Abstract
A major component of cell migration is F-actin polymerization driven membrane protrusion in the front. However, F-actin proximal to the plasma membrane also has a scaffolding role to support and attach the membrane. Here we developed a fluorescent reporter to monitor changes in the density of membrane proximal F-actin during membrane protrusion and cell migration. Strikingly, unlike total F-actin concentration, which is high in the front of migrating cells, the density of membrane proximal F-actin is low in the front and high in the back. Furthermore, local membrane protrusions only form following local decreases in membrane proximal F-actin density. Our study suggests that low density of membrane proximal F-actin is a fundamental structural parameter that locally directs membrane protrusions and globally stabilizes cell polarization during cell migration.
One Sentence Summary Membrane protrusion and cell migration are directed by local decreases in the density of membrane proximal F-actin