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Abstract13

Temperatures in the Arctic are expected to increase dramatically over the next century,14

yet little is known about how microbial communities and their underlying metabolic pro-15

cesses will be a↵ected by these environmental changes in freshwater sedimentary systems.16

To address this knowledge gap, we analyzed sediments from Lake Hazen, NU Canada.17

Here, we exploit the spatial heterogeneity created by varying runo↵ regimes across the18

watershed of this uniquely large lake at these latitudes to test how a transition from low19

to high runo↵, used as one proxy for climate change, a↵ects the community structure and20

functional potential of dominant microbes. Based on metagenomic analyses of lake sedi-21

ments along these spatial gradients, we show that increasing runo↵ leads to a decrease in22

taxonomic and functional diversity of sediment microbes. Our findings are likely to apply23

to other, smaller, glacierized watersheds typical of polar or high latitude / high altitudes24

ecosystems; we can predict that such changes will have far reaching consequences on these25

ecosystems by a↵ecting nutrient biogeochemical cycling, the direction and magnitude of26

which are yet to be determined.27

Keywords: High Arctic, microbial ecology, metagenome assembled genomes28

(MAGs), high-throughput sequencing29
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Main30

Climate change is amplified in polar regions, where near-surface temperatures have in-31

creased almost twice as fast as elsewhere on Earth over the last decade [1, 2, 3]. Climate32

models predict that temperature will increase in the Arctic by as much as 8°C by 210033

[4]. These changes are already having dramatic consequences on physical [5, 6, 7], bio-34

geochemical [8, 9], and ecological [10, 11] processes across Arctic ecosystems. Yet, while35

we are starting to understand the e↵ect of thawing permafrost on microbial communities36

[12, 13, 14], we know very little about how microbes in lentic ecosystems such as lakes37

respond to environmental changes – even though microbes mediate most global biogeo-38

chemical cycles [15, 16]. Furthermore, lakes are broadly considered sentinels of climate39

change, as they integrate physical, chemical and biological changes happening through40

their watersheds [17]; however, their microbial community structure and function are41

relatively understudied, in particular in the Arctic.42

To date, much of the research performed on microbial communities in Arctic lakes43

has been limited to studies that were mostly based on partial 16S rRNA gene sequencing44

[18, 19, 20, 21, 22]. While these studies are useful to understand the structure of these45

microbial communities, they provide limited functional insights and can be biased as they46

often rely on sequence databases where environmental microbes, specifically from the47

Arctic, may be underrepresented [23, 24]. More critically, being circumscribed both in48

space and in time, previous studies only o↵er snapshots of microbial communities and49

hence, have a limited power to predict how microbial communities might respond to50

climate change.51

To predict the e↵ect of climate change on microbial functional diversity in Arctic lake52

sediments, we focused on Lake Hazen, the world’s largest High Arctic lake by volume53
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(82°N) [25]. In this work, we exploited two important properties of Lake Hazen. First, its54

watershed is already experiencing the e↵ects of climate change, as increasing temperatures55

there are leading to more glacial melt, permafrost thaw, and increased runo↵ from the56

watershed into the lake in warmer years relative to cooler ones citelehnherr2018world.57

Second, its tributaries are highly heterogeneous, fed by eleven glaciers ranging from 6 to58

1041 km2 in surface area, and annual runo↵ volume approximately scaling with their size59

(from <0.001 to 0.080 km3 in 2016) [32].60

It is this temporal and spatial heterogeneity in runo↵ that we used to evaluate the61

possible consequences of climate change on High Arctic sediment microbial functional62

diversity, acknowledging that the consequences of increasing temperature are likely slightly63

more plural and complex. To this e↵ect, we sampled lake sediments along two transects64

representing low (L transect: samples L1 [shallow] and L2 [deep]) and high (H: samples H165

[shallow] and H2, [deep]) seasonal runo↵ volume, as well as at a single site that received66

negligible runo↵ (C site; Figure 1A). We also collected soil samples (S sites) from three67

sites in the dried streambeds of the tributaries, on the northern shore between the two68

transects to assess soil influence on microbial communities present in the sediments. We69

then resorted to untargeted metagenomics analyses to draw an inventory of dominant70

microbes, assumed to be the most critical to nutrient cycling and the most relevant to71

the dynamics of microbial communities. These reconstructed Metagenome Assembled72

Genomes (MAGs) [26] allowed us to assess the quantitative impact of a change of runo↵73

regime, from low to high, on both the structure of sediment microbial communities and74

their functional potential. We show that an increase in runo↵ volume and resultant75

sedimentation rates, as predicted under climate change scenarios for the region, could76

lead to a reduced diversity of the dominant microbial community and of their functional77

potential.78
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Characterization of the physical and geochemical environments79

We first characterized how geochemical properties of the sediments varied along and80

between the two transects. Sediment samples from these five sites clustered into four81

distinct geochemical groups (Figure 1B) that reflect spatial variability in glacial runo↵,82

the primary hydrological input to the lake. Indeed, PC1 explained 43% of the total83

variance (�2), and di↵erentiated the L and high H runo↵ transects, while PC2 (29.9%)84

separated each transect according to their depth.85

Along PC1, higher concentrations of ammonia (NH3) and sulfate (SO2�
4�) in the pore-86

waters, and a greater percentage of calcium carbonate in the sediments, were present87

in the H transect. However, higher concentrations of dioxygen (O2), nitrates / nitrites88

(NO�
3 /NO

�
2 ), and greater redox potential were present in the L transect and the control89

(C) sites. Along PC2, sediment organic carbon (OC), and porewater pH and Cl�, were90

more determinant when discriminating between the shallow (L1 and H1) and deep (L291

and H2) sites of both transects (Supplementary Figures 4-5). Rather than grouping spa-92

tially with the H transect, the C sites were most chemically similar to L1 (Figure 1C,93

Supplementary Figure 6). The shallow sites were not significantly di↵erent from each94

other in pH or OC concentrations, but were both significantly di↵erent from the deeper95

sites suggesting that although most chemical features were similar within each transect,96

some features might still be influenced by their spatial proximity to the shoreline or depth97

of the overlying water column (Figure 1C).98
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Contrasting low vs. high runo↵ transects revealed a decrease in99

biodiversity100

With such a clear geochemical separation of the transects along PC1 (43% of �2) and101

significant spatial contrasts (Figure 1C), we had the right context to evaluate the influ-102

ence of runo↵ gradients on sediment microbial diversity. We assembled a total of 300103

(290 bacterial and 10 archaeal) MAGs that were >50% complete and with <10% con-104

tamination (Supplementary Tables 6-7). By constructing phylogenetic trees for Bacteria105

and Archaea, we noted that while most major phyla were represented in the MAGs, no106

Firmicutes and only a small number of Archaea were identified (Figure 2). In contrast,107

Gammaproteobacteria (n = 50), Actinobacteria (n = 31), Alphaprobacteria (n = 24),108

Chloroflexoata (n = 30), Planctomycetota (n = 24), and Acidobacteriota (n = 19)109

were the most commonly recovered taxa across the entire watershed. Uncultured phyla110

comprised ⇠11% of reconstructed MAGs, including representatives from multiple taxa:111

Eisenbacteria (n = 12), Patescibacteria (n = 9), Omnitrophica (n = 5), KSB1 (n = 1),112

Armatimonadota (n = 1), Lindowbacteria (n = 1), USBP1 (n = 1), UBP10 (n = 1), and113

Zixibacteria (n = 1).114

However, these MAGs were not evenly distributed across all sites (Figure 2, inset;115

Supplementary Figure 7). To quantify this uneven distribution, we determined the site116

where each genome was most abundant. Based solely on this information, we performed an117

unsupervised clustering (t-SNE), and found that the directions defined by sediment-laden118

water flowing from the shallow to the deep site within each transect in the projection space119

were almost orthogonal between transects (see arrows in Figure 3). This orthogonality120

suggests that transitioning from the L to the H transect could lead to a dramatic shift in121

microbial communities.122
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To assess the significance of these shifts at the phylum level, we calculated the relative123

proportions of each of the reconstructed 300 MAGs at each site, and tallied these numbers124

by phylum, over the 43 phyla represented in our data. We did this along each transect –125

essentially pooling sites H1/H2 together to represent the H transect, and doing the same126

for sites L1/L2 (the L transect), while keeping proportions for the S and C sites separate.127

Hierarchical clustering on this table of MAGs proportions by phyla vs. sites showed a128

divergence from the L to H transects (following the (((L,C),H),S) clustering pattern;129

Figure 4A, inset), confirming the clear contrast between the two transects in terms of130

taxa proportions (see Figure 3). To test if these taxa proportions tended to increase or131

decrease when transitioning from L to H along the (((L,C),H),S) clustering pattern, we132

fitted linear models (ANOVA) regressing the proportions of each of the 43 phyla against133

sites, ordered as per their hierarchical clustering (L!C!H!S). Essentially, we regressed134

a single data point for each of the four classes (L, C, H, and S), so that P -values could not135

be obtained, but slope could be estimated (Figure 4A). Strikingly, most of these slopes136

were negative (binomial test: P = 7.8 ⇥ 10�8), demonstrating a significant decrease in137

diversity at the phylum level as one goes from low to high runo↵ regimes.138

An NMDS ordination allowed us to detect the geochemical features associated with139

this shift in microbial communities (Supplementary Figure 8). In the sediments, NH3140

concentrations (P = 0.03), NO�
2 / NO�

3 concentrations (P = 0.03), and redox potential141

(P = 0.03) were significant in determining the distribution of MAGs (permutation test:142

P < 0.05). We further observed that the sites with the greatest diversity (L/C sites) were143

also those with the greatest redox potential, and O2 and NO�
3 /NO

�
2 concentrations. Sites144

with the lowest microbial diversity (H sites), contained greater NH3 and SO2�
4� concentra-145

tions, and lower redox potential. In addition to gradients shaped by the interplay between146

microbial metabolism and local geochemical constraints, the physical disturbances asso-147
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ciated with high sedimentation rates also likely contributed to the homogenization of the148

microbial community structure; however, we cannot quantify the relative importance of149

each of these processes here.150

Contrasting low vs. high runo↵ transects also revealed a loss of151

functional potential152

To assess the functional implications of this decrease of biodiversity, we assigned metabolic153

functions and pathways to proteins in each MAG. We focused on genes and pathways in-154

volved in key elements, targeting carbon, nitrogen, and sulfur cycling (Supplementary155

Figures 9-10). Only the most abundant genomes per site were reported within each phy-156

lum (Supplementary Figure 11), allowing us to compute the proportions of functions and157

pathways in each of the 43 phyla present in reconstructed MAGs across the hydrological158

regimes. Their hierarchical clustering (Supplementary Figures 12-14) led to a picture con-159

sistent with the ones derived from both geochemical (Figure 1) and taxonomic abundances160

(Figure 4A). Indeed, the two transects were again clearly separated (clustering pattern161

(((L,C),S),H); Figure 4B, inset), and fitting linear models regressing function/pathway162

proportions against sites showed that, again, most of these slopes were negative (bino-163

mial test: P = 0.0010). Forcing the same site ordering as for the taxonomic abundances164

(L!C!H!S as in Figure 4A, inset) led to similar results (binomial test: P = 7.8⇥10�5),165

demonstrating a significant decrease in metabolic diversity when going from the L to the166

H transect.167

More specifically, we found that marker genes whose product is implicated in carbon168

and sulfur metabolisms significantly decreased when going from the L to H, while nitrogen169

metabolism was una↵ected (Supplementary Table 8; see Supplementary Text for details).170
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When considering the individual functions present or absent across the transects, we noted171

that most oxidative pathways (CO, methane, formaldehyde, sulfide, sulfite) appeared less172

common in the H transect (Supplementary Figure 9), corresponding to lower oxygen173

concentrations and constraints on aerobic metabolism. Furthermore, while most carbon174

fixation processes were shared between the two transects, carbon oxidation and reduction175

reactions regulated through Wood-Ljungdahl pathway were only observed in the H tran-176

sect, where sedimentary conditions were anoxic throughout the first 5cm (Supplementary177

Figures 4-5), consistent with a more reductive environment.178

Discussion179

Even if Arctic microbial communities are changing rapidly [13], there is still a dearth of180

long-term time series observations. To address this point, we used Lake Hazens spatial181

geochemical heterogeneity to evaluate the structural and functional response of lake sedi-182

ment microbial communities to varying runo↵, already shown to increase in this warming183

High Arctic environment [9]. Such an approach can reasonably be interpreted from the184

lens of a space-for-time design, which assumes that spatial and temporal variations are185

not only equivalent [27, 28], but also stationary [29]. Whether this latter condition is met186

cannot be known, but in the absence of any time-series documenting the e↵ect of climate187

change on lake sediment microbial communities in the High Arctic, the space-for-time188

design becomes a convenience, if not a necessity [30].189

Using metagenomics along two transects experiencing heterogeneous runo↵ conditions,190

we presented evidence that climate change, as it drives increasing runo↵ and sediment191

loading to glacial lakes, will likely lead to a decrease in both diversity and functional192

potential of the dominant microbial communities residing in lake sediments. Note that193
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we specifically focused here on the dominant microbes, that is those for which we could194

reconstruct the MAGs, in order to (i) have a phylogenetic placement of the corresponding195

organisms based on a large number of marker genes (Figure 2), rather than partial 16S196

rRNA gene sequences as usually done [23], and (ii) be able to predict almost complete197

functional pathways for each of these organisms to test the impact of a change of runo↵198

(Figure 4), rather than inferring function from taxonomic a�liation [23].199

Such a decrease in taxonomic and functional diversity may not be unique to Lake200

Hazen, where rising temperatures have resulted in increasing glacial melt and associated201

runo↵. Although such a pattern was not observed in other regions of the globe where202

runo↵ is predicted to decrease [31, 32], our finding are likely to apply to other, smaller,203

glacierized watersheds typical of high latitudes or altitudes. Indeed, at least in the Arctic,204

freshwater discharge is broadly expected to increase with increasing temperatures and205

precipitation loadings [33, 34, 35]. It would thus be immensely valuable to conduct sim-206

ilar studies, replicating where appropriate a similar space-for-time design, at other lakes207

throughout the world. Additional sampling e↵orts should carefully consider the spatial208

heterogeneity of runo↵ regimes leading to divergent sedimentation rates (Supplementary209

Table 2), limiting our ability to make temporal predictions.210

Despite lacking geochemical measurements for the soil samples, we found that the211

microbial communities in the sediments at the high runo↵ sites clustered most frequently212

with those in the soil sites (Figure 4), highlighting a connection between terrestrial and213

aquatic sediment communities as a function of the runo↵ volume, consistent with previous214

findings [36, 37]. Unsurprisingly, as the soil is likely a source of nutrients (e.g., DOC)215

and organic and inorganic particles, we would expect increased runo↵ to the aquatic216

ecosystems to alter microbial community structure [38]. Some of these structural changes217

may then alter the functional capacity to metabolize carbon, nitrogen, sulfur compounds218
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and process toxins such as metals and antibiotics (Supplementary Figure 9). A more219

experimentally-driven approach, based for instance on in situ incubation and geochemi-220

cal tracers, would have been necessary to quantify such an interplay between microbial221

metabolism and geochemical features. Yet, as sediments and nutrients are mostly de-222

posited during the summer melt months, it can be expected that lake sediments record223

microbe-driven seasonal changes in their geochemistry. Indeed, high glacial runo↵ is224

known to bring dense, oxygenated river waters with OC directly to the bottom of the lake225

[32], stimulating aerobic microbial activity. As a result, the geochemistry recorded along226

the high runo↵ transect may first reflect a period of greater microbial metabolism, which227

may actually exceed those in temperate systems [39], eventually followed by low oxygen,228

low redox, and high NH3 conditions observed here (Figure 1) as oxygen is depleted and229

anaerobic metabolisms allowed to proceed.230

At a larger temporal scale, a key question that arises from these results is how changes231

in hydrological regimes will alter the evolutionary dynamics of microbial communities in232

lake sediments. Niche di↵erentiation, where the coexistence of ecological opportunities233

can facilitate species diversification, may explain why sediments along the low runo↵234

transect hosts a more diverse microbial community than sediments along the high runo↵235

transect [40]. Presently, climate change is predicted to increase runo↵ in this High Arctic236

environment [9], and we found evidence suggesting that the increased runo↵ homogenizes237

community structure. This can be expected to disrupt niche di↵erentiation, and hence to238

reduce the overall and long-term metabolic capacity in lake sediments. It is currently hard239

to predict the future microbial ecology of these systems. On the one hand, climate change240

may diminish species diversification, and lead to highly specialized microbial communities241

adapted to a homogeneous ecological niche characterized by low oxygen, low redox, and242

high NH3 concentrations. On the other hand, the seasonal and rapid changes in redox243
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conditions, predicted to follow the strong but punctual input of oxygen and nutrients244

during springtime may allow for the development of a short-lived community that eluded245

our sampling and analysis.246

The rapid changes that a↵ect Lake Hazen’s watershed in response to climate warming247

were already known to directly alter its hydrological regime. Here we further provide248

evidence that a combination of increasing runo↵ and changing geochemical conditions249

are associated with the reduced diversity and metabolic potential of its dominant micro-250

bial communities. While longitudinal studies are needed to confirm these patterns, it is251

still unclear how such losses in biodiversity and metabolic potential in Arctic ecosystems252

will impact key biogeochemical cycles, potentially creating feedback loops of uncertain253

direction and magnitude.254
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Figure 4. Transition from low to high runo↵ leads to a decrease in diversity. (A) Distribution of the slopes of
taxonomic counts as a function of sites. (B) Distribution of the slopes of pathway counts as a function of sites. In
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1

Online methods1

Sample collection and processing2

Sediment and soil cores were collected from Lake Hazen (82°N, 71°W: Figure 1A), located3

within Quttinirpaaq National Park, on northern Ellesmere Island, Nunavut. Sampling4

took place between May 10 and June 10, 2017, when the lake was still completely ice-5

covered (Supplementary Table 1). Within the watershed, runo↵ flows from the outlet6

glaciers along the northwestern shoreline through poorly consolidated river valleys, de-7

positing sediments at the bottom of Lake Hazen along two transects, the H1/H2 and8

L1/L2 sites, respectively. The lake then drains via the Ruggles River along its south-9

eastern shoreline (C sites). The surrounding glacial rivers deliver di↵erent amounts of10

sediments, nutrients and organic carbon unevenly to the lake as a consequence of hetero-11

geneous sedimentation rates (Supplementary Table 2). More specifically, the top 5 cm of12

sediments from the deeper low (L2) and high (H2) runo↵ sites represented depositional13

periods of 30 years (1987-2017) and 6 years (2011-2017), respectively (Supplementary14

Table 3).15

Samples were collected along two transects and can be separated into three hydrologi-16

cal regimes by seasonal runo↵ volume: low (L transect), high (H transect), and negligible17

runo↵ (C sites) summarized in Supplementary Table 3. Contamination of samples was18

minimized by wearing non-powdered latex gloves during sample handling and sterilizing19

all equipment with 10% bleach and 90% ethanol before sample collection. Sediment cores20

approximately 30 cm in length were collected with an UWITEC (Mondsee, Austria) grav-21

ity corer from five locations: C (overlying water depth: 50m) far from the direct influence22

of glacial inflows serving as a control site; L1 (water depth: 50m) and L2 (water depth:23

251m), at variable distances from a small glacial inflow (Blister Creek, <0.001 km3 in24
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summer 2016); and, H1 (water depth: 21m) and H2 (water depth: 253m), located ad-25

jacent to several larger glacial inflows (i.e., the Abbé River, 0.015 km3 and Snow Goose,26

0.006 km3 in 2016). The soil samples (S sites) were collected from three sites in the dried27

streambeds of the tributaries, on the northern shore between the two transects. At each28

site, for both sediments and soil, five cores were sampled, ⇠3m apart for the sediment29

cores, and approximately ⇠1m apart to account for site heterogeneity.30

For sediment core, one of the five cores were used for microprofiling of oxygen (O2),31

redox and pH, as well as one core for porewater chemistry and loss on ignition (see [1] for32

details), and the remaining three cores were combined, prior to their genomic analysis, here33

again to account for site heterogeneity. For soil samples, three cores per site were collected34

for DNA analysis, but no additional cores were collected for chemical analyses. As we35

were mostly interested in the community composition through space, we combined the36

top 5 cm of sediment and 10 cm of soil for sample extraction and subsequent sequencing.37

Any remaining length of cores that were used for DNA analysis were discarded. These38

uppermost layers in the sediment correspond to both the most recent sediment deposition39

dates [2] and the region of greatest microbial activity [3]. The top of each core was40

sectioned and placed into Whirlpack bags. These slices were homogenized manually inside41

of the bags and stored in a �20°C freezer until shipment back to the University of Ottawa42

where they were then stored at �80°C. Soil samples were transferred into falcon tubes,43

homogenized, and stored as described above for the lake sediment samples.44

Samples were thawed overnight and 250-400mg (wet weight; Supplementary Table45

4) were then washed in a sterile salt bu↵er (10mM EDTA, 50mM Tris-HCl, 50mM46

Na2 HPO4 7H2O at pH 8.0) to remove PCR inhibitors [4, 5]. All sample handling was47

conducted in a stainless-steel laminar flow hood (HEPA 100) treated with UVC radiation48

and bleach before use. DNA extractions were performed using the DNeasy PowerSoil Kit49

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 13, 2020. ; https://doi.org/10.1101/705178doi: bioRxiv preprint 

https://doi.org/10.1101/705178
http://creativecommons.org/licenses/by-nc-nd/4.0/


3

(MO BIO Laboratories Inc, Carlsbad, CA, USA), following the kit guidelines, except that50

the final elution volume was 30µl instead of 100µl. DNA integrity was validated with51

a NanoDrop Spectrometer and PCR combined with electrophoresis of the Glutamine52

synthetase gene (glnA) as this gene is ubiquitous across microbial life (Supplementary53

Figure 1 and Supplementary Table 5). Adequate DNA concentrations for sequencing were54

reached by combining triplicate extractions for a total volume of 45µl and a concentration55

� 50 ng/µl (Supplementary Table 4). Positive and negative controls were used to verify56

the integrity of the PCR amplification. Two kit extraction blanks contained no trace of57

DNA and were not sequenced.58

Chemical analyses59

Redox potential, pH, and dissolved O2 concentration profiles were measured at 100µM60

intervals in the field within an hour of collection, using Unisense (Aarhus, Denmark) mi-61

crosensors connected to a Unisense Field Multimeter. Cores used for porewater chemistry62

analysis were sectioned in 1 cm intervals into 50mL falcon tubes, followed by flushing63

of any headspace with ultra-high-purity nitrogen (N2) before capping. Sediment pore-64

water was extracted following centrifugation at 4,000 rpm. The supernatant was then65

filtered through 0.45µm cellulose acetate filters into 15ml tubes, and were frozen until66

analysis. Concentrations of nitrates and nitrites (NO�
2 + NO�

3 ), and ammonia (NH3),67

chloride (Cl�) were measured in the sediment porewater using a Lachat QuickChem 850068

FIA Ion Analyzer, while total dissolved phosphorus (TDP) and SO2�
4� were measured in69

the sediment porewater using an ion chromatograph at the Biogeochemical Analytical70

Service Laboratory (Department of Biological Sciences, University of Alberta). However,71

TDP was removed from data analysis because insu�cient porewater was collected to mea-72

sure TDP at site C. The centrifuged sediments were retained and percentages of calcium73
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carbonate (CaCO3) and organic carbon (OC) were estimated through loss on ignition [6].74

The chemical features of the top 5 cm of the sediment cores were derived from mea-75

surements performed at 1 cm intervals throughout the cores. The geochemical properties76

of each sediment site were summarized using a Principle Component Analysis (PCA)77

and projections were clustered using Partitioning Around Medoids [7]. The appropriate78

number of clusters was determined from silhouettes with the R package hopach [8]. The79

Dunn test [9] was used to compare samples, controlling for multiple comparisons with the80

Benjamini-Hochberg adjustment.81

Sequencing and data processing82

Metagenomic libraries were prepared and sequenced by Genome Quebec on an Illumina83

HiSeq 2500 platform (Illumina, San Diego, CA, USA; Supplementary Figure 2) on a84

paired-end 125 bp configuration using Illumina TruSeq LT adapters (read 1: AGATCG-85

GAAGAGCACACGTCTGAACTCCAGTCAC, and read 2: AGATCGGAAGAGCGTCGT-86

GTAGGGAAAGAGTGT). The DNA from the eight sites (five sediments, three soils) was87

sequenced, generating over 150GB of data. Read count summaries were tracked through-88

out each step of the pipeline for quality control (Supplementary Figure 3). Low quality89

reads, adapters, unpaired reads, and low quality bases at the ends of reads were removed to90

generate quality controlled reads with Trimmomatic (v0.36) [10] using the following argu-91

ments: phred33, ILLUMINACLIP:TruSeq3-PE-2.fa:3:26:10, LEADING:3 TRAILING:3,92

SLIDINGWINDOW:4:20, MINLEN:36, CROP:120, HEADCROP:20, AVGQUAL:20. FASTQC93

(v0.11.8) [11] was then used to confirm that the Illumina adapters were removed and that94

trimmed sequence lengths were at least 90 bp in length with a Phred score of at least 33.95
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Reconstruction of environmental genomes and annotation96

To reconstruct environmental genomes, metagenomic quality-controlled reads from all97

samples were coassembled using Megahit [12] software with a k-mer size of 31 and “meta-98

large” setting (see Supplementary Table 6 for additional summary statistics). EukRep99

[13] was used to remove any eukaryotic DNA from the contigs prior to the formation100

of an Anvio (v5) [14] contig database. The contig database was generated by removing101

contigs under 1000 bp, and gene prediction was performed in the Anvio environment.102

Sequence coverage information was determined for each assembled sca↵old by mapping103

reads from each sample to the assembled contig database using Bowtie2 [15] with default104

settings. The resulting SAM files were sorted and converted to BAM files using sam-105

tools (v0.1.19) [16]. Each BAM file was prepared for Anvio using the “anvi-init-bam”106

and contig database generated using “anvi-gen-contigs-database”. The contig database107

and BAM mapping files were further used as input for “anvi-profile”, which generated108

individual sample profiles for each contig over the minimum length of 2500 bp. These109

profiles were then combined using “anvi-merge” and summary statistics for abundance110

and coverage were generated with “anvi-summarise.” Automated binning was performed111

using CONCOCT [17]. Sca↵olds were binned on the basis of GC content and di↵erential112

coverage abundance patterns across all eight samples. Manual refinement was done using113

Anvio’s refine option (Supplementary Table 7). Kaiju [18] was used to classify taxon-114

omy of the assembled contigs with “anvi-import-taxonomy-for-genes” and aided in the115

manual refinement process. Open reading frames were predicted with Prodigal (v2.6.3)116

[19]. Anvio’s custom Hidden Markov models were run, along with NCBIs COG [20] an-117

notation to identify protein-coding genes. PFAM [21], TIGRFAM [22], GO terms [23],118

KEGG enzymes and pathways [24], and Metacyc pathways [25] were predicted with Inter-119

proscan (v5) [26]. These annotations were then combined with the Anvio database with120
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“anvi-import-functions”.121

Genome completeness and contamination were evaluated on the presence of a core set122

of genes using CheckM (v1.0.5) “lineage wf” (Supplementary Table 7) [27]. Only genomes123

that were at least 50% complete and with less than 10% contamination were further anal-124

ysed – meeting the MIMAG standard for medium or high-quality genomes [28]. All recov-125

ered genomes were used to calculate an average amino acid identity across all genomes us-126

ing compareM (v0.0.23, function “aai wf”; https://github.com/dparks1134/CompareM)127

[29]. CheckM was used again to identify contigs that were not contained in any of the128

300 high-quality genomes, that is those whose size ranges from 1000–2500 bp. As an129

attempt to “rescue” these unbinned contigs, an alternative binning algorithm MaxBin130

(v2.0) [30] was employed. An additional 481 genomes were recovered, but were not in-131

cluded in further analysis as only 21 genomes were of average completion >65% (Sup-132

plementary Data 1: https://github.com/colbyga/hazen_metagenome_publication/133

blob/master/Supplemental_Data_1_maxbin2_unbinned_contigs_summary.csv).134

Phylogenetic placement of the MAGs135

Phylogenetic analyses were performed using two di↵erent sets of marker genes from the136

Genome Taxonomy Database (GTDB): one for bacteria (120 marker genes) and one for137

archaea (122 marker genes), as previously been used to assign taxonomy to MAGs [31].138

The marker genes were extracted from each genome by matching Pfam72 (v31) [21] and139

TIGRFAMs73 (v15.0) [22] annotations from GTDB (v86) [31]. Marker genes from each140

of the 300 genomes were translated using seqinr [32], selecting the genetic code that141

returned no in-frame stop codon. As some genomes had multiple copies of a marker142

gene, duplicated copies were filtered out by keeping the most complete sequence. Marker143

genes that were missing from some genomes were replaced by indel (gap) characters,144
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and their concatenated sequences were added those from the reference GTDB sequences.145

MUSCLE (v3.8.31) [33] was employed to construct the alignment in R (v 3.5.1) [34].146

Archaeal sequences were removed from the bacterial alignment on the basis of results147

from CheckM [27] and independently verified using a custom list of archaea specific marker148

genes. Alignments were then refined using trimAI [35] and the “-gappyout” parameter.149

FastTree2 [36], recompiled with double precision to resolve short branch lengths, was used150

to infer maximum likelihood phylogenetic trees from protein sequence alignments under151

the WAG +� model [37, 38, 39]. The archaeal tree was rooted with Euryarchaeota and152

the bacterial tree was rooted with Patescibacteria using APE [40]. Trees were visualized153

and colored by phylum with ggtree [41].154

Community composition of the MAGs155

To determine the relative abundance of each genome in the eight samples, sample-specific156

genome abundances were normalized by sequencing depth [(reads mapped to a genome) /157

(total number of reads mapped)], making comparisons across samples possible. Genome158

abundances were generated using the CheckM “profile” function [27]. To determine the159

average abundance of major taxonomic groups across sites (determined by the phyloge-160

netic analysis described above), the abundances for genomes from the same taxonomic161

group were summed and visualized using phyloseq [42] (usually at the phylum level, un-162

less otherwise stated). These same abundance values were the basis for a community163

composition analysis. The t-SNE plots were constructed by assigning each genome to a164

site based on where it was most abundant using Rtsne [43].165
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Metabolic potential of the MAGs166

To analyze functional marker genes in the metagenomes, we used a custom database of167

reference proteins sequences (COG, PFAM, TIGRFAM, KEGG) based on the marker168

genes used in other studies [44, 45] (Supplementary Data Files on GitHub). Pathways169

were also predicted using MinPath [46] to map all identified KEGG enzymes to the most170

parsimonious MetaCyc pathways [25]. As these MAGs were incomplete, some genes in171

pathways may be absent. MinPath presented only parsimonious pathways represented by172

multiple genes. As most genomes were present even at low abundances across all sites,173

a cut-o↵ value of  0.25 (on a �log10 scale) was set for a genome to be included in the174

functional analyses at any site, so that only the most abundant genomes for each site175

were considered. We aggregated marker genes and pathways by function, summarizing176

the results by phyla, except for Proteobacteria that was separated by class. We further177

grouped all taxa together at each site to test for significant di↵erences in major nutri-178

ent cycling processes (carbon, nitrogen, and sulphur) among sites using a hierarchical179

clustering; significance was derived from the Approximately Unbiased bootstrap [47] and180

Fisher’s exact test.181

Data availability182

Scripts and supplemental data files can be accessed from https://github.com/colbyga/183

hazen_metagenome_publication. Raw sequence reads of the shotgun metagenomic data184

were submitted to the sequence read archive (SRA) under accession no. SRP218124 and185

under Bioproject PRJNA556841. The geochemical data were submitted to the National186

Science Foundation’s (NSF) Arctic Data Center repository under doi:10.18739/A20R9M41W.187
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Nutrient cycles a↵ected when transitioning from low to high

Overall, markers of carbon and sulphur metabolism significantly decreased when tran-
sitioning from the L to H sites, even if nitrogen metabolism was not (Tab. S8). Most
carbon pathways, such as carbon fixation through the Calvin-Benson-Bassham (CBB)
pathway, as well as the capacity for simple carbon metabolism, were shared across all
runo↵ regimes. In contrast, carbon oxidation and reduction reactions regulated through
Wood-Ljungdahl pathway were only observed in the H sites, where sedimentary conditions
were anoxic throughout the first 5 cm (Figs. S4, S9). Here, Spirochaetota were likely per-
forming anaerobic respiration and carbon fixation producing acetate as an end product.
Methanogenesis pathways were present across all sites, but notably, methane oxidation
pathways were absent from high runo↵ sites, where oxygen is limited.

Greater concentrations of ammonia in the high runo↵ regimes may suggest that N-
containing organic matter was mineralised through ammonification (Fig. S8). In the high
runo↵ regime, there was both an absence of nitrification and a greater presence of mark-
ers for ammonia assimilation. Markers for dissimilarity nitrate reduction (DNRA) were
present in multiple genomes across all runo↵ regimes (Fig. S8). In contrast, urease mark-
ers were found more abundantly in low runo↵ regimes, where ammonia concentration
was lower (Fig. S5). The functional ability of microbes to cycle sulphur between oxidised
and reduced forms was significantly di↵erent between the high and low runo↵ regimes
(Tab. S8). In the high runo↵ regime, Gammaproteobactiera were the only organisms
with the metabolic capacity to expansively utilise sulphur, performing sulphide oxidation
and thiosulphate reduction. Whereas, sulphate reduction was predominantly found in the
soil, control, and low runo↵ regimes.

Aside from nutrient cycling, we also assessed the capacity of microbial communities
to process metals and antibiotics. Metal resistance and cycling was mostly ubiquitous
throughout all of the sites, regardless of runo↵. Methyl mercury production, identified
by the presence of both hgcA and hgcB genes [1], was only implicated in the high runo↵
sites, in Spirocheatoa and Chloroflexoata. However, genes conferring mercury resistance
involved in the conversion of inorganic HgII to the less toxic Hg0 – were evenly distributed
throughout the sites. There was a broad presence of metal tolerance that was indicated by
genetic determinants related to heavy metal resistance of cadmium, cobalt, copper, lead
and zinc (Fig. S9). Furthermore, antimicrobial resistance genes specifically �-lactamases,
were ubiquitous across all genomes at all sites. We identified 90 genomes with antibiotic
resistance genes (Fig. S??). Drug resistance was prevalent throughout all phyla, including
one Creanarchaeota (archaeal) genome (Figs. S9, S??). Finally, we found that while amino
acids were readily synthesised and degraded by most organisms (Fig. S9), the degradation
of polycyclic aromatic compounds appeared to be least prevalent in the high runo↵ sites.
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Sites clustered by runo↵ regime

To identify potential drivers of this reduction in diversity when going from the L to
the H transects, we bi-clustered genomes by their normalised abundances (on a -log10
scale to reduce skew) and by sample site (Fig. S12), and found that sites clustered
following a similar pattern to geochemical features (see Fig. 1B), with H sites grouping
separately from L sites (Fig. 3A). The normalised abundances of MAGs showed no
strong phylogeographic pattern, in that we did not observe an assemblage of MAGs solely
representative of a given site (Fig. S13). In spite of this absence of phylogeographic
pattern, the tanglegram suggests that the beta diversity of highly abundant MAGs in the
L/C sites was greater than at the H sites (see the distribution of green lines connecting
the phylogenetic and clustered trees in Tab. S13). This di↵erence in diversity between
samples is further supported by an NDMS ordination (Fig. S14) and a PERMANOVA
test on a PCoA ordination (Fig. S14).
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Supplementary Figure 1. Gel electrophoresis images of the glnA gene for each
sample extracted in triplicate. (A) Initial gel results using 1 µl of DNA for each PCR
reaction. Every sample contains glnA except L-Soil and H2. (B) Repeated PCR reaction
for L-Soil and H2. Diluted DNA concentrations for PCR from 1 µl to 0.1 µl and 0.5 µl.
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Supplementary Figure 2. Illumina HiSeq DNA sequencing library validation from an
Agilent Technology 2100 Bioanalyzer. All libraries were constructed using Illumina
TruSeq DNA PCR-Free Library Prep. The library results for each of the eight samples
is presented and labelled above the panel: L-Soil, H-Soil, C-Soil, L2, H2, C, L1, H1.
Peaks between 300-600 bp indicate the presence of DNA. Peaks below 1 bp and above
1000 bp are internal standards.
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Supplementary Figure 3. Number of reads throughout analysis. Reads are
successively decreasing, except for the reads mapped to the Anvio contig database, as
each read can map to more than one contig and be counted more than once. The reads
mapped using checkM include only reads that map to the 300 high quality reconstructed
genomes, opposed to all reconstructed genomes in the Anvio mapping.
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sediment site in the profiles.
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Supplementary Figure 5. Sediment porewater profiles for organic carbon, nitrite and
nitrates, calcium carbonate, ammonia, chlorine, sulphate, and total dissolved
phosphorus (TDP). TDP was removed when producing PCA and boxplots in Figure 1
because of incomplete measurements in C and L2. Legend (bottom right) indicates the
colour of each sediment site in the profiles.
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Supplementary Figure 6. Distribution of all chemical features for sediment sites.
Includes chlorine and sulphate measurements absent from Figure 1. Branches and
asterisks indicate significant di↵erences between sites P < 0.025 (Dunn Test). If
branches form a dichotomy or trichotomy, the interactions within that group is not
significant. (A) Microprobe measurements collected at every 100 µm. (B) Porewater
measurements collected from bulk 1 cm intervals.
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significant (permutation test: P < 0.05).
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Supplementary Figure 9. Metabolic capacity of genomes separated by hydrological
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Supplementary Figure 12. Genome abundance heatmap, and tanglegram separated
by (A) bacterial genomes and (B) archaeal genomes. Left: The heatmap displays
genome abundance per site normalised by amount of reads in each sample and
transformed to a � log10 scale. Dotted yellow lines represent mean abundance values,
and yellow traces represent the raw z-scores above (red) and below (blue) the mean.
The abundance values are grouped both by sites (top dendrogram) and genomes (left
dendrogram). Right: Tanglegram between dendrogram clustered by similar abundances
and phylogenetic tree. Highlights in tanglegram: orange lines are genomes abundant in
soil, green lines are genomes abundant in low runo↵ sediment, purple lines are genomes
abundant in high runo↵ sediment, black lines are genomes shared in multiple
environments.

Page S14

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 13, 2020. ; https://doi.org/10.1101/705178doi: bioRxiv preprint 

https://doi.org/10.1101/705178
http://creativecommons.org/licenses/by-nc-nd/4.0/


Colby et al. Supplementary Information

100

100

100

100

100

100

100

100

46

100

100

100

96

100

100

95

100

100

100

100

100
100

78

93

100

100

100
85

100

100

40
100

100
100

100

34

96

100

100

100

100
100

100
77

100

100

100
87

100
100

100

100

100

88
100

100

100

100
96

100

100

100

100

88

100

100
100

54
90

100

63

100

100
100

87

70

100

100

100
33

100
100

100

99

100

100

100

100
100

70
100

100

36

100

100
100

100

98

95
28

100

100

73

100

100
58

100
100

100

100

100

100

100
100
99

100

100

100

100

100

100

98
100

100

74
92

6
100

98

100

100
100

72

82

100

100

100

100

100

100
44

100

77

100

100

100
100

100

100

100

100
100

100

100

100

100

100
100

100

100

100

74

100
100

100

100

100

100
100

100

100
100

100

100

70

100

100

100

100

100

100
100

100

100

100
96

98
77

100

100

100

100

100

100

100
100

100

100

100

100

100

100

99
100

100
100

100

100

100
88

100
95

100

98

100

100

100

100
53

100
100

100

100

100
100

58

15
100

100
100

100

100

100

100

100
62

100

100

100

100

100
100

100

100

100

100

100

100

100

100
100

100

100

100

100

100

100
100

100

100

100

100

100

100
100

100
100

100

100

100
100

98

100

100

100

100

100

97
100

100

100

100

100

100

76

33
100

100

0.2
H−soil

L−soil

C−soil

H2 L2H1 L1 C

0
1
2
3
4
5

-log10 abundance

0.1

100

100

73

100
100

100

100
100

100

Bin_80_10
Bin_80_9
Bin_80_4
Bin_80_8
Bin_37_2
Bin_37_10
Bin_37_9
Bin_37_6

Bin_54_7
Bin_54_9

Crenarchaeota
Nanoarchaeota

H−soil

L−soil

C−soil

H2 L2H1 L1 C

Acidobacteriota

Actinobacteriota

Alphaproteobacteria

Armatimonadota

Bacteroidota

Chloroflexota

Cyanobacteriota

Eisenbacteria

Gammaproteobacteria

Gemmatimonadota

KSB1

Lindowbacteria

Methylomirabilota

Myxococcota

Nitrospirota

Omnitrophota

Patescibacteria

Planctomycetota

Spirochaetota

UBP1

UBP10

Verrucomicrobiota

Zixibacteria

Supplementary Figure 13. Abundance of genomes are presented on a � log10 scale
were more negative values (red) are more abundant than positive values (blue). The
abundance values correspond by row with the genomes phylogenetic assignment.
Support values for phylogenetic tree are shown at each node. Page S15

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 13, 2020. ; https://doi.org/10.1101/705178doi: bioRxiv preprint 

https://doi.org/10.1101/705178
http://creativecommons.org/licenses/by-nc-nd/4.0/


Colby et al. Supplementary Information

method = "bray"
PCoA 1

PC
oA

 2

−0.6 −0.4 −0.2 0.0 0.2 0.4

−0
.2

0.
0

0.
2

0.
4

Soil

High

Low
L-Soil

C-Soil

H-Soil

C

L1

L2

H2

H1P = 0.005
F = 3.5242
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proven to be significant (PERMANOVA test: F = 3.52, P = 0.005).
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Supplementary Tables

Supplementary Table 1. Coordinates of Lake Hazen sediment and soil sites with
temperature and date at time of sampling.

Sample Location Temperature (�C) Date
H-Soil 81� 84’ 840” N; 70� 83’ 849” W -5 June 3, 2017
L-Soil 81� 80’ 332” N; 71� 54’ 239” W 0 June 7, 2017
C-Soil 81� 79’ 382” N; 70� 44’ 486” W -2 June 3, 2017
H1 81� 84’ 150” N; 70� 85’ 175” W not measured May 24, 2017
H2 81� 82’ 493” N; 70� 71’ 498” W not measured May 29, 2017
C 81� 80’ 343” N; 70� 50’ 447” W not measured May 27, 2017
L1 80� 80’ 521” N; 70� 52’ 699” W not measured June 1, 2017
L2 81� 79’ 171” N; 71� 46’ 926” W not measured June 2, 2017

Supplementary Table 2. Sediment deposition dates and rates for the two deep sites,
H2 and L2, is based on 210Pb constant rate of supply (CRS) dating model. Analysis was
completed on 0.5 cm core intervals. Data adapted from previous study [2].

H2 (Abbe Deepsite) L2 (Blister Deep Site)
Interval Midpoint CRS date (CRS year) Sedimentation rate (g/cm2/yr) Interval Midpoint CRS date (CRS year) Sedimentation rate (g/cm2/yr)
0-0.5 2017.1 0.349 0-0.5 2016.5 0.0724
0.5-1 2016.6 0.292 0.5-1 2014.0 0.0701
1-1.5 2015.9 0.111 1-1.5 2011.3 0.1163
1.5-2 2014.1 0.671 1.5-2 2009.2 0.1759
2-2.5 2012.7 0.671 2-2.5 2007.3 0.1232
2.5-3 2012.7 0.227 2.5-3 2004.7 0.0909
3-3.5 2012.0 5.563 3-3.5 2001.9 0.0967
3.5-4 2011.3 5.563 3.5-4 1998.8 0.0854
4-4.5 2011.3 5.563 4-4.5 1994.0 0.0513
4.5-5 2011.3 5.563 4.5-5 1987.2 0.0375
5-5.5 2011.3 5.563 5-5.5 1976.7 0.0220
5.5-6 2011.3 5.563 5.5-6 1966.51 0.0515
6-6.5 2011.3 5.563 6-6.5 1957.66 0.0339
6.5-7 2011.3 5.563 6.5-7 1949.00 0.0537
7-7.5 2011.3 5.563 7-7.5 1940.41 0.0451
7.5-8 2011.3 5.563 7.5-8 1931.79 0.0668
8-8.5 2011.3 5.563 8-8.5 1925.07 0.0553
8.5-9 2011.3 0.441 8.5-9 1918.10 0.0553
9-9.5 2010.9 0.224 9-9.5 1911.08 0.0553
9.5-10 2009.8 0.123 9.5-10 1904.42 0.0553
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Supplementary Table 3. Glacial runo↵ to the Lake Hazen Watershed. Lengths of
rivers in km are shown in parentheses. Mass balance modelled runo↵ for years 2015 and
2016. Sampling dates in 2017 were prior to the summer runo↵. Data adapted from
previous study [2].

Surface area (km2) Runo↵ volume (km3)
River Catchment Glacier River 2015 2016
High Runo↵: Abbé (AB) 390 204 7.9 (21) 0.061 0.015
Low Runo↵: Blister (BR) n/a 6 2.5 (11) 0.002 <0.001
Gilman (GL) 992 708 5.1 (22) 0.192 0.08
Henrietta Nesmith (HN) 1274 1041 9.6 (4.6) 0.291 0.075
Snowgoose (SG) 222 87 5.6 (17) 0.026 0.006
Turnabout (TN) 678 259 13.4 (42) 0.082 0.024
Very (VR) 1035 269 32.9 (39) 0.165 0.08
Watershed total 7516 3078 91.2 0.979 0.291

Supplementary Table 4. DNA extraction masses. DNA was extracted in triplicate
for each sample and then combined prior to sequencing.

Lake Hazen Sample Location Tube ID Wet Weight (g) PCR with glnA
1 2 3 Total (grams)

Sediment H2: Deephole S1 0.416 0.455 0.499 1.370 yes (diluted)
L2: Blister Deep S2 0.497 0.455 0.389 1.341 yes
H1: Abbe S3 0.469 0.514 0.552 1.535 yes
L1: Blister Shallow S4 0.429 0.402 0.361 1.192 yes
C: Ruggles S5 0.518 0.447 0.331 1.296 yes

Soil L-Soil: Blister Soil BS3 0.527 0.535 0.561 1.623 yes (diluted)
H-Soil: Abbe Soil AS3 0.443 0.537 0.417 1.397 yes
C-Soil: Ruggles Soil RS3 0.447 0.500 0.447 1.394 yes
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Supplementary Table 5. DNA fluorescence assay quantification for each sample.
Note: H2 sequencing required using full extraction volume of 65 µl to reach an
appropriate concentration.

Sample
Volume
(µl)

Concentration
(ng/µl)

Total DNA
(ng)

NanoDrop
(concentration ng/µl)

H2 65 0.08 3.36 4.6
L2 42 2.55 107.1 7.6
H1 42 4.33 181.86 10.2
L2 42 17.98 755.16 32.8
C 42 21.2 890.4 36.4
H-Soil 42 38.14 1601.88 65.2
L-Soil 47 69.88 3284.36 149.0
C-Soil 47 74.38 3495.86 110.0

Supplementary Table 6. Contigs were assembled with Megahit and used in Anvio
database. Only contigs that were greater than 2500 bp in length were used to form
MAGs, however, contigs with a length of 1000 bp or more were used to form the initial
database.

Contigs Total Length (bp) Min Contig Length (bp) Max Contig Length (bp) Avg Contig Length (bp) N50 (bp) # of genes prodigal
Megahit 12026467 8477069127 200 792468 705 756 NA
Anvio 1455655 3414974759 1000 792468 NA 285024 4254625

Supplementary Table 7. Number of bins recovered at each assembly step prior to
and after manual refinement with Anvio.

Anvio-Output
(CONCOCT binning)

CheckM
Anvio-Output

(manually refined)
Final CheckM

Total Bins 850 850 877 877
Completion, Redundancy
C: >90, R: <10 52 74 52 72
C: >70, R: <10 180 199 178 198
C: >50, R: <10 321 324 309 300
C: <50, R: any 529 526 568 577
Contamination
<1 233 261 255 286
<5 544 632 590 676
>10 8 51 7 27
Good bins but contaminated
C: >50, R: >10 2 27 0 2
C: >70, R: >10 1 6 0 0
C: >90, R: >10 0 2 0 0
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Supplementary Table 8. P -values for marker gene and pathway distribution between
sites. A Fisher’s exact test was used in the place of �2 test for small count numbers.
P -values of less than 0.05 are considered significant (labelled with an asterisks).

Functional Marker High vs Low High vs Control High vs Soil Low vs Control Low vs Soil Control vs Soil
Carbon Cycle 0.03298 * 0.0004998 * 0.0004998 * 0.07746 0.1384 0.001499 *
Nitrogen Cycle 0.07596 0.001999 * 0.0004998 * 0.7006 0.03448 * 0.1859
sulphur Cycle 0.001999 * 0.002999 * 0.0004998 * 0.4913 0.02999 * 0.3823
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