
Sequence analysis

UDSMProt: Universal Deep Sequence Models for
Protein Classification
Nils Strodthoff 1,∗, Patrick Wagner 1, Markus Wenzel 1, and Wojciech Samek 1∗

1Fraunhofer Heinrich Hertz Institute, Berlin, 10587, Germany

∗To whom correspondence should be addressed.
Abstract

Motivation: Inferring the properties of a protein from its amino acid sequence is one of the key problems in
bioinformatics. Most state-of-the-art approaches for protein classification tasks are tailored to single classi-
fication tasks and rely on handcrafted features such as position-specific-scoring matrices from expensive
database searches. We argue that this level of performance can be reached or even be surpassed by
learning a task-agnostic representation once, using self-supervised language modeling, and transferring
it to specific tasks by a simple finetuning step.
Results: We put forward a universal deep sequence model that is pretrained on unlabeled protein se-
quences from Swiss-Prot and finetuned on protein classification tasks. We apply it to three prototypical
tasks, namely enzyme class prediction, gene ontology prediction and remote homology and fold detection.
The proposed method performs on par with state-of-the-art algorithms that were tailored to these specific
tasks or, for two out of three tasks, even outperforms them. These results stress the possibility of inferring
protein properties from the sequence alone and, on more general grounds, the prospects of modern nat-
ural language processing methods in omics.
Availability: Source code is available under https://github.com/nstrodt/UDSMProt.
Contact: firstname.lastname@hhi.fraunhofer.de

1 Introduction
Inferring protein properties from the underlying sequence of amino acids
(primary structure) is a long-standing theme in bioinformatics and is of
particular importance in the light of advances in sequencing technology
and the vast number of proteins with mostly unknown properties. A rough
estimate for this number is given by the size of the sparsely annotated
TrEMBL dataset (158M) and should be set into perspective by comparison
to the size of well-curated Swiss-Prot [The UniProt Consortium, 2018]
dataset (560K) with much more complete annotation of protein properties.

There is a large body of literature on methods to infer protein proper-
ties, most of which make use of additional handcrafted features in addition
to the primary sequence alone [Shen and Chou, 2007, Håndstad et al., 2007,
Gong et al., 2016, Cozzetto et al., 2016, Li et al., 2017, 2018, Dalkiran et al.,
2018]. These include experimentally determined functional annotations
(such as Pfam [El-Gebali et al., 2018]) as well as features incorporat-
ing information from homologous (evolutionary related) proteins that are
typically inferred from well-motivated but still heuristic methods such
as the basic local alignment search tool (BLAST) [Madden, 2013], that
searches a database for proteins that are homologous to a given query
protein, via multiple sequence alignment. Handcrafted features that are
based on experimental results rely on a preferably complete functional
annotation and are therefore likely to fail to generalize for incompletely
annotated proteins[Price et al., 2018]. Handcrafted features that are derived
from multiple sequence alignments using alignment algorithms typically
scale at least linearly with query and database size. This time complexity

is not able to keep up with the present size and the exponential growth
rates of present protein databases.

These bottlenecks urge for the development of methods that allow
to directly predict protein properties from the sequence of amino acids
alone, which is therefore a topic on the agenda of many research institu-
tions [Bileschi et al., 2019, Rives et al., 2019, Rao et al., 2019]. Methods
from deep learning, and self-supervised algorithms from natural language
processing (NLP) in particular, are promising approaches in this direction.

Also the Machine Learning community recently gained interest in pro-
tein classification as possible application area for deep learning methods
(see e.g. AlQuraishi [2019], Bileschi et al. [2019], Rives et al. [2019],
zu Belzen et al. [2019], Rao et al. [2019]). In NLP, self-supervised ap-
proaches have shown tremendous prospects across a wide variety of tasks
[Peters et al., 2018, Howard and Ruder, 2018, Radford et al., 2018, De-
vlin et al., 2018, Radford et al., 2019, Song et al., 2019, Yang et al.,
2019, Liu et al., 2019], which rely on leveraging implicit knowledge from
large unlabeled corpora by pretraining using language modeling or related
unmasking tasks. This approach goes significantly beyond the use of pre-
trained word embeddings, where only the embedding layer is pretrained
whereas the rest of the model is initialized randomly.

Protein classification tasks represent an tempting application domain
for such techniques exploiting the analogy of amino acids as words and
proteins and their domains as text paragraphs composed of sentences. In
this setting, global protein classification tasks, such as enzyme class pre-
diction, are analogous to text classification tasks (e.g. sentiment analysis).
Protein annotation tasks, such as secondary structure or phosphorylation
site prediction, map to text annotation tasks, such as part-of-speech tag-
ging or named entity recognition. While this general analogy has been

is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not certified by peer review)this version posted September 4, 2019. ; https://doi.org/10.1101/704874doi: bioRxiv preprint 

https://github.com/nstrodt/UDSMProt
https://doi.org/10.1101/704874


2 Strodthoff et al.

. . .Embedding

Sequence <BOS> M S . . . R I

. . .LSTM Layer 1

. . .LSTM Layer 2

. . .LSTM Layer 3

. . .Linear Softmax

MOutput S L … I <BOS>

. . .

<BOS> M S . . . R I

. . .

. . .

. . .

Concat-Pooling Layer

Dense Layer

Linear SoftmaxRandom Weights Transferred Weights

1. Language Model Pretraining on Swiss-Prot 2. Finetuning Classifier on Downstream Task

Figure 1: Schematic illustration of the training procedure, here for the amino acid sequence<BOS>MSLR...RI. The<BOS>-token marks the beginning
of the sequence. The red arrows show the context for forward LM for predicting next character (S) given sequence <BOS>M of length 2. For finetuning
on the downstream classification tasks, all embeddings weights and LSTM weights are initialized using the same set of weights obtained from language
model pretraining. This has to be contrasted with the use of pretrained embeddings, where just the embedding weights are initialized in a structured way
before the downstream finetuning step.

recognized and exploited already early on [Asgari and Mofrad, 2015],
self-supervised pretraining is a rather new technique in this field [Rives
et al., 2019, Rao et al., 2019]. Existing literature approaches in this direc-
tion [Rives et al., 2019, Rao et al., 2019] show significant improvements
of models that were pretrained using self-supervision compared to their
counterparts trained from scratch on a variety of tasks and demonstrate
that models leverage biologically sensible information from pretraining.
However, none of them explicitly demonstrated for these problems that
pretraining can bridge the gap to state-of-the-art approaches that mostly
rely on handcrafted features such as position-specific-scoring matrices
(PSSM) derived via BLAST.

Our main contributions in this paper are the following: (1) We put for-
ward a universal deep protein classification model for protein classification
(UDSMProt) that is pretrained on Swiss-Prot and finetuned on specific
classification tasks without any further task-specific modifications. (2) We
demonstrate for three classification tasks that this model is able to reach
or even surpass the performance level of state-of-the-art algorithms many
of which make use of PSSM features and hence, to the best of our knowl-
edge for the first time, the feasibility of inferring protein properties from
the sequence alone. (3) We demonstrate the particular effectiveness of our
approach for small datasets.

2 Algorithms and Training Procedures

2.1 UDSMProt: Universal Deep Sequence Models for
Protein Classification

The idea of UDSMProt is to apply self-supervised pretraining to a state-of-
the-art recurrent neural network architecture using a language modeling
task. In this way the model learns implicit representations from unlabeled
data that can be leveraged for downstream classification task. We aim to
address a range of different classification problems within a single architec-
ture that is universal in the sense that only the dimensionality of the output
layer has to be adapted to the specific task, which facilitates the adaption
of the approach to classification tasks beyond the three exemplary tasks
considered in this work. For finetuning on the downstream classification
tasks, all embedding weights and LSTM weights are initialized using the
same set of weights obtained from language model pretraining. As we will
demonstrate, this is a particularly powerful choice for small datasets.

Our proposed method relies on an AWD-LSTM language model [Mer-
ity et al., 2017], which is, at its heart, a 3-layer LSTM regularized by
different kinds of dropouts (embedding dropout, input dropout, weight
dropout, hidden state dropout, output layer dropout). During language
model training, the output layer is tied to the weights of the embedding
layer. Specific model parameters are listed in Table 6. The training pro-
cedure for transfer learning is largely inspired by ULMFit [Howard and
Ruder, 2018] and proceeds as follows: In a first step, we train a language
model on the Swiss-Prot database. In a second step, the language model’s
output layer is replaced by a concat-pooling-layer [Howard and Ruder,
2018] and two fully connected layers, see Figure 1 for a schematic illus-
tration. When finetuning the classifier, we gradually unfreeze layer group
by layer group (four in total) for optimization, where we use discriminative
learning rates i.e. we reduce the learning rate by a factor of 2 compared to
the previous layer group [Howard and Ruder, 2018]. A single model is by
construction only able to capture the context in a unidirectional manner,
i.e. processing the input in the forward or backward direction. As simplest
approach to incorporate bidirectional context into the final prediction, we
train separate forward and backward models both for language models as
well as for the finetuned classifiers. Finally, an ensemble model is obtained
by averaging the output probabilities of both classifiers. We use a 1-cycle
learning rate schedule [Smith, 2018] during training for 30 epochs during
the final finetuning step. Any kind of hyperparameter optimization was
performed based on the model performance on a separate validation set,
while we report performance on a separate test set. Our way of addressing
the specific challenges of the remote homology datasets are described in
Section 3.4. In all cases, we use binary/categorical crossentropy as loss
function and the AdamW optimizer [Loshchilov and Hutter, 2019].

Note that a potential intermediate step where one finetunes the generic
language model on the corpus underlying the classification step, as pro-
posed by Howard and Ruder [2018], did only show an improvement in
terms of language model quality but did not result in an improved down-
stream classification performance. This step was therefore omitted for the
results presented below.

2.2 Baseline Model

In our experiments below, we mostly compare directly to reported re-
sults from approaches in the literature on predefined datasets. However,
this does not allow for in-depth comparisons that modify for example de-
tails of the training procedure. To still allow to relate the results of the

is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not certified by peer review)this version posted September 4, 2019. ; https://doi.org/10.1101/704874doi: bioRxiv preprint 

https://doi.org/10.1101/704874


3

proposed method to state-of-the-art performance, we use a baseline model
that reaches state-of-the-art performance on literature benchmarks and that
can henceforth be used as proxy for models considered in the literature.

The performance of literature approaches on many protein classifica-
tion tasks has been driven to a large extend by the inclusion of different
kinds of handcrafted features rather than sophisticated model architectures
or training procedures. The most beneficial input features throughout a
variety of different classification tasks are obviously the position spe-
cific scoring matrices (PSSM) based on a multiple sequence alignment
computed via position specific iterative BLAST (PSI-BLAST) [Mad-
den, 2013]. PSI-BLAST is used to compare query sequences with a
given database of already existing sequences, where the result is a list
of local alignments solved with heuristics instead of using more time-
consuming optimal local alignments with the Smith-Waterman-algorithm.
PSI-BLAST is then used to find more distant relatives of a query protein,
where a list of closely related proteins is created to get an initial general
profile sequence. This profile sequence is used as a new query for the next
iteration where a larger list of proteins is found for which again a profile
sequence is computed. This process is repeated to a desired number of
iterations. In our experiments we used the same parameters as reported in
the literature [Li et al., 2018, Dalkiran et al., 2018, Shen and Chou, 2007],
namely three iterations withe_value = 0.001, wheree_value relates
to the threshold for which an alignment is considered as significant. While
the raw sequences from Swiss-Prot contained 26 unique amino acids (20
standard and 6 non-standard amino acids), PSSM features are computed
only for the 20 standard amino acids. The raw sequence of length L was
then one-hot encoded into an L × 26 matrix which is concatenated with
the L× 20 PSSM feature matrix yielding an L× 46 input matrix overall.
To make use of the full parallelization capabilities while retaining most
information at the same time, we padded the sequences to a maximum
length of 1024 residues.

For all following experiments we used a Convolutional Neural Network
(CNN) consisting of seven layers, where each convolutional layer was
followed by rectified linear unit (ReLU) and max pooling by a factor of
2. The number of filters across layers are: 1024, 512, 512, 512, 256,
256, 256 (with valid padding mode) each with filter size of 3, after the
last layer the dimensionality was 6 × 256. The convolutional stage was
followed by flatten/vectorization and three dense layers (512, 256, 128)
each followed by dropout (with 25% dropout rate) and finally a softmax
layer with six nodes, one for each class. For all models we minimized either
binary or categorical crossentropy (for level 0 and level 1 respectively) with
AdaMax, which is a variant of adaptive moment estimation (Adam) based
on the infinity norm [Kingma and Ba, 2015]. The hyperparameters follow
those provided in the paper (learning rate 0.002, exponential decay rates
β1 = 0.9, β2 = 0.999).

3 Results and Discussion
The results are organized as follows: We start by discussing language
modeling as baseline task in Section 3.1, before demonstrating the ca-
pabilities of UDSMProt on three prototypical protein classification tasks,
namely enzyme class prediction in section 3.2, gene ontology prediction
in section 3.3 and remote homology detection in section 3.4. While for
the latter two we compare to literature in a straightforward manner, for en-
zyme class prediction we provide a more extensive evaluation highlighting
several important aspects.

3.1 Language Modeling

The language modeling task involves predicting the next token for a given
sequences of tokens and is one of the key NLP tasks for demonstrating
the general understanding of a language. In this particular case it evaluates

the implicit knowledge about the structure of proteins that has been cap-
tured by the model, which can potentially be leveraged for downstream
classification tasks.

Our language model operates on protein sequence data tokenized on
the level of amino acids (i.e. character-based, see fig. 1). Interestingly,
the language model performance depends strongly on the way the simi-
larity threshold is incorporated in the train-test split procedure. For this
reason, we split the data into train, validation and test set with ratios
90%:5%:5%, where we compare two methods: (1) randomly, i.e. without
taking sequence similarity into account and (2) based on UniRef50 cluster
assignments. While the first model reaches a perplexity of 6.88 and a cor-
responding prediction accuracy of 0.409, the second model only reaches
a perplexity of 11.75 with 0.244 accuracy. However, these differences in
language model performance do not lead to measurable differences in the
downstream performance, see Appendix 3 for a detailed discussion. In
conclusion this experiment demonstrates a rather profiencient knowledge
of the respective language model of the underlying construction principles
for proteins.

3.2 Enzyme Class Prediction

We start our analysis on downstream classification tasks with EC classi-
fication for the reason that it is a conceptually simple task for which a
large number of annotated examples is available. The experiments in this
section are organized as follows: Section 3.2.2 presents an in-depth anal-
ysis of the effects of sequence similarity and redundant sequences for the
proposed UDSMProt in comparison to the baseline model operating on
PSSM features. Section 3.2.3 compares the performance of both models
to results reported in the literature and establishes the baseline model as a
proxy for state-of-the-art approaches from the literature. Finally, in Sec-
tion 3.2.4 we investigate for both models the dependence on the size of the
training dataset by artificially reducing its size. This allows to illustrate the
particular advantages of the proposed UDSMProt in the regime of small
datasets.

3.2.1 Task and Datasets
Enzyme prediction is a functional prediction task targeted to predict the
Enzyme Commission number. The enzyme commission number is a hierar-
chical numerical classification scheme for enzymes based on the chemical
reactions they catalyze. In particular, we consider EC prediction for level 0,
i.e. predicting enzyme vs. non-enzyme, and level 1, i.e. predicting one of
the six main enzyme classes. A powerful EC classification algorithm of the
pre-deep-learning-era was provided by EzyPred [Shen and Chou, 2007],
which owed its success to the design of a hierarchical approach and to ap-
propriate input features which are a combination of the functional (BLAST
against a PFAM database) and evolutionary information (PSI-BLAST
[Madden, 2013] against the Swiss-Prot database). For hierarchical classi-
fication (level 0 to level 2), a simple k-nearest-neighbor classifier (KNN)
was trained in order to achieve convincing results. EzyPred was super-
seded by DEEPre [Li et al., 2018] where deep learning was applied to raw
sequence and homology data as input. Instead of training simple classifiers
on highly engineered features, they trained feature representation and clas-
sification in an end-to-end fashion with a hybrid CNN-LSTM-approach.
Recently, ECPred [Dalkiran et al., 2018] also showed competitive results
by building an ensemble of well-performing classifiers (Subsequence Pro-
file Map with PSSM [Sarac et al., 2008], BLAST-kNN [Madden, 2013] and
Pepstats-SVM using peptides statistics [Rice et al., 2000]). Nevertheless,
drawbacks as described in Section 1 remain, i.e. requiring functional anno-
tations of homologous proteins, which is not guaranteed for evolutionary
distant or insufficient annotated proteins.

In addition to the existing DEEPre (similarity threshold 40%) and
ECPred (similarity threshold 50%) datasets [Li et al., 2018, Dalkiran et al.,

is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not certified by peer review)this version posted September 4, 2019. ; https://doi.org/10.1101/704874doi: bioRxiv preprint 

https://doi.org/10.1101/704874


4 Strodthoff et al.

Table 1. EC classification accuracy on the custom EC40 and EC50 datasets.
Here and throughout the paper we use the following abbreviations: fwd/bwd
(training in forward/backward direction), seq (raw sequence as input), non-red.
(training on non-redundant sequences i.e. representatives only), pretr. (using
language model pretraining), leak. (leakage; PSSM features computed on the
full dataset). The best performing classifiers are marked in bold face.

EC40 EC50
Method Level 0 Level 1 Level 0 Level 1

B
as

el
in

e†

seq;non-red. 0.83 0.38 0.88 0.71
seq 0.84 0.61 0.92 0.80
seq+PSSM;non-red.;clean 0.91 0.84 0.95 0.94
seq+PSSM;non-red.;leak. 0.92 0.85 0.95 0.95

U
D

SM
P

r o
t†

fwd;pretr.; non-red. 0.82 0.79 0.93 0.94
fwd;from scratch 0.87 0.79 0.94 0.94
fwd;pretr. 0.89 0.84 0.95 0.96
bwd;pretr. 0.90 0.85 0.95 0.96
fwd+bwd;pretr. 0.91 0.87 0.96 0.97

2018] that provide only representative sequences, we also work with two
custom datasets EC40 and EC50 (similarity threshold 40% and 50%) by
combining best practices for the dataset construction, see Appendix 1 for
a detailed description.

3.2.2 Effect of Similarity Threshold and Redundant Sequences
In order to investigate the benefits of the proposed approach in comparison
to algorithms relying on alignment features, we based our initial analysis
on the custom EC40 and EC50 datasets, which are constructed analog
to datasets in the literature. This approach represents a very controlled
experimental setup, where one can investigate the effect of the chosen
similarity threshold, the impact of redundant sequences during training
and potential sources of data leakage during pretraining in a reliable way.

We base our detailed analysis of the proposed method UDSMProt com-
pared to a baseline algorithm operating on PSSM features on EC prediction
tasks at level 0 (enzyme vs. non-enzyme) and level 1 (main enzyme class).
In particular, we aim to investigate the impact of non-redundant sequences
when training the baseline classifier and the impact of different similarity
thresholds. It is a well-known effect that the difficulty of the classification
problem scales inversely with the similarity threshold, as a higher simi-
larity threshold leads to sequences in the test set that are potentially more
similar to those seen during training. In the extreme case of a random split,
i.e. by disregarding cluster information, the test set performance merely
reflects the algorithm’s capability to approximate the training set rather
than the generalization performance when applied to unseen data. The
failure to correctly incorporate the similarity threshold is one of the major
pitfalls for newcomers in the field. Here, we perform level 0 and level 1
prediction on two different datasets, namely EC40 (40%) and EC50 (50%
similarity cutoff). Both datasets only differ in the similarity thresholds and
the version of the underlying Swiss-Prot databases.

If not noted otherwise, CNN models are trained on representative
sequences as this considerably reduces the computational burden for de-
termining PSSM features and is in line with the literature, see e.g. [Li et al.,
2018, Dalkiran et al., 2018], whereas UDSMProt is conventionally trained
using the full training set including redundant sequences, whereas the
corresponding test and validation sets always contain only non-redundant
sequences. For the EC50 dataset non-redundant sequences enlarge the size
of the training set from 45k to 114k and from 86k to 170k sequences for
level 1 and level 0 respectively. For EC40 the size is enlarged from 20k to
100k and from 46k to 150k for level 1 and level 0 respectively.

In Table 1, we compare the two classification algorithms UDSMProt
and the baseline CNN that were introduced in Section 2 in terms of classifi-
cation accuracy, which is the default metric considered in the literature for

this task. There is a noticeable gap in performance across all experiments
between CNN(seq; non-red.) and CNN(seq+PSSM; non-red.) which is a
strong indication for the power of PSSM features. This gap can be reduced
by the use of redundant sequences from training clusters (CNN(seq)) but
still remains sizable. Most importantly, however, the gap can be closed
by the use of language model pretraining. Disregarding the case of the
EC40 dataset at level 0, the best-performing UDSMProt outperforms the
baseline algorithms that make use of PSSM features. Combining informa-
tion from both forward and backward context consistently improves over
models with unidirectional context. As another observation, pretraining
leads to a consistent advantage compared to models trained from scratch
that cannot be compensated by increasing the number of training epochs
for the models trained from scratch.

Finally, Table 1 illustrates that the UDSMProt classification models
benefit from redundant training sequences for the downstream classifica-
tion task, where the benefit is greater as the similarity threshold decreases.
Comparing corresponding results from different similarity thresholds, i.e.
results from EC40 to those from EC50, reveals the expected pattern, in
the sense that lowering the similarity threshold complicates the classifica-
tion task as test sequences show smaller overlap with sequences from the
training set.

Pretraining or precomputing features such as PSSMs on the full
dataset disregarding the train-test splits for the downstream classification
tasks is a possible source of data leakage that can lead to a systematic
over-estimation of the model’s generalization performance by implicitly
leveraging information about the test set during the training phase. Here,
we investigate the issue for the case of PSSM features as this issue was,
to the best of our knowledge, not addressed in the literature so far. To
this end, we compute two sets of PSSM features, one set computed based
on the whole Swiss-Prot database (corresponding classification model:
CNN(seq+PSSM; non-red.; leakage)) and a separate set based only on clus-
ter members from the training data (corresponding classification model:
CNN(seq+PSSM; non-red.; clean)). It turns out that the model with PSSM
features computed on a consistent train-test-split always performs slightly
worse than its counterpart that relies on PSSM features computed on the
whole dataset. However, from a practical perspective, the effect of test
data leakage remains small. In Appendix 5, we provide a more extensive
evaluation of the effect by varying the size of the training database that is
used for calculating PSSM features.

To reiterate the main findings of the experiments carried out in this
section, the most crucial observation is that language model pretraining is
capable of closing the gap in performance between models operating on
PSSM features compared to models operating on the sequences alone. The
second main observation is that redundant sequences rather than cluster
representatives only have a positive impact on the downstream classifi-
cation training. The most obvious explanations for this observation are
inhomogeneous clusters that contain samples with different labels that
carry more finegrained information than a single label per cluster repre-
sentative. Finally, the effect of data leakage from computing PSSM features
on the whole dataset disregarding train-test splits turned out to be small,
but should be kept in mind for future investigations.

3.2.3 Comparison to Literature Benchmarks
In order to relate our proposed approach to state-of-the-art methods in
literature, we conducted an experiment on two datasets provided by
ECPred[Dalkiran et al., 2018] and DEEPre[Li et al., 2018]. One of the
purposes of this analysis is to justify our choice of the CNN baseline
algorithm by demonstrating that it performs on par with state-of-the-art
algorithms that do not make use of additional side-information e.g. in
the form of PFAM features. When comparing to literature results on the
DEEPre dataset, we exclude models relying on Pfam features from our

is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not certified by peer review)this version posted September 4, 2019. ; https://doi.org/10.1101/704874doi: bioRxiv preprint 

https://doi.org/10.1101/704874


5

Table 2. EC classification accuracy on the published DEEPre and ECPred
datasets compared to literature results from DEEPre [Li et al., 2018], and
ECPred [Dalkiran et al., 2018] disregarding models relying on Pfam features.
Results on the DEEPre dataset were evaluated using 5-fold crossvalidation.
Results established in this work are marked by †.

DEEPre (acc.) ECPred (mean F1)
Method Level 0 Level 1 Level 0 Level 1
ECPred - - 0.96 0.96
DEEPre (seq+PSSM) 0.88 0.82 - -
Baseline† (seq+PSSM) 0.91 0.84 0.97 0.94

U
D

SM
P

ro
t†

fwd;pretr. 0.86 0.81 0.95 0.93
bwd;pretr. 0.86 0.83 0.97 0.93
fwd+bwd;pretr. 0.87 0.84 0.97 0.94
fwd;pretr.;red. - - 0.97 0.95
bwd;pretr.;red. - - 0.97 0.95
fwd+bwd;pretr.;red. - - 0.98 0.95

comparison. Leaving aside the very unfavorable scaling with the dataset
size [Bileschi et al., 2019] and possible issues with data leakage due to
features computed on the full dataset, methods relying on these features
will fail when applied to proteins without functional annotations, see also
the discussion in [Dalkiran et al., 2018]. In fact, a recent study estimated
that at least one-third of microbial proteins can not be annotated through
alignments on given sequences [Price et al., 2018]. Most notably, this ex-
cludes the most elaborate DEEPre [Li et al., 2018] model (with 0.96 level
0 and 0.95 level 1 accuracy on the DEEPre dataset) and EzyPred [Shen
and Chou, 2007] (with 0.91 level 0 and 0.90 level 1 accuracy) from the
comparison.

Table 2 shows the results of this experiment, see Appendix 4 for de-
tails on the evaluation procedure. Note, that a convolutional model (as our
baseline) seemed sufficient when compared to the hybrid model of DEEPre
(using convolutional layers followed by a recurrent layer (LSTM)) as can
been seen in Table 2 where our baseline even surpassed the reported per-
formances (91% vs. 88% for level 0 and 84% vs. 82% for level 1). Also
for testing on ECPred our baseline approach yielded competitive results
indicating a well-chosen baseline model. These results justify a posteriori
our design choices for the CNN baseline model.

Turning to the performance of the proposed UDSMProt, we find a solid
prediction performance reaching state-of-the-art performance reported in
the literature for algorithms operating on PSSM features. Considering the
results of the previous section, the results on the DEEPre dataset rep-
resent only the lower bound for the achievable performance as it profits
considerably from redundant training sequences, which could, however,
not be reconstructed from the given representatives without the underlying
cluster assignments. Considering the sizable performance gaps between
training on redundant and non-redundant datasets in Table 1, it is even
more remarkable that UDSMProt already reaches state-of-the-art perfor-
mance when trained on non-redundant sequences. For ECPred we report
both the performance for training on the original training set as well as
the performance on a redundant training set comprising all corresponding
Uniref50 cluster members as shown in the three bottom lines in Table 2. In
terms of level 0 performance the proposed approach outperforms ECPred
and it shows competitive performance at level 1.

To summarize, our baseline model reaches state-of-the-art perfor-
mance compared to literature approaches disregarding those that incorpo-
rate features from functional annotations (such as PFAM) and can therefore
be used as proxy for state-of-the-art algorithms in the following investiga-
tions. This finding enhances a posteriori also the significance of the results
established for the EC40 and EC50 datasets in Section 3.2.2. The proposed
UDSMProt-model is very competitive on both literature datasets.

0 20 40 60 80 100

0.4

0.6

0.8

1

% Training Set Size (Clusters)

A
cc

ur
ac

y

UDSMProt (fwd+bwd)
UDSMProt (from scratch)
Baseline(seq+PSSM)
Baseline(seq)

Figure 2: Dependence of the EC classification accuracy (level 1; EC50
dataset) on the size of the training dataset. UDSMProt performs better than
the baseline model also in the regime of small datasets that is particularly
important for practical applications.

3.2.4 Impact of Dataset Size
In this section, we aim to demonstrate the particular advantages of the
proposed UDSMProt-approach in the regime of small dataset sizes. To
investigate this effect in a clean experimental setup, we conducted an
experiment with consecutively decreasing training set sizes, while keeping
test and validation sets fixed. The hyperparameters were kept fixed to those
of the run with full training data.

For this experiment, we used the EC50 dataset as described in the ap-
pendix with numbers per class as shown in Table 5 and trained a level 1
classifier for each split. We compared our proposed approach (AWD-
LSTM with pretraining and from scratch) with baseline models (CNN
with PSSM features and CNN on redundant sequences only) for seven
different training set sizes measured in terms of clusters compared to the
number of clusters in the original training set.

The results from Figure 2 show an interesting pattern: The bidirectional
UDSMProt model always outperforms the CNN baseline model and most
interestingly the gap between the two models increases for small dataset
sizes, which suggests the representations learned during language model
finetuning represent a more effective baseline for finetuning than using
PSSMs as fixed input features. As a second observation, also the gap to
the models trained from scratch widens. Reducing the number of training
clusters by 50% only leads to a decrease in model performance by 3%,
whereas the performance of the model trained from scratch drops by 8%.

To summarize, both observations from above represent strong argu-
ments for applications of UDSMProt in particular to small datasets. Our
results suggest to make language model pretraining a standard procedure
in these cases.

3.3 Gene Ontology Prediction

To stress the universality of the proposed approach, we also present
results for gene ontology prediction, which is a functional multi-label
classification task.

3.3.1 Task and Dataset
A more general although closely related problem to enzyme prediction
is gene ontology prediction. Gene ontology is an international bioinfor-
matics initiative to unify a part of the vocabulary for representation of
proteins attributes. It covers three domains, namely cellular components,
molecular functions and biological processes. The nomenclature is orga-
nized into hierarchies ranging from coarse to fine-grained attributes. Here,

is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not certified by peer review)this version posted September 4, 2019. ; https://doi.org/10.1101/704874doi: bioRxiv preprint 

https://doi.org/10.1101/704874


6 Strodthoff et al.

Table 3. Gene ontology (molecular function) prediction performance evaluated
on the DeepGO [Kulmanov et al., 2017] benchmark set in comparison to lit-
erature results from DeeProtein [zu Belzen et al., 2019], DeepGO [Kulmanov
et al., 2017], FFPred3 [Cozzetto et al., 2016], and GoFDR [Gong et al., 2016].

Method AUC Fmax Recall
DeeProtein (Swiss-prot) 0.89 0.51 0.47
DeeProtein (CAFA3) 0.88 0.50 0.42
DeepGO 0.90 0.48 0.40
FFPred3 0.86 0.38 0.40
GoFDR 0.84 0.52 0.36

U
D

SM
P

ro
t† fwd;from scratch 0.88 0.57 0.50

fwd;pretr. 0.89 0.59 0.53
bwd;pretr. 0.88 0.59 0.54
fwd+bwd;pretr. 0.89 0.60 0.54

we focus on the domain of molecular function prediction. Similar to en-
zyme class prediction, the first proposed approaches in this field relied on
handcrafted features like functionally discriminating residues (FDR) with
PSSM [Gong et al., 2016] and classification models consisting of an array
of Support Vector Machines [Cozzetto et al., 2016]. Recently, deep learn-
ing approaches have raised the bar by using convolutional neural networks
[Kulmanov et al., 2017] and residual neural networks [zu Belzen et al.,
2019].

For convienient comparability with literature results, we focus on pro-
tein annotations belonging to the molecular function (MF) and completely
disregard the other two main categories, cellular component and biological
process. This is also the considered case of DeeProtein [zu Belzen et al.,
2019], with data from the CAFA3 challenge [Radivojac et al., 2013], which
is a major attempt to establish a suitable evaluation framework for protein
function prediction. We use the scripts provided by zu Belzen et al. [2019]
to construct appropriate training and test sets. Specifically, we train on
their Swiss-Prot training set, that was designed to have sequence similar-
ities below 50% compared to the CAFA3 test set, resulting in a training
set of 135468 unique sequences. In order to be able to compare directly to
literature results [Kulmanov et al., 2017, zu Belzen et al., 2019], we com-
pare performance on a CAFA3 benchmark set comprising 575 sequences
for a selection of 539 molecular function GO-terms that were predicted by
DeepGO.

3.3.2 Experimental Setup and Results
We used the implementation provided by zu Belzen et al. [2019] to con-
struct train and test datasets. We grouped duplicate sequences across
multiple species with slightly different sets of annotations by building
a grand union on those in order to ensure that every possible annotations is
considered. Also the evaluation of the final scores from the raw model pre-
dictions was carried out using the provided evaluation scripts [Kulmanov
et al., 2017, zu Belzen et al., 2019]. The reported metrics are based on
those reported in the CAFA3 challenge, namely a protein-centric max-
imum F-measure Fmax along with a corresponding average recall and a
term-centric AUC [Clark and Radivojac, 2013, Kulmanov et al., 2017].

The results in Table 3 show that UDSMProt model outperforms the
existing approaches in terms of Fmax-score and recall by a large margin
and perform on par in terms of AUC. As for EC prediction, the best-
performing UDSMProt-model is the forward-backward-ensemble model
that exploits bidirectional context. The result presented in this section
substantiate our claims regarding the universality of transferring implicit
knowledge to task-specific requirements.

3.4 Remote Homology and Fold Detection

As third demonstration of the universality of our approach, we consider
remote homology detection tasks. The corresponding datasets consist of
a few hundred training examples and are thus situated clearly in the small
dataset regime investigated in Section 3.2. This substantiate the claims
made in Section 3.2 in a real-world setting.

3.4.1 Task and Datasets
Remote homology detection is one of the key problems in computational
biology and refers to the classification of proteins into structural and func-
tional classes, which is considered to be a key step for further functional
and structural classification tasks. Here, we consider remote homology
detection in terms of the SCOP database [Murzin et al., 1995], where all
proteins are organized in four levels: class, fold, superfamily and family.
Proteins in the same superfamily are homologous and proteins in the same
superfamily but in different families are considered to be remotely homol-
ogous. Remote homology detection has a rich history and the interested
reader is referred to a review article on this topic by Chen et al. [2016].
We will compare to ProDec-BLSTM [Li et al., 2017] with a bidirectional
recurrent neural network operating on PSSM input features building on
earlier work [Hochreiter et al., 2007]. A classical baseline method is pro-
vided by GPkernel [Håndstad et al., 2007], who apply kernel-methods to
sequence motifs.

For remote homology detection, we make use of the SCOP 1.67 dataset
as prepared by Hochreiter et al. [2007], which has become a standard
benchmark dataset in the field. Here, the problem is framed as a binary
classification problem where one has to decide if a given protein is con-
tained in the same superfamily or fold as a given reference protein. The
superfamily/fold benchmark is composed of 102/85 separate datasets and
we report the mean performance of all models across the whole set. The
standard metrics considered in this context are AUC and AUC50, where
the latter corresponds to the (normalized) partial area under the ROC curve
integrated up to the first 50 false positives, which allows for a better char-
acterization of the classifier in the domain of small false positive rates that
is most relevant for practical applications than the overall discriminative
power of the classifier as quantified by AUC.

3.4.2 Experimental Setup and Results
The remote homology and fold detection tasks are challenging for two
reasons: The datasets are rather small and the task comprises 102 or re-
spectively 85 different datasets that would in principle require a separate
set of hyperparameters. To keep the process as simple as possible, we de-
cided to keep a global set of hyperparameters for all datasets of a given task.
The procedure is as follows: As no validation is provided for the original
datasets, we split the training data into a training and a validation set based
on CD-HIT clusters (threshold 0.5). We optimize hyperparameters using
the mean AUC for all datasets of a given task measured on the validation
set. Most importantly, this involves fixing a (in this case constant) learning
rate that is appropriate across all datasets. Using these hyperparameter set-
tings, we perform model selection based on the validation set AUC, i.e. for
each individual dataset, we select the model at the epoch with the highest
validation AUC. We evaluate the test set AUC for these models and report
the mean test set metrics.

The results of these experiments are shown in Table 4. Both for ho-
mology and fold detection according to most metrics, the UDSMProt
model trained from scratch performs worse than the original LSTM model
[Hochreiter et al., 2007]. This is most likely due to the fact that the UDSM-
Prot model is considerably larger than the latter model and most datasets
are fairly small with a few hundreds training examples per dataset. This
deficiency is overcome with the use of language model pretraining, where
both unidirectional models perform better than the LSTM baseline model.

is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not certified by peer review)this version posted September 4, 2019. ; https://doi.org/10.1101/704874doi: bioRxiv preprint 

https://doi.org/10.1101/704874


7

Table 4. Remote homology and fold detection performance on the SCOP 1.67
benchmark dataset compared to literature results from GPkernel [Håndstad
et al., 2007], LSTM_protein [Hochreiter et al., 2007], and ProDec-BLSTM [Li
et al., 2017].

Superfamily-level Fold-level
Method AUC AUC50 AUC AUC50

GPkernel 0.902 0.591 0.844 0.514
LSTM_protein 0.942 0.773 0.821 0.571
ProDec-BLSTM 0.969 0.849 - -

U
D

SM
P

ro
t fwd;from scratch 0.706 0.552 0.734 0.653

fwd;pretr. 0.957 0.880 0.834 0.734
bwd;pretr. 0.969 0.912 0.839 0.757
fwd+bwd;pretr. 0.972 0.914 0.862 0.776

This observation is in line with the experiments in Section 3.2.4 that
demonstrates the particular effectiveness of the proposed approach for
small datasets. The best-performing model from the literature, ProDec-
BLSTM, is a bidirectional LSTM operating on sequence as well as PSSM
features. Interestingly, reaching its performance in terms of overall AUC
required the inclusion of bidirectional context i.e. the forward-backward
ensemble model. The proposed method also clearly outperforms classical
methods such as GPkernel [Håndstad et al., 2007] both on the fold and
the superfamily level. The excellent results on remote homology and fold
detection support our claims on the universality of the approach as well as
the particular advantages in the regime of small dataset sizes.

4 Summary and Outlook
In this work, we investigated the prospects of self-supervised pretraining
for protein classification tasks leveraging the recent advances in NLP in
this direction. Protein classification represents an ideal test bed for NLP
methods. Most importantly, a single, universal model architecture with
no task-specific modifications apart from a finetuning step that operates
on the sequence of amino acids alone is able to reach or even exceed
state-of-the-art performance on a number of protein classification tasks.
This is achieved by powerful, implicitly learned representations from self-
supervised pretraining, whereas most state-of-the-art algorithms make use
of PSSM features obtained from BLAST database searches that scale
unfavorably with dataset size. In addition, the proposed method shows
particular advantages for small datasets. Differently from typical NLP
tasks, the dataset creation and the evaluation procedure has to be carried
out with particular care, as small differences in the procedure can have
large impact on the difficulty of the classification problem and hence on
the comparability of different approaches. This applies in particular to a
well-defined way of handling the similarity threshold, i.e. dealing with ho-
mologous sequences that differ only by a few amino acids when splitting
into train and test sets. These factors urge for the creation of appropriate
benchmark datasets that convert raw data from an exemplary subset of
the many existing protein classification tasks into benchmark datasets in
a transparent manner that allow for a rigorous testing of machine learning
algorithms in this setting.

Given the insights gained from the three classification tasks, we can
draw the following general conclusions for generic protein classification
tasks:
(1) Considering the fact that UDSMProt was able to reach or surpass
state-of-the-art performance suggests that problem-specific architectures
are less important than the training procedure, at least for models that are
powerful enough. This allows to design task-independent, universal classi-
fication algorithms that can be applied without much manual intervention
to unseen classification tasks.

(2) Bidirectional context is important, which is reflected by the fact that in
all cases forward-backward-ensemble reached the best performance and
in most cases improved the performance of unidirectional models consid-
erably. Ensembling forward and backward models is in fact the simplest
– although at the same time a quite ineffective – way of capturing bidi-
rectional context. From our perspective, this represents an opportunity for
approaches such as BERT [Devlin et al., 2018, Liu et al., 2019] or XLNet
[Yang et al., 2019], which are able to capture the bidirectional context di-
rectly. This might be particularly important for more complicated protein
classification tasks that go beyond the prediction of a single global label
such as sequence annotation tasks like secondary structure or phosphory-
lation site prediction.
(3) Redundant sequences are a valuable source of information also for
downstream classification tasks. This fact is in tension with the stan-
dard practice in bioinformatics, where in many cases only representatives
without the corresponding cluster assignments are presented. To ensure
comparability, benchmarking datasets should always include full infor-
mation to reproduce the cluster assignments used during dataset creation,
which would allow at least retrospectively to reconstruct the complete
dataset from a given set of representatives.
(4) Data leakage arising from inconsistent train-test splits between pre-
training and classification e.g. by precomputing features (such as PSSM
or Pfam features) on the full Swiss-Prot database without excluding down-
stream test clusters is a possible source of systematic overestimation of the
model’s generalization performance. From our experiments on PSSM fea-
tures in the context of EC prediction, its effect was found to be small in
particular for large pretraining datasets such as Swiss-Prot, but it should
be kept in mind for future investigations.

Leveraging large amount of unlabeled data in the form of large, in parts
very well-curated protein databases by the use of modern NLP methods,
represents a new paradigm in the domain of proteomics. It will be interest-
ing to see how this process continues with the rapidly evolving algorithmic
advances in the field of NLP, considering in particular approaches like
BERT [Devlin et al., 2018, Liu et al., 2019], see also [Rives et al., 2019]
for first applications in the domain of proteomics, and XLNet [Yang et al.,
2019]. This is particularly relevant for more complicated protein classifi-
cation tasks that go beyond the prediction of a single global label, such as
sequence annotation tasks like secondary structure or phosphorylation site
prediction, which even more require bidirectional contexts that cannot be
captured by traditional language models.

Acknowledgements
The authors thank J. Vielhaben for discussions and work on related top-
ics. This work was supported by the Bundesministerium für Bildung
und Forschung (BMBF) through the Berlin Big Data Center under Grant
01IS14013A and the Berlin Center for Machine Learning under Grant
01IS18037I. UDSMProt was implemented using Pytorch [Paszke et al.,
2017] and fast.ai [Howard et al., 2018] and CNN baseline models were
implemented in Keras [Chollet et al., 2015].

References
Mohammed AlQuraishi. AlphaFold at CASP13. Bioinformatics, 2019. doi:

10.1093/bioinformatics/btz422.
Ehsaneddin Asgari and Mohammad R.K. Mofrad. Continuous distributed represen-

tation of biological sequences for deep proteomics and genomics. PloS one, 10
(11):e0141287, 2015. doi: 10.1371/journal.pone.0141287.

Maxwell L. Bileschi, David Belanger, Drew Bryant, Theo Sanderson, Brandon
Carter, D. Sculley, Mark A. DePristo, and Lucy J. Colwell. Using Deep Learning
to Annotate the Protein Universe. bioRxiv, 2019. doi: 10.1101/626507.

is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not certified by peer review)this version posted September 4, 2019. ; https://doi.org/10.1101/704874doi: bioRxiv preprint 

http://dx.doi.org/10.1093/bioinformatics/btz422
http://dx.doi.org/10.1093/bioinformatics/btz422
http://dx.doi.org/10.1371/journal.pone.0141287
http://dx.doi.org/10.1101/626507
https://doi.org/10.1101/704874


8 Strodthoff et al.

Junjie Chen, Mingyue Guo, Xiaolong Wang, and Bin Liu. A comprehensive
review and comparison of different computational methods for protein remote
homology detection. Briefings in bioinformatics, 19(2):231–244, 2016. doi:
10.1093/bib/bbw108.

François Chollet et al. Keras. https://keras.io, 2015.
Wyatt T. Clark and Predrag Radivojac. Information-theoretic evaluation of predicted

ontological annotations. Bioinformatics, 29(13):i53–i61, 06 2013. ISSN 1367-
4803. doi: 10.1093/bioinformatics/btt228.

Domenico Cozzetto, Federico Minneci, Hannah Currant, and David T Jones. FFPred
3: feature-based function prediction for all Gene Ontology domains. Scientific
reports, 6:31865, 2016. doi: 10.1038/srep31865.

Alperen Dalkiran, Ahmet Sureyya Rifaioglu, Maria Jesus Martin, Rengul Cetin-
Atalay, Volkan Atalay, and Tunca Doğan. ECPred: a tool for the prediction of the
enzymatic functions of protein sequences based on the EC nomenclature. BMC
Bioinformatics, 19(1):334, Sep 2018. ISSN 1471-2105. doi: 10.1186/s12859-018-
2368-y.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-
training of Deep Bidirectional Transformers for Language Understanding. arXiv
preprint arXiv:1810.04805, 2018. URL https://www.arxiv.org/abs/
1810.04805.

Sara El-Gebali, Jaina Mistry, Alex Bateman, Sean R. Eddy, Aurélien Luciani, Si-
mon C. Potter, Matloob Qureshi, Lorna J. Richardson, Gustavo A. Salazar, Alfredo
Smart, Erik L.L. Sonnhammer, Layla Hirsh, Lisanna Paladin, Damiano Piovesan,
Silvio C.E. Tosatto, and Robert D. Finn. The Pfam protein families database in
2019. Nucleic Acids Research, 47(D1):D427–D432, 10 2018. ISSN 0305-1048.
doi: 10.1093/nar/gky995.

Limin Fu, Beifang Niu, Zhengwei Zhu, Sitao Wu, and Weizhong Li. CD-HIT:
accelerated for clustering the next-generation sequencing data. Bioinformatics, 28
(23):3150–3152, 2012. doi: 10.1093/bioinformatics/bts565.

Qingtian Gong, Wei Ning, and Weidong Tian. GoFDR: a sequence alignment
based method for predicting protein functions. Methods, 93:3–14, 2016. doi:
10.1016/j.ymeth.2015.08.009.

Edouard Grave, Armand Joulin, and Nicolas Usunier. Improving neural language
models with a continuous cache. arXiv preprint arXiv:1612.04426, 2016. URL
https://www.arxiv.org/abs/1612.04426.

Tony Håndstad, Arne JH Hestnes, and Pål Sætrom. Motif kernel generated by genetic
programming improves remote homology and fold detection. BMC Bioinformatics,
8(1):23, Jan 2007. ISSN 1471-2105. doi: 10.1186/1471-2105-8-23.

Sepp Hochreiter, Martin Heusel, and Klaus Obermayer. Fast model-based protein
homology detection without alignment. Bioinformatics, 23(14):1728–1736, may
2007. doi: 10.1093/bioinformatics/btm247.

Jeremy Howard and Sebastian Ruder. Universal language model fine-tuning for
text classification. In Proceedings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pages 328–339, Mel-
bourne, Australia, July 2018. Association for Computational Linguistics. doi:
10.18653/v1/P18-1031.

Jeremy Howard et al. fast.ai. http://fast.ai, 2018.
Diederick P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

In International Conference on Learning Representations (ICLR), 2015. URL
https://arxiv.org/abs/1412.6980.

Maxat Kulmanov, Mohammed Asif Khan, and Robert Hoehndorf. DeepGO:
predicting protein functions from sequence and interactions using a deep ontology-
aware classifier. Bioinformatics, 34(4):660–668, 2017. URL 10.1093/
bioinformatics/btx624.

Shumin Li, Junjie Chen, and Bin Liu. Protein remote homology detection based on
bidirectional long short-term memory. BMC Bioinformatics, 18(1):443, Oct 2017.
ISSN 1471-2105. doi: 10.1186/s12859-017-1842-2.

Yu Li, Sheng Wang, Ramzan Umarov, Bingqing Xie, Ming Fan, Lihua Li, and Xin
Gao. DEEPre: sequence-based enzyme EC number prediction by deep learning.
Bioinformatics, 34(5):760–769, 2018. doi: 10.1093/bioinformatics/btx680.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. RoBERTa: A Ro-
bustly Optimized BERT Pretraining Approach. arXiv preprint arXiv:1907.11692,
2019. URL https://www.arxiv.org/abs/1907.11692.

Ilya Loshchilov and Frank Hutter. Fixing Weight Decay Regularization in Adam. In-
ternational Conference on Learning Representations (ICLR), 2019. URL https:
//arxiv.org/abs/1711.05101.

Thomas Madden. The BLAST sequence analysis tool. In The NCBI Handbook.
2nd edition. National Center for Biotechnology Information (US), 2013. URL
https://www.ncbi.nlm.nih.gov/books/NBK153387/.

Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Regularizing and op-
timizing LSTM language models. arXiv preprint arXiv:1708.02182, 2017. URL
https://www.arxiv.org/abs/1708.02182.

Alexey G Murzin, Steven E Brenner, Tim Hubbard, and Cyrus Chothia. SCOP: a
structural classification of proteins database for the investigation of sequences

and structures. Journal of molecular biology, 247(4):536–540, 1995. doi:
10.1016/S0022-2836(05)80134-2.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
Automatic differentiation in PyTorch. In 31st Conference on Neural Infor-
mation Processing Systems (NIPS) Workshop Autodiff, 2017. URL https:
//openreview.net/pdf?id=BJJsrmfCZ.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark,
Kenton Lee, and Luke Zettlemoyer. Deep contextualized word representations. In
Proceedings of the 2018 Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies, Volume 1
(Long Papers), pages 2227–2237, New Orleans, Louisiana, June 2018. Association
for Computational Linguistics. doi: 10.18653/v1/N18-1202.

Morgan N Price, Kelly M Wetmore, R Jordan Waters, Mark Callaghan, Jayashree
Ray, Hualan Liu, Jennifer V Kuehl, Ryan A Melnyk, Jacob S Lamson, Yumi Suh,
et al. Mutant phenotypes for thousands of bacterial genes of unknown function.
Nature, 557(7706):503, 2018. doi: 10.1038/s41586-018-0124-0.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Im-
proving language understanding by generative pre-training. Technical report,
OpenAI Blog, 2018. URL https://s3-us-west-2.amazonaws.com/
openai-assets/research-covers/language-unsupervised/
language_understanding_paper.pdf.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. Language models are unsupervised multitask learners. Technical
report, OpenAI Blog, 2019. URL https://d4mucfpksywv.cloudfront.
net/better-language-models/language_models_are_
unsupervised_multitask_learners.pdf.

Predrag Radivojac, Wyatt T Clark, Tal Ronnen Oron, Alexandra M Schnoes, To-
bias Wittkop, Artem Sokolov, Kiley Graim, Christopher Funk, Karin Verspoor,
Asa Ben-Hur, et al. A large-scale evaluation of computational protein function
prediction. Nature methods, 10(3):221, 2013. doi: 10.1038/nmeth.2340.

Roshan Rao, Nicholas Bhattacharya, Neil Thomas, Yan Duan, Xi Chen, John Canny,
Pieter Abbeel, and Yun S. Song. Evaluating Protein Transfer Learning with TAPE.
bioRxiv, 2019. doi: 10.1101/676825.

Peter Rice, Ian Longden, and Alan Bleasby. EMBOSS: The european molecular
biology open software suite. Trends in Genetics, 16(6):276–277, June 2000. doi:
10.1016/s0168-9525(00)02024-2.

Alexander Rives, Siddharth Goyal, Joshua Meier, Demi Guo, Myle Ott, C. Lawrence
Zitnick, Jerry Ma, and Rob Fergus. Biological Structure and Function Emerge from
Scaling Unsupervised Learning to 250 Million Protein Sequences. bioRxiv, 2019.
doi: 10.1101/622803.

Omer Sinan Sarac, Özge Gürsoy-Yüzügüllü, Rengul Cetin-Atalay, and Volkan
Atalay. Subsequence-based feature map for protein function classifica-
tion. Computational biology and chemistry, 32(2):122–130, 2008. doi:
10.1016/j.compbiolchem.2007.11.004.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation
of rare words with subword units. arXiv preprint arXiv:1508.07909, 2015. URL
https://www.arxiv.org/abs/1508.07909.

Hong-Bin Shen and Kuo-Chen Chou. EzyPred: a top–down approach for predicting
enzyme functional classes and subclasses. Biochemical and biophysical research
communications, 364(1):53–59, 2007. doi: 10.1016/j.bbrc.2007.09.098.

Leslie N. Smith. A disciplined approach to neural network hyper-parameters: Part
1 - learning rate, batch size, momentum, and weight decay. arXiv preprint
arXiv:1803.09820, 2018. URL https://www.arxiv.org/abs/1803.
09820.

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. MASS: Masked
Sequence to Sequence Pre-training for Language Generation. arXiv preprint
arXiv:1905.02450, 2019. URL https://www.arxiv.org/abs/1905.
02450.

The UniProt Consortium. UniProt: a worldwide hub of protein knowledge. Nu-
cleic Acids Research, 47(D1):D506–D515, 11 2018. ISSN 0305-1048. doi:
10.1093/nar/gky1049.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov,
and Quoc V. Le. XLNet: Generalized Autoregressive Pretraining for Lan-
guage Understanding, 2019. URL https://www.arxiv.org/abs/1906.
08237.

Julius Upmeier zu Belzen, Thore Bürgel, Stefan Holderbach, Felix Bubeck, Lukas
Adam, Catharina Gandor, Marita Klein, Jan Mathony, Pauline Pfuderer, Lukas
Platz, et al. Leveraging implicit knowledge in neural networks for functional
dissection and engineering of proteins. Nature Machine Intelligence, 1(5):225,
2019. doi: 10.1038/s42256-019-0049-9.

is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not certified by peer review)this version posted September 4, 2019. ; https://doi.org/10.1101/704874doi: bioRxiv preprint 

http://dx.doi.org/10.1093/bib/bbw108
http://dx.doi.org/10.1093/bib/bbw108
https://keras.io
http://dx.doi.org/10.1093/bioinformatics/btt228
http://dx.doi.org/10.1038/srep31865
http://dx.doi.org/10.1186/s12859-018-2368-y
http://dx.doi.org/10.1186/s12859-018-2368-y
https://www.arxiv.org/abs/1810.04805
https://www.arxiv.org/abs/1810.04805
http://dx.doi.org/10.1093/nar/gky995
http://dx.doi.org/10.1093/bioinformatics/bts565
http://dx.doi.org/10.1016/j.ymeth.2015.08.009
http://dx.doi.org/10.1016/j.ymeth.2015.08.009
https://www.arxiv.org/abs/1612.04426
http://dx.doi.org/10.1186/1471-2105-8-23
http://dx.doi.org/10.1093/bioinformatics/btm247
http://dx.doi.org/10.18653/v1/P18-1031
http://dx.doi.org/10.18653/v1/P18-1031
http://fast.ai
https://arxiv.org/abs/1412.6980
10.1093/bioinformatics/btx624
10.1093/bioinformatics/btx624
http://dx.doi.org/10.1186/s12859-017-1842-2
http://dx.doi.org/10.1093/bioinformatics/btx680
https://www.arxiv.org/abs/1907.11692
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://www.ncbi.nlm.nih.gov/books/NBK153387/
https://www.arxiv.org/abs/1708.02182
http://dx.doi.org/10.1016/S0022-2836(05)80134-2
http://dx.doi.org/10.1016/S0022-2836(05)80134-2
https://openreview.net/pdf?id=BJJsrmfCZ
https://openreview.net/pdf?id=BJJsrmfCZ
http://dx.doi.org/10.18653/v1/N18-1202
http://dx.doi.org/10.1038/s41586-018-0124-0
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
http://dx.doi.org/10.1038/nmeth.2340
http://dx.doi.org/10.1101/676825
http://dx.doi.org/10.1016/s0168-9525(00)02024-2
http://dx.doi.org/10.1016/s0168-9525(00)02024-2
http://dx.doi.org/10.1101/622803
http://dx.doi.org/10.1016/j.compbiolchem.2007.11.004
http://dx.doi.org/10.1016/j.compbiolchem.2007.11.004
https://www.arxiv.org/abs/1508.07909
http://dx.doi.org/10.1016/j.bbrc.2007.09.098
https://www.arxiv.org/abs/1803.09820
https://www.arxiv.org/abs/1803.09820
https://www.arxiv.org/abs/1905.02450
https://www.arxiv.org/abs/1905.02450
http://dx.doi.org/10.1093/nar/gky1049
http://dx.doi.org/10.1093/nar/gky1049
https://www.arxiv.org/abs/1906.08237
https://www.arxiv.org/abs/1906.08237
http://dx.doi.org/10.1038/s42256-019-0049-9
https://doi.org/10.1101/704874


9

1 Custom Enzyme Class Datasets EC40 and EC50
As discussed in the main text, in addition to the original DEEPre and
ECPred datasets, we recreated datasets for similarity threshold 40% and
50% by combining best practices from both [Li et al., 2018] and [Dalkiran
et al., 2018]. The corresponding dataset with similarity threshold 40% re-
lying on clusters from a prior CD-HIT [Fu et al., 2012] run is termed EC40.
Compared to DEEPre we slightly adapted their dataset generation proce-
dure by clustering Swiss-Prot all at once with CD-HIT, instead of clustering
enzymes and non-enzymes separately, as this mimics the way UniRef50
clusters are constructed, albeit for similarity threshold 40% in this case.
The dataset using a similarity threshold of 50% by using UniRef50-clusters
is termed EC50. In both cases, we do not balance the number of enzymes
and non-enzymes and restrict ourselves to proteins with a single EC-label.

Table 5 summarizes all datasets used for our experiments, namely the
original data from [Li et al., 2018] and [Dalkiran et al., 2018] in the first
two columns, and our replica in the last two columns.

Table 5. EC Prediction Datasets Overview

EC class DEEPre ECPred EC40 EC50
Oxidoreductase 3341 8242 3781 8244
Transferase 8517 20133 9137 20139
Hydrolase 5917 16018 7987 16020
Lyase 1532 3475 1401 3475
Isomerase 1193 2883 1160 2834
Ligase 1666 4429 2165 4429
Enzymes 22166 55180 25631 55141
Non-Enzymes 22142 25333 32387 49799
Total 44336 80513 58018 104940

The EC50 and EC40 EC classification datasets are constructed
according to the following procedure:

1. Acquire Swiss-Prot (2016_08 for EC40 and 2017_03 for EC50).
2. Cluster Swiss-Prot with CD-HIT (40% similarity cutoff) for EC40 or

acquire UniRef50 (2017_03) for EC50 and apply it to Swiss-Prot.
3. Remove non-enzymes which have not enough experimental evidence

in order to avoid misleading false negatives (annotated evidence is
greater or equal to 4).

4. Remove proteins which are annotated as fragments.
5. Remove enzymes with multiple enzymatic annotations in order to

obtain a single-label classification problem.
6. Filter proteins by length to include only proteins with more than 50

and less than 5000 amino acids.
7. Split by clusters into 80% training and 10% validation and 10% test

set.
8. For test and validation set, we select only representatives (from CD-

HIT or UniRef50 clustering) or alternatively the first member of the
cluster in the case where the representative was excluded by filtering
rules. Optionally a similar reduction is applied to the training set to
obtain a set of non-redundant sequences.

9. Use the predefined cluster assignments of the previous step and
similarly distribute all remaining Swiss-Prot clusters onto training,
validation and test dataset according to split ratios 90%, 5% and 5%,
respectively, to obtain a clean train-test-split on the whole Swiss-Prot
dataset consistent with chosen clusters for the downstream classifica-
tion task. Again, we keep only representatives for validation and test
set.

The last step is important for suitable database creation for PSI-BLAST
for the experiments in Section 3.2.2 and Appendix 5. One thing can already
be anticipated, as a result, for significantly more sequences from the test

dataset PSI-BLAST returned empty queries resulting in less informative
features for the test set.

2 AWD-LSTM Parameters
Table 6 lists the AWD-LSTM hyperparameters used for language modeling
and classifier finetuning.

Table 6. AWD-LSTM Parameters

Parameter Value
Joint parameters

Number of hidden units 1150
Number of layers 3
Embedding dimension 400
Backpropagation through time (bptt) 70
Gradient clipping 0.25
Weight decay 1e-7

Language-model-specific parameters
Dropout (po,ph,pi,pe,pw) 0.5 · (0.25,0.1,0.2,0.02,0.15)

Classifier-specific parameters
Dropout (po,ph,pi,pe,pw) 0.5 · (0.4,0.2,0.6,0.1,0.5)
Max. length (explicit backprop.) 1024
Number of hidden units (head) 50

3 Detailed Discussion of Language Model
Performance

We present language model results using AWD-LSTM language models
trained on Swiss-Prot using 90% / 5% / 5% splits based on clusters for
training, validation and test set, respectively. We train using redundant
sequences and evaluate on a reduced dataset with a single representative
sequence for each cluster. As performance metrics, we report the perplexity
(as natural exponential of the test loss) and the prediction accuracy. We
tokenize on an amino acid level, the resulting vocabulary comprises the
following additional tokens in addition to the 20+2 canonical amino acids:
X (unknown), B (either D or N),Z (either E or Q),<BOS> (marks beginning
of new protein). We stress that we do not specifically aim to optimize
the language model performance, which could be easily improved using
appropriate postprocessing techniques [Grave et al., 2016], as it only serves
as pretraining objective in this context.

At this point a comment on the different training dataset sizes is ap-
propriate. For random splits we disregard any cluster information and
distribute samples according to the ratios 90% / 5% / 5%, which obviously
results in the largest training dataset. In cases where cluster information is
used the splits are performed by clusters, where we sort the clusters by the
number of members and distribute them onto the three sets consecutively.
Finally, we also report results for a dataset, where the train-test-split used
for the language model respects those of a chosen downstream classifica-
tion task, in this case level 1 EC prediction on the EC50 dataset described
below. This construction avoids potential data leakage from using implicit
knowledge about test and validation sets that is contained in the language
model representations in the actual downstream classification task, see
Section 3.2.2 for a detailed discussion.

The results on language modeling are compiled in Table 7. As ex-
pected, the best language model is reached on random dataset splits with
perplexities of around 7. It is the coverage of the whole dataset in terms of
included clusters that is most important for language model performance.
This is apparent from the comparison of (1) the language model trained

is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not certified by peer review)this version posted September 4, 2019. ; https://doi.org/10.1101/704874doi: bioRxiv preprint 

https://doi.org/10.1101/704874


10 Strodthoff et al.

Table 7. Language model performance on Swiss-Prot 2017_03 data. The down-
stream classification task is level 1 EC prediction on the EC50 dataset as
described below.

LM Downstream
Split # Train Perpl. Acc. Acc.
UniRef50 316K 11.37 0.254 0.956
UniRef50 (clean) 322K 11.75 0.244 0.954
Random(64% train) 316K 7.40 0.385 0.955
Random(fwd) 499K 6.88 0.409 0.960

on a random split, where we artificially restricted the training set to 64%
of the original training set compared to (2) the UniRef50 runs. In both
cases, the size of the training set is comparable but the former (1) reaches
a perplexity comparable to that of the model trained on the full dataset with
random splits, whereas the latter (2) only reaches a perplexity of around
11.

Even more important than the language model performance itself is,
however, in our present context its impact on downstream classification
tasks. This is illustrated exemplarily for the EC level 1 classification
performance on the EC50 dataset as described below. Table 7 lists the
downstream performance for all language models pretrained on the respec-
tive Swiss-Prot version. Interestingly, all fine-tuned classification models
show a comparable performance and it is not possible to discriminate be-
tween different language models used for pretraining. The same pattern
was observed across all considered classification tasks. In particular, it
shows that the data leakage from inconsistent splits between pretraining
and classification task is presumably small in the context of language mod-
eling. We also experimented with the use of byte-pair-encoding to form
subword units [Sennrich et al., 2015]. The language model metrics are ob-
viously not comparable for different vocabulary sizes, so the downstream
classification performance is the only meaningful metric to compare both
approaches in this case. However, we did not see any significant perfor-
mance improvements compared to the baseline models with single amino
acids as tokens. In addition, if one tokenizes using subword units, se-
quence annotation tasks such as secondary structure prediction are less
straightforward to handle.

Key insights from results presented in this section are the following:
First, the results demonstrate that language modeling on amino acid se-
quence data is indeed meaningful and represents a potentially interesting
domain of application for language model methods from NLP. Prediction
accuracies of 40% (random split) or 25% (UniRef50 clusters) document
a solid understanding of the general structure of proteins. However, the
section also highlights crucial differences compared to language model
evaluation in NLP. Whereas in NLP sequence similarity between train
and test sequences is barely considered, it has crucial implications in pro-
teomics. Here, it is the dataset coverage in terms of clusters rather than
the nominal size of the training set, which most crucially determines the
language model performance. Second, however, the different language
models show no significant differences in terms of downstream classifi-
cation performance. This iterates a general insight from NLP in the sense
that improved language model performance does not necessarily imply
improved downstream task performance.

4 Evaluation Procedure for Comparison to
DEEPre and ECPred

For DEEPre the reported accuracies derived from a 5-fold-cross-validation
are straightforward to compute. For ECPred, however, we reproduced
the evaluation scheme of the authors, which is tailored to binary one-vs-
all-classifiers opposed to multi-class-classifiers. The scheme requires to

evaluate binary classifiers that distinguish a particular EC class from other
EC classes as well as non-enzymes. Finally, the meanF1-score is reported
across the six datasets. We adopt their evaluation procedure in order to be
able to compare directly to their reported results. However, we decided
to fit a seven-class categorical classifier (non-enzymes and six main en-
zyme classes) both on the concatenated training set for all EC classes.
In our experiments, the performance of these classifiers was comparable
or even better than the corresponding score obtained by training six in-
dependent classifiers on EC-class-specific training sets and the procedure
is more in line with our approach. We would like to add that this state-
ment applies only to level 0 and level 1, whereas hierarchical classifiers
as used by ECPred show advantages for sparsely populated cases such as
level 2 EC prediction, which is, however, not considered here. At this point
we would like to stress that the evaluation procedure is tailored specifi-
cally to hierarchical classifiers rather inconvenient to apply for multi-class
classifiers.

5 Dependence of Data Leakage on BLAST
Database Size

In this section, we investigate the data leakage effect discussed in Sec-
tion 3.2.2 and Appendix 3 in more detail with focus on PSSM features.
The aim is to illustrate that the overstimation of the model generalization
performance by computing PSSM features on the whole dataset is not only
a theoretical issue but has practical implication for downstream classifi-
cation performance at least in the cases where the corresponding BLAST
database is small.

For pretraining using language modeling this issue did not have signifi-
cant impact on the downstream performance. This is obviously a desirable
property as it would otherwise require to pretrain on large datasets with
train-test splits consistent with the downstream task, which defeats the pur-
pose of using pretraining as a universal step unspecific to the choice of the
downstream task. However, data leakage is always a potential issue in this
context and deserves further research from our perspective to understand
the practical implications for different classification tasks.

To highlight the importance of using an appropriate train-test-split also
for the database on which PSI-BLAST is performed, we conducted the fol-
lowing experiment, where we compared two sets of features (as already
described in Section 3.2.2) both trained with the same model and hyper-
parameters: (1) PSSM features based on the whole Swiss-Prot database
(including test sequences) and (2) PSSM features on database consisting
only of sequences from the training clusters. While experimenting, we
observed that the effect is consistent but barely measurable for large train-
ing data, but as the training data (and therefore the BLAST database) get
smaller, the effect becomes more apparent. We considered four training
sizes: 10%, 30%, 50% and 80% training size, while the test size stayed
20% (the rest of the sequences were neglected for this experiment. For each
experiment, we trained a model for level 1 EC prediction as described in
Section 2.2 and shown in Section 3.2.2, where we used an early stopping
criterion based on the accuracy on a validation set. Here, we used the EC40
dataset as described in Table 5.

Figure 3 shows the results of this experiment. It can be seen that the
effect (difference between clean and leakage) is getting more pronounced
when the training dataset gets smaller. This might be a obvious fact from a
machine learning point of view, but to the best of our knowledge, this has
never been shown in the context of PSSM features for proteomics. From
this finding, we can conclude that the results from previous literature are not
overestimated strongly. Nevertheless, a fundamental difference remains
when dealing with smaller datasets. In the case of small data, considering
e.g. 10% of the EC40 training data, the gap in performance between a clean
and a leaky procedure is 8% in accuracy, which is far from negligible. In

is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not certified by peer review)this version posted September 4, 2019. ; https://doi.org/10.1101/704874doi: bioRxiv preprint 

https://doi.org/10.1101/704874


11

t]

10 30 50 80
0

0.5

1

% Training Set Size (Clusters)

A
cc

ur
ac

y

Baseline (seq+PSSM) clean
Baseline (seq+PSSM) leakage

Figure 3: Dependence of EC classification accuracy on the size of the
dataset used to computed PSSM features compared to a model exploiting
PSSM features computed on the full dataset.

addition, we restricted our analysis to EC classification whereas the effect
might very well also depend on the considered downstream task.

is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not certified by peer review)this version posted September 4, 2019. ; https://doi.org/10.1101/704874doi: bioRxiv preprint 

https://doi.org/10.1101/704874

	1 Introduction
	2 Algorithms and Training Procedures
	2.1 UDSMProt: Universal Deep Sequence Models for Protein Classification
	2.2 Baseline Model

	3 Results and Discussion
	3.1 Language Modeling
	3.2 Enzyme Class Prediction
	3.2.1 Task and Datasets
	3.2.2 Effect of Similarity Threshold and Redundant Sequences
	3.2.3 Comparison to Literature Benchmarks
	3.2.4 Impact of Dataset Size

	3.3 Gene Ontology Prediction
	3.3.1 Task and Dataset
	3.3.2 Experimental Setup and Results

	3.4 Remote Homology and Fold Detection
	3.4.1 Task and Datasets
	3.4.2 Experimental Setup and Results


	4 Summary and Outlook
	1 Custom Enzyme Class Datasets EC40 and EC50
	2 AWD-LSTM Parameters
	3 Detailed Discussion of Language Model Performance
	4 Evaluation Procedure for Comparison to DEEPre and ECPred
	5 Dependence of Data Leakage on BLAST Database Size

