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Abstract

Variability in cell populations is frequently observed in both in vitro and in vivo set-

tings. Intrinsic differences within populations of cells, such as differences in cell sizes

or differences in rates of cell motility, can be present even within a population of

cells from the same cell line. We refer to this variability as cell heterogeneity. Math-

ematical models of cell migration, for example, in the context of tumour growth

and metastatic invasion, often account for both undirected (random) migration and

directed migration that is mediated by cell-to-cell contacts and cell-to-cell adhesion.

A key feature of standard models is that they often assume that the population is

composed of identical cells with constant properties. This leads to relatively simple

single-species homogeneous models that neglect the role of heterogeneity. In this

work, we use a continuum modelling approach to explore the role of heterogeneity

in spatial spreading of cell populations. We employ a three-species heterogeneous

model of cell motility that explicitly incorporates different types of experimentally-
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motivated heterogeneity in cell sizes: (i) monotonically decreasing; (ii) uniform; (iii)

non-monotonic; and (iv) monotonically increasing distributions of cell size. Com-

paring the density profiles generated by the three-species heterogeneous model with

density profiles predicted by a more standard single-species homogeneous model

reveals that when we are dealing with monotonically decreasing and uniform dis-

tributions a simple and computationally efficient single-species homogeneous model

can be remarkably accurate in describing the evolution of a heterogeneous cell pop-

ulation. In contrast, we find that the simpler single-species homogeneous model

performs relatively poorly when applied to non-monotonic and monotonically in-

creasing distributions of cell sizes. Additional results for heterogeneity in parameters

describing both undirected and directed cell migration are also considered, and we

find that similar results apply.
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1 Introduction1

In vitro cell migration experiments play an important role in the discovery and2

testing of putative drug treatments, the study of malignant tumour growth3

and metastasis, as well as tissue regeneration and repair (Savla et al., 2004;4

Sengers et al., 2007; Tremel et al., 2009; Sarapata and de Pillis, 2010; Ger-5

lee, 2013; Edmondson et al., 2014; Shah et al., 2016). Mathematical models6

of many biological processes involved in these experiments normally require7

certain assumptions to make the problem mathematically and computation-8

ally tractable. When modelling large populations of cells, one of the most9

intuitive approaches is to assume that all cells have fixed properties, such10

as assuming all cells have constant size and constant diffusivity (Sherratt and11

Murray, 1990; Galle et al., 2005; Simpson et al., 2013). In this framework a cell12

population is considered to be a homogeneous population, and single-species13

homogeneous models are routinely invoked (Maini et al., 2004a; Maini et al.,14

2004b; Sepulveda et al., 2013; Simpson et al., 2013; George et al., 2017; Vo et15

al., 2015). Single-species homogeneous models are much less computationally16

expensive than more elaborate multi-species heterogeneous models and, as a17

result, are frequently used relative to multi-species counterparts. In addition,18

multi-species frameworks usually involve a significantly larger number of free19

model parameters that we may have little prior knowledge about and so the20

process of calibrating multi-species heterogeneous models to match experimen-21

tal observations is significantly more challenging than calibrating single-species22

homogeneous models. This is an important consideration because it is well-23

known that parameterising mathematical models of biological processes can24

be challenging, often requiring computationally-intensive methods (Pozzobon25
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and Perré, 2018; Warne et al. 2019).26
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Fig. 1. Heterogeneity in a population of PC-3 prostate cancer cells (Kaighn et al.,
1979). (a) Experimental image of an advancing cell population and corresponding
cell size distribution. The red solid line denotes position of the leading edge. (b)
Detailed image of the subregion denoted in the blue rectangle in Figure 1(a). (c)
Cell size distribution with a bin size of 15µm. The cell size distribution is obtained
from the sample of 184 cells randomly selected from the population. (d) Cell size
distribution with a bin size of 2.3µm. The histogram in Figure 1(d) is constructed
using the same sample of 184 cells.

Although heterogeneity in cell populations is frequently observed in experi-27

ments, there is relatively little guidance or consensus in the literature about28

how to incorporate such heterogeneity into the mathematical models used to29

replicate and predict such experiments (An et al., 2001; Altschuler et al., 2010;30

Menon et al., 2018). Figure 1(a)-(b) shows a typical experiment where we can31

clearly visually observe cells of different sizes. The measured cell size distri-32

bution in Figure 1(c) quantifies this heterogeneity in cell sizes and raises the33
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question if the most straightforward approach of applying a single-species ho-34

mogeneous model can be reasonably used to predict the spatial spreading of35

this clearly heterogeneous population. In addition to the clear visual hetero-36

geneity in cell sizes, it could be relevant to consider that cells of different sizes37

can exhibit different behaviour such as different rates of motility, or differ-38

ent mechanical properties including resistance to deformation and adhesion.39

Therefore, it could be possible that there are multiple types of heterogeneity40

acting in even this very simple experiment. Previously, heterogeneity in cell41

populations has been introduced in both discrete and continuum models of42

cell motility (Simpson et al., 2014; Jin et al., 2016b; Sundstrom et al., 2016;43

Matsiaka et al., 2017). Previous work has also attempted to estimate parame-44

ters in heterogeneous models that describe glioblastoma progression (Rutter et45

al., 2018). However, these previous modelling studies do not address the basic46

question of identifying whether it is absolutely necessary to apply a multi-47

species heterogeneous models to obtain a faithful description of the behaviour48

of the heterogeneous population and whether different forms of heterogeneity49

affect the answer to this fundamental question.50

In our work we use an experimentally-motivated approach to investigate the51

role of heterogeneity in two-dimensional scratch assays, and we compare the52

performance of a single-species homogeneous model relative to a heteroge-53

neous multi-species model. We use numerical solutions of the multi-species54

heterogeneous model to produce synthetic test data that we use to investigate55

the performance of a simpler single-species homogeneous model. To mimic56

experimental data, such as depicted in Figure 1, we use the multi-species57

continuum approach introduced by Matsiaka et al. (2017). To keep our work58

tractable, we describe the heterogeneity by dividing the total population into59
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three subpopulations with varying properties. The choice of working with three60

subpopulations allows us to keep the model computationally tractable while61

capturing important differences in the population properties, as illustrated62

in Figure 1(d). Throughout this work we consider four distinct distributions63

of cell sizes: (i) monotonically decreasing (Set Ia); (ii) uniform (Set Ib); (iii)64

non-monotonic (Set Ic); and (iv) monotonically increasing (Set Id). The mono-65

tonically decreasing distribution, as shown in Figure 3(a), is a fairly accurate66

approximation of the experimentally observed cell size distribution in Figure67

1(d). The other three kinds of distributions are included in our work for com-68

pleteness. Our findings suggest that, for certain cell size distributions, namely69

monotonically decreasing and uniform distributions, the single-species homo-70

geneous model performs remarkably well with an excellent match between the71

density profiles generated by the three-species heterogeneous model and den-72

sity profiles predicted by its single-species homogeneous analogue. Therefore,73

our results imply that applying a single-species homogeneous model to describe74

experiments with monotonically decreasing or uniform cell size distributions75

might be sufficient for accurately predicting population-level behaviour. In76

contrast, the data with non-monotonic and monotonically increasing cell size77

distributions might require the application of multi-species models to account78

for differences in population.79

This manuscript is organised in the following way. In Section 2 we describe80

experimental data for a series of two-dimensional scratch assays that clearly81

involve a significant level of heterogeneity among the population. In Section 382

we introduce a mathematical model of the cell motility and adhesion. In partic-83

ular, we focus on two analogues of the mathematical model: (i) a three-species84

heterogeneous model of cell motility where parameters including cell size, cell85

6

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 16, 2019. ; https://doi.org/10.1101/705434doi: bioRxiv preprint 

https://doi.org/10.1101/705434


diffusivity and cell adhesion strength can vary between the subpopulations;86

and (ii) a more traditional single-species homogeneous model of cell motility87

where all cells in the population are treated as having the same cell size, cell88

diffusivity and cell adhesion strength. Results in Section 4 compare perfor-89

mance of the single-species homogeneous model as applied to data generated90

using the three-species heterogeneous model for different cell size distributions.91

Additional results presented in the Supplementary Material explore the role92

of: (i) heterogeneity in undirected (diffusive) migration, Set II; and (ii) hetero-93

geneity in directed (adhesion/cell-to-cell contacts) migration, Set III. Finally,94

in Section 5 we summarise our result and propose potential extensions.95

2 Experimental data96

Monolayer scratch assays are performed using the IncuCyte ZOOMTM sys-97

tem (Essen BioScience). In all experiments we use the PC-3 prostate cancer98

cell line (Kaighn et al., 1979) from the American Type Culture Collection99

(ATCCTM, Manassas, USA). After growing, cells are removed from the flask100

using TrypLETM (ThermoFisher Scientific) in phosphate buffered saline, re-101

suspended in growth medium and seeded at a density of 20,000 cells per well in102

96-well ImageLock plates (Essen BioScience). The diameter of each individual103

well is 9000 µm.104

Mitomycin-C is added at a concentration of 10 g/mL for two hours before a105

scratch is made in the monolayer of cells (Sadeghi et al., 1998). Mitomycin-C106

is a chemotherapy drug that blocks DNA replication and, consequently, stops107

proliferation. As a result of treatment the number of cells in the assay remains108

approximately constant since cells neither proliferate or die on the timescale of109
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the experiment. Often scratch assays are performed using mitomycin-C treated110

cells so that the experiment focuses only upon the role of cell migration as111

opposed to the combined effects of cell migration and cell proliferation. A112

WoundMakerTM (Essen BioScience) is used to create identical scratches in113

the uniformly distributed populations. Medium is aspirated after scratching;114

each well is washed twice and refilled with fresh medium (100 µL). Plates are115

incubated in the IncuCyte ZOOMTM and photographed every two hours for116

48 hours. In total, these experiments are performed in eight of the 96 wells117

on the 96-well plate. In our work we use one of the experimental replicates at118

t = 0 h, shown in Figure 1, to quantify the heterogeneity in a cell population.119

To quantify the heterogeneity in cell size we randomly select 184 cells from120

the experimental image in Figure 1(a) at t = 0 h. Assuming each cell can be121

treated as a disc, we estimate the equivalent diameter of each individual cell122

using the following approach. First, we use the histogram tool in Photoshop123

CS5 to count a number of pixels in the area occupied by each individual cell.124

The pixel count is converted to an area, A. Second, we estimate the equivalent125

diameter, δ =
√

4A/π and use this data to produce histograms to illustrate126

and visualise the variability in cell size within the experiment. The result-127

ing cell size distribution, presented as a histogram constructed with bin width128

2.3µm, is shown in Figure 1(c). The bin width 2.3µm is chosen to demonstrate129

the fine structure within the cell population that is not normally incorporated130

in mathematical models of cell migration. However, the computational sim-131

ulation of a population with the cell size distribution shown in Figure 1(c)132

is impractical since it would require significant computational resources to133

simulate the dynamics of 17 distinct subpopulations. As a compromise, we134

increase the bin width to reduce the number of distinct subpopulations while135
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still retaining a sufficient number of bins to allow us to broadly characterise136

the heterogeneity in the population. Figure 1(d) demonstrates the histogram137

of cell sizes constructed using the same sample of cells with a larger bin size138

width of 15µm. Here, we have three subpopulations that capture the key139

trends in the heterogeneity in Figure 1(c) without needing to deal with 17140

distinct subpopulations.141

In this work we use experimental data to extract the cell size distribution142

at t = 0 h and use this data to generate the initial conditions in the three-143

species heterogeneous model (Set Ia, Figure 3). An interesting side effect of144

Mitomycin-C pretreatment is that cells increase in size abnormally fast com-145

pared to similar experiments without pretreatment (Matsiaka et al., 2018). As146

a result of pretreatment, the cell size distribution changes significantly with147

time, which, in turn, represents an additional degree of freedom in the prob-148

lem. To keep our work tractable, we consider the most fundamental problem149

where we treat the cell size distribution as being constant through time, and150

we leave an extension to the case where the cell size distribution varies with151

time for future analysis.152

3 Mathematical model153

Discrete, stochastic models are often used to describe the spatial spreading of154

a population of cells, especially when the population of cells is not too large.155

Here, cells move and interact with each other via predefined force function, as156

illustrated schematically in Figure 2 (Newman and Grima, 2004; Callaghan et157

al., 2006; Hasenauer et al., 2011; Frascoli et al. 2013; Osborne et al., 2017).158

This approach is individual-based in the sense that knowledge about the move-159
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Fig. 2. (a) An idealisation of the front-like distribution of cells in the experimental
design shown in Figure 1(a). Here all cells are of constant size. Fij is the interaction
force between cell i and cell j. The vertical dashed line represents the approximate
leading edge of the population. (b) A typical cell-to-cell interaction force function
in the form of the modified Morse potential, Z(r), (Equation (3.7)) used to mimic
adhesion and repulsion between individual cells. The vertical dashed line represents
the diameter of individual agents, δ. The horizontal line at Z(r) = 0 shows the
change from long-range attraction (Z(r) < 0 for r > δ) to short-range repulsion
(Z(r) > 0 for r < δ).

ment of each individual is essential to infer the evolution of a density on the160

population-level scale. One of the most popular individual-based modelling161

approaches makes the assumption that the motion of each cell can be de-162

scribed by a Langevin stochastic differential equation (Newman and Grima,163

2004; Middleton et al., 2014). As such, the system of N cells is described by164

a system of N stochastic differential equations of the form165

d~xi
dt

=
∑
i6=j

~Fij + ~ξi, (3.1)

where ~xi is the position vector of the ith cell, ~Fij is the interaction force be-166

tween cells i and j, and ~ξi is the random stochastic force acting upon cell i167

(Middleton et al., 2014; George et al., 2017; Osborne et al., 2017). The interac-168
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tion force, ~Fij, can be used to parametrise various features of cell populations,169

including heterogeneity. In fact, it is relatively straightforward to model het-170

erogeneity in cell sizes in a discrete framework since the interaction force, ~Fij,171

can be chosen to explicitly include the cell size as a parameter (Matsiaka et al.,172

2018). Here we can easily differentiate the population into an arbitrary num-173

ber of subpopulations by assigning the value of the cell size to each member of174

the population. Despite the many advantages of this kind of individual-based175

modelling approach, such individual-based models are computationally inef-176

ficient as the number of cells, N , increases. This is because the computation177

time required to simulate such models increases with N .178

In contrast, continuum models based on partial differential equations (PDEs)179

are much more convenient to model large cell populations because the time180

taken to solve continuum PDE models is independent of the size of the pop-181

ulation (Sherratt and Murray, 1990; Sheardown and Cheng, 1995; Cai et al.,182

2007; Wise et al., 2008). Often, PDE models are derived using continuum-183

limit approximations of underlying discrete models and, as such, are able to184

retain certain features of a discrete model (Middleton et al., 2014; O’Dea and185

King, 2012). In this work we focus on a continuum model that is derived186

by taking the limit of a three-species heterogeneous individual-based model187

(Matsiaka et al., 2017). This approach allows us to conceptually incorporate188

key features of the heterogeneous cell populations into a discrete modelling189

framework, and then using a computationally efficient approach to solve the190

resulting continuum-limit PDE description of the underlying heterogeneous191

model.192

We note that, due to the geometry of experiments presented in Figure 1, we193
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are interested in the net movement of cells in only one direction, in this case194

the horizontal direction (Jin et al., 2016a). This is due to the fact that the195

net flux of cells in the vertical direction is, on average, zero because of the196

symmetry in the initial conditions of a scratch assay. Consequently, we focus197

on a one-dimensional continuum model and consider the evolution of the total198

cell population in the horizontal direction only. The use of a one-dimensional199

framework to describe two-dimensional scratch assays has been previously200

demonstrated to be a convenient approach to reduce the computational com-201

plexity while still describing the key features of the experiment (Matsiaka et202

al., 2018).203

Here we employ a mean field model describing the spatial spreading of a pop-204

ulation of cells composed of three distinct subpopulations. In one-dimension,205

the model can be written as206

∂p(1)(x, t)

∂t
= D1∆p(1)(x, t) +∇(p(1)(x, t)V (1,1)(x, t)) (3.2)

−
3∑

i=1

ni∇(p(1)(x, t)V (1,i)(x, t)),

∂p(2)(x, t)

∂t
= D2∆p(2)(x, t) +∇(p(2)(x, t)V (2,2)(x, t)) (3.3)

−
3∑

i=1

ni∇(p(2)(x, t)V (2,i)(x, t)),

∂p(3)(x, t)

∂t
= D3∆p(3)(x, t) +∇(p(3)(x, t)V (3,3)(x, t)) (3.4)

−
3∑

i=1

ni∇(p(3)(x, t)V (3,i)(x, t)),

V (l,i)(x, t) =
∫

Ω
F (l,i)(x− y) p(i)(y, t) dy, (3.5)

where p(1)(x, t), p(2)(x, t), and p(3)(x, t) are the cell densities associated with207

each subpopulation and depend on position x and time t. In this heterogeneous208
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model, D1, D2, and D3 are diffusivities of subpopulations 1, 2, and 3, n1, n2,209

and n3 are the numbers of cells in each subpopulation, and V (l,i)(x, t) is the210

velocity field of subpopulation l induced by subpopulation i (Matsiaka et al.,211

2017). The diffusivity constants parameterise the undirected migration of each212

subpopulation and the velocity fields describe the directed migration of each213

subpopulation that is driven by a combination of cell-to-cell adhesion and214

crowding effects.215

The interaction force between subpopulations l and i that describes directed216

migration is given by217

F (l,i)(x− y) = f
(i)
0 Zi(r) sgn(x− y), (3.6)

where f
(i)
0 is the dimensional amplitude of the interaction force acting on218

subpopulation i, Zi(r) is a dimensionless function that parametrises different219

features of the cell-to-cell interactions, and sgn is the signum function. We220

choose to include long-range attraction that models cell-to-cell adhesion, and221

a short-range repulsion that reflects volume exclusion effects (Frascoli et al.,222

2013; Painter et al., 2010). A number of different phenomenological laws, Zi(r),223

are used to model repulsive and adhesive intercellular forces (Murray et al.,224

2009; Jeon et al., 2010; Middleton et al., 2014). In our work we adopt modified225

Morse potential in the form226

Zi(r) =



2
(

exp[−2a (r − δi)]− exp[−a (r − δi)]
)
, r < 2δi,

2
(

exp[−2a (r − δi)]− exp[−a (r − δi)]
)
gi(r), 2δi ≤ r ≤ 3δi,

0, r > 3δi,

(3.7)
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where a is the parameter that controls the shape of the force function, δi is the227

cell size in the subpopulation i, i = 1, 2, 3, and r = |x− y|. We fix the value of228

the shape parameter at a = 0.08µm−1 (Matsiaka et al., 2017). The function229

gi(r) =
(

1− sin
[
(2πr−πδi)/2δi

])
/2 is the Tersoff cut-off function introduced230

to impose a finite range of intercellular interactions (Tersoff, 1988). A sketch231

of the potential function given by Equation (3.7) for different values of the232

parameter a is shown in Figure 2(b) confirming that this potential function233

describes short range repulsion, longer range attraction and no interactions at234

over much longer distances. In summary, the key parameters in the hetero-235

geneous three-species model are: (i) the cell sizes, δ1, δ2 and δ3; (ii) the cell236

diffusivities, D1, D2 and D3; and (iii) the amplitudes of interaction forces, f
(1)
0 ,237

f
(2)
0 and f

(3)
0 . In this work we will systematically explore how heterogeneity238

in each of these three key parameters influences whether we need to consider239

a complex heterogeneous multi-species model or whether we can describe the240

spatial spreading of a cell population using relatively simple homogeneous,241

single-species models. Since our experimental data in Figure 1 allows us to242

explicitly characterise the heterogeneity in cell size, all results in the main243

document focus on cell size. Additional results in the Supplementary Mate-244

rial focus on heterogeneity in diffusivity and amplitude of interaction forces245

to provide additional insight into the role of heterogeneity in these kinds of246

experiments.247

We define the total density of the heterogeneous population as248

P(x, t) =
3∑

i=1

[
p(i)(x, t)

]
, (3.8)

where p(i)(x, t) is the cell density of subpopulation i = 1, 2, 3 predicted by249
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Equations (3.2)-(3.4), and P(x, t) is the total cell density. It is important to250

interpret the solutions of Equations (3.2)-(3.4) in terms of total cell density251

since standard experimental protocols do not normally facilitate the measure-252

ment of spatial and temporal distributions of various subpopulations (Cai et253

al., 2007; Treloar et al., 2014).254

We can reduce the three-species heterogeneous system of equations, Equations255

(3.2)-(3.4), to obtain a single-species homogeneous model in the form,256

∂P (x, t)

∂t
= D̄∆P (x, t)− (N − 1)∇

(
P (x, t)V (x, t)

)
, (3.9)

where P (x, t) is the cell density of the total population, N =
∑3

i=1 ni is the257

total number of cells in the population. Here we assume that the cell size,258

diffusivity and strength of the interaction force for each population is constant,259

giving δi = δ̄, Di = D̄, and f
(i)
i = f̄0 for i = 1, 2, 3. The key differences260

between the homogeneous single-species model, Equation (3.9), and the three-261

species heterogeneous model, Equations (3.2)-(3.4) are: (i) the three-species262

heterogeneous model incorporates three advection-diffusion equations while263

the single-species homogeneous model is given by a single advection-diffusion264

equation; (ii) the three-species heterogeneous model contains up to nine free265

parameters as opposed to three parameters in the single-species homogeneous266

model.267

The initial conditions in all simulations are chosen to mimic a cell front, such268

as that shown in our experimental data set, Figure 1(a). As such, we adopt269
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an initial cell distribution in the form of the one-dimensional step function,270

P (x, 0) = P(x, 0) =


23.9× 10−3 cells/µm, 0µm < x < 1000µm,

0 cells/µm, 1000µm < x < 2000µm,

(3.10)

on 0 < x < 2000µm, which is consistent with a length-scale of a typical in271

vitro experiment (Jin et al., 2016a). The initial cell distribution in the hetero-272

geneous model is given by the sum of initial densities of three subpopulations,273

P(x, 0) =
∑

i p
(i)(x, 0), where the density of each subpopulation, p(i)(x, 0),274

varies between each cell size distribution and can be inferred from the his-275

tograms in Figure 3(a). The value of the initial density of the total population276

is chosen to represent fairly confluent population of cells. For example, the277

simulation of the three-species population with the monotonically decreasing278

cell size distribution, Set Ia, is initiated with the confluence level of approx-279

imately 65% of maximum packing density, which is fairly typical for scratch280

assay experiments (Jin et al., 2016; Matsiaka et al., 2017). We note that the281

boundary of the experimental image in Figure 1(a) is not a physical boundary282

and cells can freely move across this boundary because the image captures283

only a small fraction of a much larger experimental domain (Simpson et al.,284

2018). During the experiment, cells freely migrate, in each direction, across285

the boundary. However, since the density of cells away from the scratch is286

spatially uniform, the net flux of cells across the boundary of the image is287

zero. To capture this situation we impose zero net flux boundary conditions288

at x = 0µm and x = 2000µm.289

All continuum results for single-species homogeneous and three-species het-290

erogeneous models, given by Equation (3.9) and Equations (3.2)-(3.4), respec-291
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tively, are solved numerically using the method of lines with ∆x = 4µm and292

∆t = 0.005 h on 0 < x < 2000µm (Matsiaka et al., 2017). We find that this293

choice of spatial and temporal discretisations are sufficiently fine to produce294

grid independent results. The detailed discretisation scheme used in this work295

is presented in the Supplementary Material.296

4 Results and Discussion297

To investigate the ability of a single-species homogeneous model to capture298

the behaviour of the three-species heterogeneous analogue, we consider a series299

of case studies. In these case studies we vary only one parameter at a time to300

simplify our analysis and to focus on the impact of each individual parameter.301

Another approach would be to use the mathematical models to explore hetero-302

geneity multiple parameter at the same time. However, in this first instance,303

we prefer to take a more fundamental approach and examine the role of het-304

erogeneity in each parameter separately. In the first set of experiments, Set I,305

we vary the cell size, δ̄, while keeping D̄ and f̄0 fixed at D̄ = 250µm2/h and306

f̄0 = 1.0µm/h. The values of Di and f
(i)
0 in the heterogeneous three-species307

model are fixed at Di = 250µm2/h and f
(i)
0 = 1.0µm/h for i = 1, 2, 3. These308

values of diffusivity and amplitude of cell-to-cell interaction forces are based309

on detailed experimental measurements reported previously (Matsiaka et al.,310

2019).311

There are number of ways to quantify performance of the single-species ho-312

mogeneous model in our framework. The position of the leading edge of the313

spreading population is routinely used by experimentalists to provide quanti-314

tative insights into the rate of spatial spreading of a cell population (Treloar315
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and Simpson, 2013; Johnston et al., 2014; Kollimada et al., 2016; Nardini316

et al., 2016; Bobadilla et al., 2019). Therefore, we quantify the discrepancy317

between the solution of the heterogeneous three-species model and the homo-318

geneous single-species model using an error measure, E(δ̄), associated with319

the position of the leading edge,320

E(δ̄) =
1

α

∑
j

[
S(tj)− S(tj)

]2

, (4.1)

where S(tj) is the position of the leading edge according to the three-species321

heterogeneous model at time tj, S(tj) is the position of the leading edge pre-322

dicted by the single-species homogeneous model, and α = 49 is the number of323

discrete time points we use to compute E(δ̄). In both scenarios the position of324

the leading edge is computed as the coordinate on the one-dimensional domain325

where the density is 1% of the initial density (Treloar and Simpson, 2013). An326

alternative approach is to use an error measure based on the discrepancy be-327

tween cell density profiles. At first, this approach of using the entire cell density328

profile might be thought to be preferable to working with leading edge data329

since density profiles incorporate much more detailed spatial information than330

just using the position of the leading edge. However, extracting the density331

data from experiments is much more tedious because it often involves manual332

cell counting in regions where cell densities are high and this is both difficult333

to reproduce and very time consuming (Treloar et al. 2014). Therefore, to keep334

our work as practical as possible, here we present only results with an error335

measure solely based on the leading edge data. Additional result that measure336

the discrepancy between the models using the entire density information are337

presented in the Supplementary Material (Figure A.1 and Figure A.2), and338

we find that this more complicated approach gives very similar results to the339
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leading edge data. Therefore, in this work, we focus on the using leasing edge340

data.341

The experimental distribution of cell sizes in Figure 1(d) provides insights into342

potential choices of the cell size distribution in Equations (3.2)-(3.4). Here we343

define three subpopulations based on the equivalent cell size: small (δ1 = 18344

µm), medium (δ2 = 34 µm), and large cells (δ3 = 50 µm). For simplicity, we345

set the fractions of small and medium cells to be equal and refer to this distri-346

bution as a monotonically decreasing distribution of cell sizes (Set Ia, Figure347

3). After considering the experimentally-motivated monotonically decreasing348

distribution, we then systematically explore: (i) uniform (Set Ib, Figure 4),349

(ii) non-monotonic (Set Ic, Figure 5), and (iii) monotonically increasing dis-350

tributions (Set Id, Figure 6).351
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Fig. 3. Set Ia. Heterogeneity in cell sizes: monotonically decreasing distribution. (a) Cell size distribution adopted in the three-species
heterogeneous model, Equations (3.2)-(3.4). Here the proportions of cells of different sizes are set to: (i) n1/N = 0.472; (ii) n2/N = 0.472;
(iii) n3/N = 0.056. (b) Leading edge as predicted by the three-species heterogeneous model, S(t) (solid red), and the best-fit approxi-
mation given by the single-species homogeneous model, S(t) (blue dashed). (c) Error measure, E(δ̄), between the position of the leading
edge given by the three-species heterogeneous model and the position predicted by the single-species homogeneous model as a function
of cell size, δ̄. The black arrow denotes the best-fit value of cell size, δ̄ = 28µm. (d)-(e) Cell density profiles predicted by the three-species
heterogeneous model, P(x, t) (solid red), superimposed with density profiles given by the single-species homogeneous model calibrated
with the best-fit value of δ, P (x, t) (solid blue). The continuum results for both models are presented at t = 0, 12, 24, 36, and 48 h. Black
arrows denote the direction of increasing time. Results in (e) show a close-up comparison right near the leading edge, denoted by the
gray shaded region in (d).
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Figure 3(b) compares the leading edge prediction, S(t), given by the three-352

species heterogeneous model with the associated best-fit match, S(t), pre-353

dicted by the single-species homogeneous model. Our systematic computation354

of the error measure, E(δ̄), demonstrates a clear minimum which ensures the355

unique choice of a best-fit cell size, δ̄. Results in Figure 3(d) superimposes356

the solution of the three-species heterogeneous model with the solution of the357

single-species homogeneous model parameterised with the best fit cell size.358

Comparing the time evolution of the spreading density profiles in Figure 3(d)359

(with additional details at the leading edge shown in the magnified region in360

Figure 3(e)) we see that the appropriately parameterised single-species homo-361

geneous model captures the temporal evolution of the spreading profile given362

by the heterogeneous model remarkably accurately. In particular, the den-363

sity profiles predicted by the single-species homogeneous model match both364

the position and shape of the density profiles generated by the three-species365

heterogeneous model. These results imply that in this case it would be rea-366

sonable to use a much simpler single-species homogeneous model to describe367

and predict this spatial spreading.368

Visual inspection of the results in Figures 3 - 6 suggests that we can always369

find a unique, well-defined value of the cell size in the single-species homo-370

geneous model to provide an accurate prediction of the temporal evolution371

of the position of a leading edge of the spreading heterogeneous cell popu-372

lations regardless of the underlying cell size distribution in the three-species373

heterogeneous model (Figures 3(b)-6(b)). In contrast, the quality of match374

between the shape of the density profiles for the three-species heterogeneous375

model and the single-species homogeneous model varies significantly between376

different cell size distributions. For example, the experimentally motivated dis-377

21

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 16, 2019. ; https://doi.org/10.1101/705434doi: bioRxiv preprint 

https://doi.org/10.1101/705434


tribution in Figure 3(a) (Set Ia) leads to a remarkably good match between the378

three-species heterogeneous model and the single-species homogeneous model.379

Similarly, the uniform distribution shown in Figure 4(a) (Set Ib) also leads to380

a reasonably good quality of match between two different models. In contrast,381

the density profiles associated with the non-monotonic cell size distribution382

(Figure 5, Set Ic) and monotonically increasing cell size distribution (Figure383

6, Set Id) show a relatively poor match. In these cases, it would seem prudent384

not to use a simpler single-species homogeneous model to simulate and predict385

these experiments.386

The values of the cell size, δ̄, that produce best match between the single-387

species homogeneous and three-species heterogeneous models vary significantly388

between different cell size distributions. For example, the best-fit value of the389

cell size for the uniform distribution (Figure 4, Set Ib), δ̄ = 36µm, is quite390

close to the weighted average value of 34µm for the distribution in Figure391

4(a). This indicates that the choice of a simple weighted average of the cell392

sizes might be a reasonable way to to parameterise the single-species homo-393

geneous model if the experimentally observed distribution is close to uniform.394

We observe similar agreement for best-fit values of the cell size in the case of395

monotonically decreasing (Set Ia) and monotonically increasing (Set Id) cell396

size distributions, shown in Figure 3 and Figure 6, respectively. In contrast,397

the best-fit value of the cell size for the non-monotonic distribution (Set Ic),398

δ̄ = 40µm, differs significantly from the weighted average of 34µm. Therefore,399

these results suggest that great care ought to be exercised when taking a dis-400

tribution of parameter values and attempting to select the most appropriate401

single representative value of that parameter.402
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Fig. 4. Set Ib. Heterogeneity in cell sizes: uniform distribution. (a) Cell size distribution adopted in the three-species heterogeneous
model, Equations (3.2)-(3.4). Here the proportions of cells of different sizes are set to: (i) n1/N = 0.33(3); (ii) n2/N = 0.33(3); (iii)
n3/N = 0.33(3). (b) Leading edge as predicted by the three-species heterogeneous model, S(t) (solid red), and the best-fit approximation
given by the single-species homogeneous model, S(t) (blue dashed). (c) Error measure, E(δ̄), between the position of the leading edge
given by the three-species heterogeneous model and the position predicted by the single-species homogeneous model as a function of
cell size, δ̄. The black arrow denotes the best-fit value of cell size, δ̄ = 36µm. (d)-(e) Cell density profiles predicted by the three-species
heterogeneous model, P(x, t) (solid red), superimposed with density profiles given by the single-species homogeneous model calibrated
with the best-fit value of δ̄, P (x, t) (solid blue). The continuum results for both models are presented at t = 0, 12, 24, 36, and 48 h. Black
arrows denote the direction of increasing time. Results in (e) show a close-up comparison right near the leading edge, denoted by the
gray shaded region in (d).
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Fig. 5. Set Ic. Heterogeneity in cell sizes: non-monotonic distribution. (a) Cell size distribution adopted in the three-species heterogeneous
model, Equations (3.2)-(3.4). Here the proportions of cells of different sizes are set to: (i) n1/N = 0.472; (ii) n2/N = 0.056; (iii)
n3/N = 0.472. (b) Leading edge as predicted by the three-species heterogeneous model, S(t) (solid red), and the best-fit approximation
given by the single-species homogeneous model, S(t) (blue dashed). (c) Error measure, E(δ̄), between the position of the leading edge
given by the three-species heterogeneous model and the position predicted by the single-species homogeneous model as a function of
cell size, δ̄. The black arrow denotes the best-fit value of cell size, δ̄ = 40µm. (d)-(e) Cell density profiles predicted by the three-species
heterogeneous model, P(x, t) (solid red), superimposed with density profiles given by the single-species homogeneous model calibrated
with the best-fit value of δ̄, P (x, t) (solid blue). The continuum results for both models are presented at t = 0, 12, 24, 36, and 48 h. Black
arrows denote the direction of increasing time. Results in (e) show a close-up comparison right near the leading edge, denoted by the
gray shaded region in (d).
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Fig. 6. Set Id. Heterogeneity in cell sizes: monotonically increasing distribution. (a) Cell size distribution adopted in the three-species
heterogeneous model, Equations (3.2)-(3.4). Here the proportions of cells of different sizes are set to: (i) n1/N = 0.056; (ii) n2/N = 0.472;
(iii) n3/N = 0.472. (b) Leading edge as predicted by the three-species heterogeneous model, S(t) (solid red), and the best-fit approxi-
mation given by the single-species homogeneous model, S(t) (blue dashed). (c) Error measure, E(δ̄), between the position of the leading
edge given by the three-species heterogeneous model and the position predicted by the single-species homogeneous model as a function
of cell size, δ̄. The black arrow denotes the best-fit value of cell size, δ̄ = 41µm. (d)-(e) Cell density profiles predicted by the three-species
heterogeneous model, P(x, t) (solid red), superimposed with density profiles given by the single-species homogeneous model calibrated
with the best-fit value of δ̄, P (x, t) (solid blue). The continuum results for both models are presented at t = 0, 12, 24, 36, and 48 h. Black
arrows denote the direction of increasing time. Results in (e) show a close-up comparison right near the leading edge, denoted by the
gray shaded region in (d).
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In addition to the results in Figures 3 - 6 exploring the role of heterogeneity403

in cell size, we present an additional suite of results where we systematically404

explore the role of heterogeneity in diffusivity (Set II) and amplitude of interac-405

tion forces (Set III) while keeping the cell size constant in all subpopulations.406

These additional results are presented in the Supplementary Material doc-407

ument. Both Set II and Set III data sets demonstrate exceptional quality of408

match between the three-species heterogeneous simulation data and its best-fit409

single-species homogeneous equivalent. Again, these additional results provide410

guidance about when it is reasonable to approximate a more complicated het-411

erogeneous mathematical model with a simpler single-species homogeneous412

model.413

5 Conclusions414

In this work, we explore the role of heterogeneity in the context of study-415

ing how an initially confined population of cells can spread into surround-416

ing initially unoccupied regions, as in the case of a scratch assay. We use417

a three-species heterogeneous model of cell motility, account for undirected418

cell motility, short range repulsion (crowding) and longer range adhesion, to419

capture experimentally observed heterogeneity in cell sizes from a new exper-420

imental data set from a two-dimensional scratch assay as shown in Figure 1.421

Our continuum models account for the undirected random motility, cell-to-cell422

adhesion, and cell crowding. The single-species homogeneous model is applied423

to each set of three-species heterogeneous simulation data in an attempt to424

match cell density profiles.425

To analyse the performance of the single-species homogeneous model to cap-426
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ture data from our three-species heterogeneous model we consider four dif-427

ferent cell size distributions: (i) monotonically decreasing distribution, (ii)428

uniform distribution, (iii) non-monotonic distribution, and (iv) monotonically429

increasing distribution. Overall, for a set of experimentally-motivated parame-430

ter combinations, we find that the standard single-species homogeneous model431

is able to accurately predict the position of the leading edge for all case stud-432

ies presented. However, the quality of the match between the shape of the433

density profiles varies significantly depending on the details of the form of434

the heterogeneity present. For example, the monotonically decreasing distri-435

bution (Set Ia) demonstrates remarkable goodness of fit between the two sets436

of density profiles, as shown in Figure 3(d). This result is important because437

the monotonically decreasing cell size distribution is chosen to mimic the dis-438

tribution of the cell sizes observed in our new experimental data set, shown439

in Figure 1. Similarly, the homogeneous distribution, Figure 4, shows that440

single-species homogeneous model is able to accurately replicate the three-441

species heterogeneous model results. This is an expected result because in this442

special case the cells of each subpopulation are the same size. In contrast,443

the single-species homogeneous model does not perform so well when applied444

to both non-monotonic and monotonically increasing distributions in Figures445

5-6, respectively. Additionally we explore potential heterogeneity in diffusiv-446

ity and amplitude of the cell-to-cell interactions (Supplementary Material).447

Overall, our results suggest that for certain cell size distributions, a simple448

and computationally efficient single-species homogeneous model is preferable449

over a thee-species heterogeneous model.450

There are number of ways this work can be extended which we leave for future451

analysis. All our simulations and analysis focus on treating the heterogeneity452
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in the population of cells by considering the total population to be composed of453

three distinct subpopulations. For more extreme forms for heterogeneity, such454

as multi-modal distributions, the results presented in this work could be ex-455

tended by considering additional subpopulations. Another simplification that456

we invoke is to assume that the measured heterogeneity remains constant for457

the duration of the experiment. Future studies could address the significantly458

more complicated question of allowing the distributions to evolve in time on459

the same time scale as the experiment to see if it is still possible to use a sim-460

pler homogeneous model in this more complicated scenario. Another avenue461

for further exploration would be to consider heterogeneity in more than one462

parameter at a time, whereas in this work we have taken the most fundamental463

approach and examined heterogeneity in just one parameter in isolation from464

the others. For both of these extensions, the modelling framework presented465

in this study can be extended to explore these additional features, and we466

leave such extensions for future consideration. Another option for extending467

the work would be to consider further details in the mathematical models,468

such as the effects of combined cell migration and combined cell proliferation.469

Here we have not pursued this approach because our experimental data set470

has been carefully prepared to exclude the effects of proliferation so that we471

can focus just on cell migration and heterogeneity in cell migration alone.472
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