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o Summary

un In adult dentate gyrus neurogenesis, the link between maturation of newborn
12 neurons and their function, such as behavioral pattern separation, has remained
13 puzzling. By analyzing a theoretical model, we show that the switch from excita-
11 tion to inhibition of the GABAergic input onto maturing newborn cells is crucial
15 for their proper functional integration. When the GABAergic input is excitatory,
16 cooperativity drives the growth of synapses such that newborn cells become sen-
17 sitive to stimuli similar to those that activate mature cells. When GABAergic
18 input switches to inhibitory, competition pushes the configuration of synapses
19 onto newborn cells towards stimuli that are different from previously stored ones.
20 This enables the maturing newborn cells to code for concepts that are novel, yet
2 similar to familiar ones. Our theory of newborn cell maturation explains both
» how adult-born dentate granule cells integrate into the preexisting network and
3 why they promote separation of similar but not distinct patterns.

» Introduction

»s In the adult mammalian brain, neurogenesis, the production of new neurons,
2 18 restricted to a few brain areas, such as the olfactory bulb and the dentate
2 gyrus (Deng et al. [2010). The dentate gyrus is a major entry point of input from
2 cortex, primarily entorhinal cortex (EC), to the hippocampus (Amaral et al.)
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2 [2007), which is believed to be a substrate of learning and memory
3 (1993). Adult-born cells in dentate gyrus mostly develop into dentate granule
a cells (DGCs), the main excitatory cells that project to area CA3 of hippocam-
2 pus (Deng et al. [2010).

33 The properties of rodent adult-born DGCs change as a function of their mat-
s uration stage, until they become indistinguishable from other mature DGCs at
55 approximately 8 weeks (Deng et al., [2010; Johnston et al., [2016) (Fig. 1p). Many
s of them die before they fully mature (Dayer et al, 2003). Their survival is
57 experience-dependent, and relies upon NMDA receptor activation (Tashiro et al.,
s 20006)). Initially, newborn DGCs have enhanced excitability (Schmidt-Hieber et al.,
3 2004} Li et al.,2017) and stronger synaptic plasticity than mature DGCs, reflected
w by a larger LTP amplitude and a lower threshold for induction of LTP
a et al) [2000; |Schmidt-Hieber et al., [2004; |Ge et al., 2007). Furthermore, after 4
22 weeks of maturation adult-born DGCs have only weak connections to interneu-
i3 rons, while at 7 weeks of age their activity causes indirect inhibition of mature
1 DGCs (Temprana et al., 2015).

45 Newborn DGCs receive no direct connections from mature DGCs
i et al.l|2013;/Alvarez et al., 2016)) (yet see (Vivar et al.;2012)), but are indirectly ac-
w tivated via interneurons (Alvarez et al.,|2016; Heigele et al., 2016). At about three
s weeks after birth, the y-aminobutyric acid (GABAergic) input from interneurons
s to adult-born DGCs switches from excitatory in the early phase to inhibitory in
o the late phase of maturation (Ge et al. [2006; Deng et al., 2010) (GABA-switch’,
st [Fig. 1p). Analogous to a similar transition during embryonic and early postnatal
> stages (Wang and Kriegstein, 2010]), the GABA-switch is caused by a change in
53 the expression profile of chloride cotransporters. In the early phase of matura-
s« tion, newborn cells express the Na™-K*-2C1~ cotransporter NKCC1, which leads
55 to a high intracellular chloride concentration. Hence the GABA reversal potential
ss is higher than the resting potential (Ge et al. [2006; Heigele et al., 2016]), and
57 GABAergic inputs lead to C1™ ions outflow through the GABA 4 ionic receptors,
s which results in depolarization of the newborn cell (Ben-Ari, 2002 Owens and
s [Kriegstein, 2002). In the late phase of maturation, expression of the K™-Cl™-
e coupled cotransporter KCC2 kicks in, which lowers the intracellular chloride con-
e1 centration of the newborn cell to levels similar to those of mature cells, leading
&2 to a hyperpolarization of the cell membrane due to Cl™ inflow upon GABAergic
o3 stimulation (Ben-Ari, 2002; Owens and Kriegstein| 2002). The transition from de-
e+ polarizing (excitatory) to hyperpolarizing (inhibitory) effects of GABA is referred
e to as the 'GABA-switch’. It has been shown that GABAergic inputs are crucial
e for the integration of newborn DGCs into the preexisting circuit (Ge et al., 2006;
o (Chancey et al., 2013} |Alvarez et al., | 2016; Heigele et al., |2016).

68 The mammalian dentate gyrus contains — just like hippocampus in general —
e @ myriad of inhibitory cell types (Freund and Buzséki, |1996; Somogyi and Klaus-|
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w0 berger, 2005 Klausberger and Somogyi, 2008) including basket cells, chandelier
n  cells, and hilar cells. Basket cells can be subdivided in two categories: some ex-
22 press cholecystokinin (CCK) and vasoactive intestinal polypeptide (VIP), while
73 the others express parvalbumin (PV) and are fast-spiking (Freund and Buzsaki
7 [1996}; [Amaral et all [2007). Chandelier cells also express PV (Freund and Buzsékil,
75 11996]). Overall, it has been estimated that PV is expressed in 15-21% of all dentate
s GABAergic cells (Freund and Buzsakil, 1996), and in 20-25% of the GABAergic
7 neurons in the granule cell layer (Houser, [2007). Amongst the GABAergic hilar
7 cells, 55% express somatostatin (SST) (Houser, 2007) [and somatostatin-positive
79 interneurons (SST-INs) represent about 16% of the GABAergic neurons in the
0o dentate gyrus as a whole (Freund and Buzsaki, |1996)]. While axons of hilar in-
s terneurons (HIL) (Yuan et al.,[2017)) stay in the hilus and provide perisomatic inhi-
22 bition onto dentate GABAergic cells (Yuan et al., [2017)), axons of hilar-perforant-
g3 path-associated interneurons (HIPP) extend to the molecular layer and provide
s« dendritic inhibition onto both DGCs and interneurons (Yuan et al., 2017). HIPP
s axons generate lots of synaptic terminals and extend as far as 3.5 mm along the
s septotemporal axis of the dentate gyrus (Amaral et al., 2007). PV-expressing
& interneurons (PV-INs) and SST-INs both target adult-born DGCs early (after
s 2-3 weeks) in their maturation (Groisman et al. [2020). PV-INs provide both
o feedforward inhibition and feedback inhibition (also called lateral inhibition) to
o the DGCs (Groisman et al., 2020)). In general, SST-INs provide lateral, but not
a feedforward, inhibition onto DGCs (Stefanelli et al., 2016} |Groisman et al. [2020)).

o Adult-born DGCs are preferentially reactivated by stimuli similar to the ones
o3 they experienced during their early phase of maturation, up to 3 weeks after cell
ss  birth (Tashiro et al., 2007)). Even though the amount of newly generated cells per
s month is rather low (3 to 6% of the total DGCs population (Van Praag et al.
o 11999 |Cameron and McKayl| 2001))), adult-born DGCs are critical for behavioral
o pattern separation (Clelland et al) 2009} [Sahay et al. 2011a} [Jessberger et al),
o [2009), in particular in tasks where similar stimuli or contexts have to be discrim-
» inated (Clelland et al., [2009; Sahay et al., |2011a). However, the functional role
o of adult-born DGCs is controversial (Sahay et al., |2011b; |Aimone et al., 2011).
11 One view is that newborn DGCs contribute to pattern separation through a mod-
102 ulatory role (Sahay et al.l [2011b]). Another view suggests that newborn DGCs
103 act as encoding units that become sensitive to features of the environment which
104 they encounter during a critical window of maturation (Kee et al., |2007} Tashiro|
105 @, . Some authors have even challenged the role of newborn DGCs in
106 pattern separation in the classical sense and have proposed a pattern integration
07 effect instead (Aimone et al.| 2011). Within that broader controversy, we ask two
s specific questions: First, why are GABAergic inputs crucial for the integration
w0 of newborn DGCs into the preexisting circuit? And second, why are newborn
uo DGO particularly important in tasks where similar stimuli or contexts have to be
w  discriminated?
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112 To address these questions, we present a model of how newborn DGCs inte-
us grate into the preexisting circuit. In contrast to earlier models where synaptic
s input connections onto newborn cells were assumed to be strong enough to drive
us them (Chambers et al., 2004; Becker, [2005; (Crick and Miranker} |2006; Wiskott
ue let al., 2006} |Chambers and Conroy, [2007; |Aimone et al., 2009; Appleby and
ur  |Wiskott], 2009; Weisz and Argibay, 2009, 2012; Temprana et al., 2015; Finnegan
us jand Becker|, 2015} |[DeCostanzo et al., 2019), our model uses an unsupervised bi-
no ologically plausible Hebbian learning rule that makes synaptic connections either
120 disappear or grow from small values at birth to values that eventually enable
1 feedforward input from EC to drive DGCs. Contrary to previous modeling stud-
122 ies, our plasticity model does not require an artificial renormalization of synaptic
123 connection weights since model weights are naturally bounded by homeostatic
12« heterosynaptic plasticity. We show that learning with a biologically plausible plas-
s ticity rule is possible thanks to the GABA-switch, which has been overlooked in
e previous modeling studies. Specifically the growth of synaptic weights from small
127 values is supported in our model by the excitatory action of GABA whereas, after
128 the switch, specialization of newborn cells arises from competition between DGCs,
19 triggered by the inhibitory action of GABA. Furthermore, our theory of adult-
1o born DGCs integration yields a transparent explanation of why newborn cells
131 favor pattern separation of similar stimuli, but do not impact pattern separation
12 of distinct stimuli.

= Results

1« We model a small patch of cells within dentate gyrus as a recurrent network of 100
s DGCs and 25 GABAergic interneurons, omitting the Mossy cells for the sake of
s simplicity (Fig. 1p). The modeled interneurons correspond to SST-INs from the
17 HIPP category, as they are the providers of feedback inhibition to DGCs through
s dendritic projections (Stefanelli et al., 2016; [Yuan et al., 2017; |Groisman et al.,
1o 2020). The activity of a DGC with index ¢ and an interneuron with index k is
o described by their continuous firing rates v; and v}, respectively. Connectivity in
w1 a localized patch of dentate neurons is high: DGCs densely project to GABAergic
12 interneurons (Acsady et al., [1998), and SST-INs heavily project to cells in their
13 neighborhood (Amaral et al., 2007). Hence, in the recurrent network model,
s each model DGC projects to, and receives input from, a given interneuron with
1s  probability 0.9. The exact percentage of GABAergic neurons (or SST-INs) in the
us dentate gyrus as a whole is not known, but has been estimated at about 10% and
w7 only a fraction of these are SST-INs (Freund and Buzsaki, [1996]). The number of
1s inhibitory neurons in our model network might therefore seem too high. However,
1o our results are robust to substantial changes in the number of inhibitory neurons
150 (Suppl. Table S2).
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151 Each of the 100 model DGCs receives input from a set of 144 model EC
152 cells (Fig. 1p). In the rat the number of DGCs has been estimated to be about
153 105, while the number of EC input cells is estimated to be about 2 - 105 (An-
¢ dersen et al., 2007)), yielding an expansion factor from EC to dentate gyrus of
155 about 5. Theoretical analysis suggests that the expansion of the number of neu-
15 rons enhances decorrelation of the representation of input patterns (Marr, |1969;
157 [Albus, [1971; Marr], 1971; Rolls and Treves, [1998), and promotes pattern sepa-
155 ration (Babadi and Sompolinsky, 2014). Our standard network model does not
159 reflect this expansion, because we want to highlight the particular ability of adult
10 neurogenesis in combination with the GABA-switch to decorrelate input patterns
1 independently of specific choices of the network architecture. However, we show
12 later that an enlarged network with an expansion from 144 model EC cells to 700
165 model DGCs (similar to the anatomical expansion factor) yields similar results.

164 At birth a DGC with index ¢ does not receive synaptic glutamatergic input
s yet. Hence the connection from any model EC cell with index j is initialized at
16 w;; = 0. The growth or decay of the synaptic strength w;; of the connection from

167 j to i is controlled by a Hebbian plasticity rule (Fig. 1k):

s where z; is the firing rate of the presynaptic EC neuron and 7 (’learning rate’)
160 is the susceptibility of a cell to synaptic plasticity. The first term on the right-
170 hand-side of describes Long-Term-Potentiation (LTP) whenever the
i presynaptic neuron is active (z; > 0) and the postsynaptic firing v; is above
2 a threshold #; the second term on the right-hand-side of describes
s Long-Term-Depression (LTD) whenever the presynaptic neuron is active and the
174 postsynaptic firing rate is positive but below the threshold 6; LTD stops if the
75 synaptic weight is zero. Such a combination of LTP and LTD is consistent with
ws experimental data (Artola et all [1990; Sjostrom et al., |2001) as shown in ear-
v lier rate-based (Bienenstock et al., |1982) or spike-based (Pfister and Gerstner,
178 2006) plasticity models. The third term on the right-hand-side of
o implements heterosynaptic (HET) plasticity (Chistiakova et al., |2014} Zenke and
1o |Gerstner, 2017) whenever the postsynaptic neuron fires at a rate above 6, inde-
11 pendent of presynaptic activity . It ensures that the weights cannot
2 grow without bounds (Methods). Since survival of newborn cells requires NMDA
3 receptor activation (Tashiro et al., |2006), a DGC which has not been able to
18a  grow several strong weights is removed after some time and replaced by another
185 newborn DGC.

186 We ask whether such a biologically-plausible plasticity rule enables adult-born
117 DGCs to be integrated in an existing network of mature cells. To address this
188 question, we exploit two observations (Fig. 1p): first, the effect of interneurons
19 onto newborn DGCs exhibits a GABA-switch from excitatory to inhibitory after
o about three weeks of maturation (Ge et al., [2006; |[Deng et al., 2010) and, second,
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11 newborn DGCs receive input from interneurons early in their maturation (before
12 the third week), but project back to interneurons only later (Temprana et al.|
03 2015). However, before integration of adult-born DGCs can be addressed, an
s adult-stage network where mature cells already store some memories has to be
105 constructed.

s Mature neurons represent prototypical input patterns

17 In an adult-stage network, some mature cells already have a functional role. Hence
s we pretrain our network of 100 DGCs using the same learning rule (equation (1))
199 that we will use later for the integration of newborn cells. For the stimulation of
200 EC cells, we apply patterns representing thousands of handwritten digits in differ-
21 ent writing styles from MNIST, a standard data set in artificial intelligence (LeCun
22 let al), [1998). Even though we do not expect EC neurons to show a 2-dimensional
203 arrangement, the use of 2-dimensional patterns provides a simple way to visualize
20a  the activity of all 144 EC neurons in our model ) We implicitely model
205 feedforward inhibition from PV-INs (Groisman et al., 2020) by normalizing the
206 L2-norm of each input pattern to unity . Below, we present results
207 for a representative combination of three digits (digits 3, 4 and 5), but other
208 combinations of digits have also been tested (Suppl. Table S1).

200 After pretraining with patterns from digits 3 and 4 in a variety of writing styles,
20 we examine the receptive field of each DGC. Each receptive field, consisting of
an the connections from all 144 EC neurons onto one DGC, is characterized by its
22 spatial structure (i.e., the pattern of connection weights) and its total strength
23 (i.e., the efficiency of the optimal stimulus to drive the cell). We observe that out
2. of the 100 DGCs, some have developed spatial receptive fields that correspond
25 to different writing styles of digit 3, others receptive fields that correspond to

zs variants of digit 4 (Fig. 1p).

217 Behavioral discrimination has been shown to be correlated with classification
28 accuracy based on DGC population activity (Woods et al.,[2020). Hence, to quan-
219 tify the representation quality, we compute classification performance by a linear
20 classifier that is driven by the activity of our 100 DGC model cells . At
21 the end of pretraining, the classification performance for patterns of digits 3 and 4
22 from a distinct test set not used during pretraining is high: 99.25% (classification
23 performance on digit 3: 98.71%; digit 4: 99.80%), indicating that nearly all input
24 patterns of the two digits are well represented by the network of mature DGCs.
25 'The median classification performance for ten random combinations of two groups
26 of pretrained digits is 98.54%, the 25"-percentile 97.26%, and the 75"-percentile
27 99.5% (Suppl. Table S1).

228 A detailed mathematical analysis (Methods)) shows that heterosynaptic plas-
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29 ticity in jequation (1)l ensures that the total strength of the receptive field of each
20 selective DGC converges to a stable value which is similar for selective DGCs.

21 As a consequence, synaptic weights are intrinsically bounded without the need to
23 impose hard bounds on the weight dynamics. Moreover, the spatial structure of
233 the receptive field represents the weighted average of all those input patterns for
23 which that DGC is responsive. The mathematical analysis also shows that those
255 DGCs that do not develop selectivity have weak synaptic connections and a very
236 low total strength of the receptive field.

»» INewborn neurons become selective for novel patterns dur-
» ing maturation

230 After convergence of synaptic weights during pretraining, selective DGCs are con-
20 sidered mature cells. Some DGCs did not develop any strong weight patterns
a1 and exhibit unselective receptive fields after pretraining (highlighted in red in
22 [Fig. 1p). We classify these as unresponsive units. Since unresponsive model units
23 have weak synaptic connections, we assume them to die because of lack of NMDA
s receptor activation (Tashiro et al., 2006), and replace them in the model by plastic
2s  newborn DGCs. Mature cells are less plastic than newborn cells (Schmidt-Hieber
26 et all 2004 |Ge et all, [2007), so we set = 0 in for mature cells and
27 = 0.01 for newborn cells. Feedforward connection weights from EC to mature
ug  cells remain therefore fixed in our model. To mimic exposure of an animal to a
20 movel set of stimuli, we now add input patterns from digit 5 to the set of presented
0 stimuli, which was previously limited to patterns of digits 3 and 4.

251 We postulate that functional integration of newborn DGCs requires the two-
;2 Step maturation process caused by the GABA-switch from excitation to inhibition.
3 Since excitatory GABAergic input potentially increases correlated activity within
»s the dentate gyrus network, we predict that newborn DGCs respond to familiar
s stimuli during the early phase of maturation, but not during the late phase, when
6 inhibitory GABAergic input leads to competition.

257 To test this hypothesis, our model newborn DGCs go through two maturation
»s8 phases . The early phase of maturation is cooperative because, for each
0 pattern presentation, activated mature DGCs indirectly excite the newborn DGCs
%0 via GABAergic interneurons. We assume that in natural settings, this GABAergic
s activation stays below the reversal potential of the GABA channels at which
22 shunting inhibition would be induced (Heigele et al.,[2016). This lateral activation
%3 of newborn DGCs drives the growth of their receptive fields in a direction similar
x4 to those of the currently active mature DGCs. Consistent with our hypothesis
s we find that, at the end of the early phase of maturation, newborn DGCs show a
26 receptive field corresponding to a mixture of several input patterns )
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267 In the late phase of maturation, model newborn DGCs receive inhibitory
xs GABAergic input from interneurons, similar to the input received by mature
% DGCs. Given that at the end of the early phase, newborn DGCs have receptive
o0 fields similar to those of mature DGCs, lateral inhibition induces competition
on - with mature DGCs for activation during presentation of patterns from the novel
a2 digit. Because model newborn DGCs start their late phase of maturation with a
2 higher excitability (lower threshold) compared to mature DGCs, consistent with
o observed enhanced excitability of newborn cells (Schmidt-Hieber et al., 2004} |Li
s et all [2017), the activation of newborn DGCs is facilitated for those input pat-
a6 terns for which no mature DGC has preexisting selectivity. Therefore, in the late
o7 phase of maturation, competition drives the synaptic weights of newborn DGCs
s towards receptive fields corresponding to different subcategories of the ensemble

2o of input patterns of the novel digit 5 (Fig. 2b).

280 During maturation, the L2-norm of the feedforward weight vector onto new-
2 born DGCs increases (Fig. 2¢) indicating an increase in total glutamatergic in-
22 mervation, e.g. through an increase in the number and size of spines (Zhao et al.,
283 2000). Nevertheless, the distribution of firing rates of newborn DGCs is shifted to
s lower values at the end of the late phase compared to the end of the early phase of
x5 maturation (Fig. 2k,d), consistent with in vivo calcium imaging recordings show-
26 ing that adult-born DGCs are more active than mature DGCs (Danielson et al.,
2 [2016).

288 We emphasize that upon presentation of a pattern of a given digit, only those
20 DGCs with a receptive field similar to the specific writing style of the presented
20 pattern become strongly active, others fire at a medium firing rate, yet others at a
21 low rate ) As a consequence, the firing rate of a particular newborn DGC
22 at the end of its maturation to a pattern from digit 5 is strongly modulated by the
203 specific choice of stimulation pattern within the class of ’5’s. Analogous results
204 are obtained for patterns from pretrained digits 3 and 4 (Suppl. Fig S1). Hence,
25 the ensemble of DGCs is effectively performing pattern separation within each
206 digit class as opposed to a simple ternary classification task. The selectivity of
207 newborn DGCs develops during maturation. Indeed, during the late, competitive,
28 phase, the percentage of active newborn DGCs decreases, both upon presentation
200 of familiar patterns (digits 3 and 4), as well as upon presentation of novel pat-
20 terns (digit 5) (Fig. 2f). This reflects the development of the selectivity of our
s model newborn DGCs from broad to narrow tuning, consistent with experimental
32 observations (Marin-Burgin et al., [2012; [Danielson et al., |2016)).

w0 Adult-born neurons promote better discrimination

se As above, we compute classification performance of our model network as a sur-
s rogate for behavioral discrimination (Woods et al., 2020). At the end of the late
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36 phase of maturation of newborn DGCs, we obtain an overall classification perfor-
57 mance of 94.56% for the three ensembles of digits (classification performance for
28 digit 3: 90.50%; digit 4: 98.17%; digit 5: 95.18%). Confusion matrices show that
;0 although novel patterns are not well classified at the end of the early phase of
a0 maturation (Fig. 3g), they are as well classified as pretrained patterns at the end

su  of the late phase of maturation (Fig. 3f).

312 We compare this performance with that of a network where all three digit
23 ensembles are simultaneously pretrained ([Fig. 3h, control 1). In this case, the
ae overall classification performance is 92.09% (classification performance for digit 3:
a5 86.83%; digit 4: 98.78%; digit 5: 90.70%). The confusion matrix show that
a6 all three digits are decently classified, but with an overall lower performance
ar (Fig. 3d). Across ten simulation experiments, classification performance is sig-
sis nificantly higher when a novel ensemble of patterns is learned sequentially by
a0 newborn DGCs, than if all patterns are learned simultaneously (Wilcoxon signed
»20 rank test: p-val = 0.0020, Wilcoxon signed rank = 55; one-way t-test: p-val =
= 0.0269, t-stat = 2.6401, df = 9; Suppl. Table S1).

322 Furthermore, if two novel ensembles of digits (instead of a single one) are
»23  introduced during maturation of newborn DGCs, we observe that some newborn
s22 DGCs become selective for one of the novel digits, while others become selective for
»s the other novel digit (Suppl. Fig. S2a). This was expected, since we have found
ws earlier that DGCs are becoming selective for different prototype writing styles
27 even within a digit category; hence introducing several additional digit categories
28 of novel patterns simply increases the prototype diversity. Therefore, newborn
29 DGCs can ultimately promote separation of several novel overarching categories
;0 of patterns, no matter if they are learned simultaneously or sequentially (Suppl.
331 Fig. SQb)

» The GABA-switch guides learning of novel representations

sz To assess whether maturation of newborn DGCs promotes learning of a novel
s ensemble of digit patterns, we compare our results with a control model without
35 neurogenesis (control 2). Similar to the neurogenesis case, patterns from the novel
16 digit 5 are introduced after pretraining with patterns from digits 3 and 4. The
ss7 feedforward weights and thresholds of DGCs that developed selectivity during
1 pretraining are fixed (learning rate n = 0), while the thresholds and weights of
130 all unresponsive neurons remain plastic after pretraining (n = 0.01). The only
a0 differences to the model with neurogenesis are that in the control case unresponsive
s neurons: (i) keep their feedforward weights (i.e., no reinitialization to low values),
s and (ii) keep the same connections from and to inhibitory neurons.

343 We find that without neurogenesis, the previously unresponsive DGCs do not
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s become selective for the novel digit 5, no matter during how many epochs pat-
15 terns are presented (we went up to 100 epochs) (Fig. 3b, control 2). Therefore,
us if patterns from digit 5 are presented to the network, the model fails to discrim-
a7 inate them from the previously learned digits 3 and 4: the overall classification
us  performance is 81.69% (classification performance for digit 3: 85.94%; digit 4:
s9 97.56%; digit 5: 59.42%). This result suggests that integration of newborn DGCs
30 18 beneficial for sequential learning of novel patterns.

351 As a further control (control 3), we compare with a model where all DGCs
2 keep plastic feedforward weights at the end of pretraining and upon introduction
;3 of the novel digit 5, no matter if they became selective or not for the pretrained
s digits 3 and 4. We observe that in the case where all neurons are plastic, learning
15 of the novel digit occurs at the cost of loss of selectivity of mature neurons. Several
s DGCs switch their selectivity to become sensitive to the novel digit (Fig. 3k), while
357 none of the previously unresponsive units becomes selective for presented patterns
s (compare with [Fig. 1¢). In contrast to the model with neurogenesis, we observe a
30 drop in classification performance to 90.92% (classification performance for digit
w0 3: 85.45%; digit 4: 98.37%; digit 5: 88.90%). We find that the classification
s1 performance for digit 3 is the one which decreases the most. This is due to the
2 fact that many DGCs previously selective for digit 3 modified their weights to
33 become selective for digit 5. Importantly, the more novel patterns are introduced,
s« the more overwriting of previously stored memories occurs. Hence, if all DGCs
s remain plastic, discrimination between a novel pattern and a familiar pattern
w6 stored long ago is impaired.

w Maturation of newborn neurons shapes the representation
w Of novel patterns

w0 oince each input pattern stimulates slightly different, yet overlapping, subsets of
s the 100 model DGCs in a sparse code such that about 20 DGCs respond to each
s pattern (Fig. 2g), there is no simple one-to-one assignment between neurons and
sz patterns. In order to visualize the activity patterns of the ensemble of DGCs, we
si3 perform dimensionality reduction. We construct a two-dimensional space using
s the activity patterns of the network at the end of the late phase of maturation
a5 of newborn DGCs trained with '3’s, '4’s and ’5’s. One axis connects the center
s of mass (in the 100-dimensional activity space) of all DGC responses to ’3’s with
sr - all responses to '5’s (arbitrarily called axis 1’) and the other axis those from '4’s
s to ’B’s (arbitrarily called ’axis 2’). We then project the activity of the 100 model
s DGCs upon presentation of MNIST testing patterns onto those two axes, both at
%0 the end of the early and late phase of maturation of newborn DGCs (Methods).
s Bach 2-dimensional projection is illustrated by a dot whose color corresponds to
;22 the digit class of the presented input pattern (blue for digit 3, green for digit 4,
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s3 red for digit 5). Different input patterns within the same digit class cause different
;s activation patterns of the DGCs, as depicted by extended clouds of dots of the
%5 same color (Fig. 4h,b). Interestingly, an example pattern of a ’5’ that is visually
;6 similar to a '4’ (characterized by the green cross) yields a DGC representation
s7  that lies closer to other ’4’s (green cloud of dots) than to typical ’5’s (red cloud of
ss dots) (Fig. 4b). Noteworthy the separation of the representation of '5’s from ’3’s
% and '4’s is better at end of the late phase (Fig. 4p) when compared to the end of
w0 the early phase of maturation (Fig. 4h). For instance, even though the pattern
s b’ corresponding to the orange cross is represented close to representations of '4’s
32 at the end of the early phase of maturation (green cloud of dots, ), it is
w3 represented far from any '3’s and ’4’s at the end of maturation (Fig. 4p). The
s expansion of the representation of ’5’s into a previously empty subspace evolves
ws as a function of time during the late phase of maturation (Fig. 4d).

s Robustness of the model

s7 - Our results are robust to changes in network architecture. As mentioned earlier,
308 neither the exact number of GABAergic neurons (Suppl. Table S2), nor that of
30 DGOCs is critical. Indeed, a larger network with 700 DGCs, thus mimicking the
w0 anatomically observed expansion factor of about 5 between EC and dentate gyrus
w1 (all other parameters unchanged), yields similar results (Suppl. Table S3).

402 In the network with 700 DGCs, 275 cells remain unresponsive after pretrain-
w03 ing with digits 3 and 4. In line with our earlier approach in the network with
ss 100 DGCs, we can algoritmically replace all unresponsive neurons with newborn
ws DGCs before patterns of digit 5 are added. Upon maturation, newborn DGC
ws receptive fields provide a detailed representation of the prototypes of the novel
w7 digit 5 (Suppl. Fig. S4) and good classification performance is obtained (Suppl.
ws Table S3). Interestingly, due to the randomness of the recurrent connections,
w0 some newborn DGCs become selective for particular prototypes of the familiar
no (pretrained) digits that are not already extensively represented by the network
a1 (see newborn DGCs selective for digit 4 highlighted by magenta squares in Suppl.
412 Fig. 84)

a13 As an alternative to replacing all unresponsive cells simultaneously, we can also
sa replace only a fraction of them by newborn cells so as to simulate a continuous
a5 turn-over of cells. For example, if 119 of the 275 unresponsive cells are replaced
ne by newborn DGCs before the start of presentations of digit 5, then these 119
a7 cells become selective for different writing styles and generic features of the novel
ns digit 5 (Suppl. Fig. S5) and allow a good classification performance of all three
a0 digits. On the other hand, replacing only 35 of the 275 unresponsive cells is not
20 sufficient (Suppl. Table S3). In an even bigger network with more than 144
= EC cells and more than 700 DGCs, we could choose to replace 1% of the total
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2 DGC population per week by newborn cells, consistent with biology (Van Praag
23 et al., [1999; Cameron and McKay, 2001). Importantly, if only a small fraction
24 of unresponsive cells are replaced at a given moment, other unresponsive cells
25 remain available to be replaced later by newborn DGCs that are then ready to
w6 learn new stimuli.

427 Interestingly, the timing of the introduction of the novel stimulus is impor-
28 tant. In our standard neurogenesis model, we introduce the novel digit 5 at
20 the beginning of the early phase of maturation, which consists in one epoch of
a0 MNIST training patterns (all patterns are presented once). For the network with
i1 100 DGCs, if the novel digit is only introduced in the middle of the early phase
s (half epoch), it cannot be properly learned (classification performance for digit
s b 46.52%). However, if introduced after three-eights or one-quarter of the early
s« phase, the novel digit can be picked out (classification performance for digit 5:
i 93.61% and 94.17% resp.). We thus observe an increase in performance the ear-
s lier the novel digit is introduced (classification performance for digit 5 was 95.18%
s when introduced at the beginning of the early phase of maturation). Therefore
ss our model predicts that a novel stimulus has to be introduced early enough with
19 respect to newborn DGC maturation to be well discriminated, and that the ac-
uo curacy of discrimination is better the earlier it is introduced. This could lead
s to an online scenario of our model, where adult-born DGCs are produced every
w2 day and different classes of novel patterns are introduced at different timepoints.
w3 Then different model newborn DGCs would become selective for different novel
ua  patterns according to their maturation stage with respect to presentation of the
ws  novel patterns.

« INewborn dentate granule cells become selective for similar
« novel patterns

us  To investigate whether our theory for integration of newborn DGCs can explain
uo  why adult dentate gyrus neurogenesis promotes discrimination of similar stimuli,
0 but does not affect discrimination of distinct patterns (Clelland et al., |2009; [Sahay
s let all 2011a), we use a simplified competitive winner-take-all network (Methods).
2 It contains only as many DGCs as trained clusters, and the GABAergic inhibitory
ss3 neurons are implicitly modeled through direct DGC-to-DGC inhibitory connec-
e tions. DGCs are either silent or active (binary activity state, while in the detailed
55 network DGCs had continuous firing rates). The synaptic plasticity rule is however
s the same as for the detailed network, with different parameter values .
s We also construct an artificial data set (Fig. 5h,b) that allows us to control the
ss  similarity s of pairs of clusters (Methods). The MNIST data set is not appropri-
50 ate to distinguish similar from dissimilar patterns, because all digit clusters are
w0 similar and highly overlapping, reflected by a high within cluster dispersion (e.g.
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w1 across the set of all ’3”) compared to the separation between clusters (e.g. typical
w2 '3’ versus typical '5).

463 After a pretraining period, a first mature DGC responds to patterns of cluster 1
s and a second mature DGC to those of cluster 2 (Fig. Bg,f). We then fix the
w5 feedforward weights of those two DGCs and introduce a newborn DGC in the
w6 network. Thereafter, we present patterns from three clusters (the two pretrained
w7 ones, as well as a novel one), while the plastic feedforward weights of the newborn
s DGC are the only ones that are updated. We observe that the newborn DGC
w0 ultimately becomes selective for the novel cluster if it is similar (s = 0.8) to
a0 the two pretrained clusters (Fig. B}), but not if it is distinct (s = 0.2, [Fig. 5f).
an The selectivity develops in two phases. In the early phase of maturation of the
w2 newborn model cell, a pattern from the novel cluster that is similar to one of the
a3 pretrained clusters activates the mature DGC that has a receptive field closest
s to the novel pattern. The activated mature DGC drives the newborn DGC via
a5 lateral excitatory GABAergic connections to a firing rate where LTP is triggered
as  at active synapses onto the newborn DGC. LTP also happens when a pattern
a7 from one of the pretrained clusters is presented. Thus, synaptic plasticity leads
s to a receptive field that reflects the average of all stimuli from all three clusters

v (Flg ).

480 To summarize our findings in a more mathematical language, we characterize
i1 the receptive field of the newborn cell by the vector of its feedforward weights.
2 Analogous to the notion of a firing rate vector that represents the set of firing
i3 rates of an ensemble of neurons, the feedforward weight vector represents the set
e of weights of all synapses projecting onto a given neuron (Fig. 1p). In the early
ss  phase of maturation, for similar clusters, the feedforward weight vector onto the
s newborn DGC grows in the direction of the center of mass of all three clusters
w7 (the two pretrained ones and the novel one), because for each pattern presentation
s one of the mature DGCs becomes active (compare [Fig. bg and [Fig. 5k). However,
a0 if the novel cluster has a low similarity to pretrained clusters, patterns from the
w0 novel cluster do not activate any of the mature DGCs. Therefore the receptive
w1 field of the newborn cell reflects the average of stimuli from the two pretrained

a2 clusters only (compare [Fig. 5h and [Fig. 5]).

493 As a result of the different orientation of the feedforward weight vector onto the
s newborn DGC at the end of the early phase of maturation, two different situations
w5 arise in the late phase of maturation, when lateral GABAergic connections are
w6 inhibitory. If the novel cluster is similar to the pretrained clusters, the weight
a7 vector onto the newborn DGC at the end of the early phase of maturation lies at
w8 the center of mass of all the patterns across the three clusters. Thus it is closer to
w0 the novel cluster than the weight vector onto either of the mature DGCs (Fig. 5).
so0 S0 if a novel pattern is presented, the newborn DGC wins the competition between
so0  the three DGCs, and its feedforward weight vector moves towards the center of
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s mass of the novel cluster ) By contrast, if the novel cluster is distinct, the
so3 weight vector onto the newborn DGC at the end of the early phase of maturation
s 18 located at the center of mass of the two pretrained clusters (Fig. 5h). If a novel
s pattern is presented, no output unit is activated since their receptive fields are not
sos similar enough to the input pattern. Therefore the newborn DGC always stays
sor silent and does not update its feedforward weights (Fig. 5j). These results are
see consistent with studies that have suggested that dentate gyrus is only involved
s0 in the discrimination of similar stimuli, but not distinct stimuli (Gilbert et al.,
s 2001 [Hunsaker and Kesner, 2008). For discrimination of distinct stimuli, another
su pathway might be used, such as the direct EC to CA3 connection (Yeckel and
sz [Berger], [1990; [Fyhn et al.| 2007)).

513 In conclusion, our model suggests that adult dentate gyrus neurogenesis pro-
su. motes discrimination of similar patterns because newborn DGCs can ultimately
si5 become selective for novel stimuli which are similar to already learned stimuli.
sis. On the other hand, newborn DGCs fail to represent novel distinct stimuli, pre-
si7 cisely because they are too distinct from other stimuli already represented by the
sis network. Presentation of novel distinct stimuli in the late phase of maturation
si9 therefore does not induce synaptic plasticity of the newborn DGC feedforward
s20 weight vector toward the novel stimuli. In the simplified network, the transition
s21 between similar and distinct can be determined analytically . This anal-
s22 ysis clarifies the importance of the switch from cooperative dynamics (excitatory
s23  interactions) in the early phase to competitive dynamics (inhibitory interactions)
s2« in the late phase of maturation.

»s Upon successful integration the receptive field of a newborn
2 DGC represents an average of novel stimuli

so7 - With the simplified model network, it is possible to analytically compute the
s2s maximal strength of the DGC receptive field via the L2-norm of the feedforward
0 weight vector onto the newborn DGC (Suppl. Material). In addition, the angle
s between the center of mass of the novel patterns and the feedforward weight vector
sn onto the adult-born DGC can also be analytically computed (Suppl. Material).
s To illustrate the analytical results and characterize the evolution of the receptive
s13 field of the newborn DGC, we thus examine the angle ¢ of the feedforward weight
s3¢  vector with the center of mass of the novel cluster (i.e. the average of the novel
s35  stimuli), as a function of maturation time (Fig. 6b,c and Suppl. Fig. S3).

536 In the early phase of maturation, the feedforward weight vector onto the new-
s born DGC grows, while its angle with the center of mass of the novel cluster stays
s constant (Suppl. Fig. S3). In the late phase of maturation, the angle ¢ between
s the center of mass of the novel cluster and the feedforward weight vector onto the
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ss0o  newborn DGC decreases in the case of similar patterns , Suppl. Fig. S3),
sa but not in the case of distinct patterns (Suppl. Fig. S3), indicating that the new-
s.2 born DGC becomes selective for the novel cluster for similar but not for distinct
s43  patterns.

544 The analysis of the simplified model thus leads to a geometric picture that
sss helps us to understand how the similarity of patterns influences the evolution of
sas  the receptive field of the newborn DGC before and after the switch from excitation
se7  to inhibition of the GABAergic input. For novel patterns that are similar to known
sss patterns, the receptive field of a newborn DGC at the end of maturation represents
se0  the average of novel stimuli.

s 1J1iscussion

ss1 - While experimental studies, such as manipulating the ratio of NKCC1 to KCC2,
ss2 suggest that the switch from excitation to inhibition of the GABAergic input onto
53 adult-born DGCs is crucial for their integration into the preexisting circuit
s« [et al., 2006 Alvarez et al., 2016) and that adult dentate gyrus neurogenesis pro-
sss motes pattern separation (Clelland et al., [2009; Sahay et al., 2011a; Jessberger|
556 @ 2009)), the link between channel properties and behavior has remained puz-
ss7 zling (Sahay et al., [2011b; |Aimone et al., 2011)). Our modeling work shows that
sss the GABA-switch enables newborn DGCs to become selective for novel stimuli
sso  which are similar to familiar, already stored, representations, consistent with the
s experimentally-observed function of pattern separation (Clelland et al., 2009; |Sa-
s hay et al., [2011a; |Jessberger et al., [2009).

562 Previous modeling studies already suggested that newborn DGCs integrate
s novel inputs into the representation in dentate gyrus (Chambers et al. 2004;

s« [ Becker], 2005; [Crick and Miranker], 2006; Wiskott et al., [2006; (Chambers and Con-|

ses royl, (2007, [Appleby and Wiskott], 2009} [Aimone et al., [2009; [Weisz and Argibay,
ses |2009, 2012} [Temprana et al., [2015; Finnegan and Becker, 2015, DeCostanzo et al.,

ss7 [2019). However, our work differs from them in four important aspects. First
ss¢  of all, we implement an unsupervised biologically plausible plasticity rule, while
se0 many studies used supervised algorithmic learning rules (Chambers et al., 2004;
s [Becker], 2005 (Chambers and Conroy, 2007; (Weisz and Argibayl, 2009} [Finnegan|
sn jand Becker| 2015; [DeCostanzo et al.| 2019). Second, as we model the formerly
sz neglected GABA-switch, the connection weights from EC to newborn DGCs are
s grown from small values through cooperativity in the early phase of maturation.
sz 'This integration step was mostly bypassed in earlier models by initialization of
si5 the connectivity weights towards newborn DGCs to random, yet fully grown val-
s ues (Crick and Miranker, 2006; Aimone et al., 2009; Weisz and Argibay, 2009,
s7 2012 [Finnegan and Becker| [2015). Third, as the dentate gyrus network is com-
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s monly modeled as a competitive network, weight normalization is crucial. In our
so  framework, competition occurs during the late phase of maturation. Previous
ss0 odeling works either applied algorithmic weight normalization or hard bounds
ss1on the weights at each iteration step (Crick and Miranker, 2006} |Aimone et al.,
se2 2009 |Weisz and Argibayl, [2009) 2012; Temprana et al., 2015; Finnegan and Becker),
3 [2015)). Instead, our plasticity rule includes heterosynaptic plasticity which intrinsi-
ssa  cally softly bounds connectivity weights by a homeostatic effect. Finally, although
ses  some earlier computational models of adult dentate gyrus neurogenesis could ex-
sss  plain the pattern separation abilities of newborn cells, separation was obtained
ss7 independently of the similarity between the stimuli. Contrarily to experimental
s¢s data, no distinction was made between similar and distinct patterns (Chambers
se0 et al., [2004; Becker, [2005; |Crick and Miranker, |2006; Wiskott et al., 2006; |(Cham-
so0 [bers and Conroyl, 2007, |Aimone et al., 2009; Appleby and Wiskott], 2009 Weisz and
so1 |Argibayl, [2012; [Temprana et al., 2015; [Finnegan and Becker, 2015; DeCostanzo
se2 et al. 2019). To our knowledge, we present the first model that can explain both:
si3 (1) how adult-born DGCs integrate into the preexisting network, and (ii) why they
se  promote pattern separation of similar stimuli and not distinct stimuli.

505 Our work emphasizes why a two-phase maturation of newborn DGCs is ben-
sos eficial for proper integration in the preexisting network. From a computational
so7  perspective, the early phase of maturation, when GABAergic inputs onto newborn
s DGCs are excitatory, corresponds to cooperative unsupervised learning. There-
soo  fore, the synapses grow in the direction of patterns that indirectly activate the
oo newborn DGCs via GABAergic interneurons (Fig. 6h). At the end of the early
s1 phase of maturation, the receptive field of a newborn DGC represents the center
s02 of mass of all input patterns that led to its (indirect) activation. In the late phase
s03 of maturation, GABAergic inputs onto newborn DGCs become inhibitory, so that
s0a lateral interactions change from cooperation to competition, causing a shift of the
es receptive fields of the newborn DGCs towards novel features ([Fig. 6b). At the end
ss of maturation, newborn DGCs are thus selective for novel inputs. This integra-
7 tion mechanism is in agreement with the experimental observation that newborn
s DGCs are broadly tuned early in maturation, yet highly selective at the end of
00 maturation (Marin-Burgin et al., [2012; Danielson et al., |2016). Loosely speaking,
s10 the cooperative phase of excitatory GABAergic input promotes the growth of the
s synaptic weights coarsely in the relevant direction, whereas the competitive phase
sz of inhibitory GABAergic input helps to specialize on detailed, but potentially
s13 important differences between patterns.

614 In the context of theories of unsupervised learning, the switch of lateral GAB Aer-
s gic input to newborn DGCs from excitatory to inhibitory provides a biological
s16 solution to the “problem of unresponsive units” (Hertz et al. |1991). Unsuper-
sz vised competitive learning has been used to perform clustering of input patterns
ss  into a few categories (Rumelhart and Zipser, 1985} (Grossberg, [1987; [Kohonen,
e0 (1989 [Hertz et al., 1991; Du, 2010)). Ideally, after learning of the feedforward
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s0 weights between an input layer and a competitive network, input patterns that
e21  are distinct from each other activate different neuron assemblies of the compet-
22 itive network. After convergence of competitive Hebbian learning, the vector of
o3 feedforward weights onto a given neuron points to the center of mass of the clus-
s2¢ ter of input patterns for which it is selective (Kohonen) |1989; |Hertz et al., |1991)).
s Yet, if the synaptic weights are randomly initialized, it is possible that the set
s2s of feedforward weights onto some neurons of the competitive network point in a
sz direction “quasi-orthogonal” to the subspace of the presented input
e patterns. Therefore those neurons, called “unresponsive units”, will never get
&0 active during pattern presentation. Different learning strategies have been devel-
s20 oped in the field of artificial neural networks to avoid this problem (Grossberg,
e31 1976} Bienenstock et al., [1982; Rumelhart and Zipser, 1985} |Grossberg), [1987; De-
s22 |Sieno, 1988} |Kohonen, 1989 [Hertz et al., 1991 |Du, 2010). However, most of
633 these algorithmic approaches lack a biological interpretation. In our model, weak
63« synapses onto newborn DGCs form spontaneously after neuronal birth. The exci-
35 tatory GABAergic input in the early phase of maturation drives the growth of the
636 Synaptic weights in the direction of the subspace of presented patterns that suc-
s37 ceed in activating some of the mature DGCs. Hence the early cooperative phase
s3s  Oof maturation can be seen as a smart initialization of the synaptic weights onto
s newborn DGCs, close enough to novel patterns so as to become selective for them
s0 in the late competitive phase of maturation. However, the cooperative phase is
sa1  helpful only if the novel patterns are similar to the input statistics defined by the
o2 set of known (familiar) patterns.

643 Our results are in line with the classic view that dentate gyrus is responsible
saa for decorrelation of inputs (Marr, |1969; |Albus, 1971; Marr} 1971} Rolls and Treves,
o5 (1998)), a necessary step for differential storage of similar memories in CA3, and
sss  with the observation that dentate gyrus lesions impair discrimination of similar
s but not distinct stimuli (Gilbert et al., 2001; [Hunsaker and Kesner} 2008). To
s discriminate distinct stimuli, another pathway might be involved, such as the
o0 direct EC to CA3 connection (Yeckel and Berger|, (1990; Fyhn et al., 2007).

650 Our model of transition from an early cooperative phase to a late compet-
es1 itive phase makes specific predictions, at the behavioral and cellular level. In
ss2 our model, the early cooperative phase of maturation can only drive the growth
es3  of synaptic weights onto newborn cells if they are indirectly activated by ma-
s ture DGCs through GABAergic input, which has an excitatory effect due to the
ess  high NKCC1/KCC2 ratio early in maturation. Therefore our model predicts that
s NKCC1-knockout mice would be impaired in discriminating similar contexts or
7 Objects because newborn cells stay silent due to lack of indirect activation. The
s feedforward weight vector onto newborn DGCs could not grow in the early phase
50 and newborn DGCs could not become selective for novel inputs. Therefore our
s0 Mmodel predicts that since newborn DGCs are poorly integrated into the preex-
1 isting circuit, they are unlikely to survive. If, however, in the same paradigm
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62 newborn cells are activated by light-induced or electrical stimulation, we predict
63 that they become selective to novel patterns. Thus discrimination abilities would
4 be restored and newborn DGCs are likely to survive. Analogously, we predict that
s using inducible NKCC1-knockout mice, animals would gradually be impaired in
es discrimination tasks after induced knockout and reach a stable maximum impair-
s7 ment about 3 weeks after the start of induced knockout.

668 Experimental observations support the importance of the switch from early
0 excitation to late inhibition of the GABAergic input onto newborn DGCs. An ab-
0 sence of early excitation using NKCC1-knockout mice has been shown to strongly
en affect synapse formation and dendritic development in vivo (Ge et al., 2006). Con-
ez versely, a reduction in inhibition in the dentate gyrus through decrease in KCC2
13 expression has been associated with epileptic activity (Pathak et al., 2007; Bar-
e+ mashenko et al [2011). An analogous switch of the GABAergic input has been
o5 observed during development, and its proper timing has been shown to be cru-
o6 cial for sensorimotor gating and cognition (Wang and Kriegstein, [2010; [Furukawa
e let al. 2017)). In addition to early excitation and late inhibition, our theory also
s critically depends on the switch. In our model, the switch makes an instantaneous
7o transition between early and late phase of maturation. Several experimental re-
s0 sults have suggested that the switch is indeed sharp and occurs within a single
e day, both during development (Khazipov et al., 2004; Tyzio et al., [2007; Leonzino
2 et al), |2016) and adult dentate gyrus neurogenesis (Heigele et al.l 2016)). Fur-
3 thermore, in hippocampal cell cultures, expression of KCC2 is upregulated by
sss  GABAergic activity but not affected by glutamatergic activity (Ganguly et al.,
ees [2001)). A similar process during adult dentate gyrus neurogenesis would increase
s the number of newborn DGCs available for representing novel features by advanc-
7 ing the timing of their switch. In this way, instead of a few thousands of newborn
s DGCs ready to switch (3 to 6% of the whole population (Van Praag et al., |1999;
0 (Cameron and McKay| 2001)), divided by 30 days), a larger fraction of newborn
s0 DGCs would be made available for coding, if appropriate stimulation occurs.

601 To conclude, our theory for integration of adult-born DGCs suggests that
62 newborn cells have a coding —rather than a modulatory— role during dentate gyrus
03 pattern separation function. Our theory highlights the importance of GABAergic
s« input in adult dentate gyrus neurogenesis, and links the switch from excitation
s to inhibition to the integration of newborn DGCs into the preexisting circuit.
ss Finally, it illustrates how Hebbian plasticity of EC to DGC synapses along with
so7 the switch make newborn cells suitable to promote pattern separation of similar
ss but not distinct stimuli, a long-standing mystery in the field of adult dentate
s00 gyrus neurogenesis (Sahay et al. 2011b}; |Aimone et al., [2011]).
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« Methods

1 Network architecture and neuronal dynamics

72 DGCs are the principal cells of the dentate gyrus. They mainly receive excitatory
703 projections from the entorhinal cortex through the perforant path and GABAergic
70s inputs from local interneurons, as well as excitatory input from Mossy cells. They
70s  project to CA3 pyramidal cells and inhibitory neurons, as well as local Mossy
76 cells (Acsady et al., 1998; Henze et all) [2002; Amaral et all [2007; Temprana
707 let all [2015). In our model, we omit Mossy cells for simplicity and describe the
s dentate gyrus as a competitive circuit consisting of Npge dentate granule cells
00 and Ny GABAergic interneurons ) The activity of Ngc neurons in EC
70 represents an input pattern ¥ = (xq,zo, ...,xNEC). Because the perforant path
1 also induces strong feedforward inhibition in the dentate gyrus (Li et al., 2013),
72 we assume that the effective EC activity is normalized, such that ||Z]| = 1 for
73 any input pattern #. We use P different input patterns 2, 1 < p < P in the
na  simulations of the model.

715 In our network, model EC neurons have excitatory all-to-all connections to
76 the DGCs. In rodent hippocampus, spiking mature DGCs activate interneurons
7z in DG, which in turn inhibit other mature DGCs (Temprana et al., 2015; |Alvarez
ns let al., 2016]). In our model, the DGCs are thus recurrently connected with in-
no hibitory neurons ([Fig. 1p). Connections from DGCs to interneurons exist in our
720 model with probability p;z and have a weight w;g. Similarly, connections from
721 interneurons to DGCs occur with probability pg; and have a weight wgy. All
722 parameters are reported in (Biologically—plausible network).

723 Before an input pattern is presented, all rates of model DGCs are initialized to
724 zero. Upon stimulation with input pattern ¥, the firing rate v; of DGC i evolves
725 according to (Miller and Fumarola, [2012)):

dVZ‘ o [Il — b1]+
Tm gy = Vi + tanh (T) (2)

76 where [.]; denotes rectification: [a] = a for a > 0 and zero otherwise. Here, b; is
727 a firing threshold, L = 0.5 is the smoothness parameter of the frequency-current
ns curve (L' is the slope of the frequency-current curve at the firing threshold), and
2o I; the total input to cell ¢:

Ngc

Ny
Ii = Z wijxj + Z wiilylg (3)
j=1 k=1

720 with x; the activity of EC input neuron j, w;; > 0 the feedforward weight from
7 EC input neuron j to DGC i, and wk! the weight from inhibitory neuron & to
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72 DGC i. The sum runs over all inhibitory neurons, but the weights are set to
7 wh! = 0 if the connection is absent. The firing rate v; is unit-free and normalized
724 to a maximum of 1, which we interpret as a firing rate of 10 Hz. We take the
735 synaptic weights as unit-less parameters such that [; is also unit-free.

736 The firing rate v of inhibitory neuron k, is defined as:
dv! .
Tinhd_tk = —v; + [I{ = p*Npccly (4)

77 with p* a parameter which relates to the desired ensemble sparsity, and I} the
73 total input towards interneuron k, given as:

Npgce

=) wifv (5)
i=1

7 with wiF the weight from DGC i to inhibitory neuron k. (We set wif = 0 if
720 the connection is absent.) The feedback from inhibitory neurons ensures a sparse
m  activity of model DGCs for each pattern. With p* = 0.1 we find that more than 70
722 % of model DGCs are silent (firing rate < 1 Hz (Senzai and Buzsaki, [2017))) when
73 an input pattern is presented, and less than 10% are highly active (firing rate
us > 9 Hz) (Fig. 2k,d), consistent with the experimentally observed sparse activity
75 in dentate gyrus (Chawla et al. 2005).

= Plasticity rule

Projections from EC onto newborn DGCs exhibit Hebbian plasticity (Schmidt-
Hieber et all [2004; |Ge et al. 2007; McHugh et al., 2007). Therefore, in our
model the connections from EC neurons to DGCs are plastic, following a Hebbian
learning rule which exhibits long-term depression (LTD) or long-term potentiation
(LTP) depending on the firing rate v; of the postsynaptic cell (Bienenstock et al.)
1982; |Artola et al., |1990; Sjostrom et al., 2001; Pfister and Gerstner], |2006). Input
patterns ¥, 1 < u < P, are presented in random order. For each input pattern,
we let the firing rates converge for a time 7" where 7' was chosen long enough

to achieve convergence to a precision of 1075. After n — 1 presentations (i.e. at
(n—
ij
pattern and update at time n-T' (wgl) = wghl) +Auw;;), according to the following
plasticity rule:

time (n — 1) - T) the weight vector has value w"™". We then present the next

Aw;; = n{—azy[0 — vy + yxv(v; — 0] — Bw;jlv; — 9]+V?} (6)

747 where z; is the firing rate of presynaptic EC input neuron j, v; the firing rate
us of postsynaptic DGC ¢, n the learning rate, # marks the transition from LTD to
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uo  LTP, and the relative strength «, v of LTP and LTD depend on 6 via a = 3§ > 0
0 and 7 = v —0 > 0. The values of the parameters ag, 7o, 8, and 6 are given in[Ta]
751 |ble 1j(Biologically-plausible network). The weights are hard-bounded from below
= at 0, i.e. iffequation (6)leads to a new weight smaller than zero, w;; is set to zero.
753 The first two terms of jequation (6) are a variation of the BCM rule (Bienenstock
s¢ et all |1982). The third term implements heterosynaptic plasticity (Chistiakova
755 |et al., |2014; Zenke and Gerstner} [2017). Because the first two terms of the plas-
756 ticity rule are Hebbian and proportional to the presynaptic activity z;, the active
s DGCs (v; > 0) update their feedforward weights in direction of the input pattern
s L. Moreover, all weights onto neuron i are downregulated heterosynaptically by
750 an amount that increases supra-linearly with the postsynaptic rate v;. Similar to
70 learning in a competitive network (Kohonen| 1989; Hertz et al., [1991)), the vector
71 of feedforward weights onto active DGCs will move towards the center of mass of
w2 the cluster of patterns they are selective for, as we will discuss now.

763 For a given input pattern z*, there are three fixed points for the postsynaptic
e firing rate: v; = 0, v; = 0, and v; = 1; (the negative root is omitted, because v; > 0
765 due to fequation (2)). For v; < 6, there is LTD, so the weights move toward zero:

p
766 w;; — 0, while for v; > 0, there is LTP, so the weights move toward w;; — Z;TJQ

77 ([Fig. 1c). The value of 7 is defined implicitly by the network equations |(2)H(5)| I
s a pattern #* is presented only for a short time these fixed points are not reached

70 during a single pattern presentation.

70 Winners, losers, and quasi-orthogonal inputs

1 We define the winners as the DGCs which become strongly active (v; > 0) during
72 presentation of an input pattern. Since the input patterns are normalized to have
773 an L2-norm of 1 (||Z*|| = 1 by construction), and the L2-norm of the feedforward
e weight vectors is bounded (see Section [Direction and length of the weight vector]),
75 the winning units are the ones whose weight vectors j; (row of the feedforward
776 connectivity matrix) align best with the current input pattern Z*. Furthermore,
777 we say that an input pattern 7* is “quasi-orthogonal” to a weight vector ; if
e I; = Zj.V:ElC Wi x; + fo; L whlvl < b;. If an input pattern 7# is quasi-orthogonal
9 to a weight vector wj;, then neuron ¢ does not fire in response to #*. Note that
70 for a case without inhibitory neurons and with b; — 0, we recover the standard
71 orthogonality condition.

72 Direction and length of the weight vector

73 Let us denote the ensemble of patterns for which neuron ¢ is a winner by C; and
7e call this the set of winning patterns (C; = {u|v; > 0}). Suppose that neuron i
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785 18 quasi-orthogonal to all other patterns, so that for all u ¢ C; we have v; = 0.
s Then the feedforward weight vector of neuron ¢ converges in expectation to:

g = 1{G1()T)ec,
"B AGa(v) ecy

w7 where G (v;) = (v; — 0)v; and Ga(v;) = (v; — 0)v?. Hence wj; is a weighted average
s over all winning patterns.

—

(7)

The squared length of the feedforward weight vector can be computed by
multiplying lequation (7)| with ;:
7 {G1(1) (Wi - D)) e,
B (G2(vi))uec,

I

789 Since input patterns have length one, the scalar product on the right-hand side
790 can be rewritten as w; - ¥ = ||wj|| cos(a) where « is the angle between the weight
71 vector and pattern Z. Division by ||w;|| yields the L2-norm of the feedforward

792 weight vector:
7 (G1(s) cos(@)) e,
B (Ga(vi))pec,

73 where the averages run, as before, over all winning patterns.

(9)

||| =

794 Let us now derive bounds for ||wj;||. First, since cos(a) < 1 we have

w5 (G1(v;) cos(@)) uec, < (G1(v4))pec;- Second, since for all winning patterns v; > 0,
e where 6 is the LTP threshold, we have (G2(v;))ec;, = ((v; — 0) v;)6?. Thus the
77 length of the weight vector is finite and bounded by:

7V (Gi¥i)ec: v 1

[T L i 10
|| || ~ B <G2(Vi)>u60i ~ 502 ( )
708 It is possible to make the second bound tighter if we find the winning pattern
70 with the smallest firing rate vy, such that v; > vy, Vi € Cy:
q v 1
|lwil] € z2—— (11)

2
ﬁ (Vmin)
so The bound is reached if neuron 7 is winner for a single input pattern.

We can also derive a lower bound. For a pattern p € Cj, let us write the
firing rate of neuron ¢ as v;(u) = ©; + Av;(u) where ; is the mean firing rate
of neuron ¢ averaged across all winning patterns and (Ay;),ecc, = 0. We assume
that the absolute size of Ay; is small, i.e., ((Ar;)?) e, < (7;)?. Linearization of

around 7; yields:
1 G1 (ﬂz)
B Go(v;

2
)
ine
|

||| = {cos(a))pec: + 2 i) (cos(a) Avi)uec, (12)

B G (7

~—
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801 Elementary geometric arguments for a neuron model with monotonically in-
sz creasing frequency-current curve yield that the value of (cos(a)Av;) ec; is positive
so3  (or zero), because an increase in the angle o lowers both the cosine and the firing
ss Tate, giving rise to a positive correlation. Since we are interested in a lower bound,
s we can therefore drop the term proportional to G} and evaluate the ratio Gy/Go
g6 to find:

il > 1 — 1

w; —— -
- 6 (yi)Z B (yrnax)2
s where 1,y is the maximal firing rate of a DGC and & = max,ec,{a} is the angle
ss  Of the winning pattern that has the largest angle with the weight vector. The first
g0 bound is tight and is reached if neuron ¢ is winner for only two patterns.

{cos(a))ec; 2 cos(@) (13)

810 To summarize we find that the length of the weight vector remains bounded in
s a narrow range. Hence, for a reasonable distribution of input patterns and weight
s vectors, the value of ||wj|| is similar for different neurons i, so that the weight
a1z vector will have, after convergence, similar lengths for all DGCs that are winners
sia  for at least one pattern. In our simulations with the MNIST data set, we find that
a5 the length of feedforward weight vectors lies in the range between 9.3 and 11.1
g6 across all responsive neurons with a mean value close to 10; cf. [Fig. 2.

sz Early maturation phase

sis  During the early phase of maturation, the GABAergic input onto a newborn
sio DGC with index [ has an excitatory effect. In the model, it is implemented as
oo follows: wj! = —wgr > 0 with probability pg; for any interneuron k and wh! = 0
g1 otherwise (no connection). Since newborn cells do not project yet onto inhibitory
2 mneurons (Temprana et al., 2015)), we have wi¥ = 0 VI. Newborn DGCs are known
223 to have enhanced excitability (Schmidt-Hieber et al., 2004; |Li et al., 2017), so
g2« their threshold is kept at b, = 0 VI. Because the newborn model DGCs receive
s lateral excitation via interneurons and their thresholds are zero during the early
g6 phase of maturation, the lateral excitatory GABAergic input is always sufficient
g7 to activate them. Hence, if the firing rate of a newborn DGC exceeds the LTP

s threshold 6, the feedforward weights grow towards the presented input pattern,

2 cf. fequation (6]

830 Presentation of all patterns of the data set once (1 epoch) is sufficient to reach
s convergence of the feedforward weights onto newborn DGCs. We define the end
sz of the first epoch as the end of the early phase, i.e., simulation of one epoch of
833 the model corresponds to about three weeks of biological time.
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s« Late maturation phase

g3 During the late phase of maturation (starting at about 3 weeks (Ge et al., [2006))),
s3s  the GABAergic input onto newborn DGCs switches from excitatory to inhibitory.
s In terms of our model, it means that all existing w}! connections switch their
ss sign to wrr < 0. Furthermore, since newborn DGCs develop lateral connections
g0 to inhibitory neurons in the late maturation phase (Temprana et al., 2015), we
s set wif = wrp with probability prg, and wif = 0 otherwise. The thresholds of
s newborn DGCs are updated after presentation of pattern p at time n - T (bl(n) =

842 bl(n_l) + Ab;) according to Ab, = n, (v — 1), where vy is a reference rate and 1,
a3 a learning rate, to mimic the decrease of excitability as newborn DGCs mature
844 Biologically-plausible network). Therefore the distribution of firing rates
sss  of newborn DGCs is shifted to the left (towards lower firing rates) at the end of the
aas late phase of maturation compared to the early phase of maturation ,d). A
a7 sufficient condition for a newborn DGC to win the competition upon presentation
sas  Of patterns of the novel cluster is that the scalar product between a pattern of
a0 the novel cluster and the feedforward weight vector onto the newborn DGC is
so larger than the scalar product between the pattern of the novel cluster and the
ss1  feedforward weight vector onto any of the mature DGCs. Analogous to the early
2 phase of maturation, presentation of all patterns of the data set once (1 epoch)
ss3  1s sufficient to reach convergence of the feedforward weights onto newborn DGCs.
ssa  We therefore consider that the late phase of maturation has been finished after
g5 one epoch.

ss Input patterns

ss7 ' T'wo different sets of input patterns are used. Both data sets have a number K
s Of clusters and several thousands of patterns per cluster. As a first data set, we
g0 use the MNIST 12x12 patterns (LeCun et al., [1998)) (Ngc = 144), normalized
so such that the L2-norm of each pattern is equal to 1. The training set contains
g1 approximately 6000 patterns per digit, while the testing set contains about 1000

sz patterns per digit (Fig. 1d).

863 As a second data set, we use hand-made artificial patterns designed such that
s« the distance between the centers of any two clusters, or in other words their
s pairwise similarity, is the same. All clusters lie on the positive quadrant of the
ss surface of a hypersphere of dimension Ngo — 1. The cluster centers are Walsh
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v patterns shifted along the diagonal (Fig. bb):

131:%(1%,1—5,1+§,1—£,.-~,1+571—6’1%1—@

1
2 _ _ _ _ _
P _Co(l_’_g’l_’_g’l 571 §771+£71+£71 ga]- 5) (14)

PK:éﬂ1+@1+§1+§1+5““1‘51_§1_§1_8

ss With |£] < 1 a parameter that determines the spacing between clusters. ¢ is
g0 a normalization factor to ensure that the center of mass of all clusters has an

g0 L2-norm of 1:
Co = VNEC (1+§2) (15)

sn The number of input neurons Ng¢ is Nge = 25. The scalar product, and hence
s the angle (2, between the center of mass of any pair of clusters k and [ (k # 1) is

e a function of & (Fig. bp):

PP = = cos({2) (16)

1+¢2
sra - We define the pairwise similarity s of two clusters as: s = 1 — £. Highly similar

g5 clusters have a large s due to the small distance between their centers (hence a
76 small 5)

877 To make the artificial data set comparable to the MNIST 12x12 data set, we
s choose K =7, so Ngo = 128, and we generate 6000 noisy patterns per cluster for
sro  the training set and 1000 other noisy patterns per cluster for the testing set. Since
g0 our noisy high-dimensional input patterns have to be symmetrically distributed
gs1  around the centers of mass f’k, yet lie on the hypersphere, we have to use an
sz appropriate sampling method. The patterns Z#*) of a given cluster k with center
s of mass P¥ are thus sampled from a Von Mises-Fisher distribution (Mardia and

g |Jupp, 2009):
70 <\/1 - a2> {+aP* (17)

sss  with 5 an L2-normalized vector taken in the space orthogonal to P*. The vector 5
sss 1S obtained by performing the singular-value decomposition of P* (UXV* = ﬁk),
ez and multiplying the matrix U (after removing its first column), which corresponds
sss 1o the left-singular vectors in the orthogonal space to P , with a vector whose
g0 elements are drawn from the standard normal distribution. Then the L2-norm of
s the obtained pattern is set to 1, so that it lies on the surface of the hypersphere.
s A rejection sampling scheme is used to obtain a (Mardia and Jupp, 2009). The
s> sample a is kept if ka + (Nge — 1)In(1 — va) — ¢ > In(u), with k a concentration
g3 parameter, 1 = %, ¢ = kY + (Ngc — DIn(1 — ¢?), u drawn from a uniform
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s distribution u ~ U[0,1], a = =002 p — Npo_1 , and z drawn from a
1-(1-b)=z \/4/42+(NEC—1)2+2/£

s beta distribution z ~ Be(&eg=t, Kee=1),

896 The concentration parameter x characterizes the spread of the distribution
sr around the center P*. In the limit where k — 0, sampling from the Von Mises-
ss  Fisher distribution becomes equivalent to sampling uniformly on the surface of the
so hypersphere, so the clusters become highly overlapping. In dimension Ngo = 128,
oo if K > 103 the probability of overlap between clusters is negligible. We use a value
901 K = 104.

« Classification performance (readout network)

w3 It has been observed that classification performance based on DGC population
s activity is a good proxy for behavioral discrimination (Woods et al.,[2020). Hence,
ws to evaluate whether the newborn DGCs contribute to the function of the dentate
ws gyrus network, we study classification performance. Once the feedforward weights
o7 have been adjusted upon presentation of many input patterns from the training
oz set (Section [Plasticity rule)), we keep them fixed and determine classification on
9o the test set using artificial readout units (RO).

910 To do so, the readout weights (wkC from model DGC i to readout unit k) are
o initialized at random values drawn from a uniform distribution: wf° ~ o4(0,1),
o2 with ¢ = 0.1. The number of readout units, Ngo, corresponds to the number of
a3 learned classes. To adjust the readout weights, all patterns of the training data
as set that belong to the learned classes are presented one after the other. For each
as pattern Z, we let the firing rate of the DGCs converge (values at convergence:
as v)'). The activity of a readout unit & is given by:

Npge

ot =g (12) = g < > wffﬂf) (18)
=1

As we aim to assess the performance of the network of DGCs, the readout weights
are adjusted by an artificial supervised learning rule. The loss function, which
corresponds to the difference between the activity of the readout units and a
one-hot representation of the corresponding pattern label (Hertz et al., |1991]),

1 Nro

5 > (L= (19)

LWH?) = 5
k=1

a7 with L the element k of a one-hot representation of the correct label of pattern

ais I, is minimized by stochastic gradient descent:

Awf" = (L = vy (11O") vt (20)

(3
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019 The readout units have a rectified hyperbolic tangent frequency-current curve:
20 g(x) = tanh (2[z]; ), whose derivative is: ¢’(z) = 2 (1 — (tanh (2[x]+))2) We learn
o1 the weights of the readout units over 100 epochs of presentations of all training
o2 patterns with = 0.01, which is sufficient to reach convergence.

023 Thereafter, the readout weights are fixed. Each test set pattern belonging to
o2s one of the learned classes is presented once, and the firing rates of the DGCs are
os let to converge. Finally, the activity of the readout units 1/,5’0’“ is computed and
o2 compared to the correct label L of the presented pattern. If the readout unit with
o7 the highest activity value is the one that represents the class of the presented input
o8 pattern, the pattern is said to be correctly classified. Classification performance
oo is given by the number of correctly classified patterns divided by the total number
o0 Of test patterns of the learned classes.

s Control cases

o2 In our standard setting, patterns from a third digit are presented to a network
o33 that has previously only seen patterns from two digits. The question is whether
ssa  neurogenesis helps when adding the third digit. We use several control cases to
o5 compare with the neurogenesis case. In the first control case, all three digits are
036 learned in parallel , control 1). In the two other control cases, we either
o7 keep all feedforward connections towards the DGCs plastic (Fig. 3k, control 3),
os or fix the feedforward connections for all selective DGCs but keep unselective
a0 neurons plastic (as in the neurogenesis case) (Fig. 3p, control 2). However, in
wo both instances, the DGCs do not mature in the two-step process induced by the
ar  GABA-switch that is part of our model of neurogenesis.

w2 Pretraining with two digits

wus  As we are interested by neurogenesis at the adult stage, we pretrain the network
ws  with patterns from two digits, such that it already stores some memories before
as neurogenesis takes place. To do so, we randomly initialize the weights from EC
ss neurons to DGCs: they are drawn from a uniform distribution (w;; ~ UJ0, 1]).
sz 'The L2-norm of the feedforward weight vector onto each DGC is then normal-
ws ized to 1, to ensure fair competition between DGCs during learning. Then we
wo present all patterns from digits 3 and 4 in random order, as many times as needed
sso for convergence of the weights. During each pattern presentation the firing rates
51 of the DGCs are computed (Section [Network architecture and neuronal dynam-|
052 and their feedforward weights are updated according to our plasticity rule
53 (Section [Plasticity rule). We find that we need approximately 40 epochs for con-
ssa  vergence of the weights, and use 80 epochs to make sure that all weights are stable.
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o5 At the end of pretraining, our network is considered to correspond to an adult
w6 stage, because some DGCs are selective for prototypes of the pretrained digits
957 Fig. 1)

s Projection on pairwise discriminatory axes

oo 'To assess how separability of the DGC activation patterns develops during the
wo late phase of maturation of newborn DGCs, we project the population activity
o1 onto axes which are optimized for pairwise discrimination (patterns from digit 3
2 versus patterns from digit 5, 4 versus 5, and 3 vs 4). Those axes are determined
o3 using Fisher linear discriminant analysis (LDA), as explained below.

964 We determine the vector of DGC firing rates, v/, at the end of the late phase of
ss maturation of newborn DGCs upon presentation of each pattern, &, from digits
ws 3, 4 and 5 of the training MNIST dataset. The mean activity in response to all
o7 training patterns p from digit m, [, = N—lm uem V!5 18 computed for each of
s the three digits (N, is the number of training patterns of digit m). The pairwise
oo Fisher linear discriminant is defined as the linear function @’ 7 that maximizes the
oo distance between the means of the projected activity in response to two digits (eg.
on m and n), while normalizing for within-digit variability. The objective function
o2 to maximize is thus given as:

w! Spw

J(w) = (21)

wT Syrw
o3 with Sp = (fin — fin)(flm — fin)? the between-digit scatter matrix, and Sy =
oa 2, + 2, the within-digit scatter matrix (X, is the covariance matrix of the DGC
o5 activity in response to pattern of digit m, and ¥, is the covariance matrix of
o6 the DGC activity in response to pattern of digit n). It can be shown that the
o7 direction of the optimal discriminatory axis between digit m and n is given by the
ars  eigenvector of SI;,I Sp with the corresponding largest eigenvalue.

079 We arbitrarily set "axis 1”7 as the optimal discriminatory axis between digit
wo 3 and digit 5, "axis 2”7 as the optimal discriminatory axis between digit 4 and
se1 digit 5, and "axis 3”7 as the optimal discriminatory axis between digit 3 and digit
w2 4. For each of the three discriminatory axes, we define its origin (ie. projection
3 value of 0) as the location of the average projection of all training patterns of the
ses three digits on the corresponding axis. represents the projections of DGC
es activity upon presentation of testing patterns at the end of the early and late
ss  phase of maturation of newborn DGCs onto the above-defined axes.
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o Statistics

ses In the main text, we present a representative example with three digits from the
s0 MNIST data set (3, 4 and 5). It is selected from a set of ten random combinations
wo of three different digits. For each combination, one network is pretrained with
w1 two digits for 80 epochs. Then the third digit is added and neurogenesis takes
02 place (one epoch of early phase of maturation, and one epoch of late phase of
o3 maturation). Furthermore another network is pretrained directly with the three
oa digits for 80 epochs. Classification performance is reported for all combinations

s (Suppl. Table S1).

o Simplified rate network

w7 We use a toy network and the artificial data set to determine if our theory of
ws integration of newborn DGCs can explain why adult dentate gyrus neurogenesis
o0 helps for the discrimination of similar, but not for distinct patterns.

1000 The rate network described above is simplified as follows. We use K dentate
wn  granule cells for K clusters. Their firing rate v; is given by:
dy;
Tt = v+ H (L= b) (22)

w2 where H is the Heaviside step function. As before, b; is the threshold, and I; the
003 total input towards neuron ¢:

Ngc Npac
I; = Z Wi j + Z WreclVk (23)
Jj=1 k#j

e with z; the input of presynaptic EC neuron j, w;; the feedforward weight between
ws  EC neuron j and DGC i, and v}, the firing rate of DGC k. Inhibitory neurons are
ws modeled implicitly: each DGC directly connects to all other DGCs via inhibitory
w7 recurrent connections of value w,.. < 0. During presentation of pattern z*, the
wos  firing rates of the DGCs evolve according to . After convergence, the
w0 feedforward weights are updated: wg“ ) = ZW oy Aw;;. The synaptic plasticity
w0 rule is the same as before, see but with the parameters reported
wn  in [Table IfSimple network). They are different from those of the biologically-
w2 plausible network because we now aim for a single winning neuron for each cluster.
w3 Note that for an LTP threshold ¢ < 1 all active DGCs update their feedforward
s weights, because of the Heaviside function for the firing rate (equation (22))).

1015 Assuming a single winner ¢* for each pattern presentation, the input

s [tion (23)) to the winner is:

;e = ;- - 7, (24)
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1017 while the input to the losers is:
I; = W -+ T+ Wyee. (25)
ws  Therefore, two conditions need to be satisfied for a solution with a single winner:
Wi+ T > b; (26)
w9 for the winner to actually be active, and:
Wi * T+ Wree < b; (27)

120 to prevent non-winners to become active. The value of b; in the model is lower in
w2 the early phase than in the late phase of maturation to mimic enhanced excitabil-
02 ity (Schmidt-Hieber et al., 2004; |Li et al., [2017)).

w23 Similar versus distinct patterns with the artificial data set

s Using the artificial data set with |{| < 1 (equation (14)), the scalar product
s between the centers of mass of two different clusters, given by |equation (16)}
w26 satisfies: 0.5 < < 1. This corresponds to 0° < Q < Q. = 60°.

1_;’_&'2 ~

1027 After stimulation with a pattern Z, it takes some time before the firing rates
s of the DGCs converge. We call two patterns “similar” if they activate, at least
w20 initially, the same output unit, while we consider two patterns as “distinct” if
1030 they do not activate the same output unit, not even initially. We now show that,
wn with a large concentration parameter k, patterns of different clusters are similar

w if & <4/ |wl” — 1 and distinct if £ > /1520 |le -1

1033 We first consider a DGC ¢ whose feedforward weight vector has converged
s towards the center of mass of cluster k. If an input pattern 2#®) from cluster k
03 18 presented, it will receive the following initial input:

L = iy - @O = ||| ||7*P|] - cos(ia) = [[edi]] - cos(Vhae) (28)

ws  where Uy is the angle between the pattern Z#(*) and the center of mass Pk of
w7 the cluster to which it belongs. The larger the concentration parameter x for the
s generation of the artificial data set, the smaller the dispersion of the clusters, and
1039 thus the larger cos(dy). If instead, an input pattern from cluster [ is presented,
w0 that same DGC will receive a lower initial input:

|| @i
1+¢

I = ;- 7Y = ||| - || - cos(Va) ~ (29)

e The approximation holds for a small dispersion of the clusters (large concentra-
02 tion parameter k). We note that there is no subtraction of the recurrent input
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w3 yet, because output units are initialized with zero firing rate before each pattern
s presentation. By definition, similar patterns stimulate (initially) the same DGCs.
ws A DGC can be active for two clusters only if its threshold is:

1]
b; <
1+&2

(30)

1w Therefore, with a high concentration parameter x, patterns of different clusters
w7 are similar if & < 4/ Hf—” — 1, while patterns of different clusters are distinct if

w0 £ > ng—lu—l

w40 Parameter choice

wso ' The upper bound of the expected L2-norm of the feedforward weight vector to-
ws1 wards the DGCs at convergence can be computed, see . With the
w2 parameters in [Table 1|(Simple network), the value is ||w;]| < 1.5. Moreover, the
ws3  input patterns for each cluster are highly concentrated, hence their angle with the
s center of mass of the cluster they belong to is close to 0, so we have ||w;|| ~ 1.5.
wss Therefore, at convergence, a DGC selective for a given cluster k receives an input
wss I+ = Wi+ -7**%) & 1.5 upon presentation of input patterns 7#*) belonging to cluster

s k. We choose b; = 1.2 to satisfy lequation (26)} Given b; the threshold value &ipyresn

wss  for which two clusters are similar (and above which two clusters are distinct) can
wse  be determined by ¢ Enresh = 0.5. We created a handmade data set
weo  with & = 0.2 for the case of similar clusters (therefore with similarity s = 0.8),
st and a handmade data set with & = 0.8 for the distinct case (hence with similarity
1062 S = 0.2).

1063 Let us suppose that the weights of DGC i have converged and made this cell
wes respond to patterns of cluster ¢. If another DGC k of the network is selective
wes  for cluster k, cell ¢ gets the input I, = @; - 7% 4+ Wy ~ % + Wyee UPON
wes presentation of input patterns ##*) belonging to cluster k # i. Hence, to satisfy
) ~ —0.24. We set wye. = —1.2.

wer  lequation (27), we need wye. < b; — maxg %

1068 Furthermore, a newborn DGC is born with a null feedforward weight vector so
weo that at birth, its input consists only of the indirect excitatory input from mature
w0 DGCs which vanishes if all DGCs are quiescent and takes a value I; = —we. > 0 if
wn  a mature DGC responds to the input. For the feedforward weight vector to grow,
w2 the newborn cell ¢ needs to be active. This could be achieved through spontaneous
w3 activity which could be implemented by setting the intrinsic firing threshold at
w74 birth to a value by, < 0. In this case a difference between similar and distinct
s patterns is not expected. Alternatively, activity of newborn cells can be achieved
wre  in the absence of spontaneous activity under the condition —wyee > bpiren. For the
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w77 simulations with the toy model, we set byi.tn = 0.9 which leads to weight growth
wrs  in newborn cells for similar, but not distinct patterns.

wo  Neurogenesis with the artificial data set

w0 10 save computation time, we initialize the feedforward weight vectors of two
w1 mature DGCs at two training patterns randomly chosen from the first two clusters,
ws2  normalized such that they have an L2-norm of 1.5. We then present patterns from

s clusters 1 and 2, and let the feedforward weights evolve according to
s until they reach convergence.

1085 We thereafter fix the feedforward weights onto the two mature cells, and in-
wss troduce a novel cluster of patterns as well as a newborn DGC in the network. The
g7 sequence of presentation of patterns from the three clusters (a novel one and two
wss  pretrained ones) is random. The newborn DGC is born with a null feedforward
s weight vector, and its maturation follows the same rules as before (plastic feedfor-
wo  ward weights). In the early phase, GABAergic input has an excitatory effect (Ge
wa et al.l 2006) and the newborn DGC does not inhibit the mature DGCs (Temprana
e let al., 2015). This is modeled by setting wM = —w,.. for the connections from
w3 mature to newborn DGC, and wM¥ = 0 for the connections from newborn to
e mature DGCs. The threshold of the newborn DGC starts at by, = 0.9 at birth,
s mimicking enhanced excitability (Schmidt-Hieber et al., |2004; |Li et al. 2017,
s and increases linearly up to 1.2 (same threshold as that of mature DGCs) over
wor 12000 pattern presentations, reflecting loss of excitability with maturation. The
wes  exact time window is not critical. In the late phase of maturation of the newborn
we DGC, GABAergic input switches to inhibitory (Ge et al., 2006|), and the newborn
o DGO recruits feedback inhibition onto mature DGCs (Temprana et al. 2015).
un It is modeled by switching the sign of the connection from mature to newborn
e DGC: w¥M = w,e., and establishing connections from newborn to mature DGCs:

rec
MN

103 Wyeo' = Wree. Lach of the 6000 patterns is presented once during the early phase

nos  of maturation, and once during the late phase of maturation.

1105 The above paradigm is run separately for each of the two handmade data
uos  sets: the one where clusters are similar (s = 0.8), and the one where clusters are
uor  distinct (S = 02)
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Figure 1: Network model and pretraining. (a) Integration of an adult-
born DGC (blue) as a function of time: GABAergic synaptic input (red) switches
from excitatory (4) to inhibitory (-); strong connections to interneurons develop
only later; glutamatergic synaptic input (black), interneuron (red). (b) Network
structure. EC neurons (black, rate z;) are fully connected with weights w;; to
DGCs (blue, rate v;). The feedforward weight vector w; onto neuron i is depicted
in black. DGCs and interneurons (red rate Vk> are mutually connected with
probability p;g and pgr and weights w!f and wZ!, respectively. Connections with
a triangular (round) end are glutamaterglc (GABAergic). (c) Given presynaptic
activity x; > 0, the weight update Aw;; is shown as a function of the firing
rate v; of the postsynaptic DGC with LTD for v; < # and LTP for 6 < 1; <
V;. (d) Center of mass for three ensembles of patterns from the MNIST data
set, visualized as 12x12 pixel patterns. The two-dimensional arrangements and
colors are for visualization only. (e) 100 receptive fields, each defined as the set
of feedforward weights, are represented in a 2-dimensional organization. After
pretraining with patterns from MNIST digits 3 and 4, 79 DGCs have receptive
fields corresponding to threes and fours of different writing styles, while 21 remain
unselective (highlighted by red frames).
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Figure 2: Newborn DGCs become selective for novel patterns during
maturation.
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o Figure 2: Newborn DGCs become selective for novel patterns during
0 maturation. (a) Unselective neurons are replaced by newborn DGCs, which
a1 learn their feedforward weights while patterns from digits 3, 4, and 5 are presented.
2 At the end of the early phase of maturation, the receptive fields of all newborn
33 DGCs (red frames) show mixed selectivity. (b) At the end of the late phase
1ss of maturation, newborn DGCs are selective for patterns from the novel digit
s 5, with different writing styles. (c,d) Distribution of the percentage of model
s DGCs (mean with 10th and 90th percentiles) in each firing rate bin at the end
e of the early (c) and late (d) phase of maturation. Statistics calculated across
s MNIST patterns (’3’s, '4’s, ’5’s). Percentages are per subpopulation (mature and
0 newborn). Note that neurons with firing rate < 1Hz for one pattern may fire at
o medium or high rate for another pattern. (e) The L2-norm of the feedforward
o weight vector onto newborn DGCs (mean £ SEM) increases as a function of
12 maturation indicating growth of synapses and receptive field strength. Horizontal
1303 axis: time=1 indicates end of early (top) or late phase (bottom). (f) Percentage
s of newborn DGCs activated (firing rate > 1Hz) by a stimulus averaged over all
s test patterns as a function of maturation. (g) At the end of the late phase of
s maturation, three different patterns of digit 5 applied to EC neurons (top) cause
o7 different firing rate patterns of the 100 DGCs arranged in a matrix of 10-by-10
s cells (middle). DGCs with a receptive field (see[Fig. 2p) similar to a presented EC
1o activation pattern respond more strongly than the others. Bottom: Firing rates of
uo  the DGCs with indices sorted from highest to lowest firing rate in response to the
un  first pattern. All 3 patterns shown come from the testing set, and are correctly
12 classified using our readout network.
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Figure 3: The GABA-switch guides learning of novel representations.
(a) Pretraining on digits 3, 4 and 5 simultaneously without neurogenesis (con-
trol 1). Patterns from digits 3, 4 and 5 are presented to the network while all
DGCs learn their feedforward weights. After pretraining, 79 DGCs have recep-
tive fields corresponding to the three learned digits, while 21 remain unselective
(as in [Fig. 1k). (b) Sequential training without neurogenesis (control 2). After
pretraining as in [Fig. I, the unresponsive neurons stay plastic, but they fail to
become selective for digit 5 when patterns from digits 3, 4, and 5 are presented
in random order. (c) Sequential training without neurogenesis but all DGCs stay
plastic (control 3). Some of the DGCs previously responding to patterns from
digits 3 or 4 become selective for digit 5. (d-f) Confusion matrices. Classification
performance in percent (using a linear classifier as readout network) for control 1
(d) and for the standard model at the end of the early (e) and late (f) phase; cf.

Fig 2h.b.
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Figure 4: Novel patterns expand the representation into a previously
empty subspace. (a) Left: The DGC activity responses at the end of the early
phase of maturation of newborn DGCs are projected on discriminatory axes. Each
point corresponds to the representation of one input pattern. Color indicates
digit 3 (blue), 4 (green), and 5 (red). Right: Firing rate profiles of three example
patterns (highlighted by crosses on the left) are sorted from high to low for the
pattern represented by the orange cross (inset: zoom of firing rates of DGCs with
low activity). (b) Same as a, but at the end of the late phase of maturation
of newborn DGCs. Note that the red dots around the orange cross have moved
into a different subspace. (c) Example patterns of digit 5 corresponding to the
symbols in a and b. All three are accurately classified by our readout network. (d)
Evolution of the mean (& SEM) of the projection of the activity upon presentation

of all test patterns of digit 5.
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us Figure 5: A newborn DGC becomes selective for similar but not distinct
e novel stimuli. (a) Center of mass of clusters k and [ of an artificial data set (P,
s and ]3l, respectively, separated by angle €2) are represented by arrows that point
s to the surface of a hypersphere. Dots represent individual patterns. (b) Center of
1oz mass of three clusters of the artificial data set, visualized as 16x8 pixel patterns.
s The two-dimensional arrangements and colors are for visualization only. (c,d)
1o Example input patterns (activity of 16x8 input neurons) from clusters 1 and 2
o for similar clusters (¢, s = 0.8), and distinct clusters (d, s = 0.2). Below: dots
1 correspond to patterns, crosses indicate the input patterns shown (schematic).
2 (e,f) After pretraining with patterns from two clusters, the receptive fields (set of
i3 synaptic weights onto neurons 1 and 2) exhibit the center of mass of each cluster
1 of input patterns (blue and green crosses). (g,h) Novel stimuli from cluster 3
s (orange dots) are added. If the clusters are similar, the receptive field of the
s newborn DGC (red cross) moves towards the center of mass of the three clusters
7 during its early phase of maturation (g), and if the clusters are distinct towards
s the center of mass of the two pretrained clusters (h). (i,j) Receptive field after the
119 late phase of maturation for the case of similar (i) or distinct (j) clusters. (k,1) For
120 comparison, the center of mass of all patterns of the blue and green clusters (left
12r column) and of the blue, green and orange clusters (right column) for the case of
uz  similar (k) or distinct (1) clusters. Color scale: input firing rate Z or weight
123 normalized to ||| =1 = ||Z]|.
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Figure 6: Maturation dynamics for similar patterns. (a) Schematics of the
unit hypersphere with three clusters of patterns (colored dots) and three scaled
feedforward weight vectors (colored arrows). After pretraining, the blue and green
weight vectors point to the center of mass of the corresponding clusters. Patterns
from the novel cluster (orange points) are presented only later to the network.
During the early phase of maturation, the newborn DGC grows its vector of
feedforward weights (red arrow) in the direction of the subspace of patterns which
indirectly activate the newborn cell (dark grey star: center of mass of the presented
patterns, located below the part of the sphere surface highlighted in grey). (b)
During the late phase of maturation, the red vector turns towards the novel cluster.
Angle ¢ between the center of mass of the novel cluster and the feedforward weight
vector onto the newborn cell. (c) The angle ¢ decreases in the late phase of
maturation of the newborn DGC if the novel cluster is similar to the previously
stored clusters. Its final average value of ¢ ~ 0.4° is caused by the jitter of the
weight vector around the center of mass of the novel cluster.
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Table 1: Parameters for the simulations

Biologically-plausible network Simplified network
Network Npo = 144 Npoo = 100 | Ngo = 128 Npee = 3
Ny =25
Connectivity wip =1 WET = —poen; | Wree = —1.2
pre = 0.9 per = 0.9
Dvnamics T = 20 ms Tinh = 2 MS T = 20 ms
Y L=05 pr =01
ag = 0.05 g=1 ap = 0.03 g=1
Plasticity Y = 10 6 =0.15 Y = 1.65 0 =0.15
vy = 0.2 v =9.85 v=1.5
Numerical simulations Af] - Odlorlns n =001 At=1ms  n=001
b = 0.
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