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Abstract

We propose an extended Gaussian mixture model for the distribution of causal effects of common single nucleotide
polymorphisms (SNPs) for human complex phenotypes, taking into account linkage disequilibrium (LD) and heterozy-
gosity (H), while also allowing for independent components for small and large effects. Using a precise methodology
showing how genome-wide association studies (GWAS) summary statistics (z-scores) arise through LD with underlying
causal SNPs, we applied the model to multiple GWAS. Our findings indicated that causal effects are distributed with
dependence on a SNP’s total LD and H, whereby SNPs with lower total LD are more likely to be causal, and causal
SNPs with lower H tend to have larger effects, consistent with the influence of negative pressure from natural selection.
The degree of dependence, however, varies markedly across phenotypes.
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INTRODUCTION

There is currently great interest in the distribution of causal
effects among trait-associated single nucleotide polymor-
phisms (SNPs), and recent analyses of genome-wide as-
sociation studies (GWAS) have begun uncovering deeper
layers of complexity in the genetic architecture of complex
traits [7, 3, 24, 25]. This research is facilitated by using
new analytic approaches to interrogate structural features
in the genome and their relationship to phenotypic ex-
pression. These analyses take into account the fact that
different classes of SNPs have different characteristics and
play a multitude of roles [16]. Along with different causal
roles for SNPs, which in itself would suggest differences
in distributions of effect-sizes for different sets of causal
effects, the effects of minor allele frequency (MAF) of the
causal SNPs and their total correlation with neighboring
SNPs (total linkage disequilibrium, TLD) are providing
new insights into the action of selection on the genetic
architecture of complex traits [3, 22, 25].

Here we present a unifying approach, using Bayesian
analysis on GWAS summary statistics, to explore the role
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of TLD on the distribution of causal SNPs, and the im-
pact of MAF on causal effect size, while simultaneously
incorporating multiple effect-size distributions. Treating
each of these factors independently is likely to provide a
misleading assessment. Thus, we posit a model for the
prior distribution of effect sizes, and building on previous
work [7], fit it to the GWAS summary statistics for a wide
range of phenotypes. From the estimated set of model pa-
rameters for a phenotypes, we generated simulated geno-
types and calculated the corresponding z-scores. With a
wide range of model parameters across real phenotypes,
the specificity of the model parameters for a given pheno-
type are narrowly defining of the distribution of summary
statistics for that phenotype. We find that the detailed
distribution of GWAS summary statistics for real pheno-
types are reproduced to high accuracy, while many of the
parameters used to setup a simulated phenotype are ac-
curately reproduced by the model. The distribution of
causal SNPs with respect to their TLD will be shown to
vary widely across different phenotypes.

In earlier work [6] we presented a Gaussian mixture
model to describe the distribution of underlying causal
SNP effects (the “β” simple linear regression coefficients
that indicate the strength of association between causal
variants and a phenotype). Due to extensive and complex
patterns of linkage disequilibrium between SNPs, many
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non-causal SNPs will exhibit a strong association with phe-
notypes, resulting in a far more complicated distribution
for the summary z-scores. The basic model for the distri-
bution of the causal βs is a mixture of non-null and null
normal distributions, the latter (denoted N (0, 0)) being
just a delta function:

β ∼ π1N (0, σ2
β) + (1 − π1)N (0, 0) (1)

where π1 is the polygenicity, i.e., the proportion of SNPs
that are causal (equivalently, the prior probability that any
particular SNP is causal), and σ2

β is the discoverability, i.e.,
the variance of the non-null normal distribution, which was
taken to be a constant across all causal SNPs. The distri-
bution of z-scores arising from this shows strong heterozy-
gosity and total LD dependence (Eqs. 20 and 28 in [6]).
Implementing this relatively simple model (Eq. 1) and ap-
plying it to GWAS summary statistics involved a good deal
of complexity, but resulted in remarkably good estimation
of the overall distribution of z-scores, as demonstrated by
the fit between the actual distribution of z-scores for mul-
tiple phenotypes and the model predictions, visualized on
quantile-quantile (QQ) plots.

Given that GWAS, due to lack of power, consistently
failed to discover the SNPs that explain the bulk of her-
itability, the objective of the model was to characterize
the likely large number of causal SNPs of weak signal that
evaded detection – and likely would explain missing or
hidden heritability. Thus, the model was not intended
to accurately predict the tails of the distribution of z-
scores, which for large enough GWAS would correspond
to already discovered SNPs (i.e., whose summary p-values
reached genome-wide significance), and involved the sim-
plifying assumption that the bulk of causal effects roughly
followed the same Gaussian. Nevertheless, the predicted
distributions captured the main characteristics of the SNP
associations for many phenotypes. For some phenotypes,
however, the fit was relatively poor, and even for pheno-
types where the overall fit was good, a breakdown of the
z-score distributions for SNPs stratified by heterozygosity
and total LD indicated some unevenness in how well the
tails of the sub-distributions were predicted. Additionally,
recent work by others [24] indicated that it is important
to take SNP heterozygosity into account as a component
in discoverability, and that an additional Gaussian distri-
bution for the βs might be appropriate if large and small
effects are distributed differently [25]. These approaches,
however, were not combined (the former involving a sin-
gle causal Gaussian incorporating heterozygosity, the lat-
ter involving two Gaussians with no heterozygosity depen-
dence). An extra complexity is that total LD might play
an important role in the distribution of causal effects [3].
It is unclear how all these factors impact each other.

METHODS

In the current work, we sought to extend our earlier work

to incorporate multiple Gaussians, while taking into ac-
count total LD and selection effects reflected in heterozy-
gosity, in modeling the distribution of causal βs. Note
that this is independent of the need to correctly take het-
erozygosity and total LD into account when building a dis-
tribution for z-scores even when the distribution of causal
effects (βs) does not depend on these factors, as in our ear-
lier work [6]. The appropriate methodology calls for using
an extensive reference panel that likely involves all possi-
ble causal SNPs with MAF greater than some threshold
(e.g., 1%), and regard the z-scores for typed or imputed
SNPs – a subset of the reference SNPs – as arising, di-
rectly or through LD, from the underlying causal SNPs in
the reference panel.

Since the single causal Gaussian, Eq. 1, has provided
an appropriate starting point for many phenotypes, it is
reasonable to build from it. With additional terms in-
cluded, if it turns out that this original term is not needed,
the fitting procedure, if implemented correctly, should elim-
inate it. Also, anticipating extra terms in the distribution
of causal βs, we introduce a slight change in labeling the
Gaussian variance (σ2

β → σ2
b ), and write the distributions

for the causal component only – it being understood that
the full distribution will include the last term on the right
side of Eq. 1 for the prior probability of being null.

Given that for some phenotypes there is strong evi-
dence that rarer SNPs have larger effects, we next include
a term that reflects this: a Gaussian whose variance is
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Figure 1: Examples of prior probability functions pc(L) used in Eqs.
3 and 4, where L is reference SNP total LD. These functions can
be summarized by three quantities: the maximum value, pc1, which
occurs at L = 1; the total LD value, L = mc, where pc(mc) =
pc1/2, give by the gray dashed lines in the figure; and the total LD
width of the transition region, wc, defined as the distance between
where pc(L) falls to 95% and 5% of pc1 given by the flanking red
dashed lines in the figure. Numerical values of pc1, mc, and wc are
given in Table 1 and Figures 2 and 3. pd(L) is similar. Plots of
pc(L) and pd(L), where relevant, for all phenotypes are shown in
Supplementary Material Figures S4-S6.
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ĥ2
l < 0.01

ALS Chr 9

0 2 4 6

c1

Ŝ
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ĥ2 =0.52

ĥ2
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ĥ2
b =0.09

ĥ2
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Figure 2: QQ plots of (pruned) z-scores for qualitative phenotypes (dark blue, 95% confidence interval in light blue) with model prediction
(yellow). See Supplementary Material Figures S12 to S19. The value given for pc1 is the amplitude of the full pc(L) function, which occurs
at L = 1; the values (mc, wc) in parentheses following it are the total LD (mc) where the function falls to half its amplitude (the middle gray
dashed lines in Figure 1 are examples), and the total LD width (wc) of the transition region (distance between flanking red dashed lines in
Figure 1). Similarly for pd1 (md, wd), where given. h2

b
, h2

c , and h2

d
are the heritabilities associated with the “b”, “c”, and “d” Gaussians,

respectively. h2 is the total SNP heritability, reexpressed as h2

l
on the liability scale for binary phenotypes. Parameter values are also given

in Table 1 and heritabilities are also in Table 3; numbers of causal SNPs are in Table 2. Reading the plots: on the vertical axis, choose a
p-value threshold for typed or imputed SNPs (SNPs with z-scores; more extreme values are further from the origin), then the horizontal axis
gives the proportion, q, of typed SNPs exceeding that threshold (higher proportions are closer to the origin).

proportional to HS , where H is the SNP’s heterozygosity
and S is a new parameter which, if negative, will reflect
the noted behavior [24]. With the addition of the new
term, the total prior probability for the SNP to be causal
is still given by π1. Thus, extending Eq. 1, we get:

β(H) ∼ π1

{

(1 − pc)N (0, σ2
b ) + pcN (0,HSσ2

c )
}

(2)

(ignoring, as noted, the null component (1 − π1)N (0, 0)),
where pc (0 ≤ pc ≤ 1) is the prior probability that the
SNP’s causal component comes from the “c” Gaussian
(with variance HSσ2

c ), and pb ≡ 1 − pc is the prior prob-
ability that the SNP’s causal component comes from the
“b” Gaussian (with variance σ2

b ). This extension intro-
duces an extra three parameters pc, σc, and S, assumed
for the moment to be the same for all SNPs.

If the “c” Gaussian is capturing larger effects from rarer
SNPs, reflecting selection pressure, it is reasonable to in-
quire if the prior probability for a causal SNP’s contri-
bution from the “c” Gaussian is total LD-mediated – with
lower probability for a SNP that has large total LD (TLD).
Thus, instead of treating pc as a constant, we explore the
possibility that it is larger for SNPs with weaker TLD. This
can be accomplished by means of a generalized sigmoidal
function that will have a maximum at very low TLD, might
maintain that maximum for all SNPs (equivalently, pc is a
constant), or decrease in amplitude slowly or rapidly, pos-
sibly to 0, for SNPs with higher TLD. Such a function of
TLD can be characterized by three parameters: its ampli-
tude, the TLD at the midpoint of the sigmoidal transition,

and the width of the sigmoidal transition (over a wide or
narrow range of TLD). Examples are shown in Figure 1
(mathematically, the curve can continue into the “nega-
tive TLD” range, revealing a familiar sigmoidal shape).
Let the variable L be the TLD of a SNP. Then

β(H,L) ∼ π1

{

(1 − pc(L))N (0, σ2
b )+

pc(L)N (0,HSσ2
c )

}

(3)

where pc(L) is the sigmoidal function (0 ≤ pc(L) ≤ 1 for
all L), which numerically can be found by fitting for its
three characteristic parameters.

As a final possible extension, we add an extra term – a
“d” Gaussian – to describe larger effects not well captured
by the “b” and “c” Gaussians. This gives finally:

β(H,L) ∼ π1

{

(1 − pc(L) − pd(L))N (0, σ2
b )+

pc(L)N (0,HSσ2
c )+

pd(L)N (0, σ2
d)

}

. (4)

where σ2
d is a new parameter, pd(L) is another general

sigmoid function (0 ≤ pd(L) ≤ 1 for all L) where now there
is the added constraint 0 ≤ pc(L) + pd(L) ≤ 1, and the
prior probability for the “b” Gaussian becomes pb(L) ≡

1 − pc(L) − pd(L).
Depending on the phenotype and the GWAS sample

size, it might not be feasible, or meaningful, to implement
the full model. In particular, for low sample size and/or
low discoverability, the “b” Gaussian is all that can be es-
timated, but in most cases both the “b”and “c” Gaussians
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can be estimated, and β will be well characterized by Eq.
3.

Data Preparation

We analyzed summary statistics for fourteen phenotypes-
genotypes (in what follows, where sample sizes varied by
SNP, we quote the median value):

(1) bipolar disorder (Ncases = 20,352, Ncontrols = 31,358)
[18]; (2) schizophrenia (Ncases = 35,476, Ncontrols = 46,839)
[15]; (3) coronary artery disease (Ncases = 60,801, Ncontrols

= 123,504) [12]; (4) ulcerative colitis (Ncases = 12,366,
Ncontrols = 34,915) and (5) Crohn’s disease (Ncases =
12,194, Ncontrols = 34,915) [1]; (6) late onset Alzheimer’s
disease (LOAD; Ncases = 17,008, Ncontrols = 37,154) [9]
(in the Supplementary Material we present results for a
more recent GWAS with Ncases = 71,880 and Ncontrols

= 383,378 [8]); (7) amyotrophic lateral sclerosis (ALS)
(Ncases = 12,577, Ncontrols = 23,475) [19]; (8) number
of years of formal education (N = 293,723) [13]; (9) intel-
ligence (N = 262,529) [17, 14]; (10) body mass index (N =
233,554) [10]; (11) height (2010) (N = 133,735) [23]; and
height (2014) (N = 251,747) [21]; (12) low- (N = 89,873)
and (13) high-density lipoprotein (N = 94,295) [20]; and
(14) total cholesterol (N = 94,579) [20]. Most participants
were of European ancestry.

Confidence intervals for parameters were estimated us-
ing the inverse of the observed Fisher information matrix
(FIM). The full FIM was estimated for up to eight param-
eters used in Model C, and for the remaining parameters
that extend the analysis to Model D the confidence in-
tervals were approximated ignoring off-diagonal elements.
Additionally, the wd parameter was treated as fixed quan-
tity, the lowest value allowing for a smooth transition of
the pd(L) function to 0 (see Supporting Material Figure
S6; for BIP, CD, UC, and TC, however, the function pd(L)
was a constant (=pd(1)). For the derived quantities h2

and ncausal, which depend on multiple parameters, the co-
variances among the parameters, given by the off-diagonal
elements of the inverse of the FIM, were incorporated. Nu-
merical values are in Supporting Material Tables S2-S6.

RESULTS

Phenotypes

Summary QQ plots for pruned z-scores are shown in Fig-
ure 2 for seven binary phenotypes (for AD we separate out
chromosome 19, which contains the APOE gene), and in
Figure 3 for seven quantitative phenotypes (including two
separate GWAS for height), with model parameter values
in Table 1; breakdowns of these summary plots with re-
spect to a 4×4 grid of heterozygosity×total LD (each grid
a subset of a 10×10 grid) are in Supplementary Material
Figures S12-S30. For each phenotype, model selection (B,
C, or D) was performed by testing the Bayesian informa-
tion criterion (BIC) – see SI Table 1.

The distributions of z-scores for different phenotypes

are quite varied. Nevertheless, for most phenotypes ana-
lyzed here, we find evidence for larger and smaller effects
being distributed differently, with strong dependence on
total LD, L, and heterozygosity, H.

Our model estimates polygenicity as a one-dimensional
function of L. We find that polygenicity is dominated by
SNPs with low L. However, the degree of restriction varies
widely across phenotypes, depending on the shapes and
sizes of pc(L) and pd(L) in Eq. 4, the prior probabilities
that a causal SNP belongs to the “c” and “d” Gaussians.
These prior probabilities are shown in Figure 1 and SI Fig-
ures S4-S6. Taking into account the underlying distribu-
tion of reference SNPs with respect to heterozygosity, these
distributions lead to a varied pattern across phenotypes of
the expected number of causal SNPs in equally-spaced ele-
ments in a two-dimensional H×L grid, as shown for height
(2014) in Figure 4 C, and for all phenotypes in SI Figures
S8-S11 (third columns). Further, for any given phenotype,
the effect sizes of causal variants come from distributions
whose variances can be widely different – by up to two or-
ders of magnitude. Thus, given the prior probabilities (pb,
pc, and pd) by which these distributions are modulated as
a function of L, we are able to estimate the expected effect
size per causal SNP, E(β2), in each H × L grid element,
as shown in Figure 4 D and SI Figures S8-S11 (fourth
columns). In general, depending on the shapes and sizes
of pc(L) and pd(L), SNPs with lower L have larger E(β2).
However, the selection parameter S in the “c” Gaussian
has a large impact on E(β2) as a function of H (see SI
Figure S1). As a result, for most phenotypes, we find that
the effect sizes for low MAF causal SNPs (H < 0.05) are
several times larger than for more common causal SNPs
(H > 0.1). We find that heritability per causal SNP is
larger for lower L, a general pattern that follows from at
least one of the prior probabilities, pc(L) or pd(L), being
non-constant. However, because heritability per causal
SNP is proportional to H, we find that, even with neg-
ative selection parameter, S (and thus larger E(β2) for
lower H), the heritability per causal SNP is largest for the
most common causal SNPs (H > 0.45).

Simulations

To test the specificity of the model for each real pheno-
type, we constructed simulations where, in each case, the
true causal βs (a single vector instantiation) for all refer-
ence panel SNPs were drawn from the overall distribution
defined by the real phenotype’s parameters (thus being
the “true” simulation parameters). We set up simulated
phenotypes for 100,000 samples by adding noise to the ge-
netic component of the simulated phenotype [6], and per-
formed a GWAS to calculate z-scores. We then sought to
determine whether the true parameters, and the compo-
nent heritabilities, could reasonably be estimated by our
model. In SI Figures S2 and S3 we show the results for
the simulated case-control and quantitative phenotypes,
respectively. Overall heritabilities were generally faithful
to the true values (the values estimated for the real phe-
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Figure 3: QQ plots of (pruned) z-scores for quantitative phenotypes (dark blue, 95% confidence interval in light blue) with model prediction
(yellow). See Supplementary Material Figures S20 to S30. For HDL, pc(L) = pc1 for all L; for bipolar disorder and LDL, pd(L) = pd1 for all
L. See caption to Figure 2 for further description.

notypes), though for Crohn’s disease the simulated value
was overestimated. Note that for the case-control simu-

lated phenotypes, the heritabilities on the observed scale,
denoted ĥ2 in SI Figure S2, should be compared with the

Phenotype π1 σ2
b σ2

c S pc1 mc wc σ2
d pd1 md wd σ2

0

SCZ 2014 3.37e-2 2.2e-6 3.5e-5 -0.55 0.11 89 341 1.3e-4 8.4e-3 557 14 1.07
BIP 4.69e-2 1.1e-6 3.3e-5 -0.41 0.12 89 338 8.8e-5 8.2e-3 —– —– 1.01
CD 9.55e-4 5.0e-5 5.5e-4 -0.64 0.20 176 604 7.6e-2, 1.0e-4 —– —– 1.14
UC 1.16e-3 3.6e-5 4.0e-4 -0.67 0.16 173 627 8.0e-2 1.0e-4 —– —– 1.12
CAD 1.88e-3 1.1e-5 9.2e-5 -0.51 6.9e-2 171 683 5.3e-3 3.6e-4 102 7 0.92
AD Chr19 4.34e-4 1.0e-4 6.1e-3 -0.57 0.73 35 89 —– —– —– —– 1.09
AD NoC19 1.05e-3 1.8e-5 2.6e-4 -0.52 2.9e-2 264 6 —– —– —– —– 1.04
ALS Chr9 1.12e-2 7.3e-6 3.9e-3 -0.01 1.8e-3 106 6 —– —– —– —– 0.99

Edu 1.43e-2 1.7e-6 7.8e-6 -0.44 0.45 111 339 8.5e-5 6.3e-3 441 7 0.94
IQ 2018 1.27e-2 7.5e-7 6.2e-6 -0.51 0.38 122 309 3.6e-5 7.8e-2 561 6 1.17
Height 2010 1.02e-3 4.1e-5 2.0e-4 -0.44 0.20 322 1243 —– —– —– —– 0.90
Height 2014 1.15e-3 3.7e-5 1.6e-4 -0.46 0.21 242 929 —– —– —– —– 1.57
Height 2018 2.50e-3 8.7e-6 8.9e-5 -0.43 0.37 210 739 —– —– —– —– 2.12
HDL 2.54e-3 1.1e-5 4.5e-4 -0.79 1.4e-2 143 599 2.2e-2 1.1e-3 66 7 0.91
LDL 5.84e-3 3.3e-6 2.4e-4 -0.52 8.8e-3 336 1417 7.3e-3 2.2e-4 346 6 0.92
BMI 1.54e-3 2.2e-5 4.5e-4 0.00 4.4e-3 288 12 —– —– —– —– 0.85
TC 1.15e-3 1.7e-5 6.2e-4 -0.97 2.1e-2 140 583 2.9e-4 3.4e-2 —– —– 0.92

Table 1: Model parameters for phenotypes, case-control (upper section) and quantitative (lower section). π1 is the overall proportion of the
11 million SNPs from the reference panel that are estimated to be causal. pc(L ≥ 1) is the prior probability multiplying the “c” Gaussian,
which has variance HSσ2

c , where H is the reference SNP heterozygosity. Note that pc(L) is just a sigmoidal curve, and can be characterized
quite generally by three parameters: the value pc1 ≡ pc(1) at L = 1; the total LD value L = mc at the mid point of the transition, i.e.,
pc(mc) = pc1/2 (see the middle gray dashed lines in Figure 1, which shows examples of the function pc(L)); and the width wc of the transition,
defined as the distance (in L) between where the curve falls to 95% and 5% of pc1 (distance between the flanking red dashed lines in Figure
1). Note that for AD Chr19, AD NoC19, and ALS Chr9, π1 is the fraction of reference SNPs on chromosome 19, on the autosome excluding
chromosome 19, and on chromosome 9, respectively. For bipolar disorder, Crohn’s disease, ulcerative colitis, and total cholesterol pd(L) = pd1

for all L. Examples of HS multiplying σ2
c are shown in Supplementary Material Figure S1. Estimated Bayesian information criterion (BIC)

values for three models (B, C, and D) are shown in Supplementary material Table S1: the 3-parameter model B with only the “b” Gaussian
(π1, σb, σ0); the 8-parameter model C with both the “b” with “c” Gaussians (Eq. 3); and the 12-parameter model D with “b”, “c” and ”d”
Gaussians (Eq. 4). 95% confidence intervals are in Supporting Materials Tables S2-S4.
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Phenotype nb nc nd ncausal

SCZ 2014 3.5e5 2.3e4 3.0e3 3.71e5
BIP 4.8e5 3.4e4 4.2e3 5.16e5
CD 9.0e3 1.5e3 1 1.05e4
UC 1.1e4 1.4e3 2 1.27e4
CAD 2.0e4 1.0e3 5 2.07e4
AD Chr19 80 33 —– 113
AD NoC19 1.1e4 294 —– 1.12e4
ALS Chr9 5.3e3 7 —– 5.29e3

Edu 1.1e5 4.4e4 956 1.58e5
IQ 2018 9.6e4 3.4e4 1.1e4 1.40e5
Height 2010 9.4e3 1.9e3 —– 1.13e4
Height 2014 1.1e4 2.0e3 —– 1.26e4
Height 2018 2.0e4 7.6e3 —– 2.75e4
HDL 2.7e4 264 15 2.79e4
LDL 6.4e4 463 14 6.43e4
BMI 1.7e4 68 —– 1.69e4
TC 1.2e4 180 434 1.27e4

Table 2: Numbers of causal SNPs. ncausal is the total number of
causal SNPs (from the 11 million in the reference panel); nb, nc, and
nd are the numbers associated with the ”b”, ”c”, and ”d” Gaussians,
respectively. 95% confidence intervals are in Supporting Materials
Table S5.

corresponding values in Figure 2, not with ĥ2
l , which de-

notes heritability on the liability scale, i.e., adjusted for
population prevalence. Polygenicities and discoverabilities
were also generally faithfully reproduced. However, for
ALS restricted to chromosome 9, and BMI, the selection
parameter was incorrectly estimated, owing to the weak
signal in these GWAS and very low polygenicity (small
number of causal SNPs) for the “c” Gaussian.

DISCUSSION

We propose an extended Gaussian mixture model for the
distribution of underlying SNP-level causal genetic effects
in human complex phenotypes, allowing for the phenotype-
specific distribution to be modulated by heterozygosity, H,
and total LD, L, of the causal SNPs, and also allowing for
independent distributions for large and small effects. The
GWAS z-scores for the typed or imputed SNPs, in addition
to having a random environmental and error contribution,
arise through LD with the causal SNPs. Thus, taking the
detailed LD and heterozygosity structure of the population
into account by using a reference panel, we are able to
model the distribution of z-scores and test the applicability
of our model to human complex phenotypes.

Complex phenotypes are emergent phenomena arising
from random mutations and selection pressure. With many
underlying causal variants, coming from a multitude of
functional categories [16], it is likely that different variants
will experience different evolutionary pressure – negative,
neutral, or positive – due at least to pleiotropic roles.

Phenotype h2
b h2

c h2
d h2 h2

l

SCZ 2014 0.16 0.31 0.09 0.56 0.32
BIP 0.11 0.34 0.08 0.54 0.27
CD 0.10 0.40 0.02 0.52 0.24
UC 0.09 0.29 0.02 0.41 0.18
CAD 0.05 0.04 0.00 0.09 0.07
AD Chr19 0.00 0.08 —– 0.08 0.11
AD NoC19 0.04 0.03 —– 0.07 0.10
ALS Chr9 0.01 0.00 —– 0.01 0.00

Edu 0.04 0.11 0.02 0.18 —–
IQ 2018 0.02 0.08 0.08 0.18 —–
Height 2010 0.08 0.13 —– 0.22 —–
Height 2014 0.09 0.12 —– 0.21 —–
Height 2018 0.04 0.24 —– 0.28 —–
HDL 0.06 0.08 0.05 0.19 —–
LDL 0.05 0.05 0.02 0.11 —–
BMI 0.08 0.01 —– 0.08 —–
TC 0.04 0.10 0.03 0.18 —–

Table 3: Heritabilities: h2 is the total additive SNP heritability, re-
expressed on the liability scale as h2

l
for the qualitative traits (upper

section). h2

b
, h2

c , and h2

d
are the heritabilities associated with the

”b”, ”c”, and ”d” Gaussians, respectively. 95% confidence intervals
are in Suporting Materials Table S6.

Here, we find evidence for markedly different genetic
architectures across diverse complex phenotypes, where
the polygenicity (or, equivalently, the prior probability
that a SNP is causal) is a function of SNP total LD (L),
and discoverability is multi-component and MAF depen-
dent.

In contrast to previous work modeling the distribution
of causal effects that took total LD and multiple functional
annotation categories into account while implicitly assum-
ing a polygenicity of 1 [3], or took MAF into account while
ignoring total LD dependence and different distributions
for large and small effects [24], or took independent dis-
tributions for large and small effects into account (which
is related to incorporating multiple functional annotation
categories) while ignoring total LD and MAF dependence,
here we combine all these issues in a unified way, using an
extensive underlying reference panel of ∼11 million SNPs
and an exact methodology using Fourier transforms to re-
late summary GWAS statistics to the posited underlying
distribution of causal effects [6]. We show that the distri-
butions of all sets of phenotypic z-scores, including extreme
values that are well within genome-wide significance, are
accurately reproduced by the model, both at overall sum-
mary level and when broken down with respect to a 10×10
H×L grid – even though the various phenotypic polygenic-
ities and per-causal-SNP heritabilities range over orders of
magnitude.

Selection pressure can be assessed by measuring the
extent of long-range LD, given heterozygosity and local re-
combination rates. In general, the signature of positive se-
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Figure 4: Model results for height (2014) using the BC model. The
reference panel SNPs are binned with respect to both heterozygosity
(H) and total LD (L) in a 50 × 50 grid for 0.02 ≤ H ≤ 0.5 and
1 ≤ L ≤ 500. Shown are model estimates of: (A) log10 of the
percentage of heritability in each grid element; (B) for each element,
the average heritability per causal SNP in the element; (C) log

10
of

the number of causal SNPs in each element; and (D) the expected
β2 for the element-wise causal SNPs. Note that H increases from
top to bottom.

lection is higher heterozygosity of variants given the extent
of LD (or higher extended LD, given the heterozygosity).
Negative selection acts to keep variants (mutations) dele-
terious to fitness at low frequency (or ultimately remove
them), a process that is facilitated by higher recombina-
tion rates [5]. There are more ways of being wrong than
being right: any given mutation is more likely to be delete-
rious to, rather than aid, fitness. Since weakly deleterious
variants will take a while to be removed, recent variants
are likely to be deleterious [11]. In addition, the larger
the effect of a deleterious variant the more efficient nega-
tive selection will be, which all suggests that the lower the
MAF the larger the effect size. On the other hand, older
variants, being old, are likely to have been positively se-
lected (perhaps pleiotropically with a fitness-related trait),
and over time will acquire LD with recent variants [3]. So
when negative selection is operating, we should expect to
find more and more effects with larger and larger effect
size at lower total LD and lower heterozygosity.

It was found in [3] – which, in addition to analyzing
total LD, modeled allele age and recombination rates –
that common variants associated with complex traits are
weakly deleterious to fitness, in line with the earlier model
result that most of the variance in fitness comes from rare
variants that have a large effect on the trait in question [2].
Thus, larger per-allele effect sizes for less common variants
is consistent with the action of negative selection. Further,
based on a model equivalent to Eq. 2 with pc ≡ 1, it was
argued in [24], using forward simulations and a commonly
used demographic model [4], that negative values for the
selection parameter, S, which leads to larger effects for

rarer variants, is a signature of negative selection.
We find negative selection parameter values for most

traits, which is broadly in agreement with [24] with the
exception of BMI, which we find can be modeled with two
Gaussians with no heterozygosity dependence, though it
should be noted that the polygenicity for the larger-effects
Gaussian (the “c” Gaussian with the S parameter) is very
low, amounting to an estimate of only 68 common causal
SNPs of large effect. A similar situation (S ≃ 0) obtains
with ALS restricted to chromosome 9; here, the sample
size is relatively low, leading to a weak signal, and we
estimate only 7 common causal SNPs associated with the
“c” Gaussian.

Generally, we find evidence for the existence of ge-
netic architectures where the per causal-SNP heritability is
larger for more common SNPs and/or for SNPs with lower
total LD. But the trend is not uniform across phenotypes
– see SI Figures S8-S11, second columns.

For most traits, we find strong evidence that causal
SNPs with low heterozygosity have larger effect sizes (S <

0 in Table 1; the effect of this as an amplifier of σ2
c in Eq.

4 is illustrated in Supplementary Material Figure S1) – see
SI Figures S8-S11, fourth columns. Thus, negative selec-
tion seems to play an important role in most phenotypes-
genotypes. This is also indicated by the extent of the re-
gion of finite probability for variants of large effect sizes
(which are enhanced by having S . −0.4) being relatively
rare (low H), which will be greater for larger pc1, the am-
plitude of the prior probability for “c” Gaussian (see SI
Figures S4 and S5).

The “b” Gaussian in Eq. 3 or 4 does not involve a
selection parameter: effect size variance is independent of
MAF. Thus, causal SNPs associated with this Gaussian
are likely undergoing neutral (or very weakly negative) se-
lection. It should be noted that in all traits examined
here, whether or not there is evidence of negative selection
(S < 0), the effect size variance of the “b” Gaussian is
many times smaller – sometimes by more than an order
of magnitude – than that for the “c” Gaussian. Thus, it
appears there are many causal variants of weak effect un-
dergoing neutral (or very weakly negative) selection. For
the ten phenotypes where the “d” Gaussian could be im-
plemented, its variance parameter was several times larger
than that of the “c” Gaussian. However, the amplitude of
the prior probability for the “d” Gaussian, pd1, was gener-
ally much smaller than the amplitudes of the prior prob-
abilities for the “b” or “c” Gaussians, which translated
into a relatively small number of causal variants with very
large effect associated with this Gaussian. (Due to lack of
power, in four instances – BIP, CD, UC, and TC – pd(L)
was treated as a constant, i.e., independent of L.) Interest-
ingly, intelligence had the highest number of causal SNPs
associated with this Gaussian, while the extent of total LD
for associated SNPs was also liberal (md = 561; see also
SI Figure S6). It is possible that some of these SNPs are
undergoing positive selection, but we did not find direct
evidence of that.
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We find a diversity of genetic architectures across mul-
tiple human complex phenotypes. We find that SNP total
LD plays an important role in the likelihood of the SNP
being causal, and in the effect size of the SNP. In general,
we find that lower total LD SNPs are more likely to be
causal with larger effects. Furthermore, for most pheno-
types, while taking total LD into account, we find that
causal SNPs with lower MAF have larger effect sizes, a
phenomenon indicative of negative selection. Additionally,
for all phenotypes, we found evidence of neutral selection
operating on SNPs with relatively weak effect. We did not
find direct evidence of positive selection. Future work will
explore SNP functional annotation categories and their dif-
ferential roles in human complex phenotypes.
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