~wi||
bi
− 1, while patterns of different clusters are distinct if1047

ξ >
√
||~wi||
bi
− 1.1048

Parameter choice1049

The upper bound of the expected L2-norm of the feedforward weight vector to-1050

wards the DGCs at convergence can be computed, see equation (11). With the1051

parameters in Table 1(Simple network), the value is ||~wi|| 6 1.5. Moreover, the1052

input patterns for each cluster are highly concentrated, hence their angle with the1053

center of mass of the cluster they belong to is close to 0, so we have ||~wi|| ≈ 1.5.1054

Therefore, at convergence, a DGC selective for a given cluster k receives an input1055

Ii∗ = ~wi∗ ·~xµ(k) ≈ 1.5 upon presentation of input patterns ~xµ(k) belonging to cluster1056

k. We choose bi = 1.2 to satisfy equation (26). Given bi the threshold value ξthresh1057

for which two clusters are similar (and above which two clusters are distinct) can1058

be determined by equation (30) : ξthresh = 0.5. We created a handmade data set1059

with ξ = 0.2 for the case of similar clusters (therefore with similarity s = 0.8),1060

and a handmade data set with ξ = 0.8 for the distinct case (hence with similarity1061

s = 0.2).1062

Let us suppose that the weights of DGC i have converged and made this cell1063

respond to patterns of cluster i. If another DGC k of the network is selective1064

for cluster k, cell i gets the input Ii = ~wi · ~xµ(k) + wrec ≈ 1.5
1+ξ2

+ wrec upon1065

presentation of input patterns ~xµ(k) belonging to cluster k 6= i. Hence, to satisfy1066

equation (27), we need wrec < bi −maxξ

(
1.5

1+ξ2

)
≈ −0.24. We set wrec = −1.2.1067

Furthermore, a newborn DGC is born with a null feedforward weight vector so1068

that at birth, its input consists only of the indirect excitatory input from mature1069

DGCs which vanishes if all DGCs are quiescent and takes a value Ii = −wrec > 0 if1070

a mature DGC responds to the input. For the feedforward weight vector to grow,1071

the newborn cell i needs to be active. This could be achieved through spontaneous1072

activity which could be implemented by setting the intrinsic firing threshold at1073

birth to a value bbirth < 0. In this case a difference between similar and distinct1074

patterns is not expected. Alternatively, activity of newborn cells can be achieved1075

in the absence of spontaneous activity under the condition −wrec > bbirth. For the1076
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simulations with the toy model, we set bbirth = 0.9 which leads to weight growth1077

in newborn cells for similar, but not distinct patterns.1078

Neurogenesis with the artificial data set1079

To save computation time, we initialize the feedforward weight vectors of two1080

mature DGCs at two training patterns randomly chosen from the first two clusters,1081

normalized such that they have an L2-norm of 1.5. We then present patterns from1082

clusters 1 and 2, and let the feedforward weights evolve according to equation (6)1083

until they reach convergence.1084

We thereafter fix the feedforward weights onto the two mature cells, and in-1085

troduce a novel cluster of patterns as well as a newborn DGC in the network. The1086

sequence of presentation of patterns from the three clusters (a novel one and two1087

pretrained ones) is random. The newborn DGC is born with a null feedforward1088

weight vector, and its maturation follows the same rules as before (plastic feedfor-1089

ward weights). In the early phase, GABAergic input has an excitatory effect (Ge1090

et al., 2006) and the newborn DGC does not inhibit the mature DGCs (Temprana1091

et al., 2015). This is modeled by setting wNMrec = −wrec for the connections from1092

mature to newborn DGC, and wMN
rec = 0 for the connections from newborn to1093

mature DGCs. The threshold of the newborn DGC starts at bbirth = 0.9 at birth,1094

mimicking enhanced excitability (Schmidt-Hieber et al., 2004; Li et al., 2017),1095

and increases linearly up to 1.2 (same threshold as that of mature DGCs) over1096

12000 pattern presentations, reflecting loss of excitability with maturation. The1097

exact time window is not critical. In the late phase of maturation of the newborn1098

DGC, GABAergic input switches to inhibitory (Ge et al., 2006), and the newborn1099

DGC recruits feedback inhibition onto mature DGCs (Temprana et al., 2015).1100

It is modeled by switching the sign of the connection from mature to newborn1101

DGC: wNMrec = wrec, and establishing connections from newborn to mature DGCs:1102

wMN
rec = wrec. Each of the 6000 patterns is presented once during the early phase1103

of maturation, and once during the late phase of maturation.1104

The above paradigm is run separately for each of the two handmade data1105

sets: the one where clusters are similar (s = 0.8), and the one where clusters are1106

distinct (s = 0.2).1107
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dGABA-switch

Figure 1: Network model and pretraining. (a) Integration of an adult-
born DGC (blue) as a function of time: GABAergic synaptic input (red) switches
from excitatory (+) to inhibitory (-); strong connections to interneurons develop
only later; glutamatergic synaptic input (black), interneuron (red). (b) Network
structure. EC neurons (black, rate xj) are fully connected with weights wij to
DGCs (blue, rate νi). The feedforward weight vector ~wi onto neuron i is depicted
in black. DGCs and interneurons (red, rate νIk) are mutually connected with
probability pIE and pEI and weights wIEki and wEIik , respectively. Connections with
a triangular (round) end are glutamatergic (GABAergic). (c) Given presynaptic
activity xj > 0, the weight update ∆wij is shown as a function of the firing
rate νi of the postsynaptic DGC with LTD for νi < θ and LTP for θ < νi <
ν̂i. (d) Center of mass for three ensembles of patterns from the MNIST data
set, visualized as 12x12 pixel patterns. The two-dimensional arrangements and
colors are for visualization only. (e) 100 receptive fields, each defined as the set
of feedforward weights, are represented in a 2-dimensional organization. After
pretraining with patterns from MNIST digits 3 and 4, 79 DGCs have receptive
fields corresponding to threes and fours of different writing styles, while 21 remain
unselective (highlighted by red frames).
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Figure 2: Newborn DGCs become selective for novel patterns during
maturation.
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Figure 2: Newborn DGCs become selective for novel patterns during1379

maturation. (a) Unselective neurons are replaced by newborn DGCs, which1380

learn their feedforward weights while patterns from digits 3, 4, and 5 are presented.1381

At the end of the early phase of maturation, the receptive fields of all newborn1382

DGCs (red frames) show mixed selectivity. (b) At the end of the late phase1383

of maturation, newborn DGCs are selective for patterns from the novel digit1384

5, with different writing styles. (c,d) Distribution of the percentage of model1385

DGCs (mean with 10th and 90th percentiles) in each firing rate bin at the end1386

of the early (c) and late (d) phase of maturation. Statistics calculated across1387

MNIST patterns (’3’s, ’4’s, ’5’s). Percentages are per subpopulation (mature and1388

newborn). Note that neurons with firing rate < 1Hz for one pattern may fire at1389

medium or high rate for another pattern. (e) The L2-norm of the feedforward1390

weight vector onto newborn DGCs (mean ± SEM) increases as a function of1391

maturation indicating growth of synapses and receptive field strength. Horizontal1392

axis: time=1 indicates end of early (top) or late phase (bottom). (f) Percentage1393

of newborn DGCs activated (firing rate > 1Hz) by a stimulus averaged over all1394

test patterns as a function of maturation. (g) At the end of the late phase of1395

maturation, three different patterns of digit 5 applied to EC neurons (top) cause1396

different firing rate patterns of the 100 DGCs arranged in a matrix of 10-by-101397

cells (middle). DGCs with a receptive field (see Fig. 2b) similar to a presented EC1398

activation pattern respond more strongly than the others. Bottom: Firing rates of1399

the DGCs with indices sorted from highest to lowest firing rate in response to the1400

first pattern. All 3 patterns shown come from the testing set, and are correctly1401

classified using our readout network.1402
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Figure 3: The GABA-switch guides learning of novel representations.
(a) Pretraining on digits 3, 4 and 5 simultaneously without neurogenesis (con-
trol 1). Patterns from digits 3, 4 and 5 are presented to the network while all
DGCs learn their feedforward weights. After pretraining, 79 DGCs have recep-
tive fields corresponding to the three learned digits, while 21 remain unselective
(as in Fig. 1e). (b) Sequential training without neurogenesis (control 2). After
pretraining as in Fig. 1e, the unresponsive neurons stay plastic, but they fail to
become selective for digit 5 when patterns from digits 3, 4, and 5 are presented
in random order. (c) Sequential training without neurogenesis but all DGCs stay
plastic (control 3). Some of the DGCs previously responding to patterns from
digits 3 or 4 become selective for digit 5. (d-f) Confusion matrices. Classification
performance in percent (using a linear classifier as readout network) for control 1
(d) and for the standard model at the end of the early (e) and late (f) phase; cf.
Fig. 2a,b.
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Figure 4: Novel patterns expand the representation into a previously
empty subspace. (a) Left: The DGC activity responses at the end of the early
phase of maturation of newborn DGCs are projected on discriminatory axes. Each
point corresponds to the representation of one input pattern. Color indicates
digit 3 (blue), 4 (green), and 5 (red). Right: Firing rate profiles of three example
patterns (highlighted by crosses on the left) are sorted from high to low for the
pattern represented by the orange cross (inset: zoom of firing rates of DGCs with
low activity). (b) Same as a, but at the end of the late phase of maturation
of newborn DGCs. Note that the red dots around the orange cross have moved
into a different subspace. (c) Example patterns of digit 5 corresponding to the
symbols in a and b. All three are accurately classified by our readout network. (d)
Evolution of the mean (± SEM) of the projection of the activity upon presentation
of all test patterns of digit 5.
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Figure 5: A newborn DGC becomes selective for similar but not distinct
novel stimuli.
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Figure 5: A newborn DGC becomes selective for similar but not distinct1403

novel stimuli. (a) Center of mass of clusters k and l of an artificial data set (~Pk1404

and ~Pl, respectively, separated by angle Ω) are represented by arrows that point1405

to the surface of a hypersphere. Dots represent individual patterns. (b) Center of1406

mass of three clusters of the artificial data set, visualized as 16x8 pixel patterns.1407

The two-dimensional arrangements and colors are for visualization only. (c,d)1408

Example input patterns (activity of 16x8 input neurons) from clusters 1 and 21409

for similar clusters (c, s = 0.8), and distinct clusters (d, s = 0.2). Below: dots1410

correspond to patterns, crosses indicate the input patterns shown (schematic).1411

(e,f) After pretraining with patterns from two clusters, the receptive fields (set of1412

synaptic weights onto neurons 1 and 2) exhibit the center of mass of each cluster1413

of input patterns (blue and green crosses). (g,h) Novel stimuli from cluster 31414

(orange dots) are added. If the clusters are similar, the receptive field of the1415

newborn DGC (red cross) moves towards the center of mass of the three clusters1416

during its early phase of maturation (g), and if the clusters are distinct towards1417

the center of mass of the two pretrained clusters (h). (i,j) Receptive field after the1418

late phase of maturation for the case of similar (i) or distinct (j) clusters. (k,l) For1419

comparison, the center of mass of all patterns of the blue and green clusters (left1420

column) and of the blue, green and orange clusters (right column) for the case of1421

similar (k) or distinct (l) clusters. Color scale: input firing rate ~x or weight ~wi1422

normalized to ||~wi|| = 1 = ||~x||.1423
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Figure 6: Maturation dynamics for similar patterns. (a) Schematics of the
unit hypersphere with three clusters of patterns (colored dots) and three scaled
feedforward weight vectors (colored arrows). After pretraining, the blue and green
weight vectors point to the center of mass of the corresponding clusters. Patterns
from the novel cluster (orange points) are presented only later to the network.
During the early phase of maturation, the newborn DGC grows its vector of
feedforward weights (red arrow) in the direction of the subspace of patterns which
indirectly activate the newborn cell (dark grey star: center of mass of the presented
patterns, located below the part of the sphere surface highlighted in grey). (b)
During the late phase of maturation, the red vector turns towards the novel cluster.
Angle φ between the center of mass of the novel cluster and the feedforward weight
vector onto the newborn cell. (c) The angle φ decreases in the late phase of
maturation of the newborn DGC if the novel cluster is similar to the previously
stored clusters. Its final average value of φ ≈ 0.4◦ is caused by the jitter of the
weight vector around the center of mass of the novel cluster.
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Table 1: Parameters for the simulations

Biologically-plausible network Simplified network

Network
NEC = 144 NDGC = 100 NEC = 128 NDGC = 3
NI = 25

Connectivity
wIE = 1 wEI = − 1

pEI∗NI
wrec = −1.2

pIE = 0.9 pEI = 0.9

Dynamics
τm = 20 ms τinh = 2 ms τm = 20 ms
L = 0.5 p∗ = 0.1

Plasticity
α0 = 0.05 β = 1 α0 = 0.03 β = 1
γ0 = 10 θ = 0.15 γ0 = 1.65 θ = 0.15
ν0 = 0.2 γ = 9.85 γ = 1.5

Numerical simulations
∆t = 0.1 ms η = 0.01 ∆t = 1 ms η = 0.01
ηb = 0.01
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