bioRxiv preprint doi: https://doi.org/10.1101/704874; this version posted July 17, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Universal Deep Sequence Models for Protein
Classification

Nils Strodthoff*, Patrick Wagner, Markus Wenzel, and Wojciech Samek*

Abstract—Inferring the properties of protein from its amino
acid sequence is one of the key problems in bioinformatics. Most
state-of-the-art approaches for protein classification tasks are
tailored to specific classification tasks and rely on handcrafted
features such as position-specific-scoring matrices from expensive
database searches and show an astonishing performance on
different tasks. We argue that a similar level of performance
can be reached by leveraging the vast amount of unlabeled
protein sequence data available from protein sequence databases
using a generic architecture that is not tailored to the specific
classification task under consideration. To this end, we put
forward UDSMProt, a universal deep sequence model that is
pretrained on a language modeling task on the Swiss-Prot
database and finetuned on various protein classification tasks.
For three different tasks, namely enzyme class prediction, gene
ontology prediction and remote homology and fold detection, we
demonstrate the feasibility of inferring protein properties and
reaching state-of-the-art performance from the sequence alone.

I. INTRODUCTION

Inferring protein properties from the underlying sequence
of amino acids (primary structure) is a long-standing theme
in bioinformatics and is of particular importance in the light
of advances in sequencing technology and the vast number
of proteins with mostly unknown properties. A rough esti-
mate for this number is given by the size of the sparsely
annotated TrEMBL dataset (158M) and should be set into
perspective by comparison to the size of well-curated Swiss-
Prot [[1] dataset (560K) with much more complete annotation
of protein properties. There is a large body of literature on
methods to infer protein properties, most of which make use
of additional handcrafted features in addition to the primary
sequence alone [2]-[8]. These include experimentally deter-
mined functional annotations as contained in Swiss-Prot as
well as features incorporating information from homologous
(evolutionary related) proteins which are typically inferred
from well-motivated but still heuristic methods such as the
basic local alignment search tool (BLAST) [9], that searches
a database for proteins that are homologous (evolutionary
related) to a given query protein, via multiple sequence align-
ment.

Handcrafted features based on experimental results are
obviously problematic for proteins with incomplete function
annotation that have not been studied extensively to this
point. Sequence-alignment methods suffer from a poor runtime
performance. The complexity of PSI-BLAST [9], a popular
variant of a sequence alignment algorithm, scales at least

All authors are with Fraunhofer Heinrich Hertz Institute, 10587 Berlin, Ger-
many, e-mail: firstname.lastname @hhi.fraunhofer.de. Corresponding authors
marked by *

linearly with query and database size, where the latter is
growing exponentially [1] in the case of Swiss-Prot and
TrEMBL. In addition to unpleasant time complexity, several
drawbacks remain for these approaches as they require func-
tional annotations of homologous proteins and are therefore
likely to fail for evolutionary distant or insufficiently annotated
proteins [10]. Ultimately, self-supervised learning algorithms
might be able to implicitly learn even more powerful represen-
tations to reach even higher levels of performance, while at
the same time offering better scalability properties. In fact,
we argue that the trade-off between initial costs for self-
supervised pretraining on a large corpus and the variable costs
for computing handcrafted features prior to classification will
favor our proposal as the number of tasks and thus the number
of samples increase.

For these reasons, algorithms operating on sequences of
amino acids only are very promising for real-world applica-
tions and are currently on the agenda of many research insti-
tutions [[11]-[13]]. In the Machine Learning community, there
has been a lot of interest in this direction motivated by the
recent advances in Natural Language Processing (NLP) that
have demonstrated the large prospects of using language model
pretraining tasks to significantly improve the performance on
downstream supervised classification tasks— a procedure that
is particularly powerful when only small labeled datasets are
available for the classification task. Proteomics represents an
ideal field of application due to the availability of extremely
large unlabeled databases such as Swiss-Prot or TTEMBL and
the fact that small datasets are the common situation for most
real world applications, where biochemical properties have to
be determined experimentally one-by-one.

During the past few months there has been an increased
interest in protein classification as possible application area for
Deep Learning methods, see e.g. [11]-[15]], and in particular
NLP methods. In NLP, self-supervised approaches have shown
tremendous prospects across a wide variety of tasks [16]-
[22], which rely on leveraging implicit knowledge from large
unlabeled corpora by pretraining using language modeling
or related demasking tasks. This approach goes significantly
beyond the wide use of pretrained word embeddings, where
only the embedding layer is pretrained whereas the rest of the
model is initialized randomly.

Protein classification tasks represent an tempting applica-
tion domain for such techniques exploiting the analogy of
amino acids as words and proteins and their domains as
text paragraphs composed of sentences. In this setting, global
protein classification tasks, such as enzyme class prediction,
are analogous to text classification tasks (e.g. sentiment anal-

https://doi.org/10.1101/704874

bioRxiv preprint doi: https://doi.org/10.1101/704874; this version posted July 17, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

ysis). Protein annotation tasks, such as secondary structure or
phosphorylation site prediction, map to annotation tasks, such
as part-of-speech tagging or named entity recognition. While
this general analogy has been recognized and exploited already
early on [23], self-supervised pretraining is a rather new
technique in this field [[12], [[13]. Existing literature approaches
in this direction [12]], [13]] show significant improvements of
models trained using self-supervised pretraining compared to
their counterparts trained from scratch on a variety of tasks
and demonstrate that models leverage biologically sensible
information from pretraining. However, none of them explic-
itly demonstrates that pretraining can bridge the gap to state-
of-the art approaches for these problems that mostly rely on
handcrafted features such as position-specific-scoring matrices
(PSSM) derived via BLAST.

Our contributions in this paper are the following:

o We put forward a universal protein classification model
that relies on finetuning a language model pretrained
on Swiss-Prot augmented by custom classification layers
(see section [[TI). The success of this approach stresses
the fact that many protein classification problems can
potentially be addressed with a single task-independent
architecture. The major advantage of our approach is
that pretraining of a language model needs to be com-
puted only once, hence accelerating future applications
by reusing implicit knowledge already learned.

o We demonstrate the competitiveness of our approach for
three classical protein classification tasks namely enzyme
class (EC) prediction, gene ontology (GO) prediction
and remote homology and fold detection (introduced in
section [[). In section we find that our approach
performs on par with, or even outperforms state-of-the-
art algorithms that typically make use of expensive PSSM
features. It is the first time, to the best of our knowledge,
that a model operating on the sequence alone was able
to reach the level of performance of algorithms operating
on PSSM features.

« We systematically investigate the dependence of the pre-
training gain on the size of the training dataset for the
downstream classification task and illustrate the particu-
lar advantages of our approach for small datasets both
compared to models trained from scratch and to models
that rely on PSSM features. This finding might be a
crucial component to increase the quantitative accuracy
of protein classification tasks for small datasets.

II. TASKS AND DATASETS

In this section, we briefly introduce each of the three protein
classification tasks considered in this work along with the
most prominent literature approaches to these problems before
discussing the datasets used for our analysis.

A. Enzyme Class Prediction

Task: Enzyme prediction is a functional prediction task tar-
geted to predict the Enzyme Commission number. The enzyme
commission number is a hierarchical numerical classification
scheme for enzymes based on the chemical reactions they

catalyze. In particular, we consider EC prediction for level
0, i.e. predicting enzyme vs. non-enzyme, and level 1, i.e.
predicting one of the six main enzyme classes.

State-of-the-art: A powerful EC classification algorithm of
the pre-deep-learning-era was provided by EzyPred [2]], which
owed its success to the design of a hierarchical approach
and to appropriate input features which are a combination
of the functional (BLAST against a PFAM database) and
evolutionary information (PSI-BLAST [9] against the Swiss-
Prot database). For hierarchical classification (level O to level
2), a simple k-nearest-neighbor classifier (KNN) was trained in
order to achieve convincing results. EzyPred was superseded
by DEEPre [7] where deep learning was applied to raw se-
quence and homology data as input. Instead of training simple
classifiers on highly engineered features, they trained feature
representation and classification in an end-to-end fashion with
a hybrid CNN-LSTM-approach. Recently, ECPred [8|] also
showed competitive results by building an ensemble of well-
performing classifier (Subsequence Profile Map with PSSM
[24], BLAST-KNN [9] and Pepstats-SVM using peptides statis-
tics [25]). Nevertheless, drawbacks as described in section
remain, i.e. requiring functional annotations of homologous
proteins, which is not guaranteed for evolutionary distant or
insufficient annotated proteins.

Datasets: EC classification is a commonly used and con-
ceptually simple protein classification task for which a large
amount of labeled data is available. For these reasons, we
decided to use EC classification as a test bed for detailed
investigations of the effects of dataset size, similarity threshold
and redundant sequences. The existing dataset provided by
DEEPre did not meet the requirements of these investigations
mainly due to the fact that only representative sequences per
cluster instead of full datasets were provided. In addition to the
original DEEPre dataset, we therefore recreated datasets for
similarity threshold 40% and 50% by combining best practices
from both [[7] and [[8]]. The corresponding dataset with similar-
ity threshold 40% relying on clusters from a prior CD-HIT [26]]
run is termed EC40. Compared to DEEPre we slightly adapted
their dataset generation procedure by clustering Swiss-Prot all
at once with CD-HIT, instead of clustering enzymes and non-
enzymes separately, as this mimics the way UniRef50 clusters
are constructed, albeit for similarity threshold 40% in this
case. The dataset using a similarity threshold of 50% by using
UniRef50-clusters is termed EC50. For both self-constructed
datasets, we do not balance the number of enzymes and non-
enzymes since we deem the ratio of enzymes and non-enzymes
in Swiss-Prot a more appropriate proxy for the actual ratio
observed in nature than artificially restricting the ratio to 0.5.
We restrict ourselves for simplicity to proteins with a single
EC-label. A detailed description of the dataset generation
process and a table summarizing all datasets used for EC
prediction are given in appendix.

B. Gene Ontology Prediction

Task: A much more general although closely related prob-
lem to enzyme prediction is gene ontology prediction. Gene
ontology is an international bioinformatics initiative to unify a

https://doi.org/10.1101/704874

bioRxiv preprint doi: https://doi.org/10.1101/704874; this version posted July 17, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

part of the vocabulary for representation of proteins attributes.
It covers three domains, namely cellular components, molec-
ular functions and biological processes. The nomenclature is
organized into hierarchies ranging from coarse to fine-grained
attributes. Here, we focus on the domain of molecular function
prediction.

State-of-the-art: Similar to enzyme class prediction, the
first proposed approaches in this field relied on handcrafted
features like functionally discriminating residues (FDR) with
PSSM [4] and classification models consisting of an array
of Support Vector Machines [5]. Recently, deep learning
approaches have raised the bar by using convolutional neural
networks [27]] and residual neural networks [15]].

Dataset: For simplicity and easiest comparability with
literature results, we focus on protein annotations belonging
to the molecular function (MF) and completely disregard the
other two main categories, cellular component and biological
process. This is also the considered case of DeeProtein [15],
with data from the CAFA3 challenge [28]], which is a major
attempt to establish a suitable evaluation framework for protein
function prediction. We use the scripts provided by [15] to
construct appropriate training and test sets. Specifically, we
train on their Swiss-Prot training set, that was designed to have
sequence similarities below 50% compared to the CAFA3 test
set, resulting in a training set of 135468 unique sequences. In
order to be able to compare directly to literature results [15],
[27], we compare performance on a CAFA3 benchmark set
comprising 575 sequences for a selection of 539 molecular
function GO-terms that were predicted by DeepGO.

C. Remote Homology and Fold Detection

Task: Remote homology detection is one of the key prob-
lems in computational biology and refers to the classification
of proteins into structural and functional classes, which is
considered to be a key step for further functional and structural
classification tasks. Here we consider remote homology detec-
tion in terms of the SCOP database [29]], where all proteins are
organized in four levels: class, fold, superfamily and family.
Proteins in the same superfamily are homologous and proteins
in the same superfamily but in different families are considered
to be remotely homologous.

State-of-the-art: Remote homology detection has a rich
history and we refrain from presenting a detailed discussion
of literature approaches to the problem. The interested reader
is referred to a recent review article on this topic [30]. We will
compare to ProDec-BLSTM 6] with a bidirectional recurrent
neural network operating on PSSM input features building on
earlier work [31]]. A classical baseline method is provided by
GPkernel [3]], who apply kernel-methods to sequence motifs.

Datasets: For remote homology detection, we make use of
the SCOP 1.67 dataset as prepared by [31], which has become
a standard benchmark dataset in the field. Here the problem
is framed as a binary classification problem where one has to
decide if a given protein is contained in the same superfamily
or fold as a given reference protein. The superfamily/fold
benchmark is composed of 102/85 separate datasets and we
report the mean performance of all models across the whole
set.

III. MODELS AND ARCHITECTURES

A. UDSMProt: Universal Deep Sequence Models for Protein
Classification

We aim to address all three different classification problems
introduced above within a single architecture that is universal
in the sense that only the dimensionality of the output layer
has to be adapted to the specific task, which facilitates the
adaption of the approach to classification tasks beyond the
three exemplary tasks considered in this work. For finetuning
on the downstream classification tasks, all embedding weights
and LSTM weights are initialized using the same set of
weights obtained from language model pretraining. As we will
demonstrate, this is a particularly powerful choice for small
datasets. The central element that distinguishes approaches
based on self-supervised pretraining (as our UDSMProt), from
the algorithms used predominantly in the literature is the fact
that it implicitly learns representations from unlabeled data.
This representation can be leveraged for downstream classifi-
cation task whereas the conventional approaches incorporate
side-information in the form of precomputed features. The
pretraining step has to be carried out only once, whereas
precomputed features have to be recomputed for every single
downstream classification dataset.

Our proposed method relies on an AWD-LSTM language
model [32], which is, at its heart, a 3-layer LSTM aug-
mented by different kinds of dropouts (embedding dropout,
input dropout, weight dropout, hidden state dropout, output
layer dropout). During language model training, the output
layer is tied to the weights of the embedding layer. During
finetuning for classification tasks, the output layer is replaced
by a concatenation-pooling layer [17] followed by a fully-
connected hidden layer and a final output layer. Specific model
parameters are listed in Table [and were largely inspired by
those from [[17].

Table I: AWD-LSTM Parameters

Parameter | Value
Joint parameters
Number of hidden units 1150
Number of layers 3
Embedding dimension 400
Backpropagation through time (bptt) 70
Gradient clipping 0.25
Weight decay le-7

Language-model-specific parameters
Dropout (po,ph,PisPe Pw) [0.5-(0.25,0.1,0.2,0.02,0.15)
Classifier-specific parameters
Dropout (po,ph,PisPe-Pw) 0.5 -(0.4,0.2,0.6,0.1,0.5)
Max. length (explicit backprop.) 1024
Number of hidden units (head) 50

The training procedure for transfer learning is largely in-
spired by ULMFit [17] and proceeds as follows, see Figure
for a schematic illustration: In a first step, we train a language
model on Swiss-Prot data. We restrict to using Swiss-Prot,
as opposed to the significantly larger TTEMBL database, for
pretraining mainly for computational reasons. In particular, we
are interested in establishing a solution that is also amenable
for users with a smaller computational budget. Besides com-
putational considerations, we also decided in favor of Swiss-

https://doi.org/10.1101/704874

bioRxiv preprint doi: https://doi.org/10.1101/704874; this version posted July 17, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Prot, because we were interested in a direct comparison to
BLAST features computed for the same reference database. In
a second step, the language model’s output layer is replaced
by a concat-pooling-layer and two fully connected layers. A
potential intermediate step where one finetunes the generic
language model on the corpus underlying the classification
step, as proposed by [17]], did only show an improvement
in terms of language model quality but did not result in an
improved downstream classification performance. This step
was therefore omitted for the results presented below.

When finetuning the classifier, we gradually unfreeze layer
group by layer group (four in total) for optimization. We use
discriminative learning rates during finetuning reducing the
learning rate by a factor of 2 for each layer group compared
to the previous. A single model is by construction only able to
capture the context in a unidirectional manner, i.e. processing
the input in the forward or backward direction. As simplest
approach to incorporate both contexts into the final prediction,
we train separate forward and backward models both for
language modeling as well as for the finetuned classifiers.
Then we report also the performance of the ensemble model
obtained by averaging the output probabilities of both classi-
fiers.

We use a 1-cycle learning rate schedule [33]] during training
for 30 epochs during the final finetuning step. Any kind of hy-
perparameter optimization was performed based on the model
performance on a separate validation set, while we report
performance on a separate test set. Our way of addressing the
specific challenges of the remote homology datasets are de-
scribed in Section[[V-D] In all cases, we use binary/categorical
crossentropy as loss function and the AdamW optimizer [34].

B. Convolutional Baseline Models

In order to relate our approach to the state-of-the-art, we
will strictly compare our results against an appropriate baseline
model. As already mentioned in Section [[I} the performance of
literature approaches has been driven to a large extend by the
inclusion of different kinds of handcrafted features rather than
innovative model architectures or training procedures. The
most beneficial input features throughout a variety of different
classification tasks are obviously the position specific scoring
matrices (PSSM) based on a multiple sequence alignment
computed via position specific iterative BLAST (PSI-BLAST)
[9]. BLAST is used to compare query sequences with a given
database of already existing sequences, where the result is
a list of local alignments solved with heuristics instead of
using more time-consuming optimal local alignments with the
Smith-Waterman-algorithm. PSI-BLAST is then used to find
more distant relatives of a query protein, where a list of closely
related proteins is created to get an initial general profile
sequence. This profile sequence is used as a new query for the
next iteration where a larger list of proteins is found for which
again a profile sequence is computed. This process is repeated
to a desired number of iterations. In our experiments we used
the same parameters as reported in the literature [2]], [7]],
[8], namely three iterations with e_value = 0.001, where
e_value relates to the significance threshold for which an
alignment is considered as significant.

While the raw sequences from Swiss-Prot contained 26
unique amino acids (20 standard and 6 non-standard amino
acids), PSSM features are computed only for the 20 standard
amino acids. The raw sequence of length L was then one-hot
encoded into an L x 26 matrix which is concatenated with the
L x 20 PSSM feature matrix yielding an L X 46 input matrix
overall. To make use of the full parallelization capabilities
while retaining most information at the same time, we padded
the sequences to a maximum length of 1024 residues.

For all following experiments we used a Convolutional
Neural Network (CNN) consisting of seven layers, where
each convolutional layer was followed by rectified linear unit
(ReLU) and max pooling by a factor of 2. The number of
filters across layers are: 1024, 512, 512, 512, 256, 256, 256
(with valid padding mode) each with filter size of 3, after the
last layer the dimensionality was 6 x 256. The convolutional
stage was followed by flatten/vectorization and three dense
layers (512, 256, 128) each followed by dropout (with 25%
dropout rate) and finally a softmax layer with six nodes, one
for each class.

For all models, we minimized either binary or categori-
cal crossentropy (for level 0 and level 1 respectively) with
AdaMax, which is a variant of adaptive moment estimation
(Adam) based on the infinity norm [35]. The hyperparameters
follow those provided in the paper (learning rate 0.002,
exponential decay rates 31 = 0.9, 83 = 0.999).

IV. RESULTS

Since our proposed method covers multiple aspects ranging
from self-supervised representation learning all the way down
to finetuning on several tasks, we aim for a structured and
comprehensive evaluation of all the parts mentioned above.
Therefore, we first evaluate our proposed method for training
a language model with respect to several constraints on the
data in Section

Afterwards, we compare and evaluate our methods for
enzyme prediction in Section where we start with an
extensive analysis of our methods in Section followed
by a comparison to state-of-the-art approaches in the literature
in Section In Section [V-B3] we compare the perfor-
mance with respect to the training size which highlights one
of the major benefits, and in Section we evaluated the
effect of data leakage issues which are probably present in
the previous literature. To demonstrate the universality of our
proposed approach, Section and Section [[V-D| evaluate
our approach for gene ontology prediction and remote homol-
ogy and fold detection. In all cases the proposed UDSMProt
approach shows state-of-the-art performance reaching or even
outperforming literature approaches for the respective tasks.

A. Language Modeling

We start by evaluating language model performance on
proteomics data. This step is important for two reasons: First,
language modeling on proteomics data is an interesting field of
application for language models outside the classical domain
of NLP. The results presented below are supposed to serve as
a first benchmark in this direction addressing also the subtle

https://doi.org/10.1101/704874

bioRxiv preprint doi: https://doi.org/10.1101/704874; this version posted July 17, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

1. Language Model Pretraining on Swiss-Prot

{Q Random Weights (0) Transferred Weighis }
098
$66 66

<BOS> M

Output
Linear Softmax
LSTM Layer 3
LSTM Layer 2
LSTM Layer 1

Embedding

Sequence

Figure 1: Schematic illustration of the training procedure, here for the amino acid sequence <BOS>MSLR. .

2. Finetuning Classifier on Downstream Task

,&i\

&'

see 3

‘ Concat-Pooling Layer
N
N

<BOS> M

S R I

Linear Softmax

Dense Layer

{/

.RI. The <BOS>-

token marks the beginning of the sequence. The red arrows show the context for forward LM for predicting next character (S)
given sequence <BOS>M of length 2. For finetuning on the downstream classification tasks, all embeddings weights and LSTM
weights are initialized using the same set of weights obtained from language model pretraining. This has to be contrasted with
the use of pretrained (amino acid) embeddings, where just the embedding weights are initialized in a structured way before

the downstream finetuning step.

but crucial differences between language modeling evaluation
in NLP and in proteomics. Second, as the language model
objective is used as pretraining objective for downstream
classification tasks, language model performance is instructive
to evaluate the implicit knowledge about the structure of
proteins that has been captured by the model.

We present language model results using AWD-LSTM lan-
guage models trained on Swiss-Prot using 90% / 5% / 5%
splits based on clusters for training, validation and test set,
respectively. We train using redundant sequences and evaluate
on a reduced dataset with a single representative sequence for
each cluster. As performance metrics, we report the natural
exponential of the test loss and the prediction accuracy. We
tokenize on an amino acid level, the resulting vocabulary
comprises the following additional tokens in addition to the
20+2 canonical amino acids: X (unknown), B (either D or N), Z
(either E or Q), <BOS> (marks beginning of new protein). We
stress that we do not specifically aim to optimize the language
model performance, which could be easily improved using
appropriate postprocessing techniques [36], as it only serves
as pretraining objective in this context.

At this point a comment on the different training dataset
sizes is appropriate. For random splits we disregard any cluster
information and distribute samples according to the ratios
90% / 5% | 5%, which obviously results in the largest training
dataset. In cases where cluster information is used the splits
are performed by clusters, where we sort the clusters by the
number of members and distribute them onto the three sets
consecutively. Finally, we also report results for a dataset,
where the train-test-split used for the language model respects
those of a chosen downstream classification task, in this
case level 1 EC prediction on the EC50 dataset described

below. This construction avoids potential data leakage from
using implicit knowledge about test and validation sets that
is contained in the language model representations in the
actual downstream classification task, see Section for a
detailed discussion.

Table II: Language model performance on Swiss-Prot 2017_03
data. The downstream classification task is level 1 EC predic-
tion on the EC50 dataset as described below.

LM Down-
stream
Split ‘ Trt:in Perpl. ‘ Acc. Acc.
UniRef50 316K 11.37 0.254 0.956
UniRef50 (clean) ‘ 322K 11.75 ‘ 0.244 0.954
Random(64% train) | 316K 7.40 0.385 0.955
Random(fwd) ‘ 499K 6.88 ‘ 0.409 0.960

The results on language modeling are compiled in Table
As expected, the best language model is reached on random
dataset splits with perplexities of around 7. It is the coverage
of the whole dataset in terms of included clusters that is most
important for language model performance. This is apparent
from the comparison of (1) the language model trained on a
random split, where we artificially restricted the training set to
64% of the original training set compared to (2) the UniRef50
runs. In both cases, the size of the training set is comparable
but the former (1) reaches a perplexity comparable to that
of the model trained on the full dataset with random splits,
whereas the latter (2) only reaches a perplexity of around 11.

Even more important than the language model performance
itself is, however, in our present context its impact on down-
stream classification tasks. This is illustrated exemplarily for
the EC level 1 classification performance on the EC50 dataset

https://doi.org/10.1101/704874

bioRxiv preprint doi: https://doi.org/10.1101/704874; this version posted July 17, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

as described below. Table [[] lists the downstream performance
for all language models pretrained on the respective Swiss-Prot
version. Interestingly, all fine-tuned classification models show
a comparable performance and it is not possible to discriminate
between different language models used for pretraining. The
same pattern was observed across all considered classification
tasks. In particular, it shows that the data leakage from
inconsistent splits between pretraining and classification task
is presumably small in the context of language modeling.
We also experimented with the use of byte-pair-encoding to
form subword units [37]. The language model metrics are
obviously not comparable for different vocabulary sizes, so the
downstream classification performance is the only meaningful
metric to compare both approaches in this case. However, we
did not see any significant performance improvements com-
pared to the baseline models with single amino acids as tokens.
In addition, if one tokenizes using subword units, sequence
annotation tasks such as secondary structure prediction are
less straightforward to handle.

Key insights from results presented in this section are
the following: First, the results demonstrate that language
modeling on amino acid sequence data is indeed meaningful
and represents a potentially interesting domain of application
for language model methods from NLP. Prediction accuracies
of 40% (random split) or 25% (UniRef50 clusters) document
a solid understanding of the general structure of proteins.
However, the section also highlights crucial differences com-
pared to language model evaluation in NLP. Whereas in NLP
sequence similarity between train and test sequences is hardly
considered, it has crucial implications in proteomics. Here, it is
the dataset coverage in terms of clusters rather than the nomi-
nal size of the training set, which most crucially determines the
language model performance. Second, however, the different
language models show no significance differences in terms of
downstream classification performance. This iterates a general
insight from NLP in the sense that improved language model
performance does not necessarily imply improved downstream
task performance.

B. Enzyme Class Prediction

We start our analysis on downstream classification tasks
with EC classification for the reason that it is a conceptually
simple task for which a large number of annotated examples
is available.

1) Effect of Similarity Threshold and Redundant Sequences:
In order to investigate the benefits of the proposed approach
in comparison to algorithms relying on alignment features,
we based our initial analysis on the self-constructed EC40
and EC50 datasets, which are from the point of view of the
dataset creation as fundamental as the datasets considered
in the literature. This approach represents a very controlled
experimental setup, where one can investigate the effect of the
chosen similarity threshold, the impact of redundant sequences
during training and potential sources of data leakage during
pretraining in a very clean way.

We base our detailed analysis of the proposed method
UDSMProt compared to a baseline algorithm operating on

PSSM features on EC prediction tasks at level 0 (enzyme
vs. non-enzyme) and level 1 (main enzyme class). In par-
ticular, we aim to investigate the impact of non-redundant
sequences when training the baseline classifier and the impact
of different similarity thresholds. It is a well-known effect
that the difficulty of the classification problem scales inversely
with the similarity threshold, as a higher similarity threshold
leads to sequences in the test set that are potentially more
similar to those seen during training. In the extreme case of
a random split, i.e. by disregarding cluster information, the
test set performance merely reflects the algorithm’s capability
to approximate the training set rather than the generaliza-
tion performance when applied to unseen data. The failure
to correctly incorporate the similarity threshold is one of
the major pitfalls when applying NLP methods, because it
represents a complication that does not exist for natural
language in this form. Here we perform level 0 and level 1
prediction on two different datasets, namely EC40 (40%) and
EC50 (50% similarity cutoff). Both datasets only differ in the
similarity thresholds and the version of the underlying Swiss-
Prot databases.

If not noted otherwise, CNN models are trained on rep-
resentatives as this considerably reduces the computational
burden for determining PSSM features and is in line with
literature, whereas UDSMProt is conventionally trained using
the full training set including redundant sequences, whereas
the corresponding test and validation sets always contain only
non-redundant sequences. For the EC50 dataset non-redundant
sequences enlarge the size of the training set from 44,628
sequences to 113,931 sequences for level 1 and 170,535
instead of 86,087 sequences for level 0.

Table III: EC classification accuracy on the self-constructed
EC40 and EC50 datasets described in Section

EC40 EC50
Method Le(\)/el Le]vel Legel Lelvel
CNN(seq;non-red.) 0.83 0.38 0.88 0.71
CNN(seq) 0.84 0.61 0.92 0.80
CNN(seq+PSSM;non-red.;clean) 0.91 0.84 0.95 0.94
CNN(seq+PSSM;non-red.;leak.) 0.92 0.85 0.95 0.95
UDSMProt(fwd;pretr.; non-red.) 0.815 0.786 0.934 0.935
UDSMProt(fwd;from scratch) 0.867 0.793 0.937 0.935
UDSMProt(fwd;pretr.) 0.894 0.840 0.949 0.960
UDSMProt(bwd;pretr.) 0.899 0.853 0.953 0.956
UDSMProt(fwd+bwd;pretr.) 0.909 0.873 0.960 0.968

In Table we compare the two classification algorithms
UDSMProt and CNN that were introduced in Section [in
terms of classification accuracy, which is the default metric
considered in the literature for this task. There is a noticeable
gap in performance across all experiments between CNN(seq;
non-red.) and CNN(seq+PSSM; non-red.) which is a strong
indication for the power of PSSM features. This gap can be
reduced by the use of redundant sequences from training clus-
ters (CNN(seq)) but still remains sizable. Most importantly,
however, the gap can be closed by the use of language model
pretraining. Disregarding the case of the EC40 dataset at level
0, the best-performing UDSMProt consistently outperforms
the baseline algorithms that make use of PSSM features.
Combining information from both forward and backward

https://doi.org/10.1101/704874

bioRxiv preprint doi: https://doi.org/10.1101/704874; this version posted July 17, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

context consistently improves over models with unidirectional
context. As another observation, pretraining leads to a con-
sistent advantage compared to models trained from scratch
that cannot be compensated by increasing the number of
training epochs for the models trained from scratch. Finally,
Table [[II] illustrates that the UDSMProt classification models
benefit from redundant training sequences for the downstream
classification task. Comparing corresponding results from dif-
ferent similarity thresholds reveals the expected pattern, in the
sense that lowering the similarity threshold complicates the
classification task as test sequences show smaller overlap with
sequences from the training set.

As already mentioned in Section pretraining or pre-
computing features such as PSSMs on the full dataset disre-
garding the train-test splits for the downstream classification
tasks is a possible source of data leakage that can lead to
a systematic over-estimation of the model’s generalization
performance by implicitly leveraging information about the
test set during the training phase. Here we investigate the
issue also for the case of PSSM features as this issue was, to
the best of our knowledge, not addressed in the literature so
far. To this end, we compute two sets of PSSM features, one
set computed based on the whole Swiss-Prot database (cor-
responding classification model: CNN(seq+PSSM; non-red.;
leakage)) and a separate set based only on cluster members
from the training data (corresponding classification model:
CNN(seq+PSSM; non-red.; clean)). This is also the reason
why all experiments are trained on the same train-test split
without performing extensive cross-validation, because this
would lead to tremendous computational costs for clean PSSM
features since they would have been computed again for each
fold. It turns out that the model with PSSM features computed
on a consistent train-test-split always performs slightly worse
than its counterpart that relies on PSSM features computed on
the whole dataset. However, from a practical perspective, the
effect of test data leakage remains small. In Section [[V-B4] we
provide a more extensive evaluation of the effect by varying
the size of the training database that is used for calculating
PSSM features.

To reiterate the main findings of the experiments carried out
in this section, the most crucial observation is that language
model pretraining can close the gap in performance between
models operating on PSSM features compared to models oper-
ating on the sequences alone. The second main observation is
that redundant sequences rather than cluster representants have
a positive impact on the downstream classification training
process, even though one might expect that this information
was leveraged during language model training. The most
obvious explanations for this observation are inhomogeneous
clusters that contain samples with different labels that carry
more finegrained information than a single label per cluster
representant. Finally, the effect of data leakage from comput-
ing PSSM features on the whole dataset disregarding train-test
splits turned out to be small, but should be kept in mind for
future investigations.

2) Comparison to Literature Benchmarks: In order to relate
our proposed approach to state-of-the-art methods in literature,
we conducted an experiment on two datasets provided with

ECPred |8] and DEEPre [7]). The main purpose of this analysis
is to justify our choice of the CNN baseline algorithm by
demonstrating that it performs on par with state-of-the-art
algorithms that do not make use of additional side-information
for example in the form of PFAM features.

While for DEEPre the reported accuracies derived from
a 5-fold-cross-validation are straightforward to compute, for
ECPred however, we reproduced their evaluation scheme,
which is tailored to binary one-vs-all-classifiers opposed to
multi-class-classifiers. The scheme requires to evaluate binary
classifiers that distinguish a particular EC class from other
EC classes as well as non-enzymes. Finally, the mean F3-
score is reported across the six datasets. We adopt their
evaluation procedure in order to be able to compare directly
to their reported results. However, we decided to fit a seven-
class categorical classifier (non-enzymes and six main enzyme
classes) both on the concatenated training set for all EC
classes. In our experiments, the performance of these clas-
sifiers was comparable or even better than the corresponding
score obtained by training six independent classifiers on EC-
class-specific training sets and the procedure is more in line
with our approach. We would like to add that this statement
applies only to level 0 and level 1, whereas hierarchical
classifiers as used by ECPred show advantages for sparsely
populated cases such as level 2 EC prediction, which is,
however, not considered here. At this point we would like to
stress that the evaluation procedure is tailored specifically to
hierarchical classifiers rather inconvenient to apply for multi-
class classifiers.

Table I'V: EC classification accuracy on the published DEEPre
and ECPred datasets described in Section [[V-B2l DEEPre
results were evaluated using 5-fold crossvalidation.

DEEPre (acc.) ECPred (mean Fp)
Level Level Level Level
Method 0 1 0 1
EzyPred [2] 0.91 0.90 - -
DEEPre 7| 0.96 0.95 - -
ECPred (8] - - 0.96 0.96
DEEPre (seq+PSSM) [7] 0.88 0.82 - -
CNN (seq+PSSM) 0.91 0.84 0.97 0.94
(fwd; pretr.) 0.855 0.810 0.954 0.928
3 (bwd; pretr) 0.864 0.826 0.968 0.934
E (fwd+bwd; pretr.) 0.874 0.842 | 0970 0.940
K (fwd; pretr.; red.) - - 0.972 0.946
% (bwd; pretr.; red.) - - 0.973 0.945
(fwd+bwd; pretr.; red.) - - 0.976 0.953

Table shows the results of this experiment. For com-
pleteness we list also results for EzyPred(seq+PSSM+PFAM)
and DEEPre(seq+PSSM+PFAM), both of which make use of
PFAM features in addition to PSSM features. Leaving aside
the very unfavorable scaling with the dataset size [11]] and pos-
sible issues with data leakage due to features computed using
the full dataset, we do not consider methods relying on these
features as such approach will fail when applied to proteins
without functional annotations such that at least one-third of
microbial proteins can not be annotated through alignments on
given sequences [|10]]. Also note, that a convolutional model (as
our baseline) seemed sufficient when compared to the hybrid
model of DEEPre (using convolutional layers followed by a

https://doi.org/10.1101/704874

bioRxiv preprint doi: https://doi.org/10.1101/704874; this version posted July 17, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

recurrent layer (LSTM)) as can been seen in Table [[V] where
our baseline even surpassed the reported performances (91%
vs. 88% for level 0 and 84% vs. 82% for level 1). Also for
testing on ECPred our baseline approach yielded competitive
results indicating a well-chosen baseline model. These results
justify a posteriori our design choices for the CNN baseline
model.

Turning to the performance of the proposed UDSMProt, we
find a solid prediction performance reaching state-of-the-art
performance reported in the literature for algorithms operating
on PSSM features. Considering the results of the previous
section, the results on the DEEPre dataset represent only
the lower bound for the achievable performance as it profits
considerably from redundant training sequences, which could,
however, not be reconstructed in this case. Considering the
sizable performance gaps between training on redundant and
non-redundant datasets in Table [III it is even more remarkable
that the model already reaches state-of-the-art performance
when trained on non-redundant sequences. For ECPred we
report both the performance for training on the original train-
ing set as well as the performance on an augmented training
set comprising all corresponding Uniref50 cluster members as
shown in the three bottom lines in Table[[V] In terms of level 0
performance the proposed approach outperforms ECPred and
it shows competitive performance at level 1.

To summarize, given the results on the benchmark datasets,
we see it justified to claim state-of-the-art performance for
the CNN baseline model compared to literature approaches
disregarding those that incoorporate PFAM features. This
allows us to to use this model as baseline model with state-
of-the-art performance for the following investigations. The
proposed UDSMProt-model is very competitive on both liter-
ature datasets in particular in the light of missing redundant
training sequences for the case of the DEEPre dataset.

3) Impact of Dataset Size: In this section, we aim to
demonstrate the particular advantages of the proposed UDSM-
Prot-approach in the regime of small dataset sizes. To inves-
tigate this effect in a clean experimental setup, we conducted
an experiment with consecutively decreasing training set sizes,
while keeping test and validation sets fixed.

For this experiment, we used the EC50 dataset as described
in the appendix with numbers per class as shown in Table
and trained a level 1 classifier for each split. We compared our
proposed approach (AWD-LSTM with pretraining and from
scratch) with baseline models (CNN with PSSM features and
CNN on redundant sequences only) for seven different training
set sizes measured in terms of clusters compared to the number
of clusters in the original training set. The hyperparameters
were kept fixed to those of the run with full training data.
Therefore the results have to be taken with a grain of salt as
different architectures might exhibit a different sensitivity to
hyperparameter choices upon varying the size of the training
dataset, i.e. models trained at smaller dataset sizes might profit
differently from additional hyperparameter tuning.

The results from Figure [2] show an interesting pattern: The
bidirectional UDSMProt model always outperforms the CNN
baseline model and most interestingly the gap between the
two models increases for small dataset sizes, which suggests

1+ 7]
0.8 |
>
Q
<
—
3
S 0.6 |
<
UDSMProt (fwd+bwd)
UDSMProt (from scratch)
041} —@— CNN(seq+PSSM) =
CNN(seq)
| | | I I I
0 20 40 60 80 100

% Training Set Size (Clusters)

Figure 2: Dependence of the EC classification accuracy (level
1; EC50 dataset) on the size of the training dataset, see
Section for a detailed discussion.

the representations learned during language model finetuning
represent a more effective baseline for finetuning than using
PSSMs as fixed input features. As a second observation, also
the gap to the models trained from scratch widens. Reducing
the number of training clusters by 50% only leads to a decrease
in model performance by 3%, whereas the performance of the
model trained from scratch drops by 8%.

To summarize, both above observations represent strong
arguments for applications of UDSMProt in particular to
small datasets. Our results suggest to make language model
pretraining a standard procedure in these cases.

4) Impact of BLAST Database Size: In this section, we
investigate the data leakage effect discussed in Section
and Section[[V-BT]in more detail with focus on PSSM features.
The aim is to illustrate that the overstimation of the model
generalization performance by computing PSSM features on
the whole dataset is not only a theoretical issue but has prac-
tical implication for downstream classification performance at
least in the cases where the corresponding BLAST database
is small.

For pretraining using language modeling this issue did not
have significant impact on the downstream performance. This
is obviously a desirable property as it would otherwise require
to pretrain on large datasets with train-test splits consistent
with the downstream task, which defeats the purpose of using
pretraining as a universal step unspecific to the choice of
the downstream task. However, data leakage is always a
potential issue in this context and deserves further research
from our perspective to understand the practical implications
for different classification tasks.

To highlight the importance of using an appropriate train-
test-split also for the database on which PSI-BLAST is
performed, we conducted the following experiment, where
we compared two sets of features (as already described in
Section [[V-BT)) both trained with the same model and hyper-
parameters: (1) PSSM features based on the whole Swiss-Prot
database (including test sequences) and (2) PSSM features
on database consisting only of sequences from the training

https://doi.org/10.1101/704874

bioRxiv preprint doi: https://doi.org/10.1101/704874; this version posted July 17, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

clusters. While experimenting, we observed that the effect is
consistent but barely measurable for large training data, but
as the training data (and therefore the BLAST database) get
smaller, the effect becomes more apparent. We considered
four training sizes: 10%, 30%, 50% and 80% training size,
while the test size stayed 20% (the rest of the sequences were
neglected for this experiment. For each experiment, we trained
a model for level 1 EC prediction as described in Section
and shown in Section [[V-B1] where we used an early stopping
criterion based on the accuracy on a validation set. Here, we
used the EC40 dataset as described in Table [VIIl

1 |

1

CNN (seq+PSSM) clean
0.5 I [l CNN (seq+PSSM) leakage
Difference
0 — — I | [
10 30 50 80

% Training Set Size (Clusters)

Accuracy

Figure 3: Dependence of EC classification accuracy on the size
of the dataset used to computed PSSM features compared to a
model exploiting PSSM features computed on the full dataset.

Figure [3] shows the results of this experiment. It can be
seen that the effect (difference between clean and leakage)
is getting more pronounced when the training dataset gets
smaller. This might be a obvious fact from a machine learning
point of view, but to the best of our knowledge, this has never
been shown in the context of PSSM features for proteomics.
From this finding, we can conclude that the results from pre-
vious literature are not overestimated strongly. Nevertheless,
a fundamental difference remains when dealing with smaller
datasets. In the case of small data, considering e.g. 10% of
the EC40 training data, the gap in performance between a
clean and a leaky procedure is 8% in accuracy, which is far
from negligible. In addition, we restricted our analysis to EC
classification whereas the effect might very well also depend
on the considered downstream task.

C. Gene Ontology Prediction

To stress the universality of the proposed approach, we also
present results for gene ontology prediction, which is a multi-
label classification task as already introduced in Section [[I-B]

To ensure maximum comparability, we used the implemen-
tation provided by [15] to construct train and test datasets.
We grouped duplicate sequences across multiple species with
slightly different sets of annotations by building a grand union
on those in order to ensure that every possible annotations is
considered. We train on their Swiss-Prot training set, that was
designed to have sequence similarities below 50% compared to
the CAFA3 test set, resulting in a training set of 135468 unique
sequences. In order to compare directly to literature results

[15], [27]], we compare performance on a CAFA3 benchmark
set comprising 575 sequences based on a selection of 539 GO-
terms that were predicted by DeepGO. Also the evaluation of
the final scores from the raw model predictions was carried out
using the provided evaluation scripts [15]], [27]. The reported
metrics are based on those reported in the CAFA3 challenge
[I27]], [38], namely a protein-centric maximum F-measure F,x
along with a corresponding average recall and a term-centric
AUC. As baseline model, we trained the same model as used in
previous experiments, but since the output is 539-dimensional,
with slightly broader fully connected layers (i.e. three layers
with 512 dimensions each, each followed by rectified linear
unit (ReLU) and dropout with rate 0.25). In addition, since
this task is framed as a multi-label classification task, we
instead optimized piece wise binary crossentropy again with
AdaMax. Unless noted otherwise, we trained our models
using Swiss-Prot data as prepared by [15] and evaluated on a
CAFA3 benchmark set in order to compare to literature results
provided by [[15]], [27].

Table V: Gene ontology (molecular function) prediction per-
formance evaluated on the DeepGO [27]] benchmark set, see
Section for details.

Method AUC Frax Recall
DeeProtein(Swiss-prot) [15] 0.89 0.51 0.47
DeeProtein(CAFA3) [15] 0.88 0.50 0.42
DeepGO (27| 0.90 0.48 0.40
FFPred3 |5] 0.86 0.38 0.40
GoFDR [4] 0.84 0.52 0.36
CNN(seq) 0.89 0.55 0.48
UDSMProt(fwd;from scratch) 0.876 0.574 0.502
UDSMProt(fwd;pretr.) 0.886 0.593 0.531
UDSMProt(bwd;pretr.) 0.884 0.589 0.535
UDSMProt(fwd+bwd;pretr.) 0.886 0.598 0.541

The results in Table [V] show that UDSMProt model as
well as the CNN-baseline outperform the existing approaches
in terms of Fyx-score and recall, while only the pretrained
UDSMProt reach the performance level of DeeProtein in
terms of AUC. As for EC prediction, the best-performing
UDSMProt-model is the forward-backward-ensemble model
that exploits bidirectional context. The result presented in this
section substantiate our claims regarding the universality of
transferring implicit knowledge to task-specific requirements.

D. Remote Homology and Fold Detection

As second demonstration of the universality of our ap-
proach, we consider remote homology detection tasks. The
corresponding datasets are with a few hundred training exam-
ples situated clearly in the small dataset regime investigated in
Section [V-B3l and substantiate the claims made in this section
in a real-world setting.

The remote homology and fold detection tasks are chal-
lenging for two reasons: The datasets are rather small and the
task comprises 102 or respectively 85 different datasets that
would in principle require a separate set of hyperparameters.
To keep the process as simple as possible, we decided to
keep a global set of hyperparameters for all datasets of a
given task. The procedure is as follows: As no validation
is provided for the original datasets, we split the training

https://doi.org/10.1101/704874

bioRxiv preprint doi: https://doi.org/10.1101/704874; this version posted July 17, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

data into a training and a validation set based on CD-HIT
clusters (threshold 0.5). We optimize hyperparameters using
the mean AUC for all datasets of a given task measured on
the validation set. Most importantly, this involves fixing a
(in this case constant) learning rate that is appropriate across
all datasets. Using these hyperparameter settings, we perform
model selection based on the validation set AUC, i.e. for each
individual dataset, we select the model at the epoch with the
highest validation AUC. We evaluate the test set AUC for
these models and report the mean test set metrics. The standard
metrics considered in this context are AUC and AUC50, where
the latter corresponds to the (normalized) partial area under
the ROC curve integrated up to the first 50 false positives,
which allows for a better characterization of the classifier in
the domain of small false positive rates that is most relevant
for practical applications than the overall discriminative power
of the classifier as quantified by AUC.

Table VI: Remote homology and fold detection performance
on the SCOP 1.67 benchmark dataset.

Superfamily-level Fold-level
Method AUC AUCso | AUC AUCso
GPkernel [3| 0.902 0.591 0.844 0.514
LSTM_protein [31] 0.942 0.773 0.821 0.571
ProDec-BLSTM 6] 0.969 0.849 - -
UDSMProt(fwd;from scratch) 0.706 0.552 0.734 0.653
UDSMProt(fwd;pretr.) 0.957 0.880 0.834 0.734
UDSMProt(bwd;pretr.) 0.969 0.912 0.839 0.757
UDSMProt(fwd+bwd;pretr.) 0.972 0.914 0.862 0.776

The results are compiled in Table Both for homology
and fold detection according to most metrics, the UDSMProt
model trained from scratch performs worse than the original
LSTM model [31f]. This is most likely due to the fact that
the UDSMProt model is considerably larger than the latter
model and most datasets are fairly small with a few hundreds
training examples per dataset. This deficiency is overcome
with the use of language model pretraining, where both
unidirectional models perform better than the LSTM baseline
model. This observation is in line with the experiments in
Section [ITV-B3] that demonstrates the particular effectiveness of
the proposed approach for small datasets. The best-performing
model from the literature, ProDec-BLSTM, is a bidirectional
LSTM operating on sequence as well as PSSM features.
Interestingly, reaching its performance in terms of overall AUC
required the inclusion of bidirectional context i.e. the forward-
backward ensemble model. The proposed method also clearly
outperforms classical methods such as GPkernel 3] both on
the fold and the superfamily level. The excellent results on
remote homology and fold detection support our claims on
the universality of the approach as well as the particular
advantages in the regime of small dataset sizes.

V. SUMMARY AND OUTLOOK

In this work, we investigated the prospects of self-
supervised pretraining for protein classification tasks lever-
aging the recent advances in NLP in this direction. Protein
classification represents an ideal test bed for NLP methods.

For our methodological investigations, we focused on an
enzyme prediction task for which a comparably large set
of annotations is available. Here, we demonstrate that self-
supervised pretraining, in our case language model pretraining
for an AWD-LSTM model as in ULMFit [17]], can indeed
close the gap to state-of-the-art algorithms that rely on BLAST
features obtained from database searches that scale unfavor-
ably with dataset size, or in some cases even outperforms
them. Self-supervised approaches show particular advantages
for small datasets, which is the generic situation in proteomics.
This was investigated in a controlled setup by artificially
reducing the size of the training dataset. To substantiate our
claims about the universality of the approach in the sense of
transferring implicit knowledge to task-specific requirements,
we also presented results for gene ontology prediction and
remote homology detection outperforming existing approaches
that reached state-of-the-art performance in the case of GO
prediction or even outperformed existing approaches as for
remote homology detection.

Differently from typical NLP tasks, the dataset creation and
the evaluation procedure has to be carried out with particular
care, as small differences in the procedure can have large
impact on the difficulty of the classification problem. This
applies in particular to a well-defined way of handling the
similarity threshold, i.e. dealing with homologous sequences
that differ only by a few amino acids when splitting into train
and test sets. These factors urge for the creation of appropriate
benchmark datasets that convert raw data from an exemplary
subset of the many existing protein classification tasks into
benchmark datasets in a transparent manner that allow for a
rigorous testing of Machine Learning algorithms in this setting.

Given the insights gained from the three classification tasks,
we can draw the following general conclusions for generic
protein classification tasks:

1) Considering the fact that both the baseline CNN as
well as UDSMProt were able to reach state-of-the-
art results suggests that problem-specific architectures
are less important than the training procedure (UDSM-
Prot) or the input features (PSSM), at least for models
that are powerful enough. This allows to design task-
independent, universal classification algorithms that can
be applied without much manual intervention to unseen
classification tasks.

2) Bidirectional contexts are important, which is reflected
by the fact that in all cases forward-backward-ensemble
reached the best performance and in most cases im-
proved the performance of unidirectional models con-
siderably. Ensembling forward and backward models
is in fact the simplest — although at the same time a
quite ineffective — way of capturing bidirectional context
as there is no possibility for interactions of forward-
looking and backward-looking parts below the final
classification layer. From our perspective, this represents
an opportunity for approaches such as BERT [19] or
XLNet [22f], which are able to capture the bidirectional
context directly. This might be particularly important
for more complicated protein classification tasks that
go beyond the prediction of a single global label such

https://doi.org/10.1101/704874

bioRxiv preprint doi: https://doi.org/10.1101/704874; this version posted July 17, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

as sequence annotation tasks like secondary structure or
phosphorylation site prediction.

3) Redundant sequences are a valuable source of informa-
tion also for downstream classification tasks. This fact
is in tension with the standard practice in bioinformat-
ics, where in many cases only representants without
the corresponding cluster assignments are presented.
To ensure comparability, benchmarking datasets should
always include full information to reproduce the cluster
assignments used during dataset creation, which would
allow at least retrospectively to reconstruct the complete
dataset from a given set of representants.

4) Data leakage arising from inconsistent train-test splits
between pretraining and classification e.g. by precom-
puting features on the full Swiss-Prot database without
excluding downstream test clusters is a possible source
of systematic overestimation of the model’s generaliza-
tion performance. From our experiments on EC predic-
tion tasks, its effect was found to be small in particular
for large pretraining datasets such as Swiss-Prot, but it
should be kept in mind for future investigations.

Leveraging large amount of unlabeled data in the form of
large, in parts very well-curated protein databases by the use
of modern NLP methods, represents a new paradigm in the
domain of proteomics. It will be interesting to see how this
process continues with the rapidly evolving algorithmic ad-
vances in the field of NLP, considering in particular approaches
like BERT [19]], see also [12] for first applications in the
domain of proteomics, and XLNet [22]. This is particularly rel-
evant for more complicated protein classification tasks that go
beyond the prediction of a single global label, such as sequence
annotation tasks like secondary structure or phosphorylation
site prediction, which even more require bidirectional contexts
that cannot be captured by traditional language models. Apart
from the huge prospects in terms of quantitative prediction
performance, the recent advances in the field of explainable
Al research open exciting new avenues for deeper insights
into the inner structure of proteins themselves, see also [|15]]
for first applications in this direction.

ACKNOWLEDGEMENTS

The authors thank J. Vielhaben for discussions and work
on related topics. This work was supported by the Bun-
desministerium fiir Bildung und Forschung (BMBF) through
the Berlin Big Data Center under Grant 01IS14013A and the
Berlin Center for Machine Learning under Grant 01IS180371.
UDSMProt was implemented using Pytorch [39] and fast.ai
[40] and CNN baseline models were implemented in Keras
[41]].

REFERENCES

[1] The UniProt Consortium, “UniProt: a worldwide hub of protein
knowledge,” Nucleic Acids Research, vol. 47, no. D1, pp. D506-D515,
11 2018. [Online]. Available: https://doi.org/10.1093/nar/gky 1049

[2] H.-B. Shen and K.-C. Chou, “EzyPred: a top—down approach for
predicting enzyme functional classes and subclasses,” Biochemical and
biophysical research communications, vol. 364, no. 1, pp. 53-59, 2007.

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

T. Handstad, A. J. Hestnes, and P. Seetrom, “Motif kernel generated by
genetic programming improves remote homology and fold detection,”
BMC Bioinformatics, vol. 8, no. 1, p. 23, Jan 2007. [Online]. Available:
https://doi.org/10.1186/1471-2105-8-23

Q. Gong, W. Ning, and W. Tian, “GoFDR: a sequence alignment based
method for predicting protein functions,” Methods, vol. 93, pp. 3-14,
2016.

D. Cozzetto, F. Minneci, H. Currant, and D. T. Jones, “FFPred 3: feature-
based function prediction for all Gene Ontology domains,” Scientific
reports, vol. 6, p. 31865, 2016.

S. Li, J. Chen, and B. Liu, “Protein remote homology detection
based on bidirectional long short-term memory,” BMC Bioinformatics,
vol. 18, no. 1, p. 443, Oct 2017. [Online]. Available: https:
//doi.org/10.1186/s12859-017-1842-2

Y. Li, S. Wang, R. Umarov, B. Xie, M. Fan, L. Li, and X. Gao,
“DEEPre: sequence-based enzyme EC number prediction by deep
learning,” Bioinformatics, vol. 34, no. 5, pp. 760-769, 2018. [Online].
Available: http://dx.doi.org/10.1093/bioinformatics/btx680

A. Dalkiran, A. S. Rifaioglu, M. J. Martin, R. Cetin-Atalay, V. Atalay,
and T. Dogan, “ECPred: a tool for the prediction of the enzymatic
functions of protein sequences based on the EC nomenclature,” BMC
Bioinformatics, vol. 19, no. 1, p. 334, Sep 2018. [Online]. Available:
https://doi.org/10.1186/s12859-018-2368-y

T. Madden, “The BLAST sequence analysis tool,” in The NCBI Hand-
book [Internet]. 2nd edition. National Center for Biotechnology
Information (US), 2013.

M. N. Price, K. M. Wetmore, R. J. Waters, M. Callaghan, J. Ray,
H. Liu, J. V. Kuehl, R. A. Melnyk, J. S. Lamson, Y. Suh et al., “Mutant
phenotypes for thousands of bacterial genes of unknown function,”
Nature, vol. 557, no. 7706, p. 503, 2018.

M. L. Bileschi, D. Belanger, D. Bryant, T. Sanderson, B. Carter,
D. Sculley, M. A. DePristo, and L. J. Colwell, “Using Deep Learning
to Annotate the Protein Universe,” bioRxiv, 2019. [Online]. Available:
https://www.biorxiv.org/content/early/2019/05/06/626507

A. Rives, S. Goyal, J. Meier, D. Guo, M. Ott, C. L. Zitnick, J. Ma, and
R. Fergus, “Biological Structure and Function Emerge from Scaling
Unsupervised Learning to 250 Million Protein Sequences,” bioRxiv,
2019. [Online]. Available: https://www.biorxiv.org/content/early/2019/
04/29/622803

R. Rao, N. Bhattacharya, N. Thomas, Y. Duan, X. Chen, J. Canny,
P. Abbeel, and Y. S. Song, “Evaluating Protein Transfer Learning
with TAPE,” bioRxiv, 2019. [Online]. Available: https://www.biorxiv.
org/content/early/2019/06/20/676825

M. AlQuraishi, “AlphaFold at CASP13.” Bioinformatics, 05 2019.
[Online]. Available: https://doi.org/10.1093/bioinformatics/btz422,

J. U. zu Belzen, T. Biirgel, S. Holderbach, F. Bubeck, L. Adam,
C. Gandor, M. Klein, J. Mathony, P. Pfuderer, L. Platz et al., “Leveraging
implicit knowledge in neural networks for functional dissection and
engineering of proteins,” Nature Machine Intelligence, vol. 1, no. 5,
p. 225, 2019.

M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and
L. Zettlemoyer, “Deep contextualized word representations,” in Proc. of
NAACL, 2018.

J. Howard and S. Ruder, “Universal language model fine-tuning for
text classification,” in Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers),
vol. 1, 2018, pp. 328-339.

A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving
language understanding by generative pre-training,” Technical report,
OpenAl Blog, 2018.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding,”
arXiv preprint arXiv:1810.04805, 2018. [Online]. Available: https:
/Iwww.arxiv.org/abs/1810.04805

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,
“Language models are unsupervised multitask learners,” Technical re-
port, OpenAl Blog, 2019.

K. Song, X. Tan, T. Qin, J. Lu, and T.-Y. Liu, “MASS:
Masked Sequence to Sequence Pre-training for Language Generation,”
arXiv preprint arXiv:1905.02450, 2019. [Online]. Available: https:
/Iwww.arxiv.org/abs/1905.02450

Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. Salakhutdinov, and Q. V.
Le, “XLNet: Generalized Autoregressive Pretraining for Language
Understanding,” 2019. [Online]. Available: https://www.arxiv.org/abs/
1906.08237

https://doi.org/10.1093/nar/gky1049
https://doi.org/10.1186/1471-2105-8-23
https://doi.org/10.1186/s12859-017-1842-2
https://doi.org/10.1186/s12859-017-1842-2
http://dx.doi.org/10.1093/bioinformatics/btx680
https://doi.org/10.1186/s12859-018-2368-y
https://www.biorxiv.org/content/early/2019/05/06/626507
https://www.biorxiv.org/content/early/2019/04/29/622803
https://www.biorxiv.org/content/early/2019/04/29/622803
https://www.biorxiv.org/content/early/2019/06/20/676825
https://www.biorxiv.org/content/early/2019/06/20/676825
https://doi.org/10.1093/bioinformatics/btz422
https://www.arxiv.org/abs/1810.04805
https://www.arxiv.org/abs/1810.04805
https://www.arxiv.org/abs/1905.02450
https://www.arxiv.org/abs/1905.02450
https://www.arxiv.org/abs/1906.08237
https://www.arxiv.org/abs/1906.08237
https://doi.org/10.1101/704874

bioRxiv preprint doi: https://doi.org/10.1101/704874; this version posted July 17, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]
[41]

E. Asgari and M. R. Mofrad, “Continuous distributed representation
of biological sequences for deep proteomics and genomics,” PloS one,
vol. 10, no. 11, p. 0141287, 2015.

0. S. Sarac, O. Giirsoy-Yiiziigiillii, R. Cetin-Atalay, and V. Atalay,
“Subsequence-based feature map for protein function classification,”
Computational biology and chemistry, vol. 32, no. 2, pp. 122-130, 2008.
P. Rice, I. Longden, and A. Bleasby, “EMBOSS: the European molecular
biology open software suite,” 2000.

L. Fu, B. Niu, Z. Zhu, S. Wu, and W. Li, “CD-HIT: accelerated for
clustering the next-generation sequencing data,” Bioinformatics, vol. 28,
no. 23, pp. 3150-3152, 2012.

M. Kulmanov, M. A. Khan, and R. Hoehndorf, “DeepGO: predicting
protein functions from sequence and interactions using a deep ontology-
aware classifier,” Bioinformatics, vol. 34, no. 4, pp. 660-668, 2017.

P. Radivojac, W. T. Clark, T. R. Oron, A. M. Schnoes, T. Wittkop,
A. Sokolov, K. Graim, C. Funk, K. Verspoor, A. Ben-Hur et al., “A large-
scale evaluation of computational protein function prediction,” Nature
methods, vol. 10, no. 3, p. 221, 2013.

A. G. Murzin, S. E. Brenner, T. Hubbard, and C. Chothia, “SCOP:
a structural classification of proteins database for the investigation of
sequences and structures,” Journal of molecular biology, vol. 247, no. 4,
pp. 536-540, 1995.

J. Chen, M. Guo, X. Wang, and B. Liu, “A comprehensive review
and comparison of different computational methods for protein remote
homology detection,” Briefings in bioinformatics, vol. 19, no. 2, pp.
231-244, 2016.

S. Hochreiter, M. Heusel, and K. Obermayer, “Fast model-based protein
homology detection without alignment,” Bioinformatics, vol. 23,
no. 14, pp. 1728-1736, may 2007. [Online]. Available: https:
//doi.org/10.1093/bioinformatics/btm247

S. Merity, N. S. Keskar, and R. Socher, “Regularizing and optimizing
LSTM language models,” arXiv preprint arXiv:1708.02182, 2017.
[Online]. Available: https://www.arxiv.org/abs/1708.02182

L. N. Smith, “A disciplined approach to neural network hyper-
parameters: Part 1 - learning rate, batch size, momentum, and weight
decay,” arXiv preprint arXiv:1803.09820, 2018. [Online]. Available:
https://www.arxiv.org/abs/1803.09820

I. Loshchilov and F. Hutter, “Fixing Weight Decay Regularization in
Adam,” ICLR, 2019.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in International Conference on Learning Representations (ICLR), 2015.
E. Grave, A. Joulin, and N. Usunier, “Improving neural language
models with a continuous cache,” arXiv preprint arXiv:1612.04426,
2016. [Online]. Available: https://www.arxiv.org/abs/1612.04426

R. Sennrich, B. Haddow, and A. Birch, “Neural machine translation
of rare words with subword units,” arXiv preprint arXiv:1508.07909,
2015. [Online]. Available: https://www.arxiv.org/abs/1508.07909

W. T. Clark and P. Radivojac, “Information-theoretic evaluation of
predicted ontological annotations,” Bioinformatics, vol. 29, no. 13,
pp. 153-i61, 06 2013. [Online]. Available: |https://doi.org/10.1093/
bioinformatics/btt228

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
PyTorch,” in 31st Conference on Neural Information Processing Systems
(NIPS) Workshop Autodiff, 2017.

J. P. Howard et al., “fast.ai,” http://fast.ai, 2018.

F. Chollet et al., “Keras,” https://keras.io, 2015.

APPENDIX A

ENZYME CLASS PREDICTION DATASET CONSTRUCTION

The EC50 and EC40 EC classification datasets are con-
structed according to the following procedure:

1y

2)

3)

4)

Acquire Swiss-Prot (2016_08 for EC40 and 2017_03 for
EC50)

Cluster Swiss-Prot with CD-HIT (40% similarity cutoff)
for EC40 or acquire UniRef50 (2017_03) for EC50 and
apply it to Swiss-Prot

Remove non-enzymes which have not enough exper-
imental evidence in order to avoid misleading false
negatives (annotated evidence is greater or equal to 4)
Remove proteins which are annotated as fragments

5)
6)
7

8)

9)

Remove enzymes with multiple enzymatic annotations
in order to obtain a single-label classification problem
Filter proteins by length to include only proteins with
more than 50 and less than 5000 amino acids

Split by clusters into 80% training and 10% validation
and 10% test set.

For test and validation set, we select only representatives
(from CD-HIT or UniRef50 clustering) or alternatively
the first member of the cluster in the case where the
representative was excluded by filtering rules. Optionally
a similar reduction is applied to the training set to obtain
a set of non-redundant sequences.

Use the predefined cluster assignments of the previous
step and similarly distribute all remaining Swiss-Prot
clusters onto training, validation and test dataset ac-
cording to split ratios 90%, 5% and 5%, respectively,
to obtain a clean train-test-split on the whole Swiss-
Prot dataset consistent with chosen clusters for the
downstream classification task. Again, we keep only
representatives for validation and test set.

The last step is important for suitable database creation for
PSI-BLAST for the following experiments in Section
and Section One thing can already be anticipated,
as a result, for significantly more sequences from the test
dataset PSI-BLAST returned empty queries resulting in less
informative features for the test set.

Table summarizes all datasets used for our experiments,
namely the original data from [7] and [8] in the first two
columns, and our replica in the last two columns. Note that
we did not balance the datasets according to the number of
enzymes and non-enzymes.

Table VII: EC Prediction Datasets Overview

EC class DE[E]Pre Eﬁgr’d EC40 EC50
Oxidoreductase 3341 8242 3781 8244
Transferase 8517 20133 9137 20139
Hydrolase 5917 16018 7987 16020
Lyase 1532 3475 1401 3475
Isomerase 1193 2883 1160 2834
Ligase 1666 4429 2165 4429
Enzymes 22166 55180 25631 55141
Non-Enzymes 22142 25333 32387 49799
Total 44336 80513 58018 104940

https://doi.org/10.1093/bioinformatics/btm247
https://doi.org/10.1093/bioinformatics/btm247
https://www.arxiv.org/abs/1708.02182
https://www.arxiv.org/abs/1803.09820
https://www.arxiv.org/abs/1612.04426
https://www.arxiv.org/abs/1508.07909
https://doi.org/10.1093/bioinformatics/btt228
https://doi.org/10.1093/bioinformatics/btt228
http://fast.ai
https://keras.io
https://doi.org/10.1101/704874

	I Introduction
	II Tasks and Datasets
	II-A Enzyme Class Prediction
	II-B Gene Ontology Prediction
	II-C Remote Homology and Fold Detection

	III Models and Architectures
	III-A UDSMProt: Universal Deep Sequence Models for Protein Classification
	III-B Convolutional Baseline Models

	IV Results
	IV-A Language Modeling
	IV-B Enzyme Class Prediction
	IV-B1 Effect of Similarity Threshold and Redundant Sequences
	IV-B2 Comparison to Literature Benchmarks
	IV-B3 Impact of Dataset Size
	IV-B4 Impact of BLAST Database Size

	IV-C Gene Ontology Prediction
	IV-D Remote Homology and Fold Detection

	V Summary and Outlook
	References
	Appendix A: Enzyme Class Prediction Dataset Construction

