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Abstract

Variability in cell populations is frequently observed in both in vitro and in vivo set-
tings. Intrinsic differences within populations of cells, such as differences in cell sizes
or differences in rates of cell motility, can be present even within a population of
cells from the same cell line. We refer to this variability as cell heterogeneity. Math-
ematical models of cell migration, for example, in the context of tumour growth
and metastatic invasion, often account for both undirected (random) migration and
directed migration that is mediated by cell-to-cell contacts and cell-to-cell adhesion.
A key feature of standard models is that they often assume that the population is
composed of identical cells with constant properties. This leads to relatively simple
single-species homogeneous models that neglect the role of heterogeneity. In this
work, we use a continuum modelling approach to explore the role of heterogeneity
in spatial spreading of cell populations. We employ a three-species heterogeneous

model of cell motility that explicitly incorporates different types of experimentally-
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motivated heterogeneity in cell sizes: (i) monotonically decreasing; (ii) uniform; (iii)
non-monotonic; and (iv) monotonically increasing distributions of cell size. Com-
paring the density profiles generated by the three-species heterogeneous model with
density profiles predicted by a more standard single-species homogeneous model
reveals that when we are dealing with monotonically decreasing and uniform dis-
tributions a simple and computationally efficient single-species homogeneous model
can be remarkably accurate in describing the evolution of a heterogeneous cell pop-
ulation. In contrast, we find that the simpler single-species homogeneous model
performs relatively poorly when applied to non-monotonic and monotonically in-
creasing distributions of cell sizes. Additional results for heterogeneity in parameters
describing both undirected and directed cell migration are also considered, and we

find that similar results apply.
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1 1 Introduction

> In wvitro cell migration experiments play an important role in the discovery and
3 testing of putative drug treatments, the study of malignant tumour growth
+ and metastasis, as well as tissue regeneration and repair (Savla et al., 2004;
s Sengers et al., 2007; Tremel et al., 2009; Sarapata and de Pillis, 2010; Ger-
s lee, 2013; Edmondson et al., 2014; Shah et al., 2016). Mathematical models
7 of many biological processes involved in these experiments normally require
s certain assumptions to make the problem mathematically and computation-
o ally tractable. When modelling large populations of cells, one of the most
10 intuitive approaches is to assume that all cells have fixed properties, such
u as assuming all cells have constant size and constant diffusivity (Sherratt and
12 Murray, 1990; Galle et al., 2005; Simpson et al., 2013). In this framework a cell
13 population is considered to be a homogeneous population, and single-species
1= homogeneous models are routinely invoked (Maini et al., 2004a; Maini et al.,
15 2004b; Sepulveda et al., 2013; Simpson et al., 2013; George et al., 2017; Vo et
16 al., 2015). Single-species homogeneous models are much less computationally
17 expensive than more elaborate multi-species heterogeneous models and, as a
18 result, are frequently used relative to multi-species counterparts. In addition,
19 multi-species frameworks usually involve a significantly larger number of free
20 model parameters that we may have little prior knowledge about and so the
a1 process of calibrating multi-species heterogeneous models to match experimen-
2 tal observations is significantly more challenging than calibrating single-species
23 homogeneous models. This is an important consideration because it is well-
2 known that parameterising mathematical models of biological processes can

s be challenging, often requiring computationally-intensive methods (Pozzobon
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2 and Perré, 2018; Warne et al. 2019).
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Fig. 1. Heterogeneity in a population of PC-3 prostate cancer cells (Kaighn et al.,
1979). (a) Experimental image of an advancing cell population and corresponding
cell size distribution. The red solid line denotes position of the leading edge. (b)
Detailed image of the subregion denoted in the blue rectangle in Figure 1(a). (c)
Cell size distribution with a bin size of 15 ym. The cell size distribution is obtained
from the sample of 184 cells randomly selected from the population. (d) Cell size
distribution with a bin size of 2.3 ym. The histogram in Figure 1(d) is constructed
using the same sample of 184 cells.

a7 Although heterogeneity in cell populations is frequently observed in experi-
s ments, there is relatively little guidance or consensus in the literature about
20 how to incorporate such heterogeneity into the mathematical models used to
% replicate and predict such experiments (An et al., 2001; Altschuler et al., 2010;
s Menon et al., 2018). Figure 1(a)-(b) shows a typical experiment where we can
2 clearly visually observe cells of different sizes. The measured cell size distri-

1 bution in Figure 1(c) quantifies this heterogeneity in cell sizes and raises the
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s question if the most straightforward approach of applying a single-species ho-
35 mogeneous model can be reasonably used to predict the spatial spreading of
55 this clearly heterogeneous population. In addition to the clear visual hetero-
s geneity in cell sizes, it could be relevant to consider that cells of different sizes
;s can exhibit different behaviour such as different rates of motility, or differ-
5 ent mechanical properties including resistance to deformation and adhesion.
w0 Therefore, it could be possible that there are multiple types of heterogeneity
s acting in even this very simple experiment. Previously, heterogeneity in cell
2 populations has been introduced in both discrete and continuum models of
s cell motility (Simpson et al., 2014; Jin et al., 2016b; Sundstrom et al., 2016;
s Matsiaka et al., 2017). Previous work has also attempted to estimate parame-
s ters in heterogeneous models that describe glioblastoma progression (Rutter et
s al., 2018). However, these previous modelling studies do not address the basic
s question of identifying whether it is absolutely necessary to apply a multi-
i species heterogeneous models to obtain a faithful description of the behaviour
s of the heterogeneous population and whether different forms of heterogeneity

so affect the answer to this fundamental question.

s1 In our work we use an experimentally-motivated approach to investigate the
s role of heterogeneity in two-dimensional scratch assays, and we compare the
53 performance of a single-species homogeneous model relative to a heteroge-
s« neous multi-species model. We use numerical solutions of the multi-species
55 heterogeneous model to produce synthetic test data that we use to investigate
ss the performance of a simpler single-species homogeneous model. To mimic
s7 experimental data, such as depicted in Figure 1, we use the multi-species
s continuum approach introduced by Matsiaka et al. (2017). To keep our work

so tractable, we describe the heterogeneity by dividing the total population into
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oo three subpopulations with varying properties. The choice of working with three
&1 subpopulations allows us to keep the model computationally tractable while
e capturing important differences in the population properties, as illustrated
3 in Figure 1(d). Throughout this work we consider four distinct distributions
ot oOf cell sizes: (i) monotonically decreasing (Set Ia); (i) uniform (Set Ib); (iii)
s non-monotonic (Set Ic); and (iv) monotonically increasing (Set Id). The mono-
e tonically decreasing distribution, as shown in Figure 3(a), is a fairly accurate
&7 approximation of the experimentally observed cell size distribution in Figure
¢ 1(d). The other three kinds of distributions are included in our work for com-
so pleteness. Our findings suggest that, for certain cell size distributions, namely
70 monotonically decreasing and uniform distributions, the single-species homo-
n  geneous model performs remarkably well with an excellent match between the
72 density profiles generated by the three-species heterogeneous model and den-
73 sity profiles predicted by its single-species homogeneous analogue. Therefore,
72 our results imply that applying a single-species homogeneous model to describe
75 experiments with monotonically decreasing or uniform cell size distributions
7 might be sufficient for accurately predicting population-level behaviour. In
77 contrast, the data with non-monotonic and monotonically increasing cell size
7 distributions might require the application of multi-species models to account

7o for differences in population.

so This manuscript is organised in the following way. In Section 2 we describe
a1 experimental data for a series of two-dimensional scratch assays that clearly
&2 involve a significant level of heterogeneity among the population. In Section 3
&z we introduce a mathematical model of the cell motility and adhesion. In partic-
s« ular, we focus on two analogues of the mathematical model: (i) a three-species

& heterogeneous model of cell motility where parameters including cell size, cell


https://doi.org/10.1101/705434

bioRxiv preprint doi: https://doi.org/10.1101/705434; this version posted August 16, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

s diffusivity and cell adhesion strength can vary between the subpopulations;
& and (ii) a more traditional single-species homogeneous model of cell motility
ss where all cells in the population are treated as having the same cell size, cell
o diffusivity and cell adhesion strength. Results in Section 4 compare perfor-
o mance of the single-species homogeneous model as applied to data generated
a1 using the three-species heterogeneous model for different cell size distributions.
oo Additional results presented in the Supplementary Material explore the role
s of: (i) heterogeneity in undirected (diffusive) migration, Set II; and (ii) hetero-
o geneity in directed (adhesion/cell-to-cell contacts) migration, Set III. Finally,

s in Section 5 we summarise our result and propose potential extensions.

s 2 Experimental data

ov Monolayer scratch assays are performed using the IncuCyte ZOOM™ sys-
e tem (Essen BioScience). In all experiments we use the PC-3 prostate cancer
o cell line (Kaighn et al., 1979) from the American Type Culture Collection
w0 (ATCC™, Manassas, USA). After growing, cells are removed from the flask
1or using TrypLE™ (ThermoFisher Scientific) in phosphate buffered saline, re-
102 suspended in growth medium and seeded at a density of 20,000 cells per well in
03 96-well ImageLock plates (Essen BioScience). The diameter of each individual

s well is 9000 jratew

s Mitomycin-C is added at a concentration of 10 g/mL for two hours before a
s scratch is made in the monolayer of cells (Sadeghi et al., 1998). Mitomycin-C
w7 is a chemotherapy drug that blocks DNA replication and, consequently, stops
s proliferation. As a result of treatment the number of cells in the assay remains

w9 approximately constant since cells neither proliferate or die on the timescale of
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o the experiment. Often scratch assays are performed using mitomycin-C treated
m  cells so that the experiment focuses only upon the role of cell migration as
n2  opposed to the combined effects of cell migration and cell proliferation. A
s WoundMaker™ (Essen BioScience) is used to create identical scratches in
s the uniformly distributed populations. Medium is aspirated after scratching;
us each well is washed twice and refilled with fresh medium (100 pL). Plates are
s incubated in the IncuCyte ZOOM™ and photographed every two hours for
u7 48 hours. In total, these experiments are performed in eight of the 96 wells
us on the 96-well plate. In our work we use one of the experimental replicates at

no ¢t = 0h, shown in Figure 1, to quantify the heterogeneity in a cell population.

120 To quantify the heterogeneity in cell size we randomly select 184 cells from
1 the experimental image in Figure 1(a) at t = 0h. Assuming each cell can be
122 treated as a disc, we estimate the equivalent diameter of each individual cell
123 using the following approach. First, we use the histogram tool in Photoshop
124 CSb5 to count a number of pixels in the area occupied by each individual cell.
125 The pixel count is converted to an area, A. Second, we estimate the equivalent
s diameter, 6 = \/m and use this data to produce histograms to illustrate
12z and visualise the variability in cell size within the experiment. The result-
s ing cell size distribution, presented as a histogram constructed with bin width
120 2.3 pm, is shown in Figure 1(c). The bin width 2.3 pm is chosen to demonstrate
1o the fine structure within the cell population that is not normally incorporated
1 in mathematical models of cell migration. However, the computational sim-
132 ulation of a population with the cell size distribution shown in Figure 1(c)
133 is impractical since it would require significant computational resources to
14 simulate the dynamics of 17 distinct subpopulations. As a compromise, we

135 increase the bin width to reduce the number of distinct subpopulations while
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s still retaining a sufficient number of bins to allow us to broadly characterise
137 the heterogeneity in the population. Figure 1(d) demonstrates the histogram
s of cell sizes constructed using the same sample of cells with a larger bin size
130 width of 15 um. Here, we have three subpopulations that capture the key
1o trends in the heterogeneity in Figure 1(c) without needing to deal with 17

11 distinct subpopulations.

12 In this work we use experimental data to extract the cell size distribution
w3 at t = Oh and use this data to generate the initial conditions in the three-
e species heterogeneous model (Set la, Figure 3). An interesting side effect of
us  Mitomycin-C pretreatment is that cells increase in size abnormally fast com-
s pared to similar experiments without pretreatment (Matsiaka et al., 2018). As
w7 a result of pretreatment, the cell size distribution changes significantly with
ug time, which, in turn, represents an additional degree of freedom in the prob-
e lem. To keep our work tractable, we consider the most fundamental problem
150 where we treat the cell size distribution as being constant through time, and
151 we leave an extension to the case where the cell size distribution varies with

12 time for future analysis.

53 3 Mathematical model

1sa Discrete, stochastic models are often used to describe the spatial spreading of
155 a population of cells, especially when the population of cells is not too large.
156 Here, cells move and interact with each other via predefined force function, as
157 illustrated schematically in Figure 2 (Newman and Grima, 2004; Callaghan et
158 al., 2006; Hasenauer et al., 2011; Frascoli et al. 2013; Osborne et al., 2017).

159 This approach is individual-based in the sense that knowledge about the move-
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Fig. 2. (a) An idealisation of the front-like distribution of cells in the experimental
design shown in Figure 1(a). Here all cells are of constant size. Fj; is the interaction
force between cell 7 and cell j. The vertical dashed line represents the approximate
leading edge of the population. (b) A typical cell-to-cell interaction force function
in the form of the modified Morse potential, Z(r), (Equation (3.7)) used to mimic
adhesion and repulsion between individual cells. The vertical dashed line represents
the diameter of individual agents, 0. The horizontal line at Z(r) = 0 shows the
change from long-range attraction (Z(r) < 0 for r > §) to short-range repulsion
(Z(r) > 0 for r < 6).

1o ment of each individual is essential to infer the evolution of a density on the
11 population-level scale. One of the most popular individual-based modelling
12 approaches makes the assumption that the motion of each cell can be de-
163 scribed by a Langevin stochastic differential equation (Newman and Grima,
160 2004; Middleton et al., 2014). As such, the system of NV cells is described by

s a system of N stochastic differential equations of the form

dz, L
& => Fi;j+&, (3.1)
oy

16 where T; is the position vector of the ith cell, ]*?’Z-j is the interaction force be-
17 tween cells ¢ and j, and 5; is the random stochastic force acting upon cell 7

s (Middleton et al., 2014; George et al., 2017; Osborne et al., 2017). The interac-

10
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1o tion force, ﬁij, can be used to parametrise various features of cell populations,
wo including heterogeneity. In fact, it is relatively straightforward to model het-
i erogeneity in cell sizes in a discrete framework since the interaction force, F’ij,
12 can be chosen to explicitly include the cell size as a parameter (Matsiaka et al.,
113 2018). Here we can easily differentiate the population into an arbitrary num-
s ber of subpopulations by assigning the value of the cell size to each member of
s the population. Despite the many advantages of this kind of individual-based
e modelling approach, such individual-based models are computationally inef-

17 ficient as the number of cells, N, increases. This is because the computation

s time required to simulate such models increases with N.

e In contrast, continuum models based on partial differential equations (PDEs)
180 are much more convenient to model large cell populations because the time
11 taken to solve continuum PDE models is independent of the size of the pop-
12 ulation (Sherratt and Murray, 1990; Sheardown and Cheng, 1995; Cai et al.,
183 2007; Wise et al., 2008). Often, PDE models are derived using continuum-
18« limit approximations of underlying discrete models and, as such, are able to
185 retain certain features of a discrete model (Middleton et al., 2014; O’Dea and
1 King, 2012). In this work we focus on a continuum model that is derived
17 by taking the limit of a three-species heterogeneous individual-based model
s (Matsiaka et al., 2017). This approach allows us to conceptually incorporate
19 key features of the heterogeneous cell populations into a discrete modelling
o framework, and then using a computationally efficient approach to solve the
1 resulting continuum-limit PDE description of the underlying heterogeneous

102 model.

113 We note that, due to the geometry of experiments presented in Figure 1, we

11
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104 are interested in the net movement of cells in only one direction, in this case
105 the horizontal direction (Jin et al., 2016a). This is due to the fact that the
s net flux of cells in the vertical direction is, on average, zero because of the
17 symmetry in the initial conditions of a scratch assay. Consequently, we focus
18 on a one-dimensional continuum model and consider the evolution of the total
109 cell population in the horizontal direction only. The use of a one-dimensional
200 framework to describe two-dimensional scratch assays has been previously
20 demonstrated to be a convenient approach to reduce the computational com-
200 plexity while still describing the key features of the experiment (Matsiaka et

203 al., 2018).

20 Here we employ a mean field model describing the spatial spreading of a pop-
205 ulation of cells composed of three distinct subpopulations. In one-dimension,

206 the model can be written as

W = DiAp" (2, 8) + V(p!V (2, 1) VD (a, 1)) (32)
- 23: n; V(D () VD (1, 1)),
=
W = Do Ap? (1) + V(p? (2, 1) VE (1)) (3.3)
- 23: n;V(p@ (x,t) V) (1)),
=
W = DsAp? (1) + V(P (2, 1) VO (1)) (3.4)
- 23: n,V(p® (z, 1) VI (z,1)),
=
VD (1) = /Q FOD (2 — ) p(y, £) dy, 55)

27 where pM(z,t), p@(z,t), and p® (x,t) are the cell densities associated with

28 each subpopulation and depend on position x and time ¢. In this heterogeneous

12
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200 model, Dy, Dy, and D3 are diffusivities of subpopulations 1, 2, and 3, nq, ns,
20 and ng are the numbers of cells in each subpopulation, and V) (z,t) is the
a1 velocity field of subpopulation [ induced by subpopulation i (Matsiaka et al.,
22 2017). The diffusivity constants parameterise the undirected migration of each
213 subpopulation and the velocity fields describe the directed migration of each
2a subpopulation that is driven by a combination of cell-to-cell adhesion and

215 crowding effects.

216 'The interaction force between subpopulations [ and ¢ that describes directed

217 migration is given by
FO(z —y) = f3" Zi(r) sgn(z — y), (3.6)

21s where féi) is the dimensional amplitude of the interaction force acting on
20 subpopulation 4, Z;(r) is a dimensionless function that parametrises different
20 features of the cell-to-cell interactions, and sgn is the signum function. We
21 choose to include long-range attraction that models cell-to-cell adhesion, and
22 a short-range repulsion that reflects volume exclusion effects (Frascoli et al.,
23 2013; Painter et al., 2010). A number of different phenomenological laws, Z;(r),
»¢ are used to model repulsive and adhesive intercellular forces (Murray et al.,
25 2009; Jeon et al., 2010; Middleton et al., 2014). In our work we adopt modified

226 Morse potential in the form

2<exp[—2a (r —0;)] —exp[—a(r — (2)]), r < 20;,

Zi(r) = 2<exp[—2a (r = 6,)] — expl—a (r — 50]) G(r), 26, <r <36,

O, r> 351,

13
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227 where a is the parameter that controls the shape of the force function, 9; is the
»s  cell size in the subpopulation ¢, i = 1,2, 3, and r = |x — y|. We fix the value of
»o the shape parameter at @ = 0.08 um~' (Matsiaka et al., 2017). The function
20 gi(r) = (1 —sin

21 to impose a finite range of intercellular interactions (Tersoff, 1988). A sketch

(2mr—7d;)/ 251-] ) /2 is the Tersoff cut-off function introduced

22 of the potential function given by Equation (3.7) for different values of the
213 parameter a is shown in Figure 2(b) confirming that this potential function
2 describes short range repulsion, longer range attraction and no interactions at
235 over much longer distances. In summary, the key parameters in the hetero-
26 geneous three-species model are: (i) the cell sizes, d1, dy and d3; (ii) the cell
2 diffusivities, Dy, Dy and Ds; and (iii) the amplitudes of interaction forces, fél),
238 féQ) and fé3). In this work we will systematically explore how heterogeneity
239 in each of these three key parameters influences whether we need to consider
20 a complex heterogeneous multi-species model or whether we can describe the
21 spatial spreading of a cell population using relatively simple homogeneous,
a2 single-species models. Since our experimental data in Figure 1 allows us to
23 explicitly characterise the heterogeneity in cell size, all results in the main
a4 document focus on cell size. Additional results in the Supplementary Mate-
25 rial focus on heterogeneity in diffusivity and amplitude of interaction forces
us  to provide additional insight into the role of heterogeneity in these kinds of

27 experiments.

25 We define the total density of the heterogeneous population as

Plat) =3 P, (33)

=1

us where p¥(z,t) is the cell density of subpopulation i = 1,2,3 predicted by

14
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20 Equations (3.2)-(3.4), and P(z,t) is the total cell density. It is important to
251 interpret the solutions of Equations (3.2)-(3.4) in terms of total cell density
2 since standard experimental protocols do not normally facilitate the measure-

3 ment of spatial and temporal distributions of various subpopulations (Cai et

e al., 2007; Treloar et al., 2014).

s We can reduce the three-species heterogeneous system of equations, Equations
26 (3.2)-(3.4), to obtain a single-species homogeneous model in the form,

OP(x,t)

o DAP(z,t) — (N — 1)V<P(m,t) V(x,t)), (3.9)

7 where P(z,t) is the cell density of the total population, N = 32 | n; is the
s total number of cells in the population. Here we assume that the cell size,
0 diffusivity and strength of the interaction force for each population is constant,
w0 giving §; = 0, D; = D, and fi(i) = fy for i = 1,2,3. The key differences
261 between the homogeneous single-species model, Equation (3.9), and the three-
22 species heterogeneous model, Equations (3.2)-(3.4) are: (i) the three-species
3 heterogeneous model incorporates three advection-diffusion equations while
x4 the single-species homogeneous model is given by a single advection-diffusion
25 equation; (ii) the three-species heterogeneous model contains up to nine free
6 parameters as opposed to three parameters in the single-species homogeneous

267 model.

xs The initial conditions in all simulations are chosen to mimic a cell front, such

20 as that shown in our experimental data set, Figure 1(a). As such, we adopt

15
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270 an initial cell distribution in the form of the one-dimensional step function,

23.9 x 103 cells/um, 0 pm < z < 1000 pm,
P(x,0) =P(z,0) =

0 cells/pm, 1000 pm < z < 2000 pm,
(3.10)

on oon 0 < x < 2000 um, which is consistent with a length-scale of a typical in
a2 wvitro experiment (Jin et al., 2016a). The initial cell distribution in the hetero-
a3 geneous model is given by the sum of initial densities of three subpopulations,
as P(x,0) = ¥, p?(x,0), where the density of each subpopulation, p®(z,0),
s varies between each cell size distribution and can be inferred from the his-
26 tograms in Figure 3(a). The value of the initial density of the total population
o7 is chosen to represent fairly confluent population of cells. For example, the
s simulation of the three-species population with the monotonically decreasing
a9 cell size distribution, Set Ia, is initiated with the confluence level of approx-
0 imately 65% of maximum packing density, which is fairly typical for scratch
21 assay experiments (Jin et al., 2016; Matsiaka et al., 2017). We note that the
22 boundary of the experimental image in Figure 1(a) is not a physical boundary
23 and cells can freely move across this boundary because the image captures
¢ only a small fraction of a much larger experimental domain (Simpson et al.,
25 2018). During the experiment, cells freely migrate, in each direction, across
26 the boundary. However, since the density of cells away from the scratch is
27 spatially uniform, the net flux of cells across the boundary of the image is
88 zero. 'To capture this situation we impose zero net flux boundary conditions

2 at £ = 0pm and x = 2000 pm.

200 All continuum results for single-species homogeneous and three-species het-

201 erogeneous models, given by Equation (3.9) and Equations (3.2)-(3.4), respec-

16
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22 tively, are solved numerically using the method of lines with Ax = 4 um and
203 At = 0.006h on 0 < x < 2000 um (Matsiaka et al., 2017). We find that this
20 choice of spatial and temporal discretisations are sufficiently fine to produce
205 grid independent results. The detailed discretisation scheme used in this work

206 1S presented in the Supplementary Material.

207 4 Results and Discussion

28 To investigate the ability of a single-species homogeneous model to capture
200 the behaviour of the three-species heterogeneous analogue, we consider a series
;0 of case studies. In these case studies we vary only one parameter at a time to
;o0 simplify our analysis and to focus on the impact of each individual parameter.
32 Another approach would be to use the mathematical models to explore hetero-
33 geneity multiple parameter at the same time. However, in this first instance,
s we prefer to take a more fundamental approach and examine the role of het-
305 erogeneity in each parameter separately. In the first set of experiments, Set I,
w6 we vary the cell size, 0, while keeping D and f; fixed at D = 250 um?/h and
w  fo = 1.0 um/h. The values of D; and féi) in the heterogeneous three-species
2s model are fixed at D; = 250 um?/h and féi) = 1.0 um/h for i = 1,2,3. These
;00 values of diffusivity and amplitude of cell-to-cell interaction forces are based
s0 on detailed experimental measurements reported previously (Matsiaka et al.,

e 2019).

sz There are number of ways to quantify performance of the single-species ho-
sz mogeneous model in our framework. The position of the leading edge of the
s spreading population is routinely used by experimentalists to provide quanti-

a5 tative insights into the rate of spatial spreading of a cell population (Treloar

17
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a6 and Simpson, 2013; Johnston et al., 2014; Kollimada et al., 2016; Nardini
sz et al., 2016; Bobadilla et al., 2019). Therefore, we quantify the discrepancy
s between the solution of the heterogeneous three-species model and the homo-
29 geneous single-species model using an error measure, E(6), associated with

w0 the position of the leading edge,

> [s(t) - 50| (@)

s where S(t;) is the position of the leading edge according to the three-species
22 heterogeneous model at time ¢;, S(¢;) is the position of the leading edge pre-
223 dicted by the single-species homogeneous model, and o@ = 49 is the number of
2 discrete time points we use to compute £(6). In both scenarios the position of
15 the leading edge is computed as the coordinate on the one-dimensional domain
26 where the density is 1% of the initial density (Treloar and Simpson, 2013). An
w7 alternative approach is to use an error measure based on the discrepancy be-
28 tween cell density profiles. At first, this approach of using the entire cell density
29 profile might be thought to be preferable to working with leading edge data
10 since density profiles incorporate much more detailed spatial information than
;1 just using the position of the leading edge. However, extracting the density
s data from experiments is much more tedious because it often involves manual
a3 cell counting in regions where cell densities are high and this is both difficult
13« to reproduce and very time consuming (Treloar et al. 2014). Therefore, to keep
;s our work as practical as possible, here we present only results with an error
136 measure solely based on the leading edge data. Additional result that measure
;7 the discrepancy between the models using the entire density information are
13 presented in the Supplementary Material (Figure A.1 and Figure A.2), and

;30 we find that this more complicated approach gives very similar results to the

18
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s leading edge data. Therefore, in this work, we focus on the using leasing edge

341 data.

32 The experimental distribution of cell sizes in Figure 1(d) provides insights into
a3 potential choices of the cell size distribution in Equations (3.2)-(3.4). Here we
se define three subpopulations based on the equivalent cell size: small (6; = 18
15 pm), medium (52 = 34 pum), and large cells (05 = 50 pm). For simplicity, we
us  set the fractions of small and medium cells to be equal and refer to this distri-
w7 bution as a monotonically decreasing distribution of cell sizes (Set Ia, Figure
us  3). After considering the experimentally-motivated monotonically decreasing
1o distribution, we then systematically explore: (i) uniform (Set Ib, Figure 4),
30 (i) non-monotonic (Set Ic, Figure 5), and (iii) monotonically increasing dis-

351 tributions (Set Id, Figure 6).
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32 Figure 3(b) compares the leading edge prediction, S(t), given by the three-
353 species heterogeneous model with the associated best-fit match, S(t), pre-
54 dicted by the single-species homogeneous model. Our systematic computation
5 of the error measure, E(§), demonstrates a clear minimum which ensures the
s unique choice of a best-fit cell size, 5. Results in Figure 3(d) superimposes
57 the solution of the three-species heterogeneous model with the solution of the
18 single-species homogeneous model parameterised with the best fit cell size.
10 Comparing the time evolution of the spreading density profiles in Figure 3(d)
30 (with additional details at the leading edge shown in the magnified region in
31 Figure 3(e)) we see that the appropriately parameterised single-species homo-
2 geneous model captures the temporal evolution of the spreading profile given
3 by the heterogeneous model remarkably accurately. In particular, the den-
sa  sity profiles predicted by the single-species homogeneous model match both
s the position and shape of the density profiles generated by the three-species
w6 heterogeneous model. These results imply that in this case it would be rea-

7 sonable to use a much simpler single-species homogeneous model to describe

e and predict this spatial spreading.

w0 Visual inspection of the results in Figures 3 - 6 suggests that we can always
s find a unique, well-defined value of the cell size in the single-species homo-
sn geneous model to provide an accurate prediction of the temporal evolution
sz of the position of a leading edge of the spreading heterogeneous cell popu-
sz lations regardless of the underlying cell size distribution in the three-species
s heterogeneous model (Figures 3(b)-6(b)). In contrast, the quality of match
w5 between the shape of the density profiles for the three-species heterogeneous
s model and the single-species homogeneous model varies significantly between

srr - different cell size distributions. For example, the experimentally motivated dis-
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ws tribution in Figure 3(a) (Set Ia) leads to a remarkably good match between the
sro  three-species heterogeneous model and the single-species homogeneous model.
30 Similarly, the uniform distribution shown in Figure 4(a) (Set Ib) also leads to
;1 a reasonably good quality of match between two different models. In contrast,
2 the density profiles associated with the non-monotonic cell size distribution
33 (Figure 5, Set Ic) and monotonically increasing cell size distribution (Figure
s 6, Set Id) show a relatively poor match. In these cases, it would seem prudent
s 1ot to use a simpler single-species homogeneous model to simulate and predict

;6 these experiments.

57 The values of the cell size, 6, that produce best match between the single-
188 species homogeneous and three-species heterogeneous models vary significantly
0 between different cell size distributions. For example, the best-fit value of the
w0 cell size for the uniform distribution (Figure 4, Set Ib), 6 = 36 um, is quite
s close to the weighted average value of 34 um for the distribution in Figure
32 4(a). This indicates that the choice of a simple weighted average of the cell
303 sizes might be a reasonable way to to parameterise the single-species homo-
s geneous model if the experimentally observed distribution is close to uniform.
s We observe similar agreement for best-fit values of the cell size in the case of
ws monotonically decreasing (Set Ia) and monotonically increasing (Set Id) cell
so7  size distributions, shown in Figure 3 and Figure 6, respectively. In contrast,
ws the best-fit value of the cell size for the non-monotonic distribution (Set Ic),
w0 0 = 40 pum, differs significantly from the weighted average of 34 yum. Therefore,
w0 these results suggest that great care ought to be exercised when taking a dis-
w1 tribution of parameter values and attempting to select the most appropriate

w2 single representative value of that parameter.
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w3 In addition to the results in Figures 3 - 6 exploring the role of heterogeneity
w4 in cell size, we present an additional suite of results where we systematically
ws explore the role of heterogeneity in diffusivity (Set II) and amplitude of interac-
ws tion forces (Set IIT) while keeping the cell size constant in all subpopulations.
w7 These additional results are presented in the Supplementary Material doc-
ws ument. Both Set II and Set III data sets demonstrate exceptional quality of
w0 match between the three-species heterogeneous simulation data and its best-fit
so  single-species homogeneous equivalent. Again, these additional results provide
a1 guidance about when it is reasonable to approximate a more complicated het-
a2 erogeneous mathematical model with a simpler single-species homogeneous

413 model.

a2 5 Conclusions

ss In this work, we explore the role of heterogeneity in the context of study-
ss ing how an initially confined population of cells can spread into surround-
a7 ing initially unoccupied regions, as in the case of a scratch assay. We use
ns  a three-species heterogeneous model of cell motility, account for undirected
ao  cell motility, short range repulsion (crowding) and longer range adhesion, to
w20 capture experimentally observed heterogeneity in cell sizes from a new exper-
21 imental data set from a two-dimensional scratch assay as shown in Figure 1.
22 Our continuum models account for the undirected random motility, cell-to-cell
23 adhesion, and cell crowding. The single-species homogeneous model is applied
24 to each set of three-species heterogeneous simulation data in an attempt to

25  match cell density profiles.

w6 'To analyse the performance of the single-species homogeneous model to cap-
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27 ture data from our three-species heterogeneous model we consider four dif-
w8 ferent cell size distributions: (i) monotonically decreasing distribution, (ii)
20 uniform distribution, (iii) non-monotonic distribution, and (iv) monotonically
s0 increasing distribution. Overall, for a set of experimentally-motivated parame-
s ter combinations, we find that the standard single-species homogeneous model
132 is able to accurately predict the position of the leading edge for all case stud-
i3 les presented. However, the quality of the match between the shape of the
ss  density profiles varies significantly depending on the details of the form of
i35 the heterogeneity present. For example, the monotonically decreasing distri-
s bution (Set Ia) demonstrates remarkable goodness of fit between the two sets
s of density profiles, as shown in Figure 3(d). This result is important because
18 the monotonically decreasing cell size distribution is chosen to mimic the dis-
10 tribution of the cell sizes observed in our new experimental data set, shown
ao in Figure 1. Similarly, the homogeneous distribution, Figure 4, shows that
w1 single-species homogeneous model is able to accurately replicate the three-
u2  species heterogeneous model results. This is an expected result because in this
us  special case the cells of each subpopulation are the same size. In contrast,
us  the single-species homogeneous model does not perform so well when applied
us  to both non-monotonic and monotonically increasing distributions in Figures
us -6, respectively. Additionally we explore potential heterogeneity in diffusiv-
a7 ity and amplitude of the cell-to-cell interactions (Supplementary Material).
ws  Overall, our results suggest that for certain cell size distributions, a simple
so and computationally efficient single-species homogeneous model is preferable

ss0 over a thee-species heterogeneous model.

ss1 There are number of ways this work can be extended which we leave for future

s2  analysis. All our simulations and analysis focus on treating the heterogeneity
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53 in the population of cells by considering the total population to be composed of
ss4  three distinct subpopulations. For more extreme forms for heterogeneity, such
ss5  as multi-modal distributions, the results presented in this work could be ex-
s tended by considering additional subpopulations. Another simplification that
7 we invoke is to assume that the measured heterogeneity remains constant for
sss  the duration of the experiment. Future studies could address the significantly
ss0  more complicated question of allowing the distributions to evolve in time on
wo the same time scale as the experiment to see if it is still possible to use a sim-
w1 pler homogeneous model in this more complicated scenario. Another avenue
w2 for further exploration would be to consider heterogeneity in more than one
w3 parameter at a time, whereas in this work we have taken the most fundamental
ss approach and examined heterogeneity in just one parameter in isolation from
ss the others. For both of these extensions, the modelling framework presented
w6 in this study can be extended to explore these additional features, and we
w7 leave such extensions for future consideration. Another option for extending
w8 the work would be to consider further details in the mathematical models,
w0 such as the effects of combined cell migration and combined cell proliferation.
s Here we have not pursued this approach because our experimental data set
s has been carefully prepared to exclude the effects of proliferation so that we

a2 can focus just on cell migration and heterogeneity in cell migration alone.
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